WorldWideScience

Sample records for gene g20210a mutation

  1. Prothrombin G20210A gene mutation in pregnant females with thrombotic obstetric complications

    International Nuclear Information System (INIS)

    Alam, M.A.; Ali, N.; Ayyub, M.

    2018-01-01

    To determine the frequency of prothrombin G20210A gene mutation in pregnant females with adverse thrombotic obstetric complication and to compare it with prothrombin G20210A gene's frequency in control population. Study Design: Case control study. Place and Duration of Study: Department of Haematology, Army Medical College Rawalpindi and Military Hospital Rawalpindi, from Nov 2013 to Oct 2014. Material and Methods: Sixty pregnant females were included in the study; 30 were cases with adverse thrombotic obstetric complication, while 30 were controls. Detailed history was obtained and 3 ml blood in EDTA tube was collected. DNA was extracted from whole blood and through RT-PCR, presence of prothrombin G20210A gene mutation was looked for in patients and controls. Data was analyzed using SPSS 21. Results: A total of 60 women-30 cases with thrombotic obstetric complications as 'cases' and 30 as 'controls'- were included in the study. Mean age of 'cases' was 28.70 +- 4.23 years while that of 'controls' was 27.33 +- 4.49 years. There was no statistically significant difference among the two groups (p=0.54). In case group only one of 30 (3.3%) patients had heterozygous F2 G20210A mutation while 29 (96.7%) patients had wild type allele. In control group, all the 30 (100%) subjects had wild type allele. The odds of finding the mutation in cases was 1:29 i.e. 0.03 as compared to zero in the control group. The difference was statistically insignificant (p=0.5). Conclusion: Our study shows that the frequency of F2 G20210A gene mutation in pregnant females having adverse thrombotic obstetric complications was not significantly different from its frequency in control population. (author)

  2. Prothrombin 20210 G: a mutation and Factor V Leiden mutation in women with a history of severe preeclampsia and (H)ELLP syndrome

    NARCIS (Netherlands)

    van Pampus, M. G.; Wolf, H.; Koopman, M. M.; van den Ende, A.; Buller, H. R.; Reitsma, P. H.

    2001-01-01

    The 20210 G-A prothrombin gene variant and the Factor V Leiden mutation are mutations associated with venous thrombotic risk. The aim of our study was to assess the prevalence of these specific mutations in women with a history of preeclampsia or hemolysis elevated liver enzymes, and low platelet

  3. [Recurrent vascular access trombosis associated with the prothrombin mutation G20210A in a adult patient in haemodialysis].

    Science.gov (United States)

    Quintana, L F; Coll, E; Monteagudo, I; Collado, S; López-Pedret, J; Cases, A

    2005-01-01

    Vascular access-related complications are a frequent cause of morbidity in haemodialysis patients and generate high costs. We present the case of an adult patient with end-stage renal disease and recurrent vascular access thrombosis associated with the prothrombin mutation G20210A and renal graft intolerance. The clinical expression of this heterozygous gene mutation may have been favoured by inflammatory state, frequent in dialysis patients. In this patient, the inflammatory response associated with the renal graft intolerance would have favored the development of recurrent vascular access thrombosis in a adult heterozygous for prothrombin mutation G20210A. In the case of early dysfunction of haemodialysis vascular access and after ruling out technical problems, it is convenient to carry out a screening for thrombophilia.

  4. Cerebral Venous Thrombosis and Pulmonary Embolism with Prothrombin G20210A Gene Mutation.

    Science.gov (United States)

    Dagli, Canan Eren; Koksal, Nurhan; Guler, Selma; Gelen, Mehmet Emin; Atilla, Nurhan; Tuncel, Deniz

    2010-04-01

    A 25-year-old man presented with symptoms of syncope, cough, headache and hemoptysis. Cranial MR and venography showed thrombus formation in the right transverse sinus and superior sagittal sinus. Computed tomographic pulmonary angiography (CTPA) showed an embolic thrombus in the right pulmonary truncus and lung abscess. The patient was young, and there were no signs of lower extremity deep venous thrombosis or other major risk factors for pulmonary embolism (PE) including cardiac anomaly. The only risk factor we were able to identify was the presence of the prothrombin G20210A gene mutation. Anticoagulant treatment with oral warfarin (10 mg daily) and imipenem (4X500 mg) was started. The patient was hospitalized for antibiotic and anticoagulation therapies for three weeks and was discharged on lifelong treatment with warfarin (5 mg daily).

  5. Prothrombin G20210A mutation, hypogonadotropic hypogonadism, and generalized vitiligo-related ischemic stroke in a young adult.

    Science.gov (United States)

    Varoglu, Asuman Orhan; Kocatürk, Idris; Tatar, Abdulgani

    2010-06-01

    Cerebral infarction is a rare neurological situation in young adults, usually caused by genetic factors. We report here a case of multiple cerebral infarctions with prothrombin G20210A mutation, hypogonadotropic hypogonadism, and generalized vitiligo as a first case report. A 17-year-old female adolescent was admitted to our clinic due to a change in mental status. The patient's neurological examination revealed loss of consciousness and the presence of tetraparesia. Generalized vitiligo was also detected. Magnetic resonance imaging (MRI) and diffusion-weighted investigations (DWIs) showed acute ischemic stroke in the bilateral cerebellum, pons and left occipital regions. Heterozygote prothrombin G20210A mutation was found upon genetic examination. She had never had a menstrual cycle. Laboratory data revealed that the level of luteinizing hormone (LH) was 0.5 mIU/mL (1.1-11.6) and follicle-stimulating hormone (FSH) was 1.7 mIU/mL (2.8-11.3). Therefore, she was diagnosed with hypogonadotropic hypogonadism. The causes of ischemic stroke are heterozygote prothrombin G20210A mutation, generalized vitiligo, and hypogonadotropic hypogonadism. After treatment, the patient's neurological deficit partially improved and she was discharged. In order to identify the etiology of ischemic stroke, we suggest physicians take into account heterozygote prothrombin G20210A mutation and endocrine abnormalities, especially hypogonadotropic hypogonadism and generalized vitiligo.

  6. Acute quadriplegia in a young man secondary to prothrombin G20210A mutation.

    Science.gov (United States)

    Sawaya, R; Diken, Z; Mahfouz, R

    2011-08-01

    We present the case of an 18-year-old man, previously healthy, who presented with acute quadriplegia and respiratory failure. Physical examination was compatible with a high cervical anterior spinal cord lesion. We plan to evaluate the cause of such a neurological presentation in a healthy young man. American University Medical Center, Beirut, Lebanon. The patient underwent routine blood hematological and chemistry work-up, hypercoagulable profile studies, genetic profile for thrombophelias, radiographic studies of the brain and cervical cord, cerebrospinal analysis and extensive electrophyisological studies. Magnetic resonance imaging and magnetic resonance angiogram of the brain, carotid and intracranial vessels were normal. Cerebral angiography was normal. Magnetic resonance imaging of the cervical cord revealed lesion of the anterior segment of the cervical cord between C2 and C5 levels. Hypercoagulable profile studies were normal. Electrophysiological studies confirmed an isolated lesion of the descending cortico-spinal tracts. DNA analysis revealed the presence of a G20210A mutation-causing hyperprothrombinemia. We conclude that a G20210A mutation causing-hyperprothrombinemia can cause anterior spinal artery thrombosis and anterior spinal cord infarction with the resultant neurological deficits in otherwise healthy patients.

  7. The Frequency of Factor V Leiden, Prothrombin G20210A and Methylenetetrahydrofolate Reductase C677T Mutations in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Ruhsen Öcal

    2010-12-01

    Full Text Available OBJECTIVE: Migraine is an independent risk factor for ischemic stroke, but its pathophysiology is still unclear. Genetic factors that predispose patients to thrombosis have been studied in patients with migraine to highlight the pathogenesis, but the results remain controversial. In this study, the frequencies of factor V Leiden (FVL, prothrombin (Pt G20210A and methylenetetrahydrofolate reductase (MTHFR C677T mutations were investigated. METHODS: One hundred and sixty patients aged of 15 to 55 years with no history of systemic disease and who had been diagnosed as migraine according to the International Headache Society (IHS diagnostic criteria at Baskent University Hospital Neurology Outpatient Clinics were investigated for FVL, Pt G20210A and MTHFR C677T mutations from their genomic DNA, and the results were compared with those of healthy controls. RESULTS: One hundred and fifty five (96.9% of 160 migraine patients were homozygote normal, 5 (3.1% were heterozygote and none of them were homozygote mutant for FVL. The control group had 9.8% heterozygote individuals but the difference between the percentages was not statistically significant (p> 0.05. There were no homozygote mutant individuals in the Turkish population study in normal subjects like our study. Thirty nine (24.4% of 160 migraine patients were heterozygote and 8 (5% were homozygote mutant for MTHFR C677T. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.15. Three (1.9% of 160 migraine patients were heterozygote and 5 (2.9% of the control group were heterozygote mutant for Pt G20210A mutation. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.420. CONCLUSION: Our study indicates that FVL, Pt G20210A and MTHFR C677T gene mutations, which are considered

  8. The Frequency of Factor V Leiden, Prothrombin G20210A and Methylenetetrahydrofolate Reductase C677T Mutations in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Ruhsen Öcal

    2010-12-01

    Full Text Available OBJECTIVE: Migraine is an independent risk factor for ischemic stroke, but its pathophysiology is still unclear. Genetic factors that predispose patients to thrombosis have been studied in patients with migraine to highlight the pathogenesis, but the results remain controversial. In this study, the frequencies of factor V Leiden (FVL, prothrombin (Pt G20210A and methylenetetrahydrofolate reductase (MTHFR C677T mutations were investigated. METHODS: One hundred and sixty patients aged of 15 to 55 years with no history of systemic disease and who had been diagnosed as migraine according to the International Headache Society (IHS diagnostic criteria at Baskent University Hospital Neurology Outpatient Clinics were investigated for FVL, Pt G20210A and MTHFR C677T mutations from their genomic DNA, and the results were compared with those of healthy controls. RESULTS: One hundred and fifty five (96.9% of 160 migraine patients were homozygote normal, 5 (3.1% were heterozygote and none of them were homozygote mutant for FVL. The control group had 9.8% heterozygote individuals but the difference between the percentages was not statistically significant (p> 0.05. There were no homozygote mutant individuals in the Turkish population study in normal subjects like our study. Thirty nine (24.4% of 160 migraine patients were heterozygote and 8 (5% were homozygote mutant for MTHFR C677T. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.15. Three (1.9% of 160 migraine patients were heterozygote and 5 (2.9% of the control group were heterozygote mutant for Pt G20210A mutation. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.420. CONCLUSION: Our study indicates that FVL, Pt G20210A and MTHFR C677T gene mutations, which are considered

  9. Plasma fibrin clot properties in the G20210A prothrombin mutation carriers following venous thromboembolism: the effect of rivaroxaban.

    Science.gov (United States)

    Janion-Sadowska, Agnieszka; Natorska, Joanna; Siudut, Jakub; Ząbczyk, Michal; Stanisz, Andrzej; Undas, Anetta

    2017-08-30

    We sought to investigate whether the G20210A prothrombin mutation modifies plasma fibrin clot properties in patients after venous thromboembolism (VTE) and how rivaroxaban treatment affects these alterations. We studied 34 prothrombin mutation heterozygous carriers and sex- and age-matched 34 non-carriers, all at least three months since the first VTE episode, before and during treatment with rivaroxaban. Clot permeability (K s ) and clot lysis time (CLT) with or without elimination of thrombin activatable fibrinolysis inhibitor (TAFI) were assessed at baseline, 2-6 hours (h) after and 20-25 h after intake of rivaroxaban (20 mg/day). At baseline, the prothrombin mutation group formed denser clots (K s -12 %, p=0.0006) and had impaired fibrinolysis (CLT +14 %, p=0.004, and CLT-TAFI +13 %, p=0.03) compared with the no mutation group and were similar to those observed in 15 healthy unrelated prothrombin mutation carriers. The G20210A prothrombin mutation was the independent predictor for K s and CLT before rivaroxaban intake. At 2-6 h after rivaroxaban intake, clot properties improved in both G20210A carriers and non-carriers (K s +38 %, and +37 %, CLT -25 % and -25 %, CLT-TAFI -20 % and -24 %, respectively, all pCLT +17 %, CLT-TAFI +13 %, all p<0.001). Rivaroxaban concentration correlated with fibrin clot properties. After 20-25 h since rivaroxaban intake most clot properties returned to baseline. Rivaroxaban-related differences in clot structure were confirmed by scanning electron microscopy images. In conclusion, rivaroxaban treatment, though improves fibrin clot properties, cannot abolish more prothrombotic fibrin clot phenotype observed in prothrombin mutation carriers following VTE.

  10. Evaluation of Factor V Leiden, Prothrombin G20210A, MTHFR C677T and MTHFR A1298C gene polymorphisms in retinopathy of prematurity in a Turkish cohort.

    Science.gov (United States)

    Aydin, Hatip; Gunay, Murat; Celik, Gokhan; Gunay, Betul Onal; Aydin, Umeyye Taka; Karaman, Ali

    2016-12-01

    To assess Factor V Leiden (FVL) (rs6025), Prothrombin G20210A (rs1799963), MTHFR C677T (rs1801133), and MTHFR A1298C (rs1801131) gene mutations as risk factors in the development of retinopathy of prematurity (ROP). A total of 105 children were included in this cross-sectional study. Patients were divided into two groups. The study group consisted of 55 infants with a history of ROP and the control group comprised 50 healthy infants with term birth. All subjects were screened for the presence of certain mutations (FVL, Prothrombin G20210A, MTHFR C677T and MTHFR A1298C) by Real-Time PCR at 1 year of age. The mean gestational age (GA) and birth weight (BW) of the study group were, 28.65 ± 2.85 weeks and 1171 ± 385.74 g, respectively. There were no significant differences of genotype and allele frequency of Prothrombin G20210A, MTHFR A1298C and MTHFR C677T between the study and control groups (p > 0.05). Eight children (14.5 %) had heterozygous and one child (1.8%) had homozygous FVL mutation in the study group. One child (2%) in the control group had heterozygous FVL mutation. There was statistically significant differences of FVL allele and genotype frequencies between the groups (p < 0.05). The prevalence of FVL polymorphism (16.3 %) was higher in ROP patients than control subjects in this Turkish cohort. We suggest a possible association of FVL mutation with ROP at the end of the study.

  11. Prothrombin G20210A mutation is associated with young-onset stroke: the genetics of early-onset stroke study and meta-analysis.

    Science.gov (United States)

    Jiang, Baijia; Ryan, Kathleen A; Hamedani, Ali; Cheng, Yuching; Sparks, Mary J; Koontz, Deborah; Bean, Christopher J; Gallagher, Margaret; Hooper, W Craig; McArdle, Patrick F; O'Connell, Jeffrey R; Stine, O Colin; Wozniak, Marcella A; Stern, Barney J; Mitchell, Braxton D; Kittner, Steven J; Cole, John W

    2014-04-01

    Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a white case-control population and additionally performed a meta-analysis. From the population-based Genetics of Early Onset Stroke (GEOS) study, we identified 397 individuals of European ancestry aged 15 to 49 years with first-ever ischemic stroke and 426 matched controls. Logistic regression was used to calculate odds ratios (ORs) in the entire population and for subgroups stratified by sex, age, oral contraceptive use, migraine, and smoking status. A meta-analysis of 17 case-control studies (n=2305 cases ischemic stroke did not achieve statistical significance (OR=2.5; 95% confidence interval [CI]=0.9-6.5; P=0.07). However, among adults aged 15 to 42 years (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9; 95% CI=1.2-28.1; P=0.03), whereas adults aged 42 to 49 years were not (OR=1.4; 95% CI=0.4-5.1; P=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ≤55 years (OR=1.4; 95% CI=1.1-1.9; P=0.02), with significance increasing with addition of the GEOS results (OR=1.5; 95% CI=1.1-2.0; P=0.005). The prothrombin G20210A mutation is associated with ischemic stroke in young adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger young adult population requires replication.

  12. Phenotypic presentation of thrombophilia in double heterozygote for factor v leiden and prothrombin 20210 G>A mutations: Case report

    Directory of Open Access Journals (Sweden)

    Nagorni-Obradović Ljudmila

    2014-01-01

    Full Text Available Physicians usually do not suspect pulmonary thromboembolism in younger patients except in those who have thrombophilia. In those latter patients some special conditions such as trauma or surgery may provoke the disease. In some adult persons, thrombophilia may still remain unrecognized, until appearance of additional conditions influence development of thrombosis. A 55-year-old Caucasian female, non-smoker, experienced sudden chest pain and hemoptysis without chest trauma. History taking revealed type 2 diabetes mellitus and hypothyroidism. She was overweight with body mass index 29.0. The review of the family history revealed that her father and mother died of brain infarction, while her 22-year-old son and 24-year-old daughter were healthy. Due to suspicion for thrombosis, multi-slice computerized tomography thorax scan was done and pulmonary embolism was diagnosed. Although without clear risk factor for thrombosis in our patient, we performed laboratory investigation for congenital thrombophilia. Genetic analysis showed double heterozygous for factor V Leiden and prothrombin 20210 G>A mutations. Congenital thrombophilia was risk factor for thrombosis in our patient but haemostatic imbalance was not previously clinically recognized. She had two pregnancies without complications. Appearance of other associative factors such as endocrine disorders - hypothyroidism and metabolic syndrome with diabetes type 2, and overweigh were additional potential triggers for clinical manifestation of pulmonary thromboembolism in her adult age. Her children underwent genetic analysis, too. The son was also double heterozygous for factor V Leiden and prothrombin 20210 G>A mutations, while daughter was heterozygous for factor V Leiden, and none had clinical signs of thrombosis. [Projekat Ministarstva nauke Republike Srbije, br. ON175081 i br. ON 175091

  13. The Prothrombin G20210A Mutation is Associated with Young-Onset Stroke: The Genetics of Early Onset Stroke Study and Meta-Analysis

    Science.gov (United States)

    Jiang, Baijia; Ryan, Kathleen A.; Hamedani, Ali; Cheng, Yuching; Sparks, Mary J.; Koontz, Deborah; Bean, Christopher J.; Gallagher, Margaret; Hooper, W. Craig; McArdle, Patrick F.; O'Connell, Jeffrey R.; Stine, O. Colin; Wozniak, Marcella A.; Stern, Barney J.; Mitchell, Braxton D.; Kittner, Steven J.; Cole, John W.

    2014-01-01

    Background and Purpose Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young-adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a Caucasian case-control population and additionally performed a meta-analysis Methods From the population-based Genetics of Early Onset Stroke (GEOS) study we identified 397 individuals of European ancestry aged 15-49 years with first-ever ischemic stroke and 426 matched-controls. Logistic regression was used to calculate odds ratios in the entire population and for subgroups stratified by gender, age, oral contraceptive use, migraine and smoking status. A meta-analysis of 17 case-control studies (n=2305 cases ischemic stroke did not achieve statistical significance (OR=2.5,95%CI=0.9-6.5,p=0.07). However, among adults aged 15-42 (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9,95%CI=1.2-28.1,p=0.03), whereas adults ages 42-49 were not (OR=1.4,95%CI=0.4-5.1,p=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ischemic stroke in young-adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger-young adult population requires replication. PMID:24619398

  14. The association of factor V G1961A (factor V Leiden), prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms with recurrent pregnancy loss in Bosnian women.

    Science.gov (United States)

    Jusić, Amela; Balić, Devleta; Avdić, Aldijana; Pođanin, Maja; Balić, Adem

    2018-08-01

    Aim To investigate association of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms with recurrent pregnancy loss in Bosnian women. Methods A total of 60 women with two or more consecutive miscarriages before 20 weeks of gestation with the same partners and without history of known causes or recurrent pregnancy loss were included. A control group included 80 healthy women who had one or more successful pregnancies without history of any complication which could be associated with miscarriages. Genotyping of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms were performed by polymerase chain reaction/restriction fragments length polymorphism method (PCR/RFLP). Results Both factor V Leiden and MTHFR C677T polymorphisms were significantly associated with recurrent pregnancy loss (RPL) in Bosnian women while prothrombin G20210A and PAI-1 4G/5G polymorphisms did not show strongly significant association. Conclusion The presence of thrombophilic polymorphisms may predispose women to recurrent pregnancy loss. Future investigation should be addressed in order to find when carriers of those mutations, polymorphisms should be treated with anticoagulant therapy. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  15. Association Between the 20210G>A Prothrombin Gene Polymorphism and Arterial Ischemic Stroke in Children and Young Adults-Two Meta-analyses of 3586 Cases and 6440 Control Subjects in Total.

    Science.gov (United States)

    Sarecka-Hujar, Beata; Kopyta, Ilona; Skrzypek, Michal; Sordyl, Joanna

    2017-04-01

    Previous data have shown that the 20210G>A polymorphism of the Factor II gene is related to an increased prothrombin level, which may in turn lead to a procoagulant state. The heterogeneous and multifactorial character of arterial ischemic stroke often results in contradictory reports describing the association between the 20210G>A polymorphism and arterial ischemic stroke in different populations. We performed a meta-analysis of available data addressing the relation between the FII 20210G>A polymorphism and arterial ischemic stroke, both in young adults and children. We searched PubMed using appropriate keywords. The inclusion criteria for the study were as follows: case-control study, study population consisting of children, study population consisting of young adults, arterial ischemic stroke confirmed by magnetic resonance imaging or computed tomography, and English language. The exclusion criteria included lack of genotype or allele frequencies, study design other than a case-control study, outcome definition other than arterial ischemic stroke, and previously overlapped patient groups. Finally, 30 case-control studies (14 in children and 16 in young adults) were included. Statistical analyses were conducted using R software. Heterogeneity between the studies was evaluated using the Dersimonian and Laird's Q test. In the case of significant between-studies heterogeneity, the pooled odds ratio was estimated with a random-effects model, otherwise a fixed-effects model was used. The pooled analysis showed that carriers of 20210A allele (GA+AA genotypes) of the prothrombin gene are more common in arterial ischemic stroke patients, both in children and young adults, than in control subjects (P = 0.006; odds ratio, 1.83; 95% confidence interval, 1.19 to 2.80 and P = 0.001; odds ratio, 1.69; 95% confidence interval, 1.25 to 2.28, respectively). The results of the present meta-analysis have proven that the FII 20210G>A polymorphism is associated with arterial

  16. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives.

    Science.gov (United States)

    Martinelli, I; Sacchi, E; Landi, G; Taioli, E; Duca, F; Mannucci, P M

    1998-06-18

    Idiopathic cerebral-vein thrombosis can cause serious neurologic disability. We evaluated risk factors for this disorder, including genetic risk factors (mutations in the genes encoding factor V and prothrombin) and nongenetic risk factors (such as the use of oral contraceptive agents). We compared the prevalence of these risk factors in 40 patients with cerebral-vein thrombosis, 80 patients with deep-vein thrombosis of the lower extremities, and 120 healthy controls. The G1691A mutation in the factor V gene and the G20210A prothrombin-gene mutation, which are established genetic risk factors for venous thrombosis, were studied. We also assessed the use of oral contraceptives and other risk factors for thrombosis. The prevalence of the prothrombin-gene mutation was higher in patients with cerebral-vein thrombosis (20 percent) than in healthy controls (3 percent; odds ratio, 10.2; 95 percent confidence interval, 2.3 to 31.0) and was similar to that in patients with deep-vein thrombosis (18 percent). Similar results were obtained for the mutation in the factor V gene. The use of oral contraceptives was more frequent among women with cerebral-vein thrombosis (96 percent) than among controls (32 percent; odds ratio, 22.1; 95 percent confidence interval, 5.9 to 84.2) and among those with deep-vein thrombosis (61 percent; odds ratio, 4.4; 95 percent confidence interval, 1.1 to 17.8). For women who were taking oral contraceptives and who also had the prothrombin-gene mutation (seven patients with cerebral-vein thrombosis but only one control), the odds ratio for cerebral-vein thrombosis rose to 149.3 (95 percent confidence interval, 31.0 to 711.0). Mutations in the prothrombin gene and the factor V gene are associated with cerebral-vein thrombosis. The use of oral contraceptives is also strongly and independently associated with the disorder. The presence of both the prothrombin-gene mutation and oral-contraceptive use raises the risk of cerebral-vein thrombosis further.

  17. Preconception Screening for Gene Polymorphisms Associated with Thrombophilia and Hyperhomocysteinemia Risk in Healthy Young Women

    Directory of Open Access Journals (Sweden)

    Elena Yu. Glotova

    2013-09-01

    Full Text Available The frequency characteristics of the gene polymorphisms (FVL G1691A, FII G20210A, MTHFR C677T, MTHFR A1298C, MTRR A66G associated with thrombophilia, hyperhomocysteinemia risk and different perinatal or pregnancy complications were studied. This examination was conducted among 130 planned-pregnancy healthy young women aged between 19 and 29 years. A gene mutation analysis was performed using a real-time polymerase chain reaction (real-time PCR. Factor V Leiden (FVL G1691A and prothrombin gene (FII G20210A mutations were not identified in the women surveyed. The frequency of the occurrence of the heterozygous FVL 1691G/A genotype associated with the risk of thrombosis during pregnancy was very low in these women (0.8%. The frequency of the MTHFR (methylenetetrahydrofolate reductase 1298C/С mutant genotype was 11.5%, MTHFR 677T/Т – 5.4%, and MTRR (methionine synthase reductase 66G/G – 31.5%. A combination of the MTHFR 677TT/1298CC and MTHFR 677TТ/MTRR 66GG mutant genotypes, which significantly increased the risk of pregnancy loss and neural tube defects, were found to occur in 0.8% of the cases.We concluded that selective thrombophilia screening (FVL G1691A and FII G20210A based on prior personal and/or family history of venous thromboembolism was more cost-effective than a universal preconception screening in all planning pregnancy women. However, in order to decrease the risk of congenital anomalies and pregnancy complications associated with folate dependent homocysteine metabolism, preconception care should include folate supplementation

  18. Factor V Leiden Mutation and PT 20210 Mutation Test

    Science.gov (United States)

    ... Disorders Fibromyalgia Food and Waterborne Illness Fungal Infections Gout Graves Disease Guillain-Barré Syndrome Hashimoto Thyroiditis Heart ... Tested? To determine whether you have an inherited gene mutation that increases your risk of developing a ...

  19. A novel homozygous no-stop mutation in G6PC gene from a Chinese patient with glycogen storage disease type Ia.

    Science.gov (United States)

    Gu, Lei-Lei; Li, Xin-Hua; Han, Yue; Zhang, Dong-Hua; Gong, Qi-Ming; Zhang, Xin-Xin

    2014-02-25

    Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive genetic disorder resulting in hypoglycemia, hepatomegaly and growth retardation. It is caused by mutations in the G6PC gene encoding Glucose-6-phosphatase. To date, over 80 mutations have been identified in the G6PC gene. Here we reported a novel mutation found in a Chinese patient with abnormal transaminases, hypoglycemia, hepatomegaly and short stature. Direct sequencing of the coding region and splicing-sites in the G6PC gene revealed a novel no-stop mutation, p.*358Yext*43, leading to a 43 amino-acid extension of G6Pase. The expression level of mutant G6Pase transcripts was only 7.8% relative to wild-type transcripts. This mutation was not found in 120 chromosomes from 60 unrelated healthy control subjects using direct sequencing, and was further confirmed by digestion with Rsa I restriction endonuclease. In conclusion, we revealed a novel no-stop mutation in this study which expands the spectrum of mutations in the G6PC gene. The molecular genetic analysis was indispensable to the diagnosis of GSD-Ia for the patient. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Inherited thrombophilia in pregnant women with intrauterine growth restriction.

    Science.gov (United States)

    Coriu, Letitia; Copaciu, Elena; Tulbure, Dan; Talmaci, Rodica; Secara, Diana; Coriu, Daniel; Cirstoiu, Monica

    2014-12-01

    Intrauterine growth restriction (IUGR) is a major cause of fetal morbidity and mortality during pregnancy. The role of mutation in the factor V gene, prothrombin gene, MTHFR gene, as risk factors for intrauterine growth restriction during pregnancy, is not very well known so far. This is a retrospective study of 151 pregnant women with a history of complicated pregnancy: intrauterine growth restriction, preeclampsia, recurrent pregnancy loss or maternal venous thromboembolism, who were admitted in Bucharest Emergency University Hospital, during the period January 2010 to July 2014. Genetic testing was performed for all the cases to detect: factor V Leiden mutation, G20210A mutation in the prothrombin gene, C677T mutation and A1298C mutation in methylenetetrahydrofolate reductase (MTHFR) gene. Blood samples were obtained as soon as the diagnosis of intrauterine growth restriction was established with ultrasonography. The following gene mutations were associated with increased risk of IUGR: G20210A prothrombin gene mutation (OR 4.81, 95% CI 1.05 - 2.22, p= 0.043), G1691A factor V gene mutation (factor V Leiden) (OR 1.58, 95% CI 0.61 - 4.080, p= 0.347), C677T MTHFR gene mutation (OR 1.61, 95% CI 0.79 to 3.26, p= 0.186), compound heterozygous MTHFR C677T and A1298C (OR 1.66, 95% CI 0.81- 3.42, p= 0.169). Particularly, for G20210A prothrombin gene mutation we found statistically significant risk (p≤0.05) of IUGR.

  1. The role of classic risk factors and prothrombotic factor gene mutations in ischemic stroke risk development in young and middle-aged individuals.

    Science.gov (United States)

    Supanc, Visnja; Sonicki, Zdenko; Vukasovic, Ines; Solter, Vesna V; Zavoreo, Iris; Kes, Vanja B

    2014-03-01

    In young individuals, a genetically predisposing hypercoagulability and classic modifying risk factors can act synergistically on the ischemic stroke risk development. The aim of the study was to compare the prevalence of classic vascular risk factors and polymorphisms of the G20210A coagulation factor II (prothrombin), Arg506Glu coagulation factor V Leiden, C677T methylenetetrahydrofolate reductase (MTHFR), and 4G/5G plasminogen activator inhibitor-1 (PAI-1) and the impact of these gene mutations and classic vascular risk factors on the overall stroke risk in individuals aged 55 years or younger. The study included 155 stroke patients aged 55 years or younger and 150 control subjects. Stroke prevalence and odds ratio (OR) were assessed for the following parameters: G20210A prothrombin, Arg506Glu factor V Leiden, C677T MTHFR, and 4G/5G PAI-1 polymorphisms; total number of study polymorphisms in a particular subject (genetic sum); and classic vascular risk factors of hypertension, obesity, diabetes mellitus, cigarette smoking, hypercholesterolemia, hypertriglyceridemia, and elevated levels of low-density lipoprotein (LDL) cholesterol and very low-density lipoprotein cholesterol. The prevalence of hypertension (P stroke patients. The following parameters were found to act as independent risk factors for ischemic stroke: decreased HDL cholesterol level (P ischemic stroke in young and middle-aged individuals. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    Science.gov (United States)

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with sever nephropathy

    International Nuclear Information System (INIS)

    Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza

    2015-01-01

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. - Highlights: • MT-COX3 m.9267G>C (p.A21P), heteroplasmic substitution, is not reported in any database. • m.9267G>C can be responsible of the MIDD associated with nephropaty. • This substitution can modify the function and the stability of the MT-CO3 protein. • This substitution can modify MT-CO3 structure (2D and 3D). • MT-COX3 m.9267G>C is associated

  4. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with sever nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Tabebi, Mouna, E-mail: mouna.biologiste@yahoo.com [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Mkaouar-Rebai, Emna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kallabi, Fakhri; Ben Mahmoud, Afif [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Ben Saad, Wafa; Charfi, Nadia [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Keskes-Ammar, Leila; Kamoun, Hassen [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh@gmail.com [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia)

    2015-04-10

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. - Highlights: • MT-COX3 m.9267G>C (p.A21P), heteroplasmic substitution, is not reported in any database. • m.9267G>C can be responsible of the MIDD associated with nephropaty. • This substitution can modify the function and the stability of the MT-CO3 protein. • This substitution can modify MT-CO3 structure (2D and 3D). • MT-COX3 m.9267G>C is associated

  5. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  7. Mutations in rpoB and katG genes in Mycobacterium isolates from the Southeast of Mexico

    Directory of Open Access Journals (Sweden)

    R Zenteno-Cuevas

    2009-05-01

    Full Text Available The most frequent mutations associated with rifampin and isoniazid resistance in Mycobacterium are the substitutions at codons 531 and 315 in the rpoB and katG genes, respectively. Hence, the aim of this study was to characterize these mutations in Mycobacterium isolates from patients suspected to be infected with drug-resistant (DR pulmonary tuberculosis (TB in Veracruz, Mexico. Drug susceptibility testing of 25 clinical isolates revealed that five were susceptible while 20 (80% were DR (15% of the annual prevalence for Veracruz. Of the DR isolates, 15 (75% were resistant to rifampin, 17 (85% to isoniazid and 15 (75% were resistant to both drugs (MDR. Sequencing analysis performed in the isolates showed that 14 (93% had mutations in the rpoB gene; seven of these (47% exhibited a mutation at 531 (S[L. Ten (58% of the 20 resistant isolates showed mutations in katG; nine (52% of these 10 exhibited a mutation at 315 (S[T. In conclusion, the DR profile of the isolates suggests a significant number of different DR-TB strains with a low frequency of mutation at codons 531 and 315 in rpoB and katG, respectively. This result leads us to consider different regions of the same genes, as well as other genes for further analysis, which is important if a genetic-based diagnosis of DR-TB is to be developed for this region.

  8. MELAS syndrome associated with a new mitochondrial tRNA-Val gene mutation (m.1616A>G).

    Science.gov (United States)

    Toyoshima, Yuka; Tanaka, Yuji; Satomi, Kazuo

    2017-09-11

    We describe the case of a 40-year-old-man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, with cardiomyopathy and severe heart failure. He had a mitochondrial transfer RNA (tRNA) mutation (m.1616A>G) of the (tRNA-Val) gene, and it was not found in MELAS syndrome ever before. The presence of this newly observed tRNA-Val mutation (m.1616A>G) may induce multiple respiratory chain enzyme deficiencies and contribute to MELAS syndrome symptoms that are associated with mitochondrial DNA (mtDNA) mutations. We report that the pathognomonic symptom in MELAS syndrome caused by this newly observed mtDNA mutation may be rapid progression of cardiomyopathy and severe heart failure. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. The c.IVS1+1G>A mutation inthe GJB2 gene is prevalent and large ...

    Indian Academy of Sciences (India)

    IVS1+1G>A mutation inthe GJB2 gene is prevalent and large deletions involving the GJB6 gene are not present in the Turkish population. ASLI SIRMACI, DUYGU AKCAYOZ-DUMAN and MUSTAFA TEKIN∗. Division of Pediatric Molecular Genetics, Ankara University School of Medicine, Ankara 06100, Turkey. Introduction.

  10. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    Science.gov (United States)

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  11. The 95ΔG mutation in the 5'untranslated region of the norA gene increases efflux activity in Staphylococcus epidermidis isolates.

    Science.gov (United States)

    García-Gómez, Elizabeth; Jaso-Vera, Marcos E; Juárez-Verdayes, Marco A; Alcántar-Curiel, María D; Zenteno, Juan C; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Díaz, Mario E; Jan-Roblero, Janet; Cancino-Diaz, Juan C

    2017-02-01

    In the Staphylococcus aureus ATCC25923 strain, the flqB mutation in the 5'untranslated region (5'UTR) of the norA gene causes increased norA mRNA expression and high efflux activity (HEA). The involvement of the norA gene 5'UTR in HEA has not been explored in S. epidermidis; therefore, we examined the function of this region in S. epidermidis clinical isolates. The selection of isolates with HEA was performed based on ethidium bromide (EtBr) MIC values and efflux efficiency (EF) using the semi-automated fluorometric method. The function of the 5'UTR was studied by quantifying the levels of norA expression (RT-qPCR) and by identifying 5'UTR mutations by sequence analysis. Only 10 isolates from a total of 165 (6.1%) had HEA (EtBr MIC = 300 μg/ml and EF ranged from 48.4 to 97.2%). Eight of 10 isolates with HEA had the 5'UTR 95 Δ G mutation. Isolates carrying the 95 Δ G mutation had higher levels of norA expression compared with those that did not. To corroborate that the 95 Δ G mutation is involved in HEA, a strain adapted to EtBr was obtained in vitro. This strain also presented the 95 Δ G mutation and had a high level of norA expression and EF, indicating that the 95 Δ G mutation is important for the HEA phenotype. The 95 Δ G mutation produces a different structure in the Shine-Dalgarno region, which may promote better translation of norA mRNA. To our knowledge, this is the first report to demonstrate the participation of the 5'UTR 95 Δ G mutation of the norA gene in the HEA phenotype of S. epidermidis isolates. Here, we propose that the efflux of EtBr is caused by an increment in the transcription and/or translation of the norA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Confirmation of the pathogenicity of a mutation p.G337C in the COL1A2 gene associated with osteogenesis imperfecta

    Science.gov (United States)

    Jia, Mingrui; Shi, Ranran; Zhao, Xuli; Fu, Zhijian; Bai, Zhijing; Sun, Tao; Zhao, Xuejun; Wang, Wenbo; Xu, Chao; Yan, Fang

    2017-01-01

    Abstract Mutation analysis as the gold standard is particularly important in diagnosis of osteogenesis imperfecta (OI) and it may be preventable upon early diagnosis. In this study, we aimed to analyze the clinical and genetic materials of an OI pedigree as well as to confirm the deleterious property of the mutation. A pedigree with OI was identified. All family members received careful clinical examinations and blood was drawn for genetic analyses. Genes implicated in OI were screened for mutation. The function and structure of the mutant protein were predicted using bioinformatics analysis. The proband, a 9-month fetus, showed abnormal sonographic images. Disproportionately short and triangular face with blue sclera was noticed at birth. She can barely walk and suffered multiple fractures till 2-year old. Her mother appeared small stature, frequent fractures, blue sclera, and deformity of extremities. A heterozygous missense mutation c.1009G>T (p.G337C) in the COL1A2 gene was identified in her mother and her. Bioinformatics analysis showed p.G337 was well-conserved among multiple species and the mutation probably changed the structure and damaged the function of collagen. We suggest that the mutation p.G337C in the COL1A2 gene is pathogenic for OI by affecting the protein structure and the function of collagen. PMID:28953610

  13. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  14. Determining mutations in G6PC and SLC37A4 genes in a sample of Brazilian patients with glycogen storage disease types Ia and Ib

    Directory of Open Access Journals (Sweden)

    Marcelo Paschoalete Carlin

    2013-01-01

    Full Text Available Glycogen storage disease (GSD comprises a group of autosomal recessive disorders characterized by deficiency of the enzymes that regulate the synthesis or degradation of glycogen. Types Ia and Ib are the most prevalent; while the former is caused by deficiency of glucose-6-phosphatase (G6Pase, the latter is associated with impaired glucose-6-phosphate transporter, where the catalytic unit of G6Pase is located. Over 85 mutations have been reported since the cloning of G6PC and SLC37A4 genes. In this study, twelve unrelated patients with clinical symptoms suggestive of GSDIa and Ib were investigated by using genetic sequencing of G6PC and SLC37A4 genes, being three confirmed as having GSD Ia, and two with GSD Ib. In seven of these patients no mutations were detected in any of the genes. Five changes were detected in G6PC, including three known point mutations (p.G68R, p.R83C and p.Q347X and two neutral mutations (c.432G > A and c.1176T > C. Four changes were found in SLC37A4: a known point mutation (p.G149E, a novel frameshift insertion (c.1338_1339insT, and two neutral mutations (c.1287G > A and c.1076-28C > T. The frequency of mutations in our population was similar to that observed in the literature, in which the mutation p.R83C is also the most frequent one. Analysis of both genes should be considered in the investigation of this condition. An alternative explanation to the negative results in this molecular study is the possibility of a misdiagnosis. Even with a careful evaluation based on laboratory and clinical findings, overlap with other types of GSD is possible, and further molecular studies should be indicated.

  15. Novel gene PUS3 c.A212G mutation in Ukrainian family with intellectual disability

    Directory of Open Access Journals (Sweden)

    Gulkovskyi R. V.

    2015-04-01

    Full Text Available Aim. To evaluate a possible role of a novel c.A212G substitution in the PUS3 gene at intellectual disability (ID. Methods. The observed group consisted of the ID Ukrainian family members (parents and two affected children and the control group – of 300 healthy individuals from general population of Ukraine. Sanger sequencing of the PUS3 gene exon 1 was performed for the family members. Polymorphic variants of c.A212G were analyzed using ARMS PCR. The homology models of wild type and p.Y71C mutant catalytic domains of human Pus3 were generated using the crystal structure of the human Pus1 catalytic domain (PDB ID: 4NZ6 as a template. Results. It was shown that the father of the affected siblings was the c.A212G substitution heterozygous carrier whereas the mother was a wild type allele homozygote, and the exom sequencing result was confirmed – the affected children are 212G homozygotes. We supposed de novo mutation in the maternal germ line. A low frequency of 212G allele (0.0017 was shown in the population of Ukraine. Homology modelling of the wild type and p.Y71C mutant catalytic domain of human Pus3 revealed that substitution p.Y71C is located in close proximity to its active site. Conclusions. The absence of hypoproteinemia in our patients, homozygous for the 212C allele allows us to assume that the mutation c.A212G PUS3 is rather neutral and cannot be the major cause of ID. However, considering a low frequency of the 212G allele in the population and close localization of p.Y71C substitution to the active site of hPus3 we cannot exclude that the c.A212G mutation in PUS3 may be a modifier for some pathologies including syndromic ID.

  16. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  17. GJB2 and mitochondrial A1555G gene mutations in nonsyndromic ...

    Indian Academy of Sciences (India)

    GJB2 mutations in 21.4% of the families in this country. (Bayazit et al. 2003). In this study, GJB2 gene mutations were responsible for 14.7% of genetic nonsyndromic hear- ing losses and 12.5% of the familial cases. These results are lower than in the previous reports where the patient selec- tion criteria may play a role.

  18. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    Science.gov (United States)

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  19. Novel mutation in forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Jadhav, Vaishali; Ghattargi, Vikas C; Udani, Vrajesh

    2014-03-15

    Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes in two Chinese families

    International Nuclear Information System (INIS)

    Zhu Yi; Qian Yaping; Tang Xiaowen; Wang Jindan; Yang Li; Liao Zhisu; Li Ronghua; Ji Jinzhang; Li Zhiyuan; Chen Jianfu; Choo, Daniel I.; Lu Jianxin; Guan Minxin

    2006-01-01

    We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNA Ser(UCN) gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees

  1. The G209A mutation in the alpha-synuclein gene in Brazilian families with Parkinson's disease Mutação G209A no gene da alfa-sinucleína em famílias brasileiras com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2001-09-01

    Full Text Available A missense G209A mutation of the alpha-synuclein gene was recently described in a large Contursi kindred with Parkinson's disease (PD. The objective of this study is to determine if the mutation G209A of the alpha-synuclein gene was present in 10 Brazilian families with PD. PD patients were recruited from movement disorders clinics of Brazil. A family history with two or more affected in relatives was the inclusion criterion for this study. The alpha-synuclein G209A mutation assay was made using polymerase chain reaction and the restriction enzyme Tsp45I. Ten patients from 10 unrelated families were studied. The mean age of PD onset was 42.7 years old. We did not find the G209A mutation in our 10 families with PD. Our results suggest that alpha-synuclein mutation G209A is uncommon in Brazilian PD families.Recentemente foi detectada mutação missense G209A no gene da alfa-sinucleína em uma grande família com doença de Parkinson (DP de Contursi, Itália. Este estudo tem o objetivo de determinar se a mutação G209A está presente em 10 famílias brasileiras com DP. Pacientes com DP foram recrutados em clínicas de distúrbio do movimento no Brasil. O critério de inclusão no estudo foi à presença de dois ou mais familiares acometidos pela DP. A mutação G209A do gene da alfa-sinucleína foi pesquisada usando a técnica de reação em cadeia de polimerase e a enzima de restrição Tsp45I. Foram estudados 10 pacientes de famílias não-relacionadas. A idade média do início dos sintomas da DP foi 42,7 anos. Não encontramos a mutação estudada neste grupo de pacientes. Nossos resultados sugerem que a mutação G209A é incomum em famílias brasileiras com DP.

  2. A novel homozygous mutation IVS6+5G>T in CYP11B1 gene in a Vietnamese patient with 11β-hydroxylase deficiency.

    Science.gov (United States)

    Nguyen, Thi Phuong Mai; Nguyen, Thu Hien; Ngo, Diem Ngoc; Vu, Chi Dung; Nguyen, Thi Kim Lien; Nong, Van Hai; Nguyen, Huy Hoang

    2015-07-10

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11β-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11β-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Are c.436G>A mutations less severe forms of Lafora disease? A case report

    Directory of Open Access Journals (Sweden)

    Hélène-Marie Lanoiselée

    2014-01-01

    Full Text Available Lafora disease is a form of progressive myoclonic epilepsy with autosomal recessive transmission. Two genes have been identified so far: EPM2A and NHLRC1, and a third gene, concerning a pediatric onset subform, has been recently proposed. We report the case of a 23-year-old woman of Turkish origin with an unusual disease course. Clinical onset was at the age of 19 years with tonic–clonic seizures, followed by cognitive impairment; EEG was in favor of Lafora disease, and the mutation c.436G>A (a missense mutation substituting aspartic acid in asparagine in the NHLRC1 gene confirmed this diagnosis. After 5 years of evolution, the patient only has moderate cognitive impairment. Some NHLRC1 mutations, particularly c.436G>A, are associated with a slower clinical course, but there are conflicting data in the literature. This case strengthens the hypothesis that the c.436G>A mutation in the NHLRC1 gene leads to less severe phenotypes and late-onset disease.

  4. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women

    NARCIS (Netherlands)

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E.; Thwai, Kyaw L.; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P.; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O.

    2015-01-01

    Background. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased

  5. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    Science.gov (United States)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  6. Novel mutations in the SCNN1A gene causing Pseudohypoaldosteronism type 1.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare inherited disease characterized by resistance to the actions of aldosterone. Mutations in the subunit genes (SCNN1A, SCNN1B, SCNN1G of the epithelial sodium channel (ENaC and the NR3C2 gene encoding the mineralocorticoid receptor, result in systemic PHA1 and renal PHA1 respectively. Common clinical manifestations of PHA1 include salt wasting, hyperkalaemia, metabolic acidosis and elevated plasma aldosterone levels in the neonatal period. In this study, we describe the clinical and biochemical manifestations in two Chinese patients with systemic PHA1. Sequence analysis of the SCNN1A gene revealed a compound heterozygous mutation (c.1311delG and c.1439+1G>C in one patient and a homozygous mutation (c.814_815insG in another patient, all three variants are novel. Further analysis of the splicing pattern in a minigene construct showed that the c.1439+1G>C mutation can lead to the retainment of intron 9 as the 5'-donor splice site disappears during post-transcriptional processing of mRNA. In conclusion, our study identified three novel SCNN1A gene mutations in two Chinese patients with systemic PHA1.

  7. [Identification of an ideal noninvasive method to detect A3243G gene mutation in MELAS syndrome].

    Science.gov (United States)

    Ma, Yi-nan; Fang, Fang; Yang, Yan-ling; Zhang, Ying; Wang, Song-tao; Xu, Yu-feng; Pei, Pei; Yuan, Yun; Bu, Ding-fang; Qi, Yu

    2008-12-16

    To identify a better non-invasive method to detect the carrier of mitochondrial A3243G mutation, a cause of mitochondrial encephalopathy-lactic acidosis-stroke like episode (MELAS) syndrome. DNA was extracted from the peripheral blood, urine, hair follicle, and saliva of 25 MELAS syndrome patients carrying A3243G mutation and their mothers and other maternal relatives, 33 persons in number, and the muscle tissues from 5 patients obtained by biopsy. A3243G mutation was detected by PCR-RFLP method, and the A3243G mutation ratio was identified by measuring the density of each band and calculation with the software AlphaEase 5.0. A3243G mutations were detected in all tissues of the 25 MELAS patients. The A3243G mutation ratio in urine was 62% +/- 9%, significantly higher than that in the blood [(36% +/- 10%), t = -11.13, P < 0.01]. A3243G mutations were detected in at least one tissue of the 28 maternal relatives. The A3243G mutation rates in their urine samples was 33.0% (5.0% - 70.4%), significantly higher than that in their blood samples [8.0% (0 - 33.3%), z = -4.197, P < 0.01]. There was no significant difference in A3243G mutation ratio among the samples of hair follicle, saliva, and blood. The A3243G mutation ratio in urine is significantly higher than those in blood samples of the patients and their maternal relatives. A noninvasive method, A3243G mutation ratio analysis of urine is superior to that in blood.

  8. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  9. The insulin-like growth factor 2 (IGF2) gene intron3-g.3072G>A polymorphism is not the only Sus scrofa chromosome 2p mutation affecting meat production and carcass traits in pigs: evidence from the effects of a cathepsin D (CTSD) gene polymorphism.

    Science.gov (United States)

    Fontanesi, L; Speroni, C; Buttazzoni, L; Scotti, E; Dall'Olio, S; Nanni Costa, L; Davoli, R; Russo, V

    2010-07-01

    The objective of this study was to evaluate the effects of mutations in 2 genes [IGF2 and cathepsin D (CTSD)] that map on the telomeric end of the p arm of SSC2. In this region, an imprinted QTL affecting muscle mass and fat deposition was reported, and the IGF2 intron3-g.3072G>A substitution was identified as the causative mutation. In the same chromosome region, we assigned, by linkage mapping, the CTSD gene, a lysosomal proteinase, for which we previously identified an SNP in the 3'-untranslated region (AM933484, g.70G>A). We have already shown strong effects of this CTSD mutation on several production traits in Italian Large White pigs, suggesting a possible independent role of this marker in fatness and meat deposition in pigs. To evaluate this hypothesis, after having refined the map position of the CTSD gene by radiation hybrid mapping, we analyzed the IGF2 and the CTSD polymorphisms in 270 Italian Large White and 311 Italian Duroc pigs, for which EBV and random residuals from fixed models were calculated for several traits. Different association analyses were carried out to distinguish the effects of the 2 close markers. In the Italian Large White pigs, the results for IGF2 were highly significant for all traits when using either EBV or random residuals (e.g., using EBV: lean cuts, P = 2.2 x 10(-18); ADG, P = 2.6 x 10(-16); backfat thickness, P = 2.2 x 10(-9); feed:gain ratio, P = 2.3 x 10(-9); ham weight, P = 1.5 x 10(-6)). No effect was observed for meat quality traits. The IGF2 intron3-g.3072G>A mutation did not show any association in the Italian Duroc pigs, probably because of the small variability at this polymorphic site for this breed. However, a significant association was evident for the CTSD marker (P production traits in Italian Duroc pigs (lean content, ADG, backfat thickness, feed:gain ratio) after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A mutation were also confirmed in a subset of Italian

  10. WS1 gene mutation analysis of Wolfram syndrome in a Chinese patient and a systematic review of literatures.

    Science.gov (United States)

    Yu, Guang; Yu, Man-li; Wang, Jia-feng; Gao, Cong-rong; Chen, Zhong-jin

    2010-10-01

    Wolfram syndrome is a rare hereditary disease characterized by diabetes mellitus and optic atrophy. The outcome of this disease is always poor. WFS1 gene mutation is the main cause of this disease. A patient with diabetes mellitus, diabetes insipidus, renal tract disorder, psychiatric abnormality, and cataract was diagnosed with Wolfram syndrome. Mutations in open reading frame (ORF) of WFS1 gene was analyzed by sequencing. Mutations in WFS1 gene was also summarized by a systematic review in Pubmed and Chinese biological and medical database. Sequencing of WFS1 gene in this patient showed a new mutation, 1962G>A, and two other non-sense mutations, 2433A>G and 2565G>A. Systematic review included 219 patients in total and identified 172 WFS1 gene mutations, most of which were located in Exon 8. These mutations in WFS1 gene might be useful in prenatal diagnosis of Wolfram syndrome.

  11. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  12. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2018-05-01

    Full Text Available Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene.Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R 758 C > G, which was not found in his parents.Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.

  13. New contribution on the LRRK2 G2019S mutation associated to ...

    African Journals Online (AJOL)

    ... generations ago. Conclusion: Our conclusion is that the G2019S mutation of the LRRK2 gene originates 3,840 (95% CI 3,210-5,400) years ago in parkinsonian Moroccan Berbers patients. Key words: Parkinson's disease (PD), Leucine-rich repeat kinase 2 (LRRK2) gene, G2019S mutation, Haplotype, Founding mutation.

  14. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene.

    Science.gov (United States)

    Silva, Bruno; Pita, Lina; Gomes, Susana; Gonçalves, João; Faustino, Paula

    2014-12-01

    Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.

  15. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    Science.gov (United States)

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.

  16. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    Science.gov (United States)

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  17. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  18. Mutations in the G6PC3 gene cause Dursun syndrome.

    Science.gov (United States)

    Banka, Siddharth; Newman, William G; Ozgül, R Koksal; Dursun, Ali

    2010-10-01

    Dursun syndrome is a triad of familial primary pulmonary hypertension, leucopenia, and atrial septal defect. Here we demonstrate that mutations in G6PC3 cause Dursun syndrome. Mutations in G6PC3 are known to also cause severe congenital neutropenia type 4. Identification of the genetic basis of Dursun syndrome expands the pre-existing knowledge about the phenotypic effects of mutations in G6PC3. We propose that Dursun syndrome should now be considered as a subset of severe congenital neutropenia type 4 with pulmonary hypertension as an important clinical feature. Copyright © 2010 Wiley-Liss, Inc.

  19. Cerebral Venous Thrombosis and Pulmonary Embolism with Prothrombin G20210A Gene Mutation

    OpenAIRE

    Dagli, Canan Eren; Koksal, Nurhan; Guler, Selma; Gelen, Mehmet Emin; Atilla, Nurhan; Tuncel, Deniz

    2010-01-01

    A 25-year-old man presented with symptoms of syncope, cough, headache and hemoptysis. Cranial MR and venography showed thrombus formation in the right transverse sinus and superior sagittal sinus. Computed tomographic pulmonary angiography (CTPA) showed an embolic thrombus in the right pulmonary truncus and lung abscess. The patient was young, and there were no signs of lower extremity deep venous thrombosis or other major risk factors for pulmonary embolism (PE) including cardiac anomaly. Th...

  20. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  1. Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports.

    Science.gov (United States)

    Dastsooz, Hassan; Nemati, Hamid; Fard, Mohammad Ali Farazi; Fardaei, Majid; Faghihi, Mohammad Ali

    2017-08-18

    Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous group of disorders associated with progressive impairment of movement, vision, and cognition. The disease is initially diagnosed on the basis of changes in brain magnetic resonance imaging which indicate an abnormal brain iron accumulation in the basal ganglia. However, the diagnosis of specific types should be based on both clinical findings and molecular genetic testing for genes associated with different types of NBIA, including PANK2, PLA2G6, C19orf12, FA2H, ATP13A2, WDR45, COASY, FTL, CP, and DCAF17. The purpose of this study was to investigate disease-causing mutations in two patients with distinct NBIA disorders. Whole Exome sequencing using Next Generation Illumina Sequencing was used to enrich all exons of protein-coding genes as well as some other important genomic regions in these two affected patients. A deleterious homozygous four-nucleotide deletion causing frameshift deletion in PANK2 gene (c.1426_1429delATGA, p.M476 fs) was identified in an 8 years old girl with dystonia, bone fracture, muscle rigidity, abnormal movement, lack of coordination and chorea. In addition, our study revealed a novel missense mutation in PLA2G6 gene (c.3G > T:p.M1I) in one and half-year-old boy with muscle weakness and neurodevelopmental regression (speech, motor and cognition). The novel mutations were also confirmed by Sanger sequencing in the proband and their parents. Current study uncovered two rare novel mutations in PANK2 and PLA2G6 genes in patients with NBIA disorder and such studies may help to conduct genetic counseling and prenatal diagnosis more accurately for individuals at the high risk of these types of disorders.

  2. [Mutations of ACVRL1 gene in a pedigree with hereditary hemorrhagic telangiectasia].

    Science.gov (United States)

    Luo, Jie-wei; Chen, Hui; Yang, Liu-qing; Zhu, Ai-lan; Wu, Yan-an; Li, Jian-wei

    2008-06-01

    To identify the activin A receptor type II-like 1 gene (ACVRL1) mutations in a Chinese family with hereditary hemorrhagic telangiectasia (HHT2). The exons 3, 7 and 8 of ACVRL1 gene of the proband and her five family members were amplified by polymerase chain reaction (PCR), and the PCR products were sequenced. The proband had obvious telangiectasis of gastric mucosa, and small arteriovenous fistula in the right kidney. All the patients in the HHT2 family had iterative epistaxis or bleeding in other sites, and had telangiectasis of nasal mucosa, tunica mucosa oris and finger tips. ACVRL1 gene analysis confirmed that there is frameshift mutation caused by deletion of G145 in exon 3 in the 4 patients, but the mutation is absent in 2 members without HHT2. The HHT2 family is caused by a 145delG mutation of ACVRL1 gene, resulting in frameshift and a new stop codon at codon 53.

  3. Mutations of alpha-galactosidase A gene in two unusual cases of Fabry disease

    NARCIS (Netherlands)

    Beyer, EM; Kopishinskaya, SV; Van Amstel, JKP; Tsvetkova, [No Value

    1999-01-01

    The mutation analysis of alpha-galactosidase A gene was carried out in two families with Fabry disease described by us earlier. In the family P. a new point mutation E341K (a G to A transition at position 10999 of the gene) was identified. The mutation causes a Glu341Lys substitution in

  4. Mutations in rpoB and katG genes of multidrug resistant ...

    African Journals Online (AJOL)

    Introduction: Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. There is limited information in Zimbabwe on specific antibiotic resistance gene mutation patterns in ...

  5. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    Science.gov (United States)

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  6. Risk of venous thromboembolism and myocardial infarction associated with factor V Leiden and prothrombin mutations and blood type

    DEFF Research Database (Denmark)

    Sode, Birgitte F; Allin, Kristine H; Dahl, Morten

    2013-01-01

    ABO blood type locus has been reported to be an important genetic determinant of venous and arterial thrombosis in genome-wide association studies. We tested the hypothesis that ABO blood type alone and in combination with mutations in factor V Leiden R506Q and prothrombin G20210A is associated...

  7. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  8. Bioinformatics Study of m.9053G>A Mutation at the Gene in Relation to Type 2 Diabetes Mellitus and Cataract Diseases

    Directory of Open Access Journals (Sweden)

    *Iman Permana Maksum

    2017-09-01

    Full Text Available The mitochondrial disease often associated with various illnesses in relation to the activity of cells metabolites and the synthesis of adenosine triphosphate (ATP, including alteration in the mitochondrial DNA. The mutation of m.9053G>A at the ATP6 gene was found in patients with type 2 diabetes mellitus (DM type 2 and cataract. Therefore, this mutation is predicted to be clinical features of the 2 diseases. ATP6 gene encodes protein subunit of ATPase6, a part of ATP synthase, which is important in the electron transfer and proton translocation in intracellular respiration system. This study aims to investigate the mutation effect of m.9053G>A at the ATP6 gene (S167N to the structure and function of ATPase6 using bioinformatics method. The structure of ATPase6 was constructed using homology modeling method. The crystal structure of bovine’s ATP synthase (Protein Data Bank ID 5FIL was used as a template because of high sequence similarity (77% and coverage (96% of the input sequence. The effect of mutation was investigated at the proton translocation channel of ATPase6. It is predicted that the channel was disrupted due to changes in electrostatic potential from serine to asparagine. Furthermore, molecular docking suggests that water binding on the proton translocation channel in the S167N mutant was different from the wild type. The result of this study is hoped to be useful in the development of a new genetic marker for DM type 2 and cataract.

  9. A novel missense mutation of the DDHD1 gene associated with juvenile amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Chujun Wu

    2016-12-01

    Full Text Available Background: Juvenile amyotrophic lateral sclerosis (jALS is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients.Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis.Results: We identified a novel c.1483A>G (p.Met495Val homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the data of dbSNP, ExAC and 1000G.Conclusion: The novel c.1483A>G (p.Met495Val missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.

  10. Frequency of c.35delG Mutation in GJB2 Gene (Connexin 26 in Syrian Patients with Nonsyndromic Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Hazem Kaheel

    2017-01-01

    Full Text Available Background. Hearing impairments (HI are the most common birth defect worldwide. Very large numbers of genes have been identified but the most profound is GJB2. The clinical interest regarding this gene is very pronounced due to its high carrier frequency (0.5–5.4% across different ethnic groups. This study aimed to determine the prevalence of common GJB2 mutations in Syrian patients with profound sensorineural HI. Methods. We carried out PCR, restriction enzyme based screening, and sequencing of 132 Syrian patients diagnosed clinically with hereditary deafness for different GJB2 mutations. Results. The result revealed that, in GJB2 gene, c.35delG is the most prevalent among affected studied subjects (13.64%, followed by c.457G>A (2.4%. Conclusion. The benefit of this study on the one hand is its first report of prelingual deafness causative gene mutations identified by sequencing technology in the Syrian families. It is obvious from the results that the deployment in biomedical research is highly effective and has a great impact on the ability to uncover the cause of genetic variation in different genetic diseases.

  11. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  12. Mutações predisponentes à trombofilia em indivíduos de Minas Gerais - Brasil com suspeita clínica de trombose Predisposing thrombophilic mutations in individuals with clinical suspicion of thrombosis from Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Sabrina P. Guimarães

    2009-02-01

    Full Text Available A trombose é reconhecidamente uma doença de caráter multifatorial. Sua ocorrência está intimamente relacionada à presença de fatores genéticos e adquiridos que concorrem isoladamente ou em associação para o seu desencadeamento. No entanto, a frequência dos fatores genéticos pode variar de acordo com a origem étnica e com outros aspectos epidemiológicos dos grupos de indivíduos e populações estudadas. No Brasil, dados referentes a indivíduos brasileiros e em especial do estado de Minas Gerais são escassos. O objetivo do presente estudo foi investigar a frequência das mutações fator V Leiden e G20210A no gene protrombina em 1.103 indivíduos com suspeita clínica de trombofilia, empregando a técnica da reação em cadeia da polimerase seguida de restrição enzimática (PCR-RFLP. Os dados foram analisados usando-se o programa Epi Info versão 6.04. A amostra consistiu de 76,16% mulheres e 23,84% homens, com média de idade de 43,06± 14,65. A mutação fator V Leiden foi observada em heterozigose em 7,52% dos indivíduos e em 0,36% em homozigose. A mutação G20210A no gene da protrombina apresentou-se em heterozigose em 5,90% dos indivíduos e em homozigose em 0,18%. O presente trabalho mostra a importância dos testes genéticos conforme o perfil da população analisada, ressaltando informações epidemiológicas da população brasileira e benefícios clínicos.Thrombosis is known to be a multifactorial disease. Its incidence is directly related to the presence of genetic and acquired factors that concur separately or in association to its appearance. However, the frequency of genetic factors can vary according to ethnic background and with other epidemiological aspects of populations. Data from Brazilian individuals and especially those from the State of Minas Gerais are scarce. The present study aims at investigating the frequencies of the factor v Leiden and the G20210G prothrombin gene mutations of 1103 individuals

  13. Correlation between lactose absorption and the C/T-13910 and G/A-22018 mutations of the lactase-phlorizin hydrolase (LCT gene in adult-type hypolactasia

    Directory of Open Access Journals (Sweden)

    A.C. Bulhões

    2007-11-01

    Full Text Available The C/T-13910 mutation is the major factor responsible for the persistence of the lactase-phlorizin hydrolase (LCT gene expression. Mutation G/A-22018 appears to be only in co-segregation with C/T-13910. The objective of the present study was to assess the presence of these two mutations in Brazilian individuals with and without lactose malabsorption diagnosed by the hydrogen breath test (HBT. Ten milk-tolerant and 10 milk-intolerant individuals underwent the HBT after oral ingestion of 50 g lactose (equivalent to 1 L of milk. Analyses for C/T-13910 and G/A-22018 mutations were performed using a PCR-based method. Primers were designed for this study based on the GenBank sequence. The CT/GA, CT/AA, and TT/AA genotypes (lactase persistence were found in 10 individuals with negative HBT. The CC/GG genotype (lactase non-persistence was found in 10 individuals, 9 of them with positive HBT results. There was a significant agreement between the presence of mutations in the LCT gene promoter and HBT results (kappa = -0.9, P < 0.001. The CT/AA genotype has not been described previously and seems to be related to lactase persistence. The present study showed a significant agreement between the occurrence of mutations G/A-22018 and C/T-13910 and lactose absorption in Brazilian subjects, suggesting that the molecular test used here could be proposed for the laboratory diagnosis of adult-type primary hypolactasia.

  14. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    LENUS (Irish Health Repository)

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  15. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    International Nuclear Information System (INIS)

    Wang Huawei; Jia Xiaoyun; Ji Yanli; Kong Qingpeng; Zhang Qingjiong; Yao Yonggang; Zhang Yaping

    2008-01-01

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON

  16. Novel PSEN1 G209A mutation in early-onset Alzheimer dementia supported by structural prediction.

    Science.gov (United States)

    An, Seong Soo A; Bagyinszky, Eva; Kim, Hye Ryoun; Seok, Ju-Won; Shin, Hae-Won; Bae, SeunOh; Kim, SangYun; Youn, Young Chul

    2016-05-20

    Three main genes are described as causative genes for early-onset Alzheimer dementia (EOAD): APP, PSEN1 and PSEN2. We describe a woman with EOAD had a novel PSEN1 mutation. A 54-year-old right-handed woman presented 12-year history of progressive memory decline. She was clinically diagnosed as familial Alzheimer's disease due to a PSEN1 mutation. One of two daughters also has the same mutation, G209A in the TM-IV of PS1 protein. Her mother had unspecified dementia that began at the age of 40s. PolyPhen2 and SIFT prediction suggested that G209A might be a damaging variant with high scores. 3D modeling revealed that G209A exchange could result significant changes in the PS1 protein. We report a case of EOAD having probable novel PSEN1 (G209A) mutation verified with structural prediction.

  17. Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Verónica Loera-Castañeda

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS. Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12% harbored the A8027G polymorphism and three of them were early onset (EO AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn’t been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD.

  18. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  19. Chronic pancreatitis associated with the p.G208A variant of PRSS1 gene in a European patient.

    Science.gov (United States)

    Hegyi, Eszter; Cierna, Iveta; Vavrova, Ludmila; Ilencikova, Denisa; Konecny, Michal; Kovacs, Laszlo

    2014-01-10

    The major etiologic factor of chronic pancreatitis in adults is excessive alcohol consumption, whereas among children structural anomalies, systemic and metabolic disorders, and genetic factors are prevalent. Mutations in the cationic trypsinogen gene (PRSS1) cause hereditary pancreatitis, while mutations in serine protease inhibitor Kazal type 1 (SPINK1), cystic fibrosis transmembrane conductance regulator (CFTR) and chymotrypsin C (CTRC) genes have been shown to associate with chronic pancreatitis as independent risk factors. We present a case of 13-year-old boy with idiopathic chronic pancreatitis. Given the unexplained attacks of pancreatitis since early childhood and despite the negative family history, molecular-genetic analysis of four pancreatitis susceptibility genes (PRSS1, SPINK1, CTRC and CFTR) was performed. The boy was found to carry the c.623G>C (p.G208A) mutation of the PRSS1 gene and the c.180C>T (p.G60G) mutation of the CTRC gene, both in heterozygous state. These mutations are considered as contributing risk factors for chronic pancreatitis. In children with idiopathic chronic pancreatitis genetic causes should be considered, even in absence of positive family history. To the best of our knowledge, this is the first description of a European patient with chronic pancreatitis associated with the p.G208A mutation of PRSS1 gene. This mutation was previously reported only in Asian subjects and is thought to be a unique genetic cause of pancreatitis in Asia.

  20. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  1. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  2. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  3. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  4. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  5. Analysis of GPR101 and AIP genes mutations in acromegaly: a multicentric study.

    Science.gov (United States)

    Ferraù, Francesco; Romeo, P D; Puglisi, S; Ragonese, M; Torre, M L; Scaroni, C; Occhi, G; De Menis, E; Arnaldi, G; Trimarchi, F; Cannavò, S

    2016-12-01

    This multicentric study aimed to investigate the prevalence of the G protein-coupled receptor 101 (GPR101) p.E308D variant and aryl hydrocarbon receptor interacting protein (AIP) gene mutations in a representative cohort of Italian patients with acromegaly. 215 patients with GH-secreting pituitary adenomas, referred to 4 Italian referral centres for pituitary diseases, have been included. Three cases of gigantism were present. Five cases were classified as FIPA. All the patients have been screened for germline AIP gene mutations and GPR101 gene p.E308D variant. Heterozygous AIP gene variants have been found in 7 patients (3.2 %). Five patients carried an AIP mutation (2.3 %; 4 females): 3 patients harboured the p.R3O4Q mutation, one had the p.R304* mutation and the last one the IVS3+1G>A mutation. The prevalence of AIP mutations was 3.3 % and 2.8 % when considering only the patients diagnosed when they were <30 or <40-year old, respectively. Furthermore, 2.0 % of the patients with a pituitary macroadenoma and 4.2 % of patients resistant to somatostatin analogues treatment were found to harbour an AIP gene mutation. None of the patients was found to carry the GPR101 p.E308D variant. The prevalence of AIP gene mutations among our sporadic and familial acromegaly cases was similar to that one reported in previous studies, but lower when considering only the cases diagnosed before 40 years of age. The GPR101 p.E308D change is unlikely to have a role in somatotroph adenomas tumorigenesis, since none of our sporadic or familial patients tested positive for this variant.

  6. GPR143 gene mutation analysis in pediatric patients with albinism.

    Science.gov (United States)

    Trebušak Podkrajšek, Katarina; Stirn Kranjc, Branka; Hovnik, Tinka; Kovač, Jernej; Battelino, Tadej

    2012-09-01

    X-linked ocular albinism type 1 is difficult to differentiate clinically from other forms of albinism in young patients. X-linked ocular albinism type 1 is caused by mutations in the GPR143 gene, encoding melanosome specific G-protein coupled receptor. Patients typically present with moderately to severely reduced visual acuity, nystagmus, strabismus, photophobia, iris translucency, hypopigmentation of the retina, foveal hypoplasia and misrouting of optic nerve fibers at the chiasm. Following clinical ophthalmological evaluation, GPR143 gene mutational analyses were performed in a cohort of 15 pediatric male patients with clinical signs of albinism. Three different mutations in the GPR143 gene were identified in four patients, including a novel c.886G>A (p.Gly296Arg) mutation occurring "de novo" and a novel intronic c.360 + 5G>A mutation, identified in two related boys. Four patients with X-linked ocular albinism type 1 were identified from a cohort of 15 boys with clinical signs of albinism using mutation detection methods. Genetic analysis offers the possibility of early definitive diagnosis of ocular albinism type 1 in a significant portion of boys with clinical signs of albinism.

  7. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    International Nuclear Information System (INIS)

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin

    2006-01-01

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA Ser(UCN) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families

  8. Mutational Analysis of the TYR and OCA2 Genes in Four Chinese Families with Oculocutaneous Albinism.

    Science.gov (United States)

    Wang, Yun; Wang, Zhi; Chen, Mengping; Fan, Ning; Yang, Jie; Liu, Lu; Wang, Ying; Liu, Xuyang

    2015-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder. The most common type OCA1 and OCA2 are caused by homozygous or compound heterozygous mutations in the tyrosinase gene (TYR) and OCA2 gene, respectively. The purpose of this study was to evaluate the molecular basis of oculocutaneous albinism in four Chinese families. Four non-consanguineous OCA families were included in the study. The TYR and OCA2 genes of all individuals were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. Four patients with a diagnosis of oculocutaneous albinism, presented with milky skin, white or light brown hair and nystagmus. Genetic analyses demonstrated that patient A was compound heterozygous for c.1037-7T.A, c.1037-10_11delTT and c.1114delG mutations in the TYR gene; patient B was heterozygous for c.593C>T and c.1426A>G mutations in the OCA2 gene, patients C and D were compound heterozygous mutations in the TYR gene (c.549_550delGT and c.896G>A, c.832C>T and c.985T>C, respectively). The heterozygous c.549_550delGT and c.1114delG alleles in the TYR gene were two novel mutations. Interestingly, heterozygous members in these pedigrees who carried c.1114delG mutations in the TYR gene or c.1426A>G mutations in the OCA2 gene presented with blond or brown hair and pale skin, but no ocular disorders when they were born; the skin of these patients accumulated pigment over time and with sun exposure. This study expands the mutation spectrum of oculocutaneous albinism. It is the first time, to the best of our knowledge, to report that c.549_550delGT and c.1114delG mutations in the TYR gene were associated with OCA. The two mutations (c.1114delG in the TYR gene and c.1426A>G in the OCA2 gene) may be responsible for partial clinical manifestations of OCA.

  9. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Matar, S.N.A.

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  10. Geographical distribution of β-globin gene mutations in Syria.

    Science.gov (United States)

    Murad, Hossam; Moasses, Faten; Dabboul, Amir; Mukhalalaty, Yasser; Bakoor, Ahmad Omar; Al-Achkar, Walid; Jarjour, Rami A

    2018-04-11

    Objectives β-Thalassemia disease is caused by mutations in the β-globin gene. This is considered as one of the common genetic disorders in Syria. The aim of this study was to identify the geographical distribution of the β-thalassemia mutations in Syria. Methods β-Globin gene mutations were characterized in 636 affected patients and 94 unrelated carriers using the amplification refractory mutations system-polymerase chain reaction technique and DNA sequencing. Results The study has revealed the presence of 38 β-globin gene mutations responsible for β-thalassemia in Syria. Important differences in regional distribution were observed. IVS-I.110 [G > A] (22.2%), IVS-I.1 [G > A] (17.8%), Cd 39 [C > T] (8.2%), IVS-II.1 [G > A] (7.6%), IVS-I.6 [T > C] (7.1%), Cd 8 [-AA] (6%), Cd 5 [-CT] (5.6%) and IVS-I.5 [G > C] (4.1%) were the eight predominant mutations found in our study. The coastal region had higher relative frequencies (37.9 and 22%) than other regions. A clear drift in the distribution of the third common Cd 39 [C > T] mutation in the northeast region (34.8%) to the northwest region (2.5%) was noted, while the IVS-I.5 [G > C] mutation has the highest prevalence in north regions. The IVS-I.6 [T > C] mutation had a distinct frequency in the middle region. Ten mutations -86 [C > G], -31 [A > G], -29 [A > G], 5'UTR; +22 [G > A], CAP + 1 [A > C], Codon 5/6 [-TG], IVS-I (-3) or codon 29 [C > T], IVS-I.2 [T > A], IVS-I.128 [T > G] and IVS-II.705 [T > G] were found in Syria for the first time. Conclusions These data will significantly facilitate the population screening, genetic counseling and prenatal diagnosis in Syrian population.

  11. Infantile presentation of the mtDNA A3243G tRNA(Leu (UUR)) mutation.

    NARCIS (Netherlands)

    Okhuijsen-Kroes, E.J.; Trijbels, J.M.F.; Sengers, R.C.A.; Mariman, E.C.M.; Heuvel, L.P.W.J. van den; Wendel, U.A.H.; Koch, G.; Smeitink, J.A.M.

    2001-01-01

    Mitochondrial DNA (mtDNA) disorders are clinically very heterogeneous, ranging from single organ involvement to severe multisystem disease. One of the most frequently observed mtDNA mutations is the A-to-G transition at position 3243 of the tRNA(Leu (UUR)) gene. This mutation is often related to

  12. Spectrum of CFTR gene mutations in Ecuadorian cystic fibrosis patients: the second report of the p.H609R mutation.

    Science.gov (United States)

    Ortiz, Sofía C; Aguirre, Santiago J; Flores, Sofía; Maldonado, Claudio; Mejía, Juan; Salinas, Lilian

    2017-11-01

    High heterogeneity in the CFTR gene mutations disturbs the molecular diagnosis of cystic fibrosis (CF). In order to improve the diagnosis of CF in our country, the present study aims to define a panel of common CFTR gene mutations by sequencing 27 exons of the gene in Ecuadorian Cystic Fibrosis patients. Forty-eight Ecuadorian individuals with suspected/confirmed CF diagnosis were included. Twenty-seven exons of CFTR gene were sequenced to find sequence variations. Prevalence of pathogenic variations were determined and compared with other countries' data. We found 70 sequence variations. Eight of these are CF-causing mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. Also this study is the second report of p.H609R in Ecuadorian population. Mutation prevalence differences between Ecuadorian population and other Latin America countries were found. The panel of mutations suggested as an initial screening for the Ecuadorian population with cystic fibrosis should contain the mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. © 2017 NETLAB Laboratorios Especializados. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  13. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    Science.gov (United States)

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Mutations of the Norrie gene in Korean ROP infants.

    Science.gov (United States)

    Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup

    2002-12-01

    The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.

  15. A novel -192c/g mutation in the proximal P2 promoter of the hepatocyte nuclear factor-4 alpha gene (HNF4A) associates with late-onset diabetes

    DEFF Research Database (Denmark)

    Ek, Jakob; Hansen, Sara P; Lajer, Maria

    2006-01-01

    Recently, it has been shown that mutations in the P2 promoter of the hepatocyte nuclear factor (HNF)-4 alpha gene (HNF4A) cause maturity-onset diabetes of the young (MODY), while single nucleotide polymorphisms in this locus are associated with type 2 diabetes. In this study, we examined 1,189 bp...... of the P2 promoter and the associated exon 1D of HNF4A for variations associated with diabetes in 114 patients with type 2 diabetes, 72 MODYX probands, and 85 women with previous gestational diabetes mellitus. A -192c/g mutation was found in five patients. We screened 1,587 diabetic subjects and 4......,812 glucose-tolerant subjects for the -192c/g mutation and identified 5 diabetic and 1 glucose-tolerant mutation carriers (P=0.004). Examination of the families showed that carriers of the -192c/g mutation had a significantly impaired glucose-stimulated insulin release and lower levels of serum total...

  16. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America

    Directory of Open Access Journals (Sweden)

    Suffys Philip N

    2009-02-01

    Full Text Available Abstract Background Mutations associated with resistance to rifampin or streptomycin have been reported for W/Beijing and Latin American Mediterranean (LAM strain families of Mycobacterium tuberculosis. A few studies with limited sample sizes have separately evaluated mutations in katG, ahpC and inhA genes that are associated with isoniazid (INH resistance. Increasing prevalence of INH resistance, especially in high tuberculosis (TB prevalent countries is worsening the burden of TB control programs, since similar transmission rates are noted for INH susceptible and resistant M. tuberculosis strains. Results We, therefore, conducted a comprehensive evaluation of INH resistant M. tuberculosis strains (n = 224 from three South American countries with high burden of drug resistant TB to characterize mutations in katG, ahpC and inhA gene loci and correlate with minimal inhibitory concentrations (MIC levels and spoligotype strain family. Mutations in katG were observed in 181 (80.8% of the isolates of which 178 (98.3% was contributed by the katG S315T mutation. Additional mutations seen included oxyR-ahpC; inhA regulatory region and inhA structural gene. The S315T katG mutation was significantly more likely to be associated with MIC for INH ≥2 μg/mL. The S315T katG mutation was also more frequent in Haarlem family strains than LAM (n = 81 and T strain families. Conclusion Our data suggests that genetic screening for the S315T katG mutation may provide rapid information for anti-TB regimen selection, epidemiological monitoring of INH resistance and, possibly, to track transmission of INH resistant strains.

  17. Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2011-05-01

    Full Text Available AbstractObjective(sThe mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS system. Materials and MethodsWe searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30 FRDA patients and 35 healthy controls.ResultsWe found 3 missense mutations [m.10506A>G (T13A, m.10530G>A (V21M, and m.10653G>A (A62T] in four patients whose m.10530G>A and m.10653G>A were not reported previously. In two patients, heteroplasmic m.10530G>A mutation was detected. They showed a very early ataxia syndrome. Our results showed that the number of mutations in FRDA patients was higher than that in the control cases (P= 0.0287.ConclusionAlthough this disease is due to nuclear gene mutation, the presence of these mutations might be responsible for further mitochondrial defects and the increase of the gravity of the disease. Thus, it should be considered in patients with this disorder.

  18. A common ancestral origin of the frequent and widespread 2299delG USH2A mutation.

    NARCIS (Netherlands)

    Dreyer, B.; Tranebjaerg, L.; Brox, V.; Rosenberg, T.; Moller, C.G.; Beneyto, M.; Weston, M.D.; Kimberling, W.J.; Cremers, C.W.R.J.; Liu, X.Z.; Nilssen, O.

    2001-01-01

    Usher syndrome type IIa is an autosomal recessive disorder characterized by mild-to-severe hearing loss and progressive visual loss due to retinitis pigmentosa. The mutation that most commonly causes Usher syndrome type IIa is a 1-bp deletion, described as "2299delG," in the USH2A gene. The mutation

  19. Identification of novel mutations in the α-galactosidase A gene in patients with Fabry disease: pitfalls of mutation analyses in patients with low α-galactosidase A activity.

    Science.gov (United States)

    Yoshimitsu, Makoto; Higuchi, Koji; Miyata, Masaaki; Devine, Sean; Mattman, Andre; Sirrs, Sandra; Medin, Jeffrey A; Tei, Chuwa; Takenaka, Toshihiro

    2011-05-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A (GLA) gene, and the disease is a relatively prevalent cause of left ventricular hypertrophy followed by conduction abnormalities and arrhythmias. Mutation analysis of the GLA gene is a valuable tool for accurate diagnosis of affected families. In this study, we carried out molecular studies of 10 unrelated families diagnosed with Fabry disease. Genetic analysis of the GLA gene using conventional genomic sequencing was performed in 9 hemizygous males and 6 heterozygous females. In patients with no mutations in coding DNA sequence, multiplex ligation-dependent probe amplification (MLPA) and/or cDNA sequencing were performed. We identified a novel exon 2 deletion (IVS1_IVS2) in a heterozygous female by MLPA, which was undetectable by conventional sequencing methods. In addition, the g.9331G>A mutation that has previously been found only in patients with cardiac Fabry disease was found in 3 unrelated, newly-diagnosed, cardiac Fabry patients by sequencing GLA genomic DNA and cDNA. Two other novel mutations, g.8319A>G and 832delA were also found in addition to 4 previously reported mutations (R112C, C142Y, M296I, and G373D) in 6 other families. We could identify GLA gene mutations in all hemizygotes and heterozygotes from 10 families with Fabry disease. Mutations in 4 out of 10 families could not be identified by classical genomic analysis, which focuses on exons and the flanking region. Instead, these data suggest that MLPA analysis and cDNA sequence should be considered in genetic testing surveys of patients with Fabry disease. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  20. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients.

    Science.gov (United States)

    Zhao, Ying; Zhang, Xiaoying; Bao, Xinhua; Zhang, Qingping; Zhang, Jingjing; Cao, Guangna; Zhang, Jie; Li, Jiarui; Wei, Liping; Pan, Hong; Wu, Xiru

    2014-02-25

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Mutations in CDKL5 gene are responsible for 7 with

  1. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    Science.gov (United States)

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  2. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P. [Univ. of Connecticut Health Center, Farmington, CT (United States)

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  3. [Study of gene mutation in 62 hemophilia A children].

    Science.gov (United States)

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  4. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    Science.gov (United States)

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  5. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    Science.gov (United States)

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  6. Screening for mutations in two exons of FANCG gene in Pakistani population.

    Science.gov (United States)

    Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida

    2017-06-01

    Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.

  7. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients

    OpenAIRE

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among t...

  8. Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans.

    Science.gov (United States)

    Lesage, Suzanne; Patin, Etienne; Condroyer, Christel; Leutenegger, Anne-Louise; Lohmann, Ebba; Giladi, Nir; Bar-Shira, Anat; Belarbi, Soraya; Hecham, Nassima; Pollak, Pierre; Ouvrard-Hernandez, Anne-Marie; Bardien, Soraya; Carr, Jonathan; Benhassine, Traki; Tomiyama, Hiroyuki; Pirkevi, Caroline; Hamadouche, Tarik; Cazeneuve, Cécile; Basak, A Nazli; Hattori, Nobutaka; Dürr, Alexandra; Tazir, Meriem; Orr-Urtreger, Avi; Quintana-Murci, Lluis; Brice, Alexis

    2010-05-15

    Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.

  9. Screening of the USH1G gene among Spanish patients with Usher syndrome. Lack of mutations and evidence of a minor role in the pathogenesis of the syndrome.

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; Beneyto, Magdalena; Nájera, Carmen; Morera, Constantino; Pérez-Garrigues, Herminio; Ayuso, Carmen; Millán, Jose

    2007-09-01

    The Usher syndrome (USH) is an autosomal recessive hereditary disorder characterized by the association of sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. The USH1G gene, encoding SANS, has been found to cause both Usher syndrome type I and atypical Usher syndrome. 109 Spanish unrelated patients suffering from Usher syndrome type I, type II, type III and unclassified Usher syndrome were screened for mutations in this gene, but only eight different changes without a clear pathogenic effect have been detected. Based on these results as well as previous studies in other populations where mutational analysis of this gene has been carried out, one can conclude that USH1G has a minor involvement in Usher syndrome pathogenesis.

  10. Leber's hereditary optic neuropathy is associated with the mitochondrial ND4 G11696A mutation in five Chinese families

    International Nuclear Information System (INIS)

    Zhou Xiangtian; Wei Qiping; Yang Li; Tong Yi; Zhao Fuxin; Lu Chunjie; Qian Yaping; Sun Yanghong; Lu Fan; Qu Jia; Guan Minxin

    2006-01-01

    We report here the clinical, genetic, and molecular characterization of five Chinese families with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical ND4 G11696A mutation associated with LHON. Indeed, this mutation is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families. In fact, the occurrence of the G11696A mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Furthermore, the N405D in the ND5 and G5820A in the tRNA Cys , showing high evolutional conservation, may contribute to the phenotypic expression of G11696A mutation in the WZ10 pedigree. However, there was the absence of functionally significant mtDNA mutations in other four Chinese pedigrees carrying the G11696A mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated G11696A mutation in these Chinese pedigrees

  11. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  12. Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO).

    Science.gov (United States)

    Beltrán-Valero de Bernabé, D; Jimenez, F J; Aquaron, R; Rodríguez de Córdoba, S

    1999-01-01

    We recently showed that alkaptonuria (AKU) is caused by loss-of-function mutations in the homogentisate 1,2 dioxygenase gene (HGO). Herein we describe haplotype and mutational analyses of HGO in seven new AKU pedigrees. These analyses identified two novel single-nucleotide polymorphisms (INV4+31A-->G and INV11+18A-->G) and six novel AKU mutations (INV1-1G-->A, W60G, Y62C, A122D, P230T, and D291E), which further illustrates the remarkable allelic heterogeneity found in AKU. Reexamination of all 29 mutations and polymorphisms thus far described in HGO shows that these nucleotide changes are not randomly distributed; the CCC sequence motif and its inverted complement, GGG, are preferentially mutated. These analyses also demonstrated that the nucleotide substitutions in HGO do not involve CpG dinucleotides, which illustrates important differences between HGO and other genes for the occurrence of mutation at specific short-sequence motifs. Because the CCC sequence motifs comprise a significant proportion (34.5%) of all mutated bases that have been observed in HGO, we conclude that the CCC triplet is a mutational hot spot in HGO. PMID:10205262

  13. Novel mutations in the USH1C gene in Usher syndrome patients.

    Science.gov (United States)

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  14. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  15. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred.

    LENUS (Irish Health Repository)

    Fernandez, Desiree M

    2012-02-03

    OBJECTIVE: We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. BACKGROUND: FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). METHODS: We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. RESULTS: Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. CONCLUSIONS: We propose that D999H is a novel FHM ATP1A2 mutation.

  16. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  17. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  18. Is the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene due to a founder effect in Chinese head and neck paraganglioma patients?

    Science.gov (United States)

    Zha, Yang; Chen, Xing-ming; Lam, Ching-wan; Lee, Soo-chin; Tong, Sui-fan; Gao, Zhi-qiang

    2011-08-01

    Three Chinese patients with head and neck paragangliomas have been reported to carry the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene. In addition, in our hospital, two further patients were identified who have the same mutation. It is unclear whether the c.3G>C mutation in Chinese patients is a recurrent mutation or if it is due to a founder effect. We conducted haplotype analysis on these patients to answer this question. Individual case-control study. Germ-line mutations were confirmed in the patients and their families examined in this study using direct sequencing. We also constructed and analyzed haplotypes in four Chinese families. Genotype frequencies were compared to the control group. Three of four families shared the same haplotype, which rarely occurred in the control group. The last family shared a very short area on the physical map with the other three families. There is a founder effect in Chinese head and neck paraganglioma patients carrying the SDHD c.3G>C mutation. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  19. Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect.

    Science.gov (United States)

    Barashkov, Nikolay A; Dzhemileva, Lilya U; Fedorova, Sardana A; Teryutin, Fedor M; Posukh, Olga L; Fedotova, Elvira E; Lobov, Simeon L; Khusnutdinova, Elza K

    2011-09-01

    Hereditary forms of hearing impairment (HI) caused by GJB2 (Cx26) mutations are the frequent sensory disorders registered among newborns in various human populations. In this study, we present data on the molecular, audiological and population features of autosomal recessive deafness 1A (DFNB1A) associated with the donor splicing site IVS1+1G>A mutation of GJB2 gene in Yakut population isolate of the Sakha Republic (Yakutia) located in Eastern Siberia (Russian Federation). The Yakut population exhibits high frequency of some Mendelian disorders, which are rare in other populations worldwide. Mutational analysis of GJB2 gene in 86 unrelated Yakut patients with congenital HI without other clinical features has been performed. In this study, we registered a large cohort of Yakut patients homozygous for the IVS1+1G>A mutation (70 unrelated deaf subjects in total). Detailed audiological analysis of 40 deaf subjects with genotype IVS1+1G>A/IVS1+1G>A revealed significant association of this genotype with mostly symmetrical bilateral severe to profound HI (85% severe-to-profound HI versus 15% mild-to-moderate HI, PA mutation (11.7%) has been found in Yakut population. Reconstruction of 140 haplotypes with IVS1+1G>A mutation demonstrates the common origin of all mutant chromosomes found in Yakuts. The age of mutation was estimated to be approximately 800 years. These findings characterize Eastern Siberia as the region with the most extensive accumulation of the IVS1+1G>A mutation in the world as a result of founder effect.

  20. Confirmation of the recurrent ACVR1 617G>A mutation in South ...

    African Journals Online (AJOL)

    Objective. Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition in which progressive ossification of fibrous tissue, tendons and ligaments leads to severe physical handicap. Most affected individuals who have been studied have a recurrent 617G>A mutation in the ACVR1/ALK2 gene that codes for activin ...

  1. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  2. Haplotype Diversity and Reconstruction of Ancestral Haplotype Associated with the c.35delG Mutation in the GJB2 (Cx26) Gene among the Volgo-Ural Populations of Russia.

    Science.gov (United States)

    Dzhemileva, L U; Posukh, O L; Barashkov, N A; Fedorova, S A; Teryutin, F M; Akhmetova, V L; Khidiyatova, I M; Khusainova, R I; Lobov, S L; Khusnutdinova, E K

    2011-07-01

    The mutations in theGJB2(Сх26) gene make the biggest contribution to hereditary hearing loss. The spectrum and prevalence of theGJB2gene mutations are specific to populations of different ethnic origins. For severalGJB2 mutations, their origin from appropriate ancestral founder chromosome was shown, approximate estimations of "age" obtained, and presumable regions of their origin outlined. This work presents the results of the carrier frequencies' analysis of the major (for European countries) mutation c.35delG (GJB2gene) among 2,308 healthy individuals from 18 Eurasian populations of different ethnic origins: Bashkirs, Tatars, Chuvashs, Udmurts, Komi-Permyaks, Mordvins, and Russians (the Volga-Ural region of Russia); Byelorussians, Ukrainians (Eastern Europe); Abkhazians, Avars, Cherkessians, and Ingushes (Caucasus); Kazakhs, Uzbeks, Uighurs (Central Asia); and Yakuts, and Altaians (Siberia). The prevalence of the c.35delG mutation in the studied ethnic groups may act as additional evidence for a prospective role of the founder effect in the origin and distribution of this mutation in various populations worldwide. The haplotype analysis of chromosomes with the c.35delG mutation in patients with nonsyndromic sensorineural hearing loss (N=112) and in population samples (N =358) permitted the reconstruction of an ancestral haplotype with this mutation, established the common origin of the majority of the studied mutant chromosomes, and provided the estimated time of the c.35delG mutation carriers expansion (11,800 years) on the territory of the Volga-Ural region.

  3. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B

    International Nuclear Information System (INIS)

    Soto, José Luis; Cabrera, Carmen M; Serrano, Salvio; López-Nevot, Miguel Ángel

    2005-01-01

    The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied

  4. Two novel mutations in the SLC40A1 and HFE genes implicated in iron overload in a Spanish man.

    Science.gov (United States)

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Alvarez-Sala-Walther, Luis-Antonio; Cuadrado-Grande, Nuria; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2011-03-01

    The most common form of hemochromatosis is caused by mutations in the HFE gene. Rare forms of the disease are caused by mutations in other genes. We present a patient with hyperferritinemia and iron overload, and facial flushing. Magnetic resonance imaging was performed to measure hepatic iron overload, and a molecular study of the genes involved in iron metabolism was undertaken. The iron overload was similar to that observed in HFE hemochromatosis, and the patient was double heterozygous for two novel mutations, c.-20G>A and c.718A>G (p.K240E), in the HFE and ferroportin (FPN1 or SLC40A1) genes, respectively. Hyperferritinemia and facial flushing improved after phlebotomy. Two of the patient's children were also studied, and the daughter was heterozygous for the mutation in the SLC40A1 gene, although she did not have hyperferritinemia. The patient presented a mild iron overload phenotype probably because of the two novel mutations in the HFE and SLC40A1 genes. © 2011 John Wiley & Sons A/S.

  5. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  6. Novel mutations of MYO7A and USH1G in Israeli Arab families with Usher syndrome type 1.

    Science.gov (United States)

    Rizel, Leah; Safieh, Christine; Shalev, Stavit A; Mezer, Eedy; Jabaly-Habib, Haneen; Ben-Neriah, Ziva; Chervinsky, Elena; Briscoe, Daniel; Ben-Yosef, Tamar

    2011-01-01

    This study investigated the genetic basis for Usher syndrome type 1 (USH1) in four consanguineous Israeli Arab families. Haplotype analysis for all known USH1 loci was performed in each family. In families for which haplotype analysis was inconclusive, we performed genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array. For mutation analysis, specific primers were used to PCR amplify the coding exons of the MYO7A, USH1C, and USH1G genes including intron-exon boundaries. Mutation screening was performed with direct sequencing. A combination of haplotype analysis and genome-wide homozygosity mapping indicated linkage to the USH1B locus in two families, USH1C in one family and USH1G in another family. Sequence analysis of the relevant genes (MYO7A, USH1C, and USH1G) led to the identification of pathogenic mutations in all families. Two of the identified mutations are novel (c.1135-1147dup in MYO7A and c.206-207insC in USH1G). USH1 is a genetically heterogenous condition. Of the five USH1 genes identified to date, USH1C and USH1G are the rarest contributors to USH1 etiology worldwide. It is therefore interesting that two of the four Israeli Arab families reported here have mutations in these two genes. This finding further demonstrates the unique genetic structure of the Israeli population in general, and the Israeli Arab population in particular, which due to high rates of consanguinity segregates many rare autosomal recessive genetic conditions.

  7. [A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa].

    Science.gov (United States)

    Cui, Yun; Zhao, Kan-xing; Wang, Li; Wang, Qing; Zhang, Wei; Chen, Wei-ying; Wang, Li-ming

    2003-01-01

    To identify the mutation spectrum of phosphodiesterase beta subunit (PDE6B) gene, the incidence in Chinese patients with retinitis pigmentosa (RP) and their clinical phenotypic characteristics. Screening of mutations within PDE6B gene was performed using polymerase chain reaction-heteroduplex-single strand conformation polymorphism (PCR-SSCP) and DNA sequence in 35 autosomal recessive (AR) RP and 55 sporadic RP cases. The phenotypes of the patients with the gene mutation were examined and analyzed. Novel complex heterozygous variants of PDE6B gene in a sporadic case, a T to C transversion in codon 323 resulting in the substitution of Gly by Ser and 2 base pairs (bp: G and T) insert between the 27th-28th bp upstream of the 5'-end of exon 10 were both present in a same isolate RP. But they are not found in 100 unrelated healthy individuals. Ocular findings showed diffuse pigmentary retinal degeneration in the midperipheral and peripheral fundi, optic atrophy and vessel attenuation. Multi-focal ERG indicated that the rod function was more severely deteriorated. A mutation was found in a case with RP in a ARRP family, a G to A transversion at 19th base upstream 5'-end of exon 11 (within intron 10) of PDE6B gene. A sporadic RP carried a sequence variant of PDE6B gene, a G to C transition, at the 15th base adjacent to the 3'-end of exon l8. In another isolate case with RP was found 2 bp (GT) insert between 31st and 32nd base upstream 5'-end of exon 4 (in intron 3) of PDE6B gene. There are novel complex heterozygous mutations of PDE6B gene responsible for a sporadic RP patient in China. This gene mutation associated with rod deterioration and RP. Several DNA variants were found in introns of PDE6B gene in national population.

  8. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  9. Recurrent vomiting and ethylmalonic aciduria associated with rare mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene

    DEFF Research Database (Denmark)

    Seidel, J.; Streck, S.; Bellstedt, K.

    2003-01-01

    blood spots. Neither of the frequent SCAD gene variants 625G>A and 511C>T was present, but direct sequencing of the promoter and coding regions of the SCAD gene revealed that the patient had mutations on both alleles: 417G>C (Trpl15Cys) and 1095G>T (Gln341His). Neither mutation has been described before...

  10. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients.

    Directory of Open Access Journals (Sweden)

    Avani Solanki

    Full Text Available Fanconi anemia (FA, a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C. Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.

  11. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients.

    Science.gov (United States)

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.

  12. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  13. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors.

    Directory of Open Access Journals (Sweden)

    Tihana Jovanic

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C to deoxyuridine (U, catalysed by the activation induced deaminase (AID. Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U:G mismatch by the Msh2/Msh6 complex (MutS Homologue, followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase eta, of the gap generated by the exonuclease I. These mutations are mainly focused at A:T pairs. Whereas in activated B cells both G:C and A:T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A:T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.

  14. Mechanisms of mtDNA segregation and mitochondrial signalling in cells with the pathogenic A3243G mutation

    NARCIS (Netherlands)

    Jahangir Tafrechi, Roshan Sakineh

    2008-01-01

    Using newly developed single cell A3243G mutation load assays a novel mechanism of mtDNA segregation was identified in which the multi-copy mtDNA nucleoid takes a central position. Furthermore, likely due to low level changes in gene expression, no genes or gene sets could be identified with gene

  15. The search for mitochondrial tRNA Leu(UUR) A3243G mutation ...

    African Journals Online (AJOL)

    The study aimed to compare the incidence of the pathogenic point mutation A3243G in the gene tRNALeu(UUR) indicating sub-type 2 diabetes mellitus conducted within the Nigerian population with that reported in other populations. 112 patients diagnosed with type 2 diabetes (T2D) mellitus according to the World Health ...

  16. Clinical characteristics and STK11 gene mutations in Chinese children with Peutz-Jeghers syndrome.

    Science.gov (United States)

    Huang, Zhiheng; Miao, Shijian; Wang, Lin; Zhang, Ping; Wu, Bingbing; Wu, Jie; Huang, Ying

    2015-11-25

    Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disease characterized by gastrointestinal hamartomatous polyps and mucocutaneous melanin spots. Germline mutation of the serine/threonine kinase 11 (STK11) gene are responsible for PJS. In this study, we investigated the clinical characteristics and molecular basis of the disease in Chinese children with PJS. Thirteen children diagnosed with PJS in our hospital were enrolled in this study from 2011 to 2015, and their clinical data on polyp characteristics, intussusceptions events, family histories, etc. were described. Genomic DNA was extracted from whole-blood samples from each subject, and the entire coding sequence of the STK11 gene was amplified by polymerase chain reaction and analyzed by direct sequencing. The median age at the onset of symptoms was 2 years and 4 months. To date, these children have undergone 40 endoscopy screenings, 17 laparotomies and 9 intussusceptions. Polyps were found in the stomach, duodenum, small bowel, colon and rectum, with large polyps found in 7 children. Mutations were found in eleven children, including seven novel mutations (c.481het_dupA, c.943_944het_delCCinsG, c.397het_delG, c.862 + 1G > G/A, c.348_349het_delGT, and c.803_804het_delGGinsC and c.121_139de l19insTT) and four previously reported mutations (c.658C > C/T, c.890G > G/A, c.1062 C > C/G, and c.290 + 1G > G/A). One PJS patient did not have any STK11 mutations. The polyps caused significant clinical consequences in children with PJS, and mutations of the STK11 gene are generally the cause of PJS in Chinese children. This study expands the spectrum of known STK11 gene mutations.

  17. A mutation in the MATP gene causes the cream coat colour in the horse

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2003-01-01

    Full Text Available Abstract In horses, basic colours such as bay or chestnut may be partially diluted to buckskin and palomino, or extremely diluted to cream, a nearly white colour with pink skin and blue eyes. This dilution is expected to be controlled by one gene and we used both candidate gene and positional cloning strategies to identify the "cream mutation". A horse panel including reference colours was established and typed for different markers within or in the neighbourhood of two candidate genes. Our data suggest that the causal mutation, a G to A transition, is localised in exon 2 of the MATP gene leading to an aspartic acid to asparagine substitution in the encoded protein. This conserved mutation was also described in mice and humans, but not in medaka.

  18. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2

    Directory of Open Access Journals (Sweden)

    David Alan Isaacs

    2017-05-01

    Full Text Available Background: Episodic ataxia type 2 (OMIM 108500 is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%–50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. Case: A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. Conclusion: This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.

  19. Nonsyndromic Hearing Loss Caused by USH1G Mutations: Widening the USH1G Disease Spectrum

    NARCIS (Netherlands)

    Oonk, A.M.M.; Huet, R.A.C. van; Leijendeckers, J.M.; Oostrik, J.; Venselaar, H.; WIjk, E. van; Beynon, A.J.; Kunst, H.P.M.; Hoyng, C.B.; Kremer, H.; Schraders, M.; Pennings, R.J.E.

    2015-01-01

    OBJECTIVE: Currently, six genes are known to be associated with Usher syndrome type I, and mutations in most of these genes can also cause nonsyndromic hearing loss. The one exception is USH1G, which is currently only known to be involved in Usher syndrome type I and atypical Usher syndrome. DESIGN:

  20. New evidence of a mitochondrial genetic background paradox: Impact of the J haplogroup on the A3243G mutation

    Directory of Open Access Journals (Sweden)

    Pennarun Erwann

    2008-05-01

    Full Text Available Abstract Background The A3243G mutation in the tRNALeu gene (UUR, is one of the most common pathogenic mitochondrial DNA (mtDNA mutations in France, and is associated with highly variable and heterogeneous disease phenotypes. To define the relationships between the A3243G mutation and mtDNA backgrounds, we determined the haplogroup affiliation of 142 unrelated French patients – diagnosed as carriers of the A3243G mutation – by control-region sequencing and RFLP survey of their mtDNAs. Results The analysis revealed 111 different haplotypes encompassing all European haplogroups, indicating that the 3243 site might be a mutational hot spot. However, contrary to previous findings, we observed a statistically significant underepresentation of the A3243G mutation on haplogroup J in patients (p = 0.01, OR = 0.26, C.I. 95%: 0.08–0.83, suggesting that might be due to a strong negative selection at the embryo or germ line stages. Conclusion Thus, our study supports the existence of mutational hotspot on mtDNA and a "haplogroup J paradox," a haplogroup that may increase the expression of mtDNA pathogenic mutations, but also be beneficial in certain environmental contexts.

  1. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  2. Collodion Baby with TGM1 gene mutation

    Directory of Open Access Journals (Sweden)

    Sharma D

    2015-09-01

    Full Text Available Deepak Sharma,1 Basudev Gupta,2 Sweta Shastri,3 Aakash Pandita,1 Smita Pawar4 1Department of Neonatology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, 2Department of Pediatrics, Civil Hospital, Palwal, Haryana, 3Department of Pathology, NKP Salve Medical College, Nagpur, Maharashtra, 4Department of Obstetrics and Gynaecology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, IndiaAbstract: Collodion baby (CB is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation. The infant was lost to follow-up.Keywords: cellophane membrane, c.984+1G>A mutation, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, parchment membrane, TGM1 gene

  3. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  4. [Mutation analysis of the PAH gene in children with phenylketonuria from the Qinghai area of China].

    Science.gov (United States)

    He, Jiang; Wang, Hui-Zhen; Xu, Fa-Liang; Yang, Xi; Wang, Rui; Zou, Hong-Yun; Yu, Wu-Zhong

    2015-11-01

    To study the mutation characteristics of the phenylalanine hydroxylase (PAH) gene in children with phenylketonuria (PKU) from the Qinghai area of China, in order to provide basic information for genetic counseling and prenatal diagnosis. Mutations of the PAH gene were detected in the promoter and exons 1-13 and their flanking intronic sequences of PAH gene by PCR and DNA sequencing in 49 children with PKU and their parents from the Qinghai area of China. A total of 30 different mutations were detected in 80 out of 98 mutant alleles (82%), including 19 missense (63%), 5 nonsense (17%), 3 splice-site (10%) and 3 deletions (10%). Most mutations were detected in exons 3, 6, 7, 11 and intron 4 of PAH gene. The most frequent mutations were p.R243Q (19%), IVS4-1G>A (9%), p.Y356X (7%) and p.EX6-96A>G(5%). Two novel mutations p.N93fsX5 (c.279-282delCATC) and p.G171E (c.512G>A) were found. p.H64fsX9(c.190delC) was documented for the second time in Chinese PAH gene. The mutation spectrum of the gene PAH in the Qinghai population was similar to that in other populations in North China while significantly different from that in the populations from some provinces in southern China, Japan and Europe. The mutations of PAH gene in the Qinghai area of China demonstrate a unique diversity, complexity and specificity.

  5. Primeiro relato de uma criança Brasileira portadora da mutação G188E do gene da lipoproteína lipase First report of a Brazilian child carrying the G188E mutation of lipoprotein lipase gene

    Directory of Open Access Journals (Sweden)

    Raquel Tiemi Takata

    2010-12-01

    Full Text Available OBJETIVO: Relatar o caso de uma criança com hipertrigliceridemia grave por mutações do gene da lipoproteína lipase. DESCRIÇÃO DE CASO: Menino de três anos que apresentou, com um mês de idade, soro lipêmico. Seu perfil lipídico indicou hipertrigliceridemia grave, com concentrações de triglicerídeos plasmáticos iguais a 25000mg/dL. Foi detectada a mutação G188E no éxon 5 da lipoproteína lipase em homozigose na criança e em heterozigose nos pais. COMENTÁRIOS: A deficiência da lipoproteína lípase é uma doença de herança autossômica recessiva e esses pacientes evoluem com hipertrigliceridemia grave.OBJECTIVE: To report the case of a child with serious hypertriglyceridemia due to lipase lipoprotein gene mutation. CASE DESCRIPTION: A three-year-old boy presented with lipemic serum at one month of age. His lipid profile revealed serious hypertriglyceridemia with plasma triglycerides levels of 25,000mg/dL. A mutation G188E in éxon 5 of the lipoprotein lipase gene was detected in homozygosis for him and in heterozygosis for his parents. COMMENTS: The deficiency of the lipoprotein lipase is a recessive autossomal disease that causes severe hypertriglyceridemia.

  6. Novel mutations in the TBX5 gene in patients with Holt-Oram Syndrome

    Directory of Open Access Journals (Sweden)

    Marianna P.R. Porto

    2010-01-01

    Full Text Available The Holt-Oram syndrome (HOS is an autosomal dominant condition characterized by upper limb and cardiac malformations. Mutations in the TBX5 gene cause HOS and have also been associated with isolated heart and arm defects. Interactions between the TBX5, GATA4 and NKX2.5 proteins have been reported in humans. We screened the TBX5, GATA4, and NKX2.5 genes for mutations, by direct sequencing, in 32 unrelated patients presenting classical (8 or atypical HOS (1, isolated congenital heart defects (16 or isolated upper-limb malformations (7. Pathogenic mutations in the TBX5 gene were found in four HOS patients, including two new mutations (c.374delG; c.678G > T in typical patients, and the hotspot mutation c.835C > T in two patients, one of them with an atypical HOS phenotype involving lower-limb malformations. Two new mutations in the GATA4 gene were found in association with isolated upper-limb malformations, but their clinical significance remains to be established. A previously described possibly pathogenic mutation in the NKX2.5 gene (c.73C > 7 was detected in a patient with isolated heart malformations and also in his clinically normal father.

  7. Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates.

    Science.gov (United States)

    Naylor, Clive J; Ling, Roger; Edworthy, Nicole; Savage, Carol E; Easton, Andrew J

    2007-06-01

    A prototype avian metapneumovirus (AMPV) vaccine (P20) was previously shown to give variable outcomes in experimental trials. Following plaque purification, three of 12 viruses obtained from P20 failed to induce protection against virulent challenge, whilst the remainder retained their protective capacity. The genome sequences of two protective viruses were identical to the P20 consensus, whereas two non-protective viruses differed only in the SH gene transcription termination signal. Northern blotting showed that the alterations in the SH gene-end region of the non-protective viruses led to enhanced levels of dicistronic mRNA produced by transcriptional readthrough. A synthetic minigenome was used to demonstrate that the altered SH gene-end region reduced the level of protein expression from a downstream gene. The genomes of the remaining eight plaque-purified viruses were sequenced in the region where the P20 consensus sequence differed from the virulent progenitor. The seven protective clones were identical, whereas the non-protective virus retained the virulent progenitor sequence at two positions and contained extensive alterations in its attachment (G) protein sequence associated with a reduced or altered expression pattern of G protein on Western blots. The data indicate that the efficacy of a putative protective vaccine strain is affected by mutations altering the balance of G protein expression.

  8. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  9. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    Science.gov (United States)

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  10. Sporadic Fibrodysplasia Ossificans Progressiva in an Egyptian Infant with c.617G > A Mutation in ACVR1 Gene: A Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2013-01-01

    Full Text Available Fibrodysplasia ossificans progressiva (FOP is an autosomal dominant severe musculoskeletal disease characterized by extensive new bone formation within soft connective tissues and unique skeletal malformations of the big toes which represent a birth hallmark for the disease. Most of the isolated classic cases of FOP showed heterozygous mutation in the ACVR1 gene on chromosome 2q23 that encodes a bone morphogenetic protein BMP (ALK2. The most common mutation is (c.617G > A leading to the amino acid substitution of arginine by histidine (p.Arg206His. We currently report on an Egyptian infant with a sporadic classic FOP in whom c.617G > A mutation had been documented. The patient presented with the unique congenital malformation of big toe and radiological evidence of heterotopic ossification in the back muscles. The triggering trauma was related to the infant's head, however; neither neck region nor sites of routine intramuscular vaccination given during the first year showed any ossifications. Characterization of the big toe malformation is detailed to serve as an early diagnostic marker for this rare disabling disease.

  11. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  12. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    Science.gov (United States)

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  13. The rates of G:C[yields]T:A and G:C[yields]C:G transversions at CpG dinucleotides in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-05-01

    The authors have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in the sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P<0.1). The aggregate data suggest that the two types of CpG transversions (G:C[yields]T:A and G:C[yields]C:G) possess similar mutation rates (24.8 [times] 10[sup [minus]10] and 20.6 [times] 10[sup [minus]10], respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggest that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined. 28 refs., 2 tabs.

  14. A novel mutation in the SH3BP2 gene causes cherubism: case report

    Directory of Open Access Journals (Sweden)

    Yu Shi-Feng

    2006-12-01

    Full Text Available Abstract Background Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2 may be involved. Case presentation We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. Conclusion To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.

  15. Compound Heterozygosity for Hb Alperton (HBB: c.407C>T) and IVS-I-5 (G>C) (HBB: c.92+5G>C) Mutations Presenting as a Moderate Anemia in an Indian Family.

    Science.gov (United States)

    Godbole, Koumudi G; Ramachandran, Angelina; Karkamkar, Ashwini S; Dalal, Ashwin B

    2018-04-13

    While knowledge of HBB gene mutations is necessary for offering prenatal diagnosis (PND) of β-thalassemia (β-thal), a genotype-phenotype correlation may not always be available for rare variants. We present for the first time, genotype-phenotype correlation for a compound heterozygous status with IVS-I-5 (G>C) (HBB: c.92+5G>C) and HBB: c.407C>T (Hb Alperton) mutations on the HBB gene in an Indian family. Hb Alperton is a very rare hemoglobin (Hb) variant with scant published information about its clinical presentation, especially when accompanied with another HBB gene mutation. Here we provide biochemical as well as clinical details of this variant.

  16. Identification of a novel frameshift mutation in the ILDR1 gene in a UAE family, mutations review and phenotype genotype correlation.

    Directory of Open Access Journals (Sweden)

    Abdelaziz Tlili

    Full Text Available Autosomal recessive non-syndromic hearing loss is one of the most common monogenic diseases. It is characterized by high allelic and locus heterogeneities that make a precise diagnosis difficult. In this study, whole-exome sequencing was performed for an affected patient allowing us to identify a new frameshift mutation (c.804delG in the Immunoglobulin-Like Domain containing Receptor-1 (ILDR1 gene. Direct Sanger sequencing and segregation analysis were performed for the family pedigree. The mutation was homozygous in all affected siblings but heterozygous in the normal consanguineous parents. The present study reports a first ILDR1 gene mutation in the UAE population and confirms that the whole-exome sequencing approach is a robust tool for the diagnosis of monogenic diseases with high levels of allelic and locus heterogeneity. In addition, by reviewing all reported ILDR1 mutations, we attempt to establish a genotype phenotype correlation to explain the phenotypic variability observed at low frequencies.

  17. Only male matrilineal relatives with Leber's hereditary optic neuropathy in a large Chinese family carrying the mitochondrial DNA G11778A mutation

    International Nuclear Information System (INIS)

    Qu Jia; Li Ronghua; Tong Yi; Hu Yongwu; Zhou Xiangtian; Qian Yaping; Lu Fan; Guan Minxin

    2005-01-01

    We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation

  18. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Directory of Open Access Journals (Sweden)

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  19. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.

    Science.gov (United States)

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2012-10-15

    Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.

  20. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    Science.gov (United States)

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  1. [An overview of oculocutaneous albinism: TYR gene mutations in five Colombian individuals].

    Science.gov (United States)

    Sanabria, Diana; Groot, Helena; Guzmán, Julio; Lattig, María Claudia

    2012-06-01

    Oculocutaneus albinism is a pigment-related inherited disorder characterized by hypopigmentation of the skin, hair and eyes, foveal hypoplasia and low vision. To date, 230 mutations in the TYR gene have been reported as responsible for oculocutaneus albinism type 1 worldwide. TYR gene encodes the enzyme tyrosinase involved in the metabolic pathway of melanin synthesis. Mutations were identified in the TYR gene as responsible for oculocutaneous albinism type 1 in five Colombian individuals, and a new ophthalmic system was tested that corrected visual defects and symptoms in a patient with oculocutaneous albinism. Samples were taken from 5 individuals, four of whom belong to a single family, along with a fifth individual not related to the family. Five exons in the TYR gene were sequenced to search for the gene carriers in the family and in the non-related individual. In addition, clinical ophthalmological evaluation and implementation of an new oculo-visual system was undertaken. A G47D and 1379delTT mutation was identified in the family. The unrelated individual carried a compound heterozygote for the G47D and D42N mutations. The oculo-visual corrective system was able to increase visual acuity and to diminish the nystagmus and photophobia. This is the first study in Colombia where albinism mutations are reported. The methods developed will enable future molecular screening studies in Colombian populations.

  2. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J

    1998-01-01

    We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease......-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote...... for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele...

  3. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.

    Science.gov (United States)

    Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R

    2009-05-01

    Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.

  4. A recurrent G367R mutation in MYOC associated with juvenile open angle glaucoma in a large Chinese family

    Directory of Open Access Journals (Sweden)

    Yi-Hua Yao

    2018-03-01

    Full Text Available AIM: To identify the mutations of MYOC, OPTN, CYP1B1 and WDR36 in a large Chinese family affected by juvenile open angle glaucoma (JOAG. METHODS: Of 114 members of one family were recruited in this study. Blood samples from twelve members of this pedigree were collected for further research. As a control, 100 unrelated subjects were recruited from the same hospital. The exon and flanking intron sequences of candidate genes were amplified using the polymerase chain reaction and direct DNA sequencing. RESULTS: The proband (III:10 was a seventy-three years old woman with binocular JOAG at the age of 31. A recurrent heterozygous mutation (c.1099G>A of MYOC was identified in the three JOAG patients and another suspect. This transition was located in the first base pair of codon 367 (GGA>AGA in exon 3 of MYOC and was predicted to be a missense substitution of glycine to arginine (p.G367R in myocilin. Mutations in OPTN, CYP1B1 or WDR36 were not detected in this study. The G367R mutation was not present in unaffected family members or in 100 ethnically matched controls. Other variants of the coding regions of candidate genes were not detected in all participants. To date, this family was the largest to have been identified as carrying a certain MYOC mutation in China, further evidence of a founder effect for the G367R MYOC mutant was provided by our data. CONCLUSION: A MYOC c.1099G>A mutation in an autosomal dominant JOAG family is identified and the characteristic phenotypes among the patients are summarized. Genetic testing could be utilized in high-risk populations and be helpful not only for genetic counseling, but also for early diagnosis and treatment of affected patients or carriers of inherited JOAG.

  5. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    Science.gov (United States)

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  6. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  7. Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations.

    Science.gov (United States)

    Cidral, Thiago André; Carvalho, Maria Cícera; Figueiredo, Agnes Marie Sá; de Melo, Maria Celeste Nunes

    2015-10-01

    The aim of this article were to determinate the mechanism of linezolid resistance in coagulase-negative methicillin-resistant staphylococci from hospitals in the northeast of Brazil. We identified the isolates using VITEK(®) 2 and MALDI-TOF. Susceptibility to antibiotics was measured by the disk-diffusion method and by Etest(®) . Extraction of the whole genome DNA was performed, followed by screening of all the strains for the presence of mecA and cfr genes. The domain V region of 23S rRNA gene was sequenced and then aligned with a linezolid-susceptible reference strain. Pulsed-field gel electrophoresis (PFGE) macro-restriction analysis was performed. Three linezolid-resistant Staphylococcus hominis and two linezolid-resistant Staphylococcus epidermidis strains were analyzed. The isolates showed two point mutations in the V region of the 23S rRNA gene (C2190T and G2603T). We did not detect the cfr gene in any isolate by PCR. The S. hominis showed the same pulsotype, while the S. epidermidis did not present any genetic relation to each other. In conclusion, this study revealed three S. hominis and two S. epidermidis strains with resistance to linezolid due to a double mutation (C2190T and G2603T) in the domain V of the 23S rRNA gene. For the first time, the mutation of C2190T in S. epidermidis is described. This study also revealed the clonal spread of a S. hominis pulsotype between three public hospitals in the city of Natal, Brazil. These findings highlight the importance of continued vigilance of linezolid resistance in staphylococci. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  8. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Fendri-Kriaa, Nourhene, E-mail: nourhene.fendri@gmail.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hsairi, Ines [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Kifagi, Chamseddine [Laboratoire internationale associe LIA135, Centre de Biotechnologie de Sfax (Tunisia); Ellouze, Emna [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Mkaouar-Rebai, Emna [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Triki, Chahnez [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-06-03

    Highlights: {yields} Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. {yields} A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. {yields} The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.

  9. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    International Nuclear Information System (INIS)

    Fendri-Kriaa, Nourhene; Hsairi, Ines; Kifagi, Chamseddine; Ellouze, Emna; Mkaouar-Rebai, Emna; Triki, Chahnez; Fakhfakh, Faiza

    2011-01-01

    Highlights: → Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. → A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. → The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.

  10. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  11. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.

    Science.gov (United States)

    Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena

    2015-11-01

    Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.

  12. [Mutational frequencies in usherin(USH2A gene) in 26 Colombian individuals with Usher syndrome type II].

    Science.gov (United States)

    López, Greizy; Gelvez, Nancy Yaneth; Tamayo, Martalucía

    2011-03-01

    Usher syndrome is a disorder characterized by progressive retinitis pigmentosa, prelingual sensory hearing loss and vestibular dysfunction. It is the most frequent cause of deaf-blindness in humans. Three clinical types and twelve genetic subtypes have been characterized. Type II is the most common, and among these cases, nearly 80% have mutations in the USH2A gene. The aim of the study was to establish the mutational frequencies for the short isoform of USH2A gene in Usher syndrome type II. Twenty-six Colombian individuals with Usher syndrome type II were included. SSCP analysis for 20 exons of the short isoform was performed and abnormal patterns were sequenced. Sequencing of exon 13 of the USH2A gene was performed for all the individuals because the most frequent mutation is located in this exon. The most frequent mutation was c.2299delG, identified in the 27% (n=8) of the sample. The second mutation, p.R334W, showed a frequency of 15%. A new variant identified in the 5’UTR region, g.129G>T, was present in 1 individual (4%). Four polymorphisms were identified; one of them is a new deletion in exon 20, first reported in this study. Mutations in the usherin short isoform were identified in 38% of a sample of 26 USH2 cases. Molecular diagnosis was established in 7 of the 26.

  13. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  14. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    Directory of Open Access Journals (Sweden)

    Mehul Mistri

    Full Text Available Tay Sachs disease (TSD is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients. Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K, c.964 G>A (p.D322N, c.964 G>T (p.D322Y, c.1178C>G (p.R393P and c.1385A>T (p.E462V, c.1432 G>A (p.G478R and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W. The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.

  15. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    Science.gov (United States)

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.

  16. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.

    Science.gov (United States)

    Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin

    2017-06-01

    Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    Science.gov (United States)

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  18. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family

    Science.gov (United States)

    Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui

    2015-01-01

    Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI. PMID:25983617

  19. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.

    Science.gov (United States)

    Karicheva, Olga Z; Kolesnikova, Olga A; Schirtz, Tom; Vysokikh, Mikhail Y; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A; Martin, Robert P; Entelis, Nina; Tarassov, Ivan

    2011-10-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.

  20. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate reductase C677T

    DEFF Research Database (Denmark)

    Simone, Benedetto; De Stefano, Valerio; Leoncini, Emanuele

    2013-01-01

    for interaction = 0.036) and of PT20210A in women using oral contraceptives (p-value for interaction = 0.045). In this large pooled analysis, inclusive of large studies like MEGA, no effect was found for C677T MTHFR on VTE; FVL and PT20210A were confirmed to be moderate risk factors. Notably, double carriers...

  1. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  2. A novel germline mutation (c.A527G) in STK11 gene causes Peutz-Jeghers syndrome in a Chinese girl: A case report.

    Science.gov (United States)

    Zhao, Zi-Ye; Jiang, Yu-Liang; Li, Bai-Rong; Yang, Fu; Li, Jing; Jin, Xiao-Wei; Sun, Shu-Han; Ning, Shou-Bin

    2017-12-01

    Peutz-Jeghers syndrome (PJS) is a Mendelian autosomal dominant disease caused by mutations in the tumor suppressor gene, serine/threonine kinase 11 (STK11). The features of this syndrome include gastrointestinal (GI) hamartomas, melanin spots on the lips and the extremities, and an increased risk of developing cancer. Early onset of disease is often characterized by mucocutaneous pigmentation and intussusception due to GI polyps in childhood. A girl with a positive family history grew oral pigmentation at 1 and got intussusception by small bowel hamartomas at 5. She was diagnosed with PJS based on oral pigmentation and a positive family history of PJS. Enteroscopy was employed to treat the GI polyps. Sanger sequencing was used to investigate STK11 mutation in this family. A large jejunal polyp together with other smaller ones was resected, and the girl recovered uneventfully. We discovered a heterozygous substitution in STK11, c.A527G in exon 4, in the girl and her father who was also a PJS patient, and the amine acid change was an aspartic acid-glycine substitution in codon 176. This mutation was not found in other healthy family members and 50 unrelated non-PJS controls, and it is not recorded in databases, which prove it a novel mutation. Evolutionary conservation analysis of amino acid residues showed this aspartic acid is a conserved one between species, and protein structure prediction by SWISS-MODEL indicated an obvious change in local structure. In addition, PolyPhen-2 score for this mutation is 1, which indicates it probably damaging. PJS can cause severe complication like intussusception in young children, and early screening for small bowel may be beneficial for these patients. The mutation of STK11 found in this girl is a novel one, which enlarges the spectrum of STK11. Our analysis supported it a causative one in PJS.

  3. Atypical Presentation of Gelsolin Amyloidosis in a Man of African Descent with a Novel Mutation in the Gelsolin Gene.

    Science.gov (United States)

    Oregel, Karlos Z; Shouse, Geoffrey P; Oster, Cyrus; Martinez, Freddy; Wang, Jun; Rosenzweig, Michael; Deisch, Jeremy K; Chen, Chien-Shing; Nagaraj, Gayathri

    2018-03-30

    BACKGROUND Gelsolin amyloidosis is a very rare systemic disease presenting with a pathognomonic triad of corneal lattice dystrophy, cutis laxa, and polyneuropathy. The disease is mostly restricted to a Finnish population with known mutations (G654A, G654T) in exon 4 of the gelsolin gene. The mutations lead to errors in protein processing and folding, and ultimately leads to deposition of an amyloidogenic fragment in the extracellular space, causing the symptoms of disease. CASE REPORT We present a case of gelsolin amyloidosis in a male of African descent with an atypical clinical presentation including fevers, skin rash, polyneuropathy, and anemia. Gelsolin amyloidosis was diagnosed based on mass spectrometry of tissue samples. Importantly, a novel mutation in the gelsolin gene (C1375G) in exon 10 was found in this patient. His atypical presentation can possibly be attributed to the presence of a novel mutation in the gelsolin gene as the likely underlying cause of the syndrome. PCR primers were used to amplify the gelsolin gene from genomic DNA. Purified PCR products were then shipped to Eton Biosciences (San Diego, CA) for sequencing. CONCLUSIONS This study carries several important lessons relevant to the practice of medicine. First, the differential diagnosis for multisystem disease presentations should always include amyloidosis. Second, despite what has been uncovered about the molecular biology of disease, there is always more that can be discovered. Finally, further work to verify the link between this mutation and the clinical syndrome is still needed, as are effective treatments for this disease.

  4. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    Science.gov (United States)

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  5. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    Science.gov (United States)

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC

  6. Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis.

    Science.gov (United States)

    Ockenga, J; Stuhrmann, M; Ballmann, M; Teich, N; Keim, V; Dörk, T; Manns, M P

    2000-08-01

    We investigated whether mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and cationic trypsinogen gene are associated with recurrent acute, or chronic idiopathic pancreatitis. Twenty patients with idiopathic pancreatitis (11 women, nine men; mean age, 30 yr) were studied for the presence of a CFTR mutation by screening the genomic DNA for more than 30 mutations and variants in the CFTR gene. Selected mutations of the cationic trypsinogen gene were screened by Afl III restriction digestion or by a mutation-specific polymerase chain reaction (PCR). In each patient exons 1, 2, and 3 of the cationic trypsinogen gene were sequenced. Patients with a CFTR mutation underwent evaluation of further functional electrophysiological test (intestinal current measurement). No mutation of the cationic trypsinogen gene was detected. A CFTR mutation was detected in 6/20 (30.0%) patients. Three patients (15.0%) had a cystic fibrosis (CF) mutation on one chromosome (deltaF508, I336K, Y1092X), which is known to cause phenotypical severe cystic fibrosis. One patient was heterozygous for the 5T allele. In addition, two possibly predisposing CFTR variants (R75Q, 1716G-->A) were detected on four patients, one of these being a compound heterozygous for the missense mutation I336K and R75Q. No other family member (maternal I336K; paternal R75Q; sister I1336K) developed pancreatitis. An intestinal current measurement in rectum samples of patients with a CFTR mutation revealed no CF-typical constellations. CFTR mutations are associated with recurrent acute, or chronic idiopathic pancreatitis, whereas mutations of the cationic trypsinogen mutation do not appear to be a frequent pathogenetic factor.

  7. Analysis of common deafness gene mutations in deaf people from unique ethnic groups in Gansu Province, China.

    Science.gov (United States)

    Xu, Bai-Cheng; Bian, Pan-Pan; Liu, Xiao-Wen; Zhu, Yi-Ming; Yang, Xiao-Long; Ma, Jian-Li; Chen, Xing-Jian; Wang, Yan-Li; Guo, Yu-Fen

    2014-09-01

    The GJB2 gene mutation characteristic of Dongxiang was the interaction result of ethnic background and geographical environment, and Yugur exhibited the typical founder effect. The SLC26A4 gene mutation characteristic of Dongxiang was related to caucasian backgrounds and selection of purpose exons, i.e. ethnic background and the penetrance of ethnic specificity caused the low mtDNA1555A>G mutation frequency in Dongxiang. To determine the prevalence of GJB2 and SLC26A4 genes and mtDNA1555A>G mutations and analyze the ethnic specificity in the non-syndromic sensorineural hearing loss (NSHL) of unique ethnic groups in Gansu Province. Peripheral blood samples were obtained from Dongxiang, Yugur, Bonan, and ethnic Han groups with moderately severe to profound NSHL in Gansu Province. Bidirectional sequencing (or enzyme digestion) was applied to identify the sequence variations. The pathogenic allele frequency of the three gene mutations was different. The frequency of the GJB2 gene among the Dongxiang, Yugur, Bonan, and ethnic Han groups was 9.03%, 12.5%, 5.88%, and 12.17%, respectively. No difference was found between the ethnic groups. The frequencies of the SLC26A4 genes were 3.23%, 8.33%, 0%, and 9.81%, respectively. The mutation frequency of mtDNA1555A>G was 0%, 0%, 0%, and 6.03%, respectively. No difference was found between the ethnic groups, except for the Dongxiang and ethnic Han groups, both in SLC26A4 gene and mtDNA1555A>G.

  8. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    Science.gov (United States)

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  9. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  10. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  11. A novel T→G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family.

    Science.gov (United States)

    Yang, Zhenfei; Su, Dongmei; Li, Qian; Yang, Fan; Ma, Zicheng; Zhu, Siquan; Ma, Xu

    2012-01-01

    The purpose of this study was to identify the disease-causing mutation and the molecular phenotype that are responsible for the presence of an autosomal dominant congenital nuclear cataract disease in a Chinese family. The family history and clinical data were recorded. The patients were given a physical examination and their blood samples were collected for DNA extraction. Direct sequencing was used to detect the mutation. Transcription analysis of the mutant crystallin, beta A1 (CRYBA1/A3) gene was performed to verify whether the defective mutation had influenced the splice of the mature mRNA. The phenotype of the congenital cataract in the family was identified as a nuclear cataract type, by using slit-lamp photography. Direct sequencing revealed a novel mutation IVS3+2 T→G in CRYBA1/A3. This mutation co-segregated with all affected individuals in the family, but was not found in unaffected family members nor in the 100 unrelated controls. Transcription analysis of the mutant CRYBA1/A3 gene indicated that this mutation had influenced the splice of the mature mRNA. Our study identified a novel splice site mutation in CRYBA1/A3. This mutation was responsible for aberrant splicing of the mature mRNA and had caused the congenital nuclear cataracts in the family. This is the first report relating an IVS3+2 T→G mutation of CRYBA1/A3 to congenital cataracts.

  12. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  13. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  14. [Hot spot mutation screening of RYR1 gene in diagnosis of congenital myopathies].

    Science.gov (United States)

    Chang, Xing-zhi; Jin, Yi-wen; Wang, Jing-min; Yuan, Yun; Xiong, Hui; Wang, Shuang; Qin, Jiong

    2014-10-18

    To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease. Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients. All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed "myogenic" features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients' (Patient 3) asymptomatic father. Congenital myopathies in

  15. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    Science.gov (United States)

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  16. A Novel Splice-Site Mutation in Angiotensin I-Converting Enzyme (ACE) Gene, c.3691+1G>A (IVS25+1G>A), Causes a Dramatic Increase in Circulating ACE through Deletion of the Transmembrane Anchor

    Science.gov (United States)

    Persu, Alexandre; Lambert, Michel; Deinum, Jaap; Cossu, Marta; de Visscher, Nathalie; Irenge, Leonid; Ambroise, Jerôme; Minon, Jean-Marc; Nesterovitch, Andrew B.; Churbanov, Alexander; Popova, Isolda A.; Danilov, Sergei M.; Danser, A. H. Jan; Gala, Jean-Luc

    2013-01-01

    Background Angiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases. Methods and Results Two Belgian families with a 8-16-fold increase in blood ACE level were incidentally identified. A novel heterozygous splice site mutation of intron 25 - IVS25+1G>A (c.3691+1G>A) - cosegregating with elevated plasma ACE was identified in both pedigrees. Messenger RNA analysis revealed that the mutation led to the retention of intron 25 and Premature Termination Codon generation. Subjects harboring the mutation were mostly normotensive, had no left ventricular hypertrophy or cardiovascular disease. The levels of renin-angiotensin-aldosterone system components in the mutated cases and wild-type controls were similar, both at baseline and after 50 mg captopril. Compared with non-affected members, quantification of ACE surface expression and shedding using flow cytometry assay of dendritic cells derived from peripheral blood monocytes of affected members, demonstrated a 50% decrease and 3-fold increase, respectively. Together with a dramatic increase in circulating ACE levels, these findings argue in favor of deletion of transmembrane anchor, leading to direct secretion of ACE out of cells. Conclusions We describe a novel mutation of the ACE gene associated with a major familial elevation of circulating ACE, without evidence of activation of the renin-angiotensin system, target organ damage or cardiovascular complications. These data are consistent with the hypothesis that membrane-bound ACE, rather than circulating ACE, is responsible for Angiotensin II generation and its cardiovascular consequences. PMID:23560051

  17. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  18. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  19. High prevalence of exon 8 G533C mutation in apparently sporadic medullary thyroid carcinoma in Greece.

    Science.gov (United States)

    Sarika, H L; Papathoma, A; Garofalaki, M; Vasileiou, V; Vlassopoulou, B; Anastasiou, E; Alevizaki, M

    2012-12-01

    Genetic screening for ret mutation has become routine practice in the evaluation of medullary thyroid carcinoma (MTC). Approximately 25% of these tumours are familial, and they occur as components of the multiple endocrine neoplasia type 2 syndromes (MEN 2A and 2B) or familial MTC. In familial cases, the majority of mutations are found in exons 10, 11, 13, 14 or 15 of the ret gene. A rare mutation involving exon 8 (G533C) has recently been reported in familial cases of MTC in Brazil and Greece; some of these cases were originally thought to be sporadic. The aim of this study was to re-evaluate a series of sporadic cases of MTC, with negative family history, and screen them for germline mutations in exon 8. Genomic DNA was extracted from peripheral lymphocytes in 129 unrelated individuals who had previously been characterized as 'sporadic' based on the negative family history and negative screening for ret gene mutations. Samples were analysed in Applied Biosystems 7500 real-time PCR and confirmed by sequencing. The G533C exon 8 mutation was identified in 10 of 129 patients with sporadic MTC. Asymptomatic gene carriers were subsequently identified in other family members. In our study, we found that 7·75% patients with apparently sporadic MTC do carry G533C mutation involving exon 8 of ret. We feel that there is now a need to include exon 8 mutation screening in all patients diagnosed as sporadic MTC, in Greece. © 2012 Blackwell Publishing Ltd.

  20. Rapid detection of most frequent Slovenian germ-line mutations in BRCA1 gene using real-time PCR and melting curve analysis

    International Nuclear Information System (INIS)

    Novakovic, S.; Stegel, V.

    2005-01-01

    Background. Detection of inherited mutations in cancer susceptibility genes is of great importance in some types of cancers including the colorectal cancer (mutations of APC gene in familial adenomatous polyposis - FAP, mutations in mismatch repair genes in hereditary nonpolyposis colorectal cancer - HNPCC), malignant melanoma (mutations in CDKN2A and CDK4 genes) and breast cancer (mutations in BRCA1 and BRCA2 genes). Methods. This article presents the technical data for the detection of five mutations in BRCA1 gene in breast cancer patients and their relatives. The mutations - 1806C>T, 300T>G, 300T>A, 310G>A, 5382insC - were determined by the real-time PCR and the melting curve analysis. Results and conclusion. In comparison to direct sequencing, this method proved to be sensitive and rapid enough for the routine daily determination of mutations in DNA isolated from the peripheral blood. (author)

  1. Study of Deafness Associated with DFNB59 Gene (pejvakin Mutation in Fars Province

    Directory of Open Access Journals (Sweden)

    S Raeisi

    2012-05-01

    Full Text Available

    Background and Objectives: Hearing loss is the most frequent sensory disorder affecting 1 in 500 neonates with more than 50% of inherited cases. This trait is a very heterogeneous disorder and happens due to genetic or environmental causes or both. More than 46 genes may be involved in non-syndromic hearing loss. Recently, DFNB59 gene has been shown to cause deafness in some Iranian populations. The aim of this study was to determine the role of DFNB59 gene mutations causing deafness in a group of 130 deaf pupils in Fars province. Methods: This descriptive-laboratory based study investigated the frequency of DFNB59 gene mutations using PCR-SSCP/HA strategy. Results: Two different DFNB59 polymorphism including 874G>A and 793C>G were found in 1 and 9 of 130 patients studied respectively. However, no DFNB59 mutation was identified. Conclusion: The results of this study shows that the association of DFNB59 mutations with deafness in Fars province is very low.

  2. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene

    NARCIS (Netherlands)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; van Kuilenburg, André B. P.

    2016-01-01

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA

  3. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC promoter in a patient with Paroxysmal Nocturnal Haemoglobinuria

    Directory of Open Access Journals (Sweden)

    Mason Philip J

    2004-06-01

    Full Text Available Abstract Background Mutations in the gene coding for the RNA component of telomerase, hTERC, have been found in autosomal dominant dyskeratosis congenita (DC and aplastic anemia. Paroxysmal nocturnal hemoglobinuria (PNH is a clonal blood disorder associated with aplastic anemia and characterized by the presence of one or more clones of blood cells lacking glycosylphosphatidylinositol (GPI anchored proteins due to a somatic mutation in the PIGA gene. Methods We searched for mutations in DNA extracted from PNH patients by amplification of the hTERC gene and denaturing high performance liquid chromatography (dHPLC. After a mutation was found in a potential transcription factor binding site in one patient electrophoretic mobility shift assays were used to detect binding of transcription factors to that site. The effect of the mutation on the function of the promoter was tested by transient transfection constructs in which the promoter is used to drive a reporter gene. Results Here we report the finding of a novel promoter mutation (-99C->G in the hTERC gene in a patient with PNH. The mutation disrupts an Sp1 binding site and destroys its ability to bind Sp1. Transient transfection assays show that mutations in this hTERC site including C-99G cause either up- or down-regulation of promoter activity and suggest that the site regulates core promoter activity in a context dependent manner in cancer cells. Conclusions These data are the first report of an hTERC promoter mutation from a patient sample which can modulate core promoter activity in vitro, raising the possibility that the mutation may affect the transcription of the gene in hematopoietic stem cells in vivo, and that dysregulation of telomerase may play a role in the development of bone marrow failure and the evolution of PNH clones.

  4. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  5. [The audiological analysis in the patients homozygous for the c.-23+1G>A mutation in the GJB2 gene presenting with the loss of hearing in Yakutiya].

    Science.gov (United States)

    Teryutin, F M; Barashkov, N A; Kunel'skaya, N L; Pshennikova, V G; Solov'ev, A V

    2016-01-01

    In the course of previous investigations carried out in the Republic of Sakha (Yakutiya), we have identified the main molecular-genetic factor responsible for the hereditary impairment of hearing among the indigenous population (mostly the Yakuts).The disease was shown to be attributable to the c.-23+1G>A mutation localized in the splice donor site (exon 1) of the GJB2 (Cx26) gene. The present study involved the comprehensive audiological analysis of the patients homozygous for the c.-23+1G>A mutation in the GJB2 gene based on the results of the study of a large sample of the patients residing in Yakutiya. All individuals with the GJB2 genotype c.-23+1G>A/c.-23-1G>A (n=108) at the mean age of 14.32±4.7 years (all ethnic Yakuts)were examined with the use oftonal threshold audiometry for air conduction testing at the frequencies of 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 kHz and bone conduction testing at the frequencies of 0.25, 0.5, 1.0, and 4.0 with a step of 5.0 dB.The results of the ASSR test were used whenever tonal threshold audiometry proved impracticable The data obtained in the study characterize the allelic form of the disease associated with the GJB2 genotype c.-23+1G>A/c.-23-1G>A as the congenital bilateral symmetric (90.1%), sensorineural (90.1%) form of hearing impairment of variable severity (from grade 1 to complete deafness) with the «flat» audiological profile (median slope not more than 5.0 dB in the extended frequency range (EFR) of 0.5, 1.0, 2.0, and 4.0, kHz). It is concluded that the results of the audiological analysis performed in the present study give evidence of relatively homogeneous but variable in terms of severity impairment of hearing in the patients homozygous for the c.-23+1G>A mutation in the GJB2 (Cx26) gene. It may serve as a positive prognostic sign to be used in the development and prescription of hearing aids.

  6. Hypothesizing an ancient Greek origin of the GJB2 35delG mutation: can science meet history?

    Science.gov (United States)

    Kokotas, Haris; Grigoriadou, Maria; Villamar, Manuela; Giannoulia-Karantana, Aglaia; del Castillo, Ignacio; Petersen, Michael B

    2010-04-01

    One specific mutation of the GJB2 gene that encodes the connexin 26 protein, the 35delG mutation, has become a major interest among scientists who focus on the genetics of nonsyndromic hearing loss. The mutation accounts for the majority of GJB2 mutations detected in Caucasian populations and represents one of the most frequent disease mutations identified so far. The debate was so far between the arguments whether or not the 35delG mutation constitutes a mutational hot-spot or a founder effect; however, it was recently clarified that the latter seems the most likely. In an attempt to explore the origin and propagation of the 35delG mutation, several groups have reported the prevalence of the mutation and the carrier rates in different populations worldwide. It is now certain that the theory of a common founder prevails and that the highest carrier frequencies of the 35delG mutation are observed in southern European populations, giving rise to a discussion regarding the origin of the 35delG mutation. In this study, we discuss data previously published by our and other groups and also compare the haplotype distribution of the mutation in southern Europe, trying to understand the pathways of science and history and the conflict between them.

  7. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    Science.gov (United States)

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  8. [Analysis of H63D mutation in hemochromatosis (HFE) gene in populations of central Eurasia].

    Science.gov (United States)

    Khusainova, R I; Khusnutdinova, N N; Litvinov, S S; Khusnutdinova, E K

    2013-02-01

    An analysis of the frequency of H63D (c. 187C>G) mutations in the HFEgene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.

  9. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis.

    Directory of Open Access Journals (Sweden)

    Masaya Tsuboi

    Full Text Available Whole exome sequencing (WES has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD, a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as "spheroids," throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be "deleterious" by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases.

  10. Population carrier rates of pathogenic ARSA gene mutations: is metachromatic leukodystrophy underdiagnosed?

    Directory of Open Access Journals (Sweden)

    Agnieszka Ługowska

    Full Text Available BACKGROUND: Metachromatic leukodystrophy (MLD is a severe neurometabolic disease caused mainly by deficiency of arylsulfatase A encoded by the ARSA gene. Based on epidemiological surveys the incidence of MLD per 100,000 live births varied from 0.6 to 2.5. Our purpose was to estimate the birth prevalence of MLD in Poland by determining population frequency of the common pathogenic ARSA gene mutations and to compare this estimate with epidemiological data. METHODOLOGY: We studied two independently ascertained cohorts from the Polish background population (N∼3000 each and determined carrier rates of common ARSA gene mutations: c.459+1G>A, p.P426L, p.I179S (cohort 1 and c.459+1G>A, p.I179S (cohort 2. PRINCIPAL FINDINGS: Taking into account ARSA gene mutation distribution among 60 Polish patients, the expected MLD birth prevalence in the general population (assuming no selection against homozygous fetuses was estimated as 4.0/100,000 and 4.1/100,000, respectively for the 1(st and the 2(nd cohort with a pooled estimate of 4.1/100,000 (CI: 1.8-9.4 which was higher than the estimate of 0.38 per 100,000 live births based on diagnosed cases. The p.I179S mutation was relatively more prevalent among controls than patients (OR = 3.6, P = 0.0082, for a comparison of p.I179S frequency relative to c.459+1G>A between controls vs. patients. CONCLUSIONS/SIGNIFICANCE: The observed discrepancy between the measured incidence of metachromatic leukodystrophy and the predicted carriage rates suggests that MLD is substantially underdiagnosed in the Polish population. The underdiagnosis rate may be particularly high among patients with p.I179S mutation whose disease is characterized mainly by psychotic symptoms.

  11. A novel mutation of the fibrillin gene causing Ectopia lentis

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George' s Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  12. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    Science.gov (United States)

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (PC disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of

  13. Direct sequencing of FAH gene in Pakistani tyrosinemia type 1 families reveals a novel mutation.

    Science.gov (United States)

    Ijaz, Sadaqat; Zahoor, Muhammad Yasir; Imran, Muhammad; Afzal, Sibtain; Bhinder, Munir A; Ullah, Ihsan; Cheema, Huma Arshad; Ramzan, Khushnooda; Shehzad, Wasim

    2016-03-01

    Hereditary tyrosinemia type 1 (HT1) is a rare inborn error of tyrosine catabolism with a worldwide prevalence of one out of 100,000 live births. HT1 is clinically characterized by hepatic and renal dysfunction resulting from the deficiency of fumarylacetoacetate hydrolase (FAH) enzyme, caused by recessive mutations in the FAH gene. We present here the first report on identification of FAH mutations in HT1 patients from Pakistan with a novel one. Three Pakistani families, each having one child affected with HT1, were enrolled over a period of 1.5 years. Two of the affected children had died as they were presented late with acute form. All regions of the FAH gene spanning exons and splicing sites were amplified by polymerase chain reaction (PCR) and mutation analysis was carried out by direct sequencing. Results of sequencing were confirmed by restriction fragment length polymorphism (PCR-RFLP) analysis. Three different FAH mutations, one in each family, were found to co-segregate with the disease phenotype. Two of these FAH mutations have been known (c.192G>T and c.1062+5G>A [IVS12+5G>A]), while c.67T>C (p.Ser23Pro) was a novel mutation. The novel variant was not detected in any of 120 chromosomes from normal ethnically matched individuals. Most of the HT1 patients die before they present to hospitals in Pakistan, as is indicated by enrollment of only three families in 1.5 years. Most of those with late clinical presentation do not survive due to delayed diagnosis followed by untimely treatment. This tragic condition advocates the establishment of expanded newborn screening program for HT1 within Pakistan.

  14. Identification of a novel homozygous mutation, TMPRSS3: c.535G>A, in a Tibetan family with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Dongyan Fan

    Full Text Available Different ethnic groups have distinct mutation spectrums associated with inheritable deafness. In order to identify the mutations responsible for congenital hearing loss in the Tibetan population, mutation screening for 98 deafness-related genes by microarray and massively parallel sequencing of captured target exons was conducted in one Tibetan family with familiar hearing loss. A homozygous mutation, TMPRSS3: c.535G>A, was identified in two affected brothers. Both parents are heterozygotes and an unaffected sister carries wild type alleles. The same mutation was not detected in 101 control Tibetan individuals. This missense mutation results in an amino acid change (p.Ala179Thr at a highly conserved site in the scavenger receptor cysteine rich (SRCR domain of the TMPRSS3 protein, which is essential for protein-protein interactions. Thus, this mutation likely affects the interactions of this transmembrane protein with extracellular molecules. According to our bioinformatic analyses, the TMPRSS3: c.535G>A mutation might damage protein function and lead to hearing loss. These data suggest that the homozygous mutation TMPRSS3: c.535G>A causes prelingual hearing loss in this Tibetan family. This is the first TMPRSS3 mutation found in the Chinese Tibetan population.

  15. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients.

    Science.gov (United States)

    Zhytnik, Lidiia; Maasalu, Katre; Reimann, Ene; Prans, Ele; Kõks, Sulev; Märtson, Aare

    2017-08-15

    Osteogenesis imperfecta (OI) is a rare bone disorder. In 90% of cases, OI is caused by mutations in the COL1A1/2 genes, which code procollagen α1 and α2 chains. The main aim of the current research was to identify the mutational spectrum of COL1A1/2 genes in Estonian patients. The small population size of Estonia provides a unique chance to explore the collagen I mutational profile of 100% of OI families in the country. We performed mutational analysis of peripheral blood gDNA of 30 unrelated Estonian OI patients using Sanger sequencing of COL1A1 and COL1A2 genes, including all intron-exon junctions and 5'UTR and 3'UTR regions, to identify causative OI mutations. We identified COL1A1/2 mutations in 86.67% of patients (26/30). 76.92% of discovered mutations were located in the COL1A1 (n = 20) and 23.08% in the COL1A2 (n = 6) gene. Half of the COL1A1/2 mutations appeared to be novel. The percentage of quantitative COL1A1/2 mutations was 69.23%. Glycine substitution with serine was the most prevalent among missense mutations. All qualitative mutations were situated in the chain domain of pro-α1/2 chains. Our study shows that among the Estonian OI population, the range of collagen I mutations is quite high, which agrees with other described OI cohorts of Northern Europe. The Estonian OI cohort differs due to the high number of quantitative variants and simple missense variants, which are mostly Gly to Ser substitutions and do not extend the chain domain of COL1A1/2 products.

  16. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene.

    Science.gov (United States)

    Cai, Tao; Yang, Liu; Cai, Wanshi; Guo, Sen; Yu, Ping; Li, Jinchen; Hu, Xueyu; Yan, Ming; Shao, Qianzhi; Jin, Yan; Sun, Zhong Sheng; Luo, Zhuo-Jing

    2015-06-30

    Spondylolysis is a fracture in part of the vertebra with a reported prevalence of about 3-6% in the general population. Genetic etiology of this disorder remains unknown. The present study was aimed at identifying genomic mutations in patients with dysplastic spondylolysis as well as the potential pathogenesis of the abnormalities. Whole-exome sequencing and functional analysis were performed for patients with spondylolysis. We identified a novel heterozygous mutation (c.2286A > T; p.D673V) in the sulfate transporter gene SLC26A2 in five affected subjects of a Chinese family. Two additional mutations (e.g., c.1922A > G; p.H641R and g.18654T > C in the intron 1) in the gene were identified by screening a cohort of 30 unrelated patients with the disease. In situ hybridization analysis showed that SLC26A2 is abundantly expressed in the lumbosacral spine of the mouse embryo at day 14.5. Sulfate uptake activities in CHO cells transfected with mutant SLC26A2 were dramatically reduced compared with the wild type, confirming the pathogenicity of the two missense mutations. Further analysis of the gene-disease network revealed a convergent pathogenic network for the development of lumbosacral spine. To our knowledge, our findings provide the first identification of autosomal dominant SLC26A2 mutations in patients with dysplastic spondylolysis, suggesting a new clinical entity in the pathogenesis of chondrodysplasia involving lumbosacral spine. The analysis of the gene-disease network may shed new light on the study of patients with dysplastic spondylolysis and spondylolisthesis as well as high-risk individuals who are asymptomatic.

  17. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    Science.gov (United States)

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  18. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  19. Early onset and severe clinical course associated with the m.5540G>A mutation in MT-TW

    Directory of Open Access Journals (Sweden)

    Jorge L. Granadillo

    2014-01-01

    Full Text Available We report a patient harboring a de novo m.5540G>A mutation affecting the MT-TW gene coding for the mitochondrial tryptophan-transfer RNA. This patient presented with atonic–myoclonic epilepsy, bilateral sensorineural hearing loss, ataxia, motor regression, ptosis, and pigmentary retinopathy. Our proband had an earlier onset and more severe phenotype than the first reported patient harboring the same mutation. We discuss her clinical presentation and compare it with the only previously published case.

  20. Rastreamento da mutação mitocondrial A1555G em pacientes com deficiência auditiva sensorioneural Screening of the mitochondrial A1555G mutation in patients with sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Luciano Pereira Maniglia

    2008-10-01

    Full Text Available A mutação mitocondrial A1555G é a principal alteração associada à surdez ocasionada pelo uso de aminoglicosídeos. OBJETIVO: Investigar a prevalência da mutação A1555G em pacientes com deficiência auditiva sensorioneural com e sem uso de antibióticos aminoglicosídeos. MATERIAL E MÉTODO: Estudo em amostras de 27 pacientes com surdez, como casos, e em 100 neonatos, com audição normal, como grupo controle. O DNA foi extraído de leucócitos de amostras de sangue e "primers" específicos foram utilizados para amplificar o gene do citocromo b e a região que abrange a mutação A1555G do DNA mitocondrial, usando as técnicas da Reação em Cadeia da Polimerase e do Polimorfismo no Comprimento de Fragmentos de Restrição. DESENHO CIENTÍFICO: Estudo de casos em corte transversal. RESULTADOS: A região do gene do citocromo b foi amplificada, sendo confirmada a presença do DNA mitocondrial em todas as 127 amostras do estudo. A mutação A1555G não foi identificada nos 27 pacientes com deficiência auditiva e no grupo controle (100 neonatos. CONCLUSÕES: Os resultados são concordantes com estudos que relatam que a mutação A1555G não é prevalente nas Américas. Há interesse na determinação da real prevalência dessa mutação e na investigação de outras mutações que possam ocasionar deficiência auditiva associada ou não ao uso de aminoglicosídeos na população brasileira.The A1555G mitochondrial mutation is the main alteration associated with aminoglycoside-induced deafness. AIM: to investigate the prevalence of the A1555G mutation in patients sensorineural hearing loss patients with and without aminoglycosides antibiotic use. MATERIAL AND METHOD: a study of 27 cases with deafness as the sample, and 100 neonates with normal hearing as the control group. DNA was extracted from blood leukocyte samples, and specific oligonucleotide primers were designed to amplify the cytochrome b gene and the region which encloses the A1555

  1. The mitochondrial DNA 10197 G > A mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia.

    Science.gov (United States)

    Leng, Yinglin; Liu, Yuhe; Fang, Xiaojing; Li, Yao; Yu, Lei; Yuan, Yun; Wang, Zhaoxia

    2015-04-01

    Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes/Leigh (MELAS/LS) overlap syndrome is a mitochondrial disorder subtype with clinical and magnetic resonance imaging (MRI) features that are characteristic of both MELAS and Leigh syndrome (LS). Here, we report an MELAS/LS case presenting with cortical deafness and seizures. Cranial MRI revealed multiple lesions involving bilateral temporal lobes, the basal ganglia and the brainstem, which conformed to neuroimaging features of both MELAS and LS. Whole mitochondrial DNA (mtDNA) sequencing and PCR-RFLP revealed a de novo heteroplasmic m.10197 G > A mutation in the NADH dehydrogenase subunit 3 gene (ND3), which was predicted to cause an alanine to threonine substitution at amino acid 47. Although the mtDNA m.10197 G > A mutation has been reported in association with LS, Leber hereditary optic neuropathy and dystonia, it has never been linked with MELAS/LS overlap syndrome. Our patient therefore expands the phenotypic spectrum of the mtDNA m.10197 G > A mutation.

  2. Renal dysfunction and barttin expression in Bartter syndrome Type IV associated with a G47R mutation in BSND in a family.

    Science.gov (United States)

    Park, C W; Lim, J H; Youn, D-Y; Chung, S; Lim, M-H; Kim, Y K; Chang, Y S; Lee, J-H

    2011-02-01

    Bartter syndrome (BS) Type IV, associated with a G47R mutation in the BSND gene, is known to result in a mild renal phenotype. However, we report here on three brothers with varying degrees of renal dysfunction from mild to end-stage renal disease associated with renal barttin and ClC-K expression. The brothers had histories of polyhydramnios, prematurity, polyuria, deafness, and small body size. Laboratory findings showed hypokalemic metabolic alkalosis, normotensive hyperreninemic hyperaldosteronism, and an increased urinary excretion of sodium, potassium and chloride, consistent with BS Type IV. Microscopic examination of renal tissue showed hyperplasia of cells at the juxtaglomerular apparatus with dilated atrophic tubules and tubulointerstitial fibrosis. A weak barttin signal related to CIC-K expression in the cytoplasm of tubule cells, but not the basement membrane, was noted. A sequence analysis of the BSND gene showed that the affected males were homozygous for a missense G47R mutation in exon 1 of BSND. These findings suggest that the G47R mutation results in a dramatic decrease in barttin expression, which appears to be related to the location of CIC-K being changed from the basement membrane to the cytoplasm in the tubule and might have varying effects on renal function associated with factors other than this gene.

  3. Biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) A7445G mutation in osteosarcoma cell cybrids

    International Nuclear Information System (INIS)

    Li Xiaoming; Zhang, Linda S.; Fischel-Ghodsian, Nathan; Guan Minxin

    2005-01-01

    The deafness-associated A7445G mutation in the precursor of mitochondrial tRNA Ser(UCN) has been identified in several pedigrees from different ethnic backgrounds. To determine the role of nuclear background in the biochemical manifestation associated with the A7445G mutation, we performed a biochemical characterization of this mutation using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a New Zealand family into human osteosarcoma mtDNA-less (ρ 0 ) cells. Compared with three control cybrids, three cybrids derived from an affected matrilineal relative carrying the homoplasmic A7445G mutation exhibited ∼38-57% decrease in the steady-state level of tRNA Ser(UCN) , which is less reduced levels than in lymphoblastoid cells in the previous study. Furthermore, ∼22% reduction in the level of aminoacylation of tRNA Ser(UCN) was observed in the mutant cybrid cells. Interestingly, ∼60-63% decrease of steady-state level of ND6 gene, which belongs to the same precursor as that of tRNA Ser(UCN) , in cybrid cell lines carrying the A7445G mutation, is more than that observed in lymphoblastoid cells. These observations strongly point out a mechanistic link between the processing defect of the tRNA Ser(UCN) precursor and decreased stability of ND6 mRNA precursor. These results also imply the influence of nuclear background on the biochemical phenotype associated with the A7445G mutation

  4. Characteristics of gene mutation in Chinese patients with hereditary hemochromatosis

    Directory of Open Access Journals (Sweden)

    LYU Tingxia

    2016-08-01

    Full Text Available ObjectiveTo investigate the characteristics of gene mutation in Chinese patients with hereditary hemochromatosis (HH. MethodsA total of 9 patients with HH who visited Beijing Friendship Hospital, Capital Medical University from January 2013 to December 2015 were enrolled. The genomic DNA was extracted, and PCR amplification and Sanger sequencing were performed for all the exons of four genotypes of HH, i.e., HFE (type Ⅰ, HJV (type ⅡA, HAMP (type ⅡB, TFR2 (type Ⅲ, and SLC40A1 (type Ⅳ to analyze gene mutations. A total of 50 healthy subjects were enrolled as control group to analyze the prevalence of identified gene mutations in a healthy population. ResultsOf all patients, 2 had H63D mutation of HFE gene in type Ⅰ HH, 1 had E3D mutation of HJV gene in type ⅡA HH, 2 had I238M mutation of TFR2 gene in type Ⅲ HH, and 1 had IVS 3+10 del GTT splice mutation of SLC40A1 gene in type Ⅳ HH. No patients had C282Y mutation of HFE gene in type Ⅰ HH which was commonly seen in European and American populations. Five patients had no missense mutation or splice mutation. In addition, it was found in a family that a HH patient had E3D mutation of HJV gene, H63D mutation of HFE gene, and I238M mutation of TFR2 gene, but the healthy brother and sister carrying two of these mutations did not had the phenotype of HH. ConclusionHH gene mutations vary significantly across patients of different races, and non-HFE-HH is dominant in the Chinese population. There may be HH genes which are different from known genes, and further investigation is needed.

  5. Functioning Mediastinal Paraganglioma Associated with a Germline Mutation of von Hippel-Lindau Gene

    Directory of Open Access Journals (Sweden)

    Thibault Bahougne

    2018-05-01

    Full Text Available We report the case of a 21-year old woman presenting with high blood pressure and raised normetanephrine levels. Indium-111-pentetreotide single photon-emission computed tomography with computed tomography (SPECT/CT and 2-deoxy-2-[fluorine-18]fluoro-d-glucose (FDG positron emission tomography/computed tomography (PET/CT imaging showing isolated tracer-uptake by a 2 cm tumor close to the costovertebral angle of the third thoracic vertebra. Thoracic surgery led to normalization of normetanephrine levels. Histological findings were consistent with the presence of a paraganglioma. Mutations in SDHA, SDHB, SDHC, SDHD, RET, SDHAF2, TMEM127, MAX, NF1, FH, MDH2, and EPAS1 were absent, but a heterozygous missense mutation, c.311G > T, was found in exon 1 of the von Hippel-Lindau gene, VHL, resulting in a glycine to valine substitution in the VHL protein at position 104, p.Gly104Val. This same mutation was found in both the mother and the 17-year old sister in whom a small retinal hemangioblastoma was also found. We diagnose an unusual functional mediastinal paraganglioma in this young patient with a germline VHL gene mutation, a mutation previously described as inducing polycythemia and/or pheochromocytoma but not paraganglioma or retinal hemangioblastoma.

  6. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia.

    Science.gov (United States)

    Desmaison, Annaïck; Vigouroux, Adeline; Rieubland, Claudine; Peres, Christine; Calvas, Patrick; Chassaing, Nicolas

    2010-12-18

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia.

  7. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  8. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    Science.gov (United States)

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  9. Postlingual hearing loss as a mitochondrial 3243A>G mutation phenotype.

    Directory of Open Access Journals (Sweden)

    Katarzyna Iwanicka-Pronicka

    Full Text Available BACKGROUND: The prevalence of isolated hearing loss (HL associated with the m.3243A>G mutation is unknown. The aim of this study was to assess the frequency and heteroplasmy level of the m.3243A>G mutation in a large group of Polish patients with postlingual bilateral sensorineural HL of unidentified cause. METHODOLOGY/PRINCIPAL FINDINGS: A molecular search was undertaken in the archival blood DNA of 1482 unrelated patients with isolated HL that had begun at ages between 5 and 40 years. Maternal relatives of the probands were subsequently investigated and all carriers underwent audiological tests. The m.3243A>G mutation was found in 16 of 1482 probands (an incidence of 1.08% and 18 family members. Of these 34 individuals, hearing impairment was detected in 29 patients and the mean onset of HL was at 26 years. Some 42% of the identified m.3243A>G carriers did not develop multisystem symptomatology over the following 10 years. Mean heteroplasmy level of m.3243A>G was lowest in blood at a level of 14% and highest in urine at 58%. These values were independent of the manifested clinical severity of the disease. CONCLUSIONS: A single m.3243A>G carrier can usually be found among each 100 individuals who have postlingual hearing loss of unknown cause. Urine samples are best for detecting the m.3243A>G mutation and diagnosing mitochondrially inherited hearing loss.

  10. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  11. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  12. A Novel Splicesite Mutation in the EDAR Gene Causes Severe Autosomal Recessive Hypohydrotic (Anhidrotic) Ectodermal Dysplasia in an Iranian Family.

    Science.gov (United States)

    Torkamandi, Shahram; Gholami, Milad; Mohammadi-Asl, Javad; Rezaie, Somaye; Zaimy, Mohammad Ali; Omrani, Mir Davood

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. Here we describe a novel acceptor splice site mutation c.730-2 A>G(IVS 8-2 A>G) in EDAR gene in homozygous form in all affected members of a family,and in heterozygous form in carriers. Bioinformatics analysis showed that this mutation can create a new broken splicing site and lead to aberrant splicing.

  13. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    T. W. Hoffman

    2016-01-01

    Full Text Available Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes.

  14. A novel AVPR2 gene mutation of X-linked congenital nephrogenic diabetes insipidus in an Asian pedigree.

    Science.gov (United States)

    Guo, Wei-Hong; Li, Qiang; Wei, Hong-Yan; Lu, Hong-Yan; Qu, Hui-Qi; Zhu, Mei

    2016-10-01

    Polyuria and polydipsia are the characteristics of congenital nephrogenic diabetes insipidus (CNDI). Approximately 90% of all patients with CNDI have X-linked hereditary disease, which is due to a mutation of the arginine vasopressin receptor 2 ( AVPR2) gene. This case report describes a 54-year-old male with polyuria and polydipsia and several male members of his pedigree who had the same symptoms. The proband was diagnosed with diabetes insipidus using a water-deprivation and arginine vasopressin stimulation test. Genomic DNA from the patient and his family members was extracted and the AVPR2 gene was sequenced. A novel missense mutation of a cytosine to guanine transition at position 972 (c.972C > G) was found, which resulted in the substitution of isoleucine for methionine at amino acid position 324 (p.I324M) in the seventh transmembrane domain of the protein. The proband's mother and daughter were heterozygous for this mutation. The novel mutation of the AVPR2 gene further broadens the phenotypic spectrum of the AVPR2 gene.

  15. Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family.

    Science.gov (United States)

    Cini, Giulia; Carnevali, Ileana; Quaia, Michele; Chiaravalli, Anna Maria; Sala, Paola; Giacomini, Elisa; Maestro, Roberta; Tibiletti, Maria Grazia; Viel, Alessandra

    2015-04-01

    Lynch syndrome (LS) is an inherited predisposition cancer syndrome, typically caused by germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 and PMS2. In the last years, a role for epimutations of the same genes has also been reported. MLH1 promoter methylation is a well known mechanism of somatic inactivation in tumors, and more recently, several cases of constitutional methylation have been identified. In four subjects affected by multiple tumors and belonging to a suspected LS family, we detected a novel secondary MLH1 gene epimutation. The methylation of MLH1 promoter was always linked in cis with a 997 bp-deletion (c.-168_c.116+713del), that removed exon 1 and partially involved the promoter of the same gene. Differently from cases with constitutional primary MLH1 inactivation, this secondary methylation was allele-specific and CpGs of the residual promoter region were totally methylated, leading to complete allele silencing. In the colon tumor of the proband, MLH1 and PMS2 expression was completely lost as a consequence of a pathogenic somatic point mutation (MLH1 c.199G>A, p.Gly67Arg) that also abrogated local methylation by destroying a CpG site. The evidences obtained highlight how MLH1 mutations and epimutations can reciprocally influence each other and suggest that an altered structure of the MLH1 locus results in epigenetic alteration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Thrombophilic Genetic Factors PAI-1, MTHFRC677T, V Leiden 506Q, and Prothrombin 20210A in Noncirrhotic Portal Vein Thrombosis and Budd-Chiari Syndrome in a Caucasian Population

    Directory of Open Access Journals (Sweden)

    Mario D’Amico

    2013-01-01

    Full Text Available Thrombophilic genetic factors PAI-1, MTHFRC677T, V Leiden 506Q, and Prothrombin 20210A were studied as risk factors in 235 Caucasian subjects: 85 patients with abdominal thrombosis (54 with portal vein thrombosis (PVT and 31 with Budd-Chiari syndrome (BCS without liver cirrhosis or hepatocellular carcinoma and 150 blood bank donors. Seventy-five patients with PVT/BCS showed associated disease or particular clinical status (46 PVT/29 BCS: 37 myeloproliferative neoplasm (20 PVT/17 BCS, 12 abdominal surgery (10 PVT/2 BCS, 10 contraception or pregnancy (6 PVT/4 BCS, 7 abdominal acute disease (6 PVT/1 BCS, and 9 chronic disease (4 PVT/5 BCS; ten patients did not present any association (8 PVT/2 BCS. PAI-14G-4G, MTHFR677TT, and V Leiden 506Q were significantly frequent (OR 95% CI and χ2 test with P value in abdominal thrombosis; in these patients PAI-14G-4G and MTHFR677TT distributions deviated from that expected from a population in the Hardy-Weinberg equilibrium (PAI-1: χ2=13.8, P<0.001; MTHFR677: χ2=7.1, P<0.01, whereas the equilibrium was respected in healthy controls. V Leiden Q506 and Prothrombin 20210A were in the Hardy-Weinberg equilibrium both in patients with abdominal thrombosis and healthy controls. Our study shows an important role of PAI-14G-4G and MTHFR677TT in abdominal thrombosis without liver cirrhosis or hepatocellular carcinoma.

  17. A novel nonsense mutation of the GPR143 gene identified in a Chinese pedigree with ocular albinism.

    Directory of Open Access Journals (Sweden)

    Naihong Yan

    Full Text Available BACKGROUND: The purpose of this study was to elucidate the molecular basis of ocular albinism type I in a Chinese pedigree. METHODOLOGY/PRINCIPAL FINDINGS: Complete ophthalmologic examinations were performed on 4 patients, 7 carriers and 17 unaffected individuals in this five-generation family. All coding exons of four-point-one (4.1, ezrin, radixin, moesin (FERM domain-containing 7 (FRMD7 and G protein-coupled receptor 143 (GPR143 genes were amplified by polymerase chain reaction (PCR, sequenced and compared with a reference database. Ocular albinism and nystagmus were found in all patients of this family. Macular hypoplasia was present in the patients including the proband. A novel nonsense hemizygous mutation c.807T>A in the GPR143 gene was identified in four patients and the heterozygous mutation was found in seven asymptomatic individuals. This mutation is a substitution of tyrosine for adenine which leads to a premature stop codon at position 269 (p.Y269X of GPR143. CONCLUSIONS/SIGNIFICANCE: This is the first report that p.Y269X mutation of GPR143 gene is responsible for the pathogenesis of familial ocular albinism. These results expand the mutation spectrum of GPR143, and demonstrate the clinical characteristics of ocular albinism type I in Chinese population.

  18. Atypical Clinical Presentation of Xeroderma Pigmentosum in a Patient Harboring a Novel Missense Mutation in the XPC Gene: The Importance of Clinical Suspicion.

    Science.gov (United States)

    Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina

    2015-01-01

    Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.

  19. MELAS syndrome associated with both A3243G-tRNALeu mutation and multiple mitochondrial DNA deletions.

    Science.gov (United States)

    Aharoni, Sharon; Traves, Teres A; Melamed, Eldad; Cohen, Sarit; Silver, Esther Leshinsky

    2010-09-15

    The syndrome of mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) is characterized clinically by recurrent focal neurological deficits, epilepsy, and short stature. The phenotypic spectrum is extremely diverse, with multisystemic organ involvement leading to isolated diabetes, deafness, renal tubulopathy, hypertrophic cardiomyopathy, and retinitis pigmentosa. In 80% of cases, the syndrome is associated with an AG transmission mutation (A3243G) in the tRNALeu gene of the mitochondrial DNA (mtDNA). We describe a woman with a unique combination of the MELAS A3243G mutation and multiple mtDNA deletions with normal POLG sequence. The patient presented with diabetes mellitus, sensorineural deafness, short stature, and mental disorientation. All her three children died in early adolescence. 2010 Elsevier B.V. All rights reserved.

  20. [Mutation analysis of FAH gene in patients with tyrosinemia type 1].

    Science.gov (United States)

    Dou, Li-Min; Fang, Ling-Juan; Wang, Xiao-Hong; Lu, Wei; Chen, Rui; Li, Li-Ting; Zhao, Jing; Wang, Jian-She

    2013-04-01

    To investigate the clinical features and mutations of the FAH gene. Clinical records of two cases were collected, and diagnosis was made according to the diagnostic criteria of the International Organization for Rare Disorders (NORD). Genomic DNA was extracted from peripheral blood leukocytes with QIAamp DNA Mini Kit. The DNA extracts were subjected to direct sequencing for 14 exons together with adjacent fragments of FAH gene using ABI Prism 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA) after PCR based on genomic DNA. The mutation source was verified by analyzing parents' exons corresponding to patients' mutation exons. The homology between human FAH enzyme and that of other species was surveyed using software Clustal X(European Bioinformatics Institute, Hinxton, Saffron Walde, UK). Polyphen (Polymorphism Phenotyping), available online, were used to predict possible impact of an amino acid substitution on structure and function of FAH enzyme. Polyphen calculates position-specific independent counts (PISC) scores for two amino acid variants in polymorphic position. A PISC scores that differ by > 2 were regarded as indicating the probability of damaging variants. Patient 1 was a 5 months and 21 days-old boy who suffered from persistent diarrhea, hepatomegaly, ascites; Alpha-fetoprotein > 1210 µg/L, levels of tyrosine in blood and succinylacetone in urine were 110.8 µmol/L and 83.7 µmol/L. His sister suffered from tyrosinemia type 1. Direct sequencing showed a G to A transition in CDS position 455 and 1027. He was compound heterozygous for the mutation c.455G > A/c.1027G > A, which predicts a change from tryptophan to a stop codon (TGG > TAG) at position 152 (W152X) and a change from glycine to arginine (GGG > AGG) at position 343 respectively. Patient 2 was a 6 year and 1 month-old girl with late-onset rickets who had signs of hepatosplenomegaly, rachitic rosary, windswept knees. Hypophosphatemia and alkaline phosphatase 1620 IU/L were detected

  1. Carrier frequency of GJB2 gene mutations c.35delG, c.235delC and c.167delT among the populations of Eurasia.

    Science.gov (United States)

    Dzhemileva, Lilya U; Barashkov, Nikolay A; Posukh, Olga L; Khusainova, Rita I; Akhmetova, Vita L; Kutuev, Ildus A; Gilyazova, Irina R; Tadinova, Vera N; Fedorova, Sardana A; Khidiyatova, Irina M; Lobov, Simeon L; Khusnutdinova, Elza K

    2010-11-01

    Hearing impairment is one of the most common disorders of sensorineural function and the incidence of profound prelingual deafness is about 1 per 1000 at birth. GJB2 gene mutations make the largest contribution to hereditary hearing impairment. The spectrum and prevalence of some GJB2 mutations are known to be dependent on the ethnic origin of the population. This study presents data on the carrier frequencies of major GJB2 mutations, c.35delG, c.167delT and c.235delC, among 2308 healthy persons from 18 various populations of Eurasia: Russians, Bashkirs, Tatars, Chuvashes, Udmurts, Komi-Permyaks and Mordvins (Volga-Ural region of Russia); Belarusians and Ukrainians (East Europe); Abkhazians, Avars, Cherkessians and Ingushes (Caucasus); Kazakhs, Uighurs and Uzbeks (Central Asia); and Yakuts and Altaians (Siberia). The data on c.35delG and c.235delC mutation prevalence in the studied ethnic groups can be used to investigate the prospective founder effect in the origin and prevalence of these mutations in Eurasia and consequently in populations around the world.

  2. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim

    2014-01-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of ...... of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides....

  3. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.

    Science.gov (United States)

    Horvath, Rita; Hudson, Gavin; Ferrari, Gianfrancesco; Fütterer, Nancy; Ahola, Sofia; Lamantea, Eleonora; Prokisch, Holger; Lochmüller, Hanns; McFarland, Robert; Ramesh, V; Klopstock, Thomas; Freisinger, Peter; Salvi, Fabrizio; Mayr, Johannes A; Santer, Rene; Tesarova, Marketa; Zeman, Jiri; Udd, Bjarne; Taylor, Robert W; Turnbull, Douglass; Hanna, Michael; Fialho, Doreen; Suomalainen, Anu; Zeviani, Massimo; Chinnery, Patrick F

    2006-07-01

    Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.

  4. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Yong-An Zhou

    2012-01-01

    Full Text Available The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH gene was investigated in 59 children with phenylketonuria (PKU and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%, followed by Ivs7 +2T>A (5.1% and T278I (2.5%. G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.

  5. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  6. A family with hereditary hemochromatosis carrying HFE gene splice site mutation: a case report

    Directory of Open Access Journals (Sweden)

    NING Huibin

    2017-01-01

    Full Text Available ObjectiveTo investigate a new type of HFE gene mutation in a family with hereditary hemochromatosis (HH. MethodsThe analysis of HFE gene was performed for one patient with a confirmed diagnosis of HH and five relatives. Blood genomic DNA was extracted and PCR multiplication was performed for the exon and intron splice sequences of related HFE, HJV, HAMP, transferrin receptor 2 (TfR2, and SLC40A1 genes. After agarose gel electrophoresis and purification, bi-directional direct sequencing was performed to detect mutation sites. ResultsThe proband had abnormal liver function and increases in serum iron, total iron binding capacity, serum ferritin, and transferrin saturation, as well as T→C homozygous mutation in the fourth base of intron 2 in the intervening sequence of the exon EXON2 of HFE gene (IVs 2+4T→C, C/C homozygous, splicing, abnormal. There were no abnormalities in HJV, HAMP, TfR2, and SLC40A1 genes. The proband′s son had the same homozygous mutation, three relatives had heterozygous mutations, and one relative had no abnormal mutations. ConclusionGene detection plays an important role in the diagnosis of hemochromatosis, and IVs 2+4T→C mutation may be a new pathogenic mutation for HH in China.

  7. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    Science.gov (United States)

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  8. Identification of two novel mutations, PSEN1 E280K and PRNP G127S, in a Malaysian family

    Directory of Open Access Journals (Sweden)

    Ch’ng GS

    2015-09-01

    Full Text Available Gaik-Siew Ch’ng,1,* Seong Soo A An,2,* Sun Oh Bae,2 Eva Bagyinszky,2 SangYun Kim3,41Department of Genetics, Kuala Lumpur Hospital, Malaysia; 2Department of Bionano Technology, Gachon University, 3Department of Neurology, Seoul National University College of Medicine, 4Seoul National University Bundang Hospital, South Korea*These authors contributed equally to this workAbstract: Alzheimer’s disease (AD is the most common form of dementia, which can be categorized into two main forms: early onset AD and late onset AD. The genetic background of early onset AD is well understood, and three genes, the APP, PSEN1, and PSEN2 have been identified as causative genes. In the current study, we tested three siblings from Malaysia who were diagnosed with early onset dementia, as well as their available family members. The family history was positive as their deceased father was similarly affected. Patients were tested for mutations in APP, PSEN1, PSEN2, and PRNP. A novel variant, E280K, was discovered in exon 8 of PSEN1 in the three siblings. In silico analyses with SIFT, SNAP, and PolyPhen2 prediction tools and three-dimensional modeling were performed, and the results suggested that the mutation is probably a pathogenic variant. Two additional pathogenic mutations were previously been described for codon 280, E280A, and E280G, which could support the importance of the E280 residue in the PS1 protein contributing to the pathogenic nature of E280K. Additional ten family members were screened for the E280K mutation, and all of them were negative. Six of them presented with a variety of neuropsychiatric symptoms, including learning disabilities, epilepsy, and schizophrenia, while four family members were asymptomatic. A novel PRNP G127S mutation was found in a step-niece of the three siblings harboring the PSEN1 E280K mutation. In silico predictions for PRNP G127S mutation suggested that this might be possibly a damaging variant. Additional studies to

  9. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  10. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  11. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-01-01

    We explored the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA Ser(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA Ser(UCN) gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene

  12. Mitochondrial DNA mutation load in a family with the m.8344A>G point mutation and lipomas

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Al-Hashimi, Noor; Duno, Morten

    2017-01-01

    Studies have shown that difference in mtDNA mutation load among tissues is a result of postnatal modification. We present five family members with the m.8344A>G with variable phenotypes but uniform intrapersonal distribution of mutation load, indicating that there is no postnatal modification of mt......DNA mutation load in this genotype....

  13. A novel mutation in the endothelin B receptor gene in a moroccan family with shah-waardenburg syndrome.

    Science.gov (United States)

    Doubaj, Yassamine; Pingault, Véronique; Elalaoui, Siham C; Ratbi, Ilham; Azouz, Mohamed; Zerhouni, Hicham; Ettayebi, Fouad; Sefiani, Abdelaziz

    2015-02-01

    Waardenburg syndrome (WS) is a neurocristopathy disorder combining sensorineural deafness and pigmentary abnormalities. The presence of additional signs defines the 4 subtypes. WS type IV, also called Shah-Waardenburg syndrome (SWS), is characterized by the association with congenital aganglionic megacolon (Hirschsprung disease). To date, 3 causative genes have been related to this congenital disorder. Mutations in the EDNRB and EDN3 genes are responsible for the autosomal recessive form of SWS, whereas SOX10 mutations are inherited in an autosomal dominant manner. We report here the case of a 3-month-old Morrocan girl with WS type IV, born to consanguineous parents. The patient had 3 cousins who died in infancy with the same symptoms. Molecular analysis by Sanger sequencing revealed the presence of a novel homozygous missense mutation c.1133A>G (p.Asn378Ser) in the EDNRB gene. The proband's parents as well as the parents of the deceased cousins are heterozygous carriers of this likely pathogenic mutation. This molecular diagnosis allows us to provide genetic counseling to the family and eventually propose prenatal diagnosis to prevent recurrence of the disease in subsequent pregnancies.

  14. Novel Mutation in the ATP-Binding Cassette Transporter A3 (ABCA3) Encoding Gene Causes Respiratory Distress Syndrome in A Term Newborn in Southwest Iran

    Science.gov (United States)

    Rezaei, Farideh; Shafiei, Mohammad; Shariati, Gholamreza; Dehdashtian, Ali; Mohebbi, Maryam; Galehdari, Hamid

    2016-01-01

    Introduction ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic. PMID:27437095

  15. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  16. Detection of KatG Gen Mutation on Mycobacterium Tuberculosis by Means of PCR-Dot Blot Hybridization with 32P Labeled Oligonucleotide Probe Methods

    International Nuclear Information System (INIS)

    Maria Lina R; Budiman Bela; Andi Yasmon

    2009-01-01

    Handling and controlling of tuberculosis, a disease caused by Mycobacterium tuberculosis (MTB), is now complicated since there are many MTBs that are resistant against anti-tuberculosis drugs such as isoniazid. The drug resistance could occurred due to the inadequate and un-regular drug utilization that cause gene mutation of the drug target such as katG gene for isoniazid. The molecular biology techniques such as the PCR- dot blot hybridization with radioisotope ( 32 P) labeled oligonucleotide probe, has been reported as a technique that is more sensitive and rapid for detection of gene mutations related with drug resistances. Hence, the aim of this study was to apply the PCR- dot blot hybridization technique using 32 P labeled oligonucleotide probe for detection of single mutation at codon 315 of katG gene of MTBs that rise the isoniazid resistance. In this study, we used 89 sputum specimens and a standard MTB (MTB H 37 RV) as a control. DNA extractions were performed by the BOOM method and the phenol chloroform for sputum samples and standard MTB, respectively. Primers used for PCR technique were Pt8 and Pt9 and RTB59 and RTB36 for detecting tuberculosis causing Mycobacterium and the existence of katG gene, respectively. Both of the primers are specific for IS6110 region and katG gene, respectively. PCR products were detected by an agarose gel electrophoresis technique. Dot blot hybridization with 32 P-oligonucleotide probe 315mu was performed to detect mutation at codon 315 of tested samples. Results of the PCR using primer Pt8 and Pt9 showed that all sputum specimens had positive results. Mutation detection by PCR- dot blot hybridization with 32 P-oligonucleotide probe 315mu, revealed that 11 of 89 tested samples had a mutation at their codon 315 of katG gene. Based upon these results, it is concluded that PCR-dot blot hybridization with 32 P-oligonucleotide probe is a technique that is rapid and highly specific and sensitive for detection of mutation at codon

  17. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, M.; Osborn, M.; Maynard, J.; Harper, P. [Institute of Medical Genetics, Cardiff, Wales (United Kingdom)

    1996-07-26

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detected in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.

  18. Association of recurrent pregnancy loss with chromosomal ...

    African Journals Online (AJOL)

    Objective: To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these ...

  19. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    Science.gov (United States)

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  20. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  1. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Thea Bismo Strøm

    2014-01-01

    Full Text Available More than 1700 mutations in the low density lipoprotein receptor (LDLR gene have been found to cause familial hypercholesterolemia (FH. These are commonly divided into five classes based upon their effects on the structure and function of the LDLR. However, little is known about the mechanism by which mutations in the transmembrane domain of the LDLR gene cause FH. We have studied how the transmembrane mutation G805R affects the function of the LDLR. Based upon Western blot analyses of transfected HepG2 cells, mutation G805R reduced the amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum. This led to reduced amounts of the mature 160 kDa LDLR at the cell surface. However, significant amounts of a secreted 140 kDa G805R-LDLR ectodomain fragment was observed in the culture media. Treatment of the cells with the metalloproteinase inhibitor batimastat largely restored the amounts of the 120 and 160 kDa forms in cell lysates, and prevented secretion of the 140 kDa ectodomain fragment. Together, these data indicate that a metalloproteinase cleaved the ectodomain of the 120 kDa precursor G805R-LDLR in the endoplasmic reticulum. It was the presence of the polar Arg805 and not the lack of Gly805 which led to ectodomain cleavage. Arg805 also prevented γ-secretase cleavage within the transmembrane domain. It is conceivable that introducing a charged residue within the hydrophobic membrane lipid bilayer, results in less efficient incorporation of the 120 kDa G805R-LDLR in the endoplasmic reticulum membrane and makes it a substrate for metalloproteinase cleavage.

  2. Novel mutations of the nucleophosmin (NPM-1) gene in Egyptian patients with acute myeloid leukemia: A pilot study

    International Nuclear Information System (INIS)

    Neemat Kassem, N.; Abel Hamid, A.; Tarek Attia, T.; Mahmoud, S.; Moemen, E.; Baathallah, Sh.; Safwat, E.; Khalaf, M.; Shaker, O.

    2011-01-01

    Mutations of the nucleophosmin (NPM-1) gene have been reported in 50-60% of acute myeloid leukemia (AML) patients with normal karyotype. This work was designed to study the prevalence and nature of NPM1 gene mutations in a group of Egyptian patients with AML to get an idea about the profile of NPM1 gene mutations in our society. In 45 previously untreated patients with de novo AML, peripheral blood and/or bone marrow samples from all patients were subjected to microscopic morphologic examination, cytochemical analysis, immuno phenotyping and karyotyping. Patients with normal cytogenetic results were selected for molecular analysis of NPM1 exon 12 by PCR amplification followed by DNA sequencing of the amplified product. Twenty-one patients (46.7%) had abnormal karyotype: six cases with ;(15;17), five cases with (8;21), five cases had trisomy 8, two cases carrying inv(3) and three cases had monosomy 7. The remaining 24 patients (53.3%) had normal karyotype. These patients were then subjected to molecular analysis. Out of these 24 patients with normal karyotype, mutant NPM-1 was detected in 11 patients (45.8%) by DNA sequencing; 2 cases showed type A mutation, 2 cases were harboring [ins 1015-4019 (CACG)], with point mutation [1006C→G], while the remaining 7 cases showed heterozygous deletion of nt A [del 1178 (A)]. Conclusion: Two novel NPM1 gene mutations were detected among our study population of AML patients identified as: the insertion CACG associated with point mutation, deletion of one base, or associated with point mutation. NPM1 gene mutations may become a new tool for monitoring minimal residual disease in AML with normal karyotype. Whether these previously unreported NPM-1 mutations will confer the same better outcome as previously reported mutations is currently unknown and warrants a larger study.

  3. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  4. Recurring dominant-negative mutations in the AVP-NPII gene cause neurohypophyseal diabetes insipidus

    Energy Technology Data Exchange (ETDEWEB)

    Repaske, D.R. [Children`s Hospital Medical Center, Cincinnati, OH (United States); Phillips, J.A.; Krishnamani, M.R.S. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a familial form of arginine vasopressin (or antidiuretic hormone) deficiency that is usually manifest in early childhood with polyuria, polydipsia and an antidiuretic response to exogenous vasopressin or its analogs. The phenotype is postulated to arise from gliosis and depletion of the magnocellular neurons that produce vasopressin in the supraoptic and paraventricular nuclei of the hypothalamus. ADNDI is caused by heterozygosity for a variety of mutations in the AVP-NPII gene which encodes vasopressin, its carrier protein (NPII) and a glycoprotein (copeptin) of unknown function. These mutations include: (1) Ala 19{r_arrow}Thr (G279A) in AVP`s signal peptide, (2) Gly 17{r_arrow}Val (G1740T), (3) Pro 24{r_arrow}Leu (C1761T), (4) Gly 57{r_arrow}Ser (G1859A) and (5) del Glu 47({delta}AGG 1824-26), all of which occur in NPII. In characterizing the AVP-NPII mutations in five non-related ADNDI kindreds, we have detected two kindreds having mutation 1 (G279A), two having mutation 3 (C1761T) and one having mutation 4 (G1859A) without any other allelic changes being detected. Two of these recurring mutations (G279A and G1859A) are transitions that occur at CpG dinucleotides while the third (C1761T) does not. Interestingly, families with the same mutations differed in their ethnicity or in their affected AVP-NPII allele`s associated haplotype of closely linked DNA polymorphisms. Our data indicated that at least three of five known AVP-NPII mutations causing ADNDI tend to recur but the mechanisms by which these dominant-negative mutations cause variable or progressive expression of the ADNDI phenotype remain unclear.

  5. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  6. Mutational Analysis of PTPN11 Gene in Taiwanese Children with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Chia-Sui Hung

    2007-01-01

    Full Text Available Noonan syndrome (NS is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11, encoding SHP-2, account for 33-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38% patients, including a novel missense mutation (855T > G, F285L. These mutations were clustered in exon 3 (n = 6 encoding the N-SH2 domain, exon 4 (n = 2 encoding the C-SH2 domain, and in exons 8 (n = 2 and 13 (n = 3 encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients. [J Formos Med Assoc 2007;106(2:169-172

  7. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Directory of Open Access Journals (Sweden)

    Wu Bailin

    2008-11-01

    Full Text Available Abstract Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135 were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43 of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135 of the patients with hearing loss. Together with GJB2 (23/135, SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the

  8. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Science.gov (United States)

    Dai, Pu; Yuan, Yongyi; Huang, Deliang; Zhu, Xiuhui; Yu, Fei; Kang, Dongyang; Yuan, Huijun; Wu, Bailin; Han, Dongyi; Wong, Lee-Jun C

    2008-01-01

    Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135) were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43) of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135) of the patients with hearing loss. Together with GJB2 (23/135), SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the temporal bone CT scan to

  9. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  10. Ferredoxin Gene Mutation in Iranian Trichomonas Vaginalis Isolates

    Directory of Open Access Journals (Sweden)

    Soudabeh Heidari

    2013-09-01

    Full Text Available Background: Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO to its active form (CPR. Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied.Methods: Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations.Results: In four isolates (8.69% point mutation at nucleotide position -239 (the translation start codon of the ferredoxin gene were detected in which adenosine were converted to thymine.Conclusion: Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein’s binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole.

  11. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. [Analysis of gene mutation of early onset epileptic spasm with unknown reason].

    Science.gov (United States)

    Yang, X; Pan, G; Li, W H; Zhang, L M; Wu, B B; Wang, H J; Zhang, P; Zhou, S Z

    2017-11-02

    Objective: To summarize the gene mutation of early onset epileptic spasm with unknown reason. Method: In this prospective study, data of patients with early onset epileptic spasm with unknown reason were collected from neurological department of Children's Hospital of Fudan University between March 2016 and December 2016. Patients with known disorders such as infection, metabolic, structural, immunological problems and known genetic mutations were excluded. Patients with genetic disease that can be diagnosed by clinical manifestations and phenotypic characteristics were also excluded. Genetic research methods included nervous system panel containing 1 427 epilepsy genes, whole exome sequencing (WES), analysis of copy number variation (CNV) and karyotype analysis of chromosome. The basic information, phenotypes, genetic results and the antiepileptic treatment of patients were analyzed. Result: Nine of the 17 cases with early onset epileptic spasm were boys and eight were girls. Patients' age at first seizure onset ranged from 1 day after birth to 8 months (median age of 3 months). The first hospital visit age ranged from 1 month to 2 years (median age of 4.5 months). The time of following-up ranged from 8 months to 3 years and 10 months. All the 17 patients had early onset epileptic spasm. Video electroencephalogram was used to monitor the spasm seizure. Five patients had Ohtahara syndrome, 10 had West syndrome, two had unclear classification. In 17 cases, 10 of them had detected pathogenic genes. Nine cases had point mutations, involving SCN2A, ARX, UNC80, KCNQ2, and GABRB3. Except one case of mutations in GABRB3 gene have been reported, all the other cases had new mutations. One patient had deletion mutation in CDKL5 gene. One CNV case had 6q 22.31 5.5MB repeats. Ten cases out of 17 were using 2-3 antiepileptic drugs (AEDs) and the drugs had no effect. Seven cases used adrenocorticotropic hormone (ACTH) and prednisone besides AEDs (a total course for 8 weeks

  13. Citrullinemia type I, classical variant. Identification of ASS-p~G390R (c.1168G>A) mutation in families of a limited geographic area of Argentina: a possible population cluster.

    Science.gov (United States)

    Laróvere, Laura E; Angaroni, Celia J; Antonozzi, Sandra L; Bezard, Miriam B; Shimohama, Mariko; de Kremer, Raquel Dodelson

    2009-07-01

    Citrullinemia type I (CTLN1) is an urea cycle defect caused by mutations in the argininosuccinate synthetase gene. We report the first identification in Argentina of patients with CTLN1 in a limited geographic area. Molecular analysis in patient/relatives included PCR, sequencing and restriction enzyme assay. The studied families showed the same mutation: ASS~p.G390R, associated with the early-onset/severe phenotype. We postulate a possible population cluster. A program to know the carrier frequency in that population is in progress.

  14. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine

    Directory of Open Access Journals (Sweden)

    Pilar Antón-Martín

    2012-01-01

    Full Text Available Background Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. Methods We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. Result Anew mutation determining a nucleotide change C.3614G > T (p. Gly1205Val in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Conclusion Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.

  15. [Characteristics of phenylalanine hydroxylase gene mutations among patients with phenylketonuria from Linyi region of Shandong Province].

    Science.gov (United States)

    Li, Huafeng; Li, Yongli; Zhang, Li

    2017-06-10

    To explore the characteristics of (PAH) gene mutations among patients with phenylketonuria (PKU) from Linyi area of Shandong Province. For 51 children affected with PKU and their parents, the 13 exons and their flanking intronic sequences of the PAH gene were directly sequenced with Sanger method. PAH gene mutations were detected in all of the 102 alleles of the patients, which included 31 types of mutations. Common mutations included R243Q (17/102, 16.67%), IVS4-1G to A (9/102, 8.82%), R241C (8/102, 7.84%), R111X (8/102, 7.84%), and V399V (8/102, 7.84%). In addition, two novel mutations, D101N, 345-347del, have been detected. The 31 types of mutations included missense, nonsense, deletion, and splicing mutations, which were mainly located in exons 7 (29, 28.43%), 11 (18, 17.65%), 3 (16, 15.69%) and 12 (13, 12.75%). Mutations of the PAH gene in Linyi region mainly distributed in exons 7, 11, and 3, and the most common mutation were R243Q. Two novel mutations, D101N and 345-347del, have been detected.

  16. Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond.

    Science.gov (United States)

    Rosenquist, Richard; Rosenwald, Andreas; Du, Ming-Qing; Gaidano, Gianluca; Groenen, Patricia; Wotherspoon, Andrew; Ghia, Paolo; Gaulard, Philippe; Campo, Elias; Stamatopoulos, Kostas

    2016-09-01

    Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making. Copyright© Ferrata Storti Foundation.

  17. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand.

    Science.gov (United States)

    Stenhouse, Steven A; Plernsub, Suriya; Yanola, Jintana; Lumjuan, Nongkran; Dantrakool, Anchalee; Choochote, Wej; Somboon, Pradya

    2013-08-30

    Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some

  18. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  19. HFE gene mutations and Wilson's disease in Sardinia.

    Science.gov (United States)

    Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi

    2010-03-01

    Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (PHFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.

  20. Mutation update for the PORCN gene

    DEFF Research Database (Denmark)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum......, the pentalogy of Cantrell and Limb-Body Wall Complex. Here we present a review of the published mutations in the PORCN gene to date and report on seven new mutations together with the corresponding clinical data. Based on the review we have created a Web-based locus-specific database that lists all identified...... variants and allows the inclusion of future reports. The database is based on the Leiden Open (source) Variation Database (LOVD) software, and is accessible online at http://www.lovd.nl/porcn. At present, the database contains 106 variants, representing 68 different mutations, scattered along the whole...

  1. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    Science.gov (United States)

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  2. Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt Disease: Identification of Novel Mutations and Evidence of Three Prevalent Mutated Alleles

    Directory of Open Access Journals (Sweden)

    Kamakari Smaragda

    2018-01-01

    Full Text Available Aim. To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1. Materials and Methods. A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results. An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%. Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%. In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions. By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations.

  3. Identification of Novel Compound Mutations in PLA2G6-Associated Neurodegeneration Patient with Characteristic MRI Imaging.

    Science.gov (United States)

    Guo, Sen; Yang, Liu; Liu, Huijie; Chen, Wei; Li, Jinchen; Yu, Ping; Sun, Zhong Sheng; Chen, Xiang; Du, Jie; Cai, Tao

    2017-08-01

    Neurodegeneration with brain iron accumulation comprises a heterogeneous group of disorders characterized clinically by progressive motor dysfunction. Accurate identification of de novo and rare inherited mutations is important for determining causative genes of undiagnosed neurological diseases. In the present study, we report a unique case with cerebellar ataxia symptoms and social communication difficulties in an intermarriage family. MRI showed a marked cerebellar atrophy and the "eye-of-the-tiger"-like sign in the medial globus pallidus. Potential genetic defects were screened by whole-exome sequencing (WES) for the patient and four additional family members. A previously undescribed de novo missense mutation (c.1634A>G, p.K545R) in the exon 12 of the PLA2G6 gene was identified. A second rare variant c.1077G>A at the end of exon 7 was also identified, which was inherited from the mother, and resulted in a frame-shift mutation (c.1074_1077del.GTCG) due to an alternative splicing. In conclusion, the identification of the "eye-of-the-tiger"-like sign in the globus pallidus of the patient expands the phenotypic spectrum of PLA2G6-associated disorders and reveals its value in differential diagnosis of PLA2G6-associated disorders.

  4. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  5. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism.

    Science.gov (United States)

    Citterio, Cintia E; Machiavelli, Gloria A; Miras, Mirta B; Gruñeiro-Papendieck, Laura; Lachlan, Katherine; Sobrero, Gabriela; Chiesa, Ana; Walker, Joanna; Muñoz, Liliana; Testa, Graciela; Belforte, Fiorella S; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2013-01-30

    The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report 13 patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and imaging evaluation. Single-strand conformation polymorphism (SSCP) analysis, endonuclease restriction analysis, sequencing of DNA, genotyping, population screening, and bioinformatics studies were performed. Molecular analyses revealed seven novel inactivating TG mutations: c.378C>A [p.Y107X], c.2359C>T [p.R768X], c.2736delG [p.R893fsX946], c.3842G>A [p.C1262Y], c.5466delA [p.K1803fsX1833], c.6000C>G [p.C1981W] and c.6605C>G [p.P2183R] and three previously reported mutations: c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.7006C>T [p.R2317X]. Six patients from two families were homozygous for p.R277X mutation, four were compound heterozygous mutations (p.Y107X/p.C1262Y, p.R893fsX946/p.A2215D, p.K1803fsX1832/p.R2317X), one carried three identified mutations (p.R277X/p.C1981W-p.P2183R) together with a hypothetical micro deletion and the remaining two siblings from another family with typical phenotype had a single p.R768X mutated allele. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of altered TG folding as a consequency of truncated TG proteins and missense mutations located in ACHE-like domain or that replace cysteine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  7. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  8. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  9. Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Chen

    Full Text Available BACKGROUND: The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D on protein conformation. METHODS: Molecular dynamics (MD simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D and c.38G>A (p.G13D. The potential of mean force (PMF simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT KRAS and its mutants (MT. RESULTS: Using MD simulations, we observed that the root mean square deviation (RMSD increased as a function of time for the MT c.35G>A (p.G12D and MT c.38G>A (p.G13D when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D mutant is more open than that of the WT and the c.38G>A (p.G13D proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions. Such fluctuations may promote instability in these protein regions and hamper GTP binding. CONCLUSIONS: Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions. Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC and the KRAS c.38G>A (p.G13D mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D mutation in mCRC needs to be further investigated.

  10. [A compound heterozygosity mutation in the interleukin-7 receptor-alpha gene resulted in severe combined immunodeficiency in a Chinese patient].

    Science.gov (United States)

    Zhang, Zhi-yong; Zhao, Xiao-dong; Wang, Mo; Yu, Jie; An, Yun-fei; Yang, Xi-qiang

    2009-09-01

    Mutation in the interleukin-7 receptor-alpha (IL-7R alpha) chain causes a rare type of severe combined immunodeficiency (SCID) with presence of NK cells in the peripheral blood. Here we report the molecular and clinical characterization of a compound heterozygosity mutation in the interleukin-7 receptor-alpha gene that resulted in SCID in a patient firstly from China. A 5 month-old male patient and his parents were enrolled in this study. Since 15 days of age, the patient had had recurrent fever, persistent cough and diarrhea. He was in poor general condition with pyorrhea and ulceration of the BCG scar. His brother died of severe infection at 4 months of age. He was initially diagnosed as SCID according to clinical manifestation and immunological analysis. A panel of SCID candidate genes including IL-2RG, RAG1/RAG2 and IL-7R alpha of patient and his parents were amplified by polymerase chain reaction (PCR) from genomic DNA. Reverse transcription polymerase chain reaction (RT-PCR) was used to amplify the IL-7R alpha transcripts. Sequencing was performed directly on the PCR products forward and reversely. The serum immunoglobulin (Ig) profile was IgG 6867 mg/L (normal range, 3050 - 8870 mg/L); IgM 206 mg/L and IgA 249 mg/L, IgE 2.3 IU/ml (normal range microscope and by culture. The patient had a compound heterozygosity mutation in the IL-7R alpha gene:on one allele, there was a splice-junction mutation in intron 4 (intron 4(+1)G > A), for which his father was a carrier; whereas on the other allele, a nonsense mutation at position 638 in exon 5 with a premature stop codon (638 C > T, R206X) was identified, for which his mother was a carrier. The splice-junction mutation in intron 4 of IL-7R alpha was firstly reported. The IL-7R alpha mRNA expression of the patient was remarkably reduced whereas the parents had relatively normal IL-7R alpha mRNA expression. IL-7R alpha cDNA of the patient was amplified by nested PCR. The PCR products were purified, cloned with a TA

  11. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    Science.gov (United States)

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin.

  12. ASSOCIATION OF HFE GENE MUTATION IN THALASSEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tiwari

    2016-11-01

    Full Text Available BACKGROUND Thalassemia major patients are dependent on frequent blood transfusion and consequently develop iron overload. HFE gene mutations (C282Y, H63D and S65C in hereditary haemochromatosis has been shown to be associated with iron overload. The study aims at finding the association of HFE gene mutations in β-thalassemia major patients. MATERIALS AND METHODS A descriptive observational pilot study was conducted including fifty diagnosed -thalassemia major cases. DNA analysis by PCR-RFLP method for HFE gene mutations was performed. RESULTS Only H63D mutation (out of three HFE gene mutations was detected in 8 out of 50 cases. Observed frequency of H63D mutation was 16%. While frequency of C282Y and S65C were 0% each. CONCLUSION The frequency of HFE mutation in -thalassemia major is not very common.

  13. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  14. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    Science.gov (United States)

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  15. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy.

    Science.gov (United States)

    Kondo, Hiroyuki; Qin, Minghui; Kusaka, Shunji; Tahira, Tomoko; Hasebe, Haruyuki; Hayashi, Hideyuki; Uchio, Eiichi; Hayashi, Kenshi

    2007-03-01

    To search for mutations in the Norrie disease gene (NDP) in Japanese patients with familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) and to delineate the mutation-associated clinical features. Direct sequencing after polymerase chain reaction of all exons of the NDP gene was performed on blood collected from 62 probands (31 familial and 31 simplex) with FEVR, from 3 probands with ND, and from some of their family members. The clinical symptoms and signs in the patients with mutations were assessed. X-inactivation in the female carriers was examined in three FEVR families by using leukocyte DNA. Four novel mutations-I18K, K54N, R115L, and IVS2-1G-->A-and one reported mutation, R97P, in the NDP gene were identified in six families. The severity of vitreoretinopathy varied among these patients. Three probands with either K54N or R115L had typical features of FEVR, whereas the proband with R97P had those of ND. Families with IVS2-1G-->A exhibited either ND or FEVR characteristics. A proband with I18K presented with significant phenotypic heterogeneity between the two eyes. In addition, affected female carriers in a family harboring the K54N mutation presented with different degrees of vascular abnormalities in the periphery of the retina. X-inactivation profiles indicated that the skewing was not significantly different between affected and unaffected women. These observations indicate that mutations of the NDP gene can cause ND and 6% of FEVR cases in the Japanese population. The X-inactivation assay with leukocytes may not be predictive of the presence of a mutation in affected female carriers.

  16. Molecular diagnosis of analbuminemia: a new case caused by a nonsense mutation in the albumin gene.

    Science.gov (United States)

    Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2011-01-01

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23-c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.

  17. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Diaz-Llopis Manuel

    2011-10-01

    Full Text Available Abstract Background Usher Syndrome type II (USH2 is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP. Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.

  18. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    Science.gov (United States)

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  19. Dysmorphic Facial Features and Other Clinical Characteristics in Two Patients with PEX1 Gene Mutations

    Science.gov (United States)

    Gunduz, Mehmet

    2016-01-01

    Peroxisomal disorders are a group of genetically heterogeneous metabolic diseases related to dysfunction of peroxisomes. Dysmorphic features, neurological abnormalities, and hepatic dysfunction can be presenting signs of peroxisomal disorders. Here we presented dysmorphic facial features and other clinical characteristics in two patients with PEX1 gene mutation. Follow-up periods were 3.5 years and 1 year in the patients. Case I was one-year-old girl that presented with neurodevelopmental delay, hepatomegaly, bilateral hearing loss, and visual problems. Ophthalmologic examination suggested septooptic dysplasia. Cranial magnetic resonance imaging (MRI) showed nonspecific gliosis at subcortical and periventricular deep white matter. Case II was 2.5-year-old girl referred for investigation of global developmental delay and elevated liver enzymes. Ophthalmologic examination findings were consistent with bilateral nystagmus and retinitis pigmentosa. Cranial MRI was normal. Dysmorphic facial features including broad nasal root, low set ears, downward slanting eyes, downward slanting eyebrows, and epichantal folds were common findings in two patients. Molecular genetic analysis indicated homozygous novel IVS1-2A>G mutation in Case I and homozygous p.G843D (c.2528G>A) mutation in Case II in the PEX1 gene. Clinical findings and developmental prognosis vary in PEX1 gene mutation. Kabuki-like phenotype associated with liver pathology may indicate Zellweger spectrum disorders (ZSD). PMID:27882258

  20. ROLE OF GENE POLYMORFISM OF PLASMINOGEN ACTIVATOR INGIBITOR TYPE I AS A RISK FACTOR FOR PREMATURE RUPTURE OF MEMBRANE AT TERM PREGNANCY

    Directory of Open Access Journals (Sweden)

    M. G. Nikolayeva

    2013-01-01

    Full Text Available The retrospective study was designed to identify association of premature rupture of the fetal membranes (PROM with carrying polymorphisms in genes encoding folate metabolism and hemostasis in 717 women. More than one hundred potential predictors were analyzed including carriage of thrombogenic genes polymorphisms and genes encoding folate metabolism: FV[Arg506Gln], F II [20210 G/A], MTHFR [Ala222Val], (PAI-I[-675 5G/4G]. Study revealed that plasminogen activator ingibitor-1 gene polymorphism increases significantly the risk of premature rupture of the fetal membranes in term pregnancy (PROM: heterozygous plasminogen activator ingibitor-1 gene polymorphism is associated with 3.6-fold (95% CI 2.4–5.4; p < 0.001, homozygous plasminogen activator ingibitor-1 gene polymorphism – with 1.7-fold (95% CI 1.1–2.6; p = 0.01 risk rise of PROM.

  1. A novel missense mutation of ADAR1 gene in a Chinese family ...

    Indian Academy of Sciences (India)

    This study was mainlyto explore the pathogenic mutation of ADAR1 gene and provide genetics counselling and prenatal diagnostic testing for childbearing individuals.Mutational analysis of ADAR1 gene was performed by polymerase chain reaction (PCR) and electrophoretic separation of PCR products by 1.5% agarose ...

  2. Pure myopathy with enlarged mitochondria associated to a new mutation in MTND2 gene

    Directory of Open Access Journals (Sweden)

    Alice Zanolini

    2017-03-01

    Full Text Available To date, only few mutations in the mitochondrial DNA (mtDNA-encoded ND2 subunit of Complex I have been reported, usually presenting a severe phenotype characterized by early onset encephalomyopathy and early death. In this report, we describe a new mutation in the MTND2 gene in a 21-year-old man with a mild myopathic phenotype characterized by exercise intolerance and increased plasma lactate at rest. Electromyography and brain NMR were normal, and no cardiac involvement was present. Muscle biopsy showed a massive presence of ragged red – COX-positive fibres, with enlarged mitochondria containing osmiophilic inclusions. Biochemical assays revealed a severe isolated complex I deficiency. We identified a novel, heteroplasmic mutation m.4831G>A in the MTND2 gene, causing the p.Gly121Asp substitution in the ND2 protein. The mutation was present in the 95% of mitochondrial genomes from patient's muscle tissue, at a lower level in cells from the urinary tract and at a lowest level in lymphocytes from patient's blood; the base substitution was absent in fibroblasts and in the tissues from proband's healthy mother and brother. The specific skeletal muscle tissue involvement can explain the childhood-onset and the relatively benign, exclusively myopathic course of the disease.

  3. Heat Increases the Editing Efficiency of Human Papillomavirus E2 Gene by Inducing Upregulation of APOBEC3A and 3G.

    Science.gov (United States)

    Yang, Yang; Wang, Hexiao; Zhang, Xinrui; Huo, Wei; Qi, Ruiqun; Gao, Yali; Zhang, Gaofeng; Song, Bing; Chen, Hongduo; Gao, Xinghua

    2017-04-01

    Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) 3 proteins have been identified as potent viral DNA mutators and have broad antiviral activity. In this study, we demonstrated that apolipoprotein B mRNA-editing catalytic polypeptide 3A (A3A) and A3G expression levels were significantly upregulated in human papillomavirus (HPV)-infected cell lines and tissues. Heat treatment resulted in elevated expression of A3A and A3G in a temperature-dependent manner in HPV-infected cells. Correspondingly, HPV-infected cells heat-treated at 44 °C showed accumulated G-to-A or C-to-T mutation in HPV E2 gene. Knockdown of A3A or A3G could promote cell viability, along with the lower frequency of A/T in HPV E2 gene. In addition, regressing genital viral warts also harbored high G-to-A or C-to-T mutation in HPV E2 gene. Taken together, we demonstrate that apolipoprotein B mRNA-editing catalytic polypeptide 3 expression and editing function was heat sensitive to a certain degree, partly explaining the mechanism of action of local hyperthermia to treat viral warts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  5. Gene mutations in children with chronic pancreatitis.

    Science.gov (United States)

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  6. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    Science.gov (United States)

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  7. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    Science.gov (United States)

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  8. A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis

    Science.gov (United States)

    2014-01-01

    Background Alterations or mutations in the lipoprotein lipase (LPL) gene contribute to severe hypertriglyceridemia (HTG). This study reported on two patients in a Chinese family with LPL gene mutations and severe HTG and acute pancreatitis. Methods Two patients with other five family members were included in this study for DNA-sequences of hyperlipidemia-related genes (such as LPL, APOC2, APOA5, LMF1, and GPIHBP1) and 43 healthy individuals and 70 HTG subjects were included for the screening of LPL gene mutations. Results Both patients were found to have a compound heterozygote for a novel LPL gene mutation (L279V) and a known mutation (A98T). Furthermore, one HTG subject out of 70 was found to carry this novel LPL L279V mutation. Conclusions The data from this study showed that compound heterozygote mutations of A98T and L279V inactivate lipoprotein lipase enzymatic activity and contribute to severe HTG and acute pancreatitis in two Chinese patients. Further study will investigate how these LPL gene mutations genetically inactivate the LPL enzyme. PMID:24646025

  9. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    Science.gov (United States)

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  10. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  11. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    International Nuclear Information System (INIS)

    Skory, C.D.; Horng, J.S.; Pestka, J.J.; Linz, J.E.

    1990-01-01

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per μg of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert [ 14 C]OMP to [ 14 C]UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert [ 14 C]OMP to [ 14 C]UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field

  12. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    Science.gov (United States)

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  13. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  14. A mutation at IVS1 + 5 of the von Hippel-Lindau gene resulting in intron retention in transcripts is not pathogenic in a patient with a tongue cancer?: case report

    Directory of Open Access Journals (Sweden)

    Asakawa Takeshi

    2012-03-01

    Full Text Available Abstract Background Von Hippel-Lindau disease (VHL is a dominantly inherited familial cancer syndrome predisposing the patient to a variety of malignant and benign neoplasms, most frequently hemangioblastoma, renal cell carcinoma, pheochromocytoma, and pancreatic tumors. VHL is caused by mutations of the VHL tumor suppressor gene on the short arm of chromosome 3, and clinical manifestations develop if both alleles are inactivated according to the two-hit hypothesis. VHL mutations are more frequent in the coding region and occur occasionally in the splicing region of the gene. Previously, we reported that the loss of heterozygosity (LOH of the VHL gene is common in squamous cell carcinoma tissues of the tongue. Case Presentation We describe a case of squamous cell carcinoma in the tongue caused by a point mutation in the splicing region of the VHL gene and discuss its association with VHL disease. Sequence analysis of DNA extracted from the tumor and peripheral blood of the patient with squamous cell carcinoma revealed a heterozygous germline mutation (c. 340 + 5 G > C in the splice donor sequence in intron 1 of the VHL gene. RT-PCR analysis of the exon1/intron1 junction in RNA from tumor tissue detected an unspliced transcript. Analysis of LOH using a marker with a heterozygous mutation of nucleotides (G or C revealed a deletion of the mutant C allele in the carcinoma tissues. Conclusions The fifth nucleotide G of the splice donor site of the VHL gene is important for the efficiency of splicing at that site. The development of tongue cancer in this patient was not associated with VHL disease because the mutation occurred in only a single allele of the VHL gene and that allele was deleted in tumor cells.

  15. Unusual phenotype of congenital adrenal hyperplasia (CAH) with a novel mutation of the CYP21A2 gene.

    Science.gov (United States)

    Raisingani, Manish; Contreras, Maria F; Prasad, Kris; Pappas, John G; Kluge, Michelle L; Shah, Bina; David, Raphael

    2016-07-01

    Gonadotropin independent sexual precocity (SP) may be due to congenital adrenal hyperplasia (CAH), and its timing usually depends on the type of mutation in the CYP21A2 gene. Compound heterozygotes are common and express phenotypes of varying severity. The objective of this case report was to investigate the hormonal pattern and unusual genetic profile in a 7-year-old boy who presented with pubic hair, acne, an enlarged phallus, slightly increased testicular volume and advanced bone age. Clinical, hormonal and genetic studies were undertaken in the patient as well as his parents. We found elevated serum 17-hydroxyprogesterone (17-OHP) and androstenedione that were suppressed with dexamethasone, and elevated testosterone that actually rose after giving dexamethasone, indicating activity of the hypothalamic-pituitary-gonadal (HPG) axis. An initial search for common mutations was negative, but a more detailed genetic analysis of the CYP21A2 gene revealed two mutations including R341W, a non-classical mutation inherited from his mother, and g.823G>A, a novel not previously reported consensus donor splice site mutation inherited from his father, which is predicted to be salt wasting. However, the child had a normal plasma renin activity. He was effectively treated with low-dose dexamethasone and a GnRH agonist. His father was an unaffected carrier, but his mother had evidence of mild non-classical CAH. In a male child presenting with gonadotropin independent SP it is important to investigate adrenal function with respect to the androgen profile, and to carry out appropriate genetic studies.

  16. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Directory of Open Access Journals (Sweden)

    Lijuan He

    Full Text Available Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  17. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Science.gov (United States)

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  18. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  19. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  20. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  1. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    Science.gov (United States)

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  2. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  3. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  4. Frequency of the LRRK2 G2019S mutation in late-onset sporadic patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Hsin Fen Chien

    2014-05-01

    Full Text Available Mutations in the LRRK2 gene, predominantly G2019S, have been reported in individuals with autosomal dominant inheritance and sporadic Parkinson’s disease (PD. The G2019S mutation has an age-dependent penetrance and evidence shows common ancestry. The clinical manifestations are indistinguishable from idiopathic PD. Its prevalence varies according to the population studied ranging from less than 0.1% in Asians to 41% in North African Arabs. This study aimed to identify G2019S mutation in Brazilian idiopathic PD patients. Method: We sampled 100 PD patients and 100 age- and gender-matched controls. Genetical analysis was accomplished by polymerase chain reaction (PCR. Results: No G2019S mutations were found in both patients with sporadic PD and controls. Conclusions: Our results may be explained by the relatively small sample size.

  5. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  6. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2010-08-01

    Full Text Available Abstract The cytosine-guanine (CpG dinucleotide has long been known to be a hotspot for pathological mutation in the human genome. This hypermutability is related to its role as the major site of cytosine methylation with the attendant risk of spontaneous deamination of 5-methylcytosine (5mC to yield thymine. Cytosine methylation, however, also occurs in the context of CpNpG sites in the human genome, an unsurprising finding since the intrinsic symmetry of CpNpG renders it capable of supporting a semi-conservative model of replication of the methylation pattern. Recently, it has become clear that significant DNA methylation occurs in a CpHpG context (where H = A, C or T in a variety of human somatic tissues. If we assume that CpHpG methylation also occurs in the germline, and that 5mC deamination can occur within a CpHpG context, then we might surmise that methylated CpHpG sites could also constitute mutation hotspots causing human genetic disease. To test this postulate, 54,625 missense and nonsense mutations from 2,113 genes causing inherited disease were retrieved from the Human Gene Mutation Database http://www.hgmd.org. Some 18.2 per cent of these pathological lesions were found to be C → T and GA transitions located in CpG dinucleotides (compatible with a model of methylation-mediated deamination of 5mC, an approximately ten-fold higher proportion than would have been expected by chance alone. The corresponding proportion for the CpHpG trinucleotide was 9.9 per cent, an approximately two-fold higher proportion than would have been expected by chance. We therefore estimate that ~5 per cent of missense/nonsense mutations causing human inherited disease may be attributable to methylation-mediated deamination of 5mC within a CpHpG context.

  7. Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Dunham Stephen

    2009-11-01

    Full Text Available Abstract Background Organisms that are sensitive to nitrofurantoin express a nitroreductase. Since bacterial resistance to this compound results primarily from mutations in the gene encoding nitroreductase, the resulting loss of function of nitroreductase results in a selectable phenotype; resistance to nitrofurantoin. We exploited this direct selection for mutation to study the frequency at which spontaneous mutations arise (transitions and transversions, insertions and deletions. Results A nitroreductase- encoding gene was identified in the N. gonorrhoeae FA1090 genome by using a bioinformatic search with the deduced amino acid sequence derived from the Escherichia coli nitroreductase gene, nfsB. Cell extracts from N. gonorrhoeae were shown to possess nitroreductase activity, and activity was shown to be the result of NfsB. Spontaneous nitrofurantoin-resistant mutants arose at a frequency of ~3 × 10-6 - 8 × 10-8 among the various strains tested. The nfsB sequence was amplified from various nitrofurantoin-resistant mutants, and the nature of the mutations determined. Transition, transversion, insertion and deletion mutations were all readily detectable with this reporter gene. Conclusion We found that nfsB is a useful reporter gene for measuring spontaneous mutation frequencies. Furthermore, we found that mutations were more likely to arise in homopolymeric runs rather than as base substitutions.

  8. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus.

    Science.gov (United States)

    Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapaporn; Sriussadaporn, Sutin; Vannaseang, Sathit; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-06-01

    Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes. Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations. We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, HNF-1alpha P475L, HNF-1alphaG554fsX556, NeuroD1-1972 G > A and NeuroD1 A322N. Mutations of IPF-1 and HNF-1beta were not identified in the studied probands. Mutations of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

  9. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    Science.gov (United States)

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  10. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  11. Novel Mutation in the TSC2 Gene Associated with Prenatally Diagnosed Cardiac Rhabdomyomas and Cerebral Tuberous Sclerosis

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2006-01-01

    Full Text Available Cardiac rhabdomyomas are prenatal echocardiographic markers for tuberous sclerosis complex (TSC. TSC is caused by mutations in the genes TSC1 and TSC2. We report a 28-year-old, gravida 5, para 2, woman with an uncomplicated pregnancy until prenatal ultrasound at 34 weeks' gestation revealed fetal cardiac tumors. Ultrafast magnetic resonance imaging (MRI at 36 weeks' gestation showed cardiac rhab-domyomas and small subependymal tubers. At 39 weeks' gestation, a 2262 g female infant was delivered uneventfully. Postnatal echocardiography confirmed cardiac rhabdomyomas and MRI verified small cerebral subependymal tubers. Mutational analysis of TSC1 and TSC2 genes using denaturing high-performance liquid chromatography and direct sequencing of the genes was performed and revealed that the parents had wildtype DNA, while the proband was heterozygous for a novel de novo nonsense mutation, c.4830 G > A, in exon 36 of the TSC2 gene, resulting in a change of codon 1610 TGG (tryptophan to TGA (stop codon. The mutation predicted a W1610X premature termination of the tuberin protein. These findings support an association between a TSC2 de novo nonsense mutation and prenatally detected cardiac rhabdomyomas and cerebral tuberous sclerosis. Familial molecular analysis of TSC1 and TSC2 in cases with prenatally diagnosed cardiac rhabdomyomas and cerebral tuberous sclerosis lesions is helpful in prenatal diagnosis and genetic counseling.

  12. Fanconi Bickel Syndrome: Novel Mutations in GLUT 2 Gene Causing a Distinguished Form of Renal Tubular Acidosis in Two Unrelated Egyptian Families

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2011-01-01

    Full Text Available Background. Fanconi-Bickel syndrome (FBS is an autosomal recessive disorder caused by defects in facilitative glucose transporter 2 (GLUT2 or SLC2A2 gene mapped on chromosome 3q26.1-26.3, that codes for the glucose transporter protein 2. Methods. Two unrelated Egyptian families having suspected cases of FBS were enrolled after taking a written informed consent; both had positive consanguinity, and index cases had evidences of proximal renal tubular defects with hepatomegaly; they were subjected to history taking, signs of rickets as well as anthropometric measurements. Laboratory workup included urinalysis, renal and liver function tests including fasting and postprandial blood sugar; serum calcium, phosphorus, alkaline phosphatase, sodium and potassium, lipid profile, and detailed blood gas. Imaging including bone survey and abdominal ultrasound, and liver biopsy were done to confirm diagnosis. Molecular analysis of the GLUT2 gene was done for DNA samples extracted from peripheral blood leukocyte. All coding sequences, including flanking introns in GLUT2 gene, were amplified using PCR followed by direct sequencing. Results. Two new mutations had been detected, one in each family, in exon 3 two bases (GA were deleted (c.253 254delGA and in exon 6 in the second family, G-to-C substitution at position-1 of the splicing acceptor site (c.776-1G>C or IVS5-1G>A. Conclusion. FBS is a rare disease due to mutation in GLUT2 gene; many mutations were reported, about half were novel mutations; yet none of these mutations is more frequent. A more extensive survey for the most frequent mutations among FBS has to be contemplated to allow for use of molecular screening tests like ARMS.

  13. A novel recessive mutation in the gene ELOVL4 causes a neuro-ichthyotic disorder with variable expressivity

    Science.gov (United States)

    2014-01-01

    Background A rare neuro-ichthyotic disorder characterized by ichthyosis, spastic quadriplegia and intellectual disability and caused by recessive mutations in ELOVL4, encoding elongase-4 protein has recently been described. The objective of the study was to search for sequence variants in the gene ELOVL4 in three affected individuals of a consanguineous Pakistani family exhibiting features of neuro-ichthyotic disorder. Methods Linkage in the family was searched by genotyping microsatellite markers linked to the gene ELOVL4, mapped at chromosome 6p14.1. Exons and splice junction sites of the gene ELOVL4 were polymerase chain reaction amplified and sequenced in an automated DNA sequencer. Results DNA sequence analysis revealed a novel homozygous nonsense mutation (c.78C > G; p.Tyr26*). Conclusions Our report further confirms the recently described ELOVL4-related neuro-ichthyosis and shows that the neurological phenotype can be absent in some individuals. PMID:24571530

  14. Imputation of the rare HOXB13 G84E mutation and cancer risk in a large population-based cohort.

    Directory of Open Access Journals (Sweden)

    Thomas J Hoffmann

    2015-01-01

    Full Text Available An efficient approach to characterizing the disease burden of rare genetic variants is to impute them into large well-phenotyped cohorts with existing genome-wide genotype data using large sequenced referenced panels. The success of this approach hinges on the accuracy of rare variant imputation, which remains controversial. For example, a recent study suggested that one cannot adequately impute the HOXB13 G84E mutation associated with prostate cancer risk (carrier frequency of 0.0034 in European ancestry participants in the 1000 Genomes Project. We show that by utilizing the 1000 Genomes Project data plus an enriched reference panel of mutation carriers we were able to accurately impute the G84E mutation into a large cohort of 83,285 non-Hispanic White participants from the Kaiser Permanente Research Program on Genes, Environment and Health Genetic Epidemiology Research on Adult Health and Aging cohort. Imputation authenticity was confirmed via a novel classification and regression tree method, and then empirically validated analyzing a subset of these subjects plus an additional 1,789 men from Kaiser specifically genotyped for the G84E mutation (r2 = 0.57, 95% CI = 0.37–0.77. We then show the value of this approach by using the imputed data to investigate the impact of the G84E mutation on age-specific prostate cancer risk and on risk of fourteen other cancers in the cohort. The age-specific risk of prostate cancer among G84E mutation carriers was higher than among non-carriers. Risk estimates from Kaplan-Meier curves were 36.7% versus 13.6% by age 72, and 64.2% versus 24.2% by age 80, for G84E mutation carriers and non-carriers, respectively (p = 3.4x10-12. The G84E mutation was also associated with an increase in risk for the fourteen other most common cancers considered collectively (p = 5.8x10-4 and more so in cases diagnosed with multiple cancer types, both those including and not including prostate cancer, strongly suggesting

  15. A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome.

    Science.gov (United States)

    Kelly, A D; Kroeger, H; Yamazaki, J; Taby, R; Neumann, F; Yu, S; Lee, J T; Patel, B; Li, Y; He, R; Liang, S; Lu, Y; Cesaroni, M; Pierce, S A; Kornblau, S M; Bueso-Ramos, C E; Ravandi, F; Kantarjian, H M; Jelinek, J; Issa, J-Pj

    2017-10-01

    Genetic changes are infrequent in acute myeloid leukemia (AML) compared with other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CGI methylator phenotype (CIMP) (A-CIMP + ). A-CIMP was associated with longer overall survival (OS) in this data set (median OS, years: A-CIMP + =not reached, CIMP - =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP + =2.34, A-CIMP - =1.00; P=0.01). Hypermethylation in A-CIMP + favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP + was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP + function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple data sets. We conclude that CIMP in AML cannot be explained solely by gene mutations (for example, IDH1/2, TET2), and that curability in A-CIMP + AML should be validated prospectively.

  16. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    Science.gov (United States)

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  17. Cataract as a phenotypic marker for a mutation in WFS1, the Wolfram syndrome gene.

    Science.gov (United States)

    Titah, Salah Mohamed Cherif; Meunier, Isabelle; Blanchet, Catherine; Lopez, Severine; Rondouin, Gerard; Lenaers, Guy; Amati-Bonneau, Patrizia; Reynier, Pascal; Paquis-Flucklinger, Veronique; Hamel, Christian P

    2012-01-01

    Wolfram syndrome (WS) or diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DIDMOAD) (OMIM 222300) is an inherited neurodegenerative disease characterized by diabetes mellitus and optic atrophy as the 2 major criteria, followed later in life by deafness, diabetes insipidus, and various signs of neurologic impairment. The presence of a cataract has been variably mentioned in WS. Two members of a family had thorough ophthalmic examination and their DNA was screened for mutations in mitochondrial DNA, WFS1, OPA1, and OPA3 genes. We report a patient who first had surgery for bilateral cataract at age 5 and who subsequently presented typical signs of WS, i.e., diabetes mellitus, optic atrophy with reduced visual acuity at 20/400 on both eyes at age 22, and mild deafness. The patient was found to be a compound heterozygote for 2 truncating mutations in WFS1, the major WS gene. She carried the previously reported c.1231_1233 delCT and a novel c.2431_2465dup35 mutation. She also was heterozygote for a novel OPA1 sequence variant, c.929A>G in exon 9, whose pathogenicity remains uncertain. The patient's mother was a heterozygous carrier of the c.2431_2465dup35 mutation. She did not have diabetes mellitus or optic atrophy but had bilateral polar cataract. She did not carry the OPA1 sequence variant. Cataract could be a marker for the WFS1 heterozygosity in this family, namely the c.2431_2465dup35 mutation.

  18. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  19. Mutation update for the PORCN gene

    NARCIS (Netherlands)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo; Lampe, Anne; Gabbett, Michael T.; Ousager, Lillian Bomme; van der Smagt, Jasper J.; Soller, Maria; Stattin, Eva-Lena; Mannens, Marcel A. M. M.; Smigiel, Robert; Hennekam, Raoul C.

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum,

  20. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    Science.gov (United States)

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  1. Mutation scanning of peach floral genes

    Directory of Open Access Journals (Sweden)

    Wilde H Dayton

    2011-05-01

    Full Text Available Abstract Background Mutation scanning technology has been used to develop crop species with improved traits. Modifications that improve screening throughput and sensitivity would facilitate the targeted mutation breeding of crops. Technical innovations for high-resolution melting (HRM analysis are enabling the clinic-based screening for human disease gene polymorphism. We examined the application of two HRM modifications, COLD-PCR and QMC-PCR, to the mutation scanning of genes in peach, Prunus persica. The targeted genes were the putative floral regulators PpAGAMOUS and PpTERMINAL FLOWER I. Results HRM analysis of PpAG and PpTFL1 coding regions in 36 peach cultivars found one polymorphic site in each gene. PpTFL1 and PpAG SNPs were used to examine approaches to increase HRM throughput. Cultivars with SNPs could be reliably detected in pools of twelve genotypes. COLD-PCR was found to increase the sensitivity of HRM analysis of pooled samples, but worked best with small amplicons. Examination of QMC-PCR demonstrated that primary PCR products for further analysis could be produced from variable levels of genomic DNA. Conclusions Natural SNPs in exons of target peach genes were discovered by HRM analysis of cultivars from a southeastern US breeding program. For detecting natural or induced SNPs in larger populations, HRM efficiency can be improved by increasing sample pooling and template production through approaches such as COLD-PCR and QMC-PCR. Technical advances developed to improve clinical diagnostics can play a role in the targeted mutation breeding of crops.

  2. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  3. Functional characterization of two novel splicing mutations in the OCA2 gene associated with oculocutaneous albinism type II.

    Science.gov (United States)

    Rimoldi, Valeria; Straniero, Letizia; Asselta, Rosanna; Mauri, Lucia; Manfredini, Emanuela; Penco, Silvana; Gesu, Giovanni P; Del Longo, Alessandra; Piozzi, Elena; Soldà, Giulia; Primignani, Paola

    2014-03-01

    Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. OCA type II (OCA2) is one of the four commonly-recognized forms of albinism, and is determined by mutation in the OCA2 gene. In the present study, we investigated the molecular basis of OCA2 in two siblings and one unrelated patient. The mutational screening of the OCA2 gene identified two hitherto-unknown putative splicing mutations. The first one (c.1503+5G>A), identified in an Italian proband and her affected sibling, lies in the consensus sequence of the donor splice site of OCA2 intron 14 (IVS14+5G>A), in compound heterozygosity with a frameshift mutation, c.1450_1451insCTGCCCTGACA, which is predicted to determine the premature termination of the polypeptide chain (p.I484Tfs*19). In-silico prediction of the effect of the IVS14+5G>A mutation on splicing showed a score reduction for the mutant splice site and indicated the possible activation of a newly-created deep-intronic acceptor splice site. The second mutation is a synonymous transition (c.2139G>A, p.K713K) involving the last nucleotide of exon 20. This mutation was found in a young African albino patient in compound heterozygosity with a previously-reported OCA2 missense mutation (p.T404M). In-silico analysis predicted that the mutant c.2139G>A allele would result in the abolition of the splice donor site. The effects on splicing of these two novel mutations were investigated using an in-vitro hybrid-minigene approach that led to the demonstration of the causal role of the two mutations and to the identification of aberrant transcript variants. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Identification of a novel PMS2 alteration c.505C>G (R169G) in trans with a PMS2 pathogenic mutation in a patient with constitutional mismatch repair deficiency.

    Science.gov (United States)

    Mork, Maureen E; Borras, Ester; Taggart, Melissa W; Cuddy, Amanda; Bannon, Sarah A; You, Y Nancy; Lynch, Patrick M; Ramirez, Pedro T; Rodriguez-Bigas, Miguel A; Vilar, Eduardo

    2016-10-01

    Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare autosomal recessive predisposition to colorectal polyposis and other malignancies, often childhood-onset, that is caused by biallelic inheritance of mutations in the same mismatch repair gene. Here, we describe a patient with a clinical diagnosis of CMMRD based on colorectal polyposis and young-onset endometrial cancer who was identified to have two alterations in trans in PMS2: one known pathogenic mutation (c.1831insA; p.Ile611Asnfs*2) and one novel variant of uncertain significance (c.505C>G; p.Arg169Glu), a missense alteration. We describe the clinical and molecular features in the patient harboring this novel alteration c.505C>G, who meets clinical criteria for CMMRD and exhibits molecular evidence supporting a diagnosis of CMMRD. Although experimental validation is needed to confirm its pathogenicity, PMS2 c.505C>G likely has functional consequences that contributes to our patient's phenotype based on the patient's clinical presentation, tumor studies, and bioinformatics analysis.

  5. Molecular Diagnosis of Analbuminemia: A New Case Caused by a Nonsense Mutation in the Albumin Gene

    Directory of Open Access Journals (Sweden)

    Lorenzo Minchiotti

    2011-10-01

    Full Text Available Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB. We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB gene, carried out by single-strand conformational polymorphism (SSCP, heteroduplex analysis (HA, and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23–c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.

  6. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    Science.gov (United States)

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource. © 2015 Stichting International Foundation for Animal Genetics.

  7. Molecular analysis of the most prevalent mutations of the FANCA and FANCC genes in Brazilian patients with Fanconi anaemia

    Directory of Open Access Journals (Sweden)

    David Enrique Aguilar Rodriguez

    2005-01-01

    Full Text Available Fanconi anaemia (FA is a recessive autosomal disease determined by mutations in genes of at least eleven complementation groups, with distinct distributions in different populations. As far as we know, there are no reports regarding the molecular characterisation of the disease in unselected FA patients in Brazil. OBECTIVE: This study aimed to investigate the most prevalent mutations of FANCA and FANCC genes in Brazilian patients with FA. METHODS: Genomic DNA obtained from 22 racially and ethnically diverse unrelated FA patients (mean age ± SD: 14.0 ± 7.8 years; 10 male, 12 female; 14 white, 8 black was analysed by polymerase chain reaction and restriction site assays for identification of FANCA (delta3788-3790 and FANCC (delta322G, IVS4+4A -> T, W22X, L496R, R548X, Q13X, R185X, and L554P gene mutations. RESULTS: Mutations in FANCA and FANCC genes were identified in 6 (27.3% and 14 (63.6% out of 22 patients, respectively. The disease could not be attributed to the tested mutations in the two remaining patients enrolled in the study (9.1%. The registry of the two most prevalent gene abnormalities (delta3788-3790 and IVS4 + 4 -> T revealed that they were present in 18.2% and 15.9% of the FA alleles, respectively. Additional FANCC gene mutations were found in the study, with the following prevalence: delta322G (11.4%, W22X (9.1%, Q13X (2.3%, L554P (2.3%, and R548X (2.3% of total FA alleles. CONCLUSION: These results suggest that mutations of FANCA and FANCC genes are the most prevalent mutations among FA patients in Brazil.

  8. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    Science.gov (United States)

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS.

  9. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  10. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  11. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    Science.gov (United States)

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  12. Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome.

    Science.gov (United States)

    Jiang, Lu; Chen, Hongsheng; Jiang, Wen; Hu, Zhengmao; Mei, Lingyun; Xue, Jingjie; He, Chufeng; Liu, Yalan; Xia, Kun; Feng, Yong

    2011-05-20

    We analyzed the clinical features and family-related gene mutations for the first two Chinese cases of type IV Waardenburg syndrome (WS4). Two families were analyzed in this study. The analysis included a medical history, clinical analysis, a hearing test and a physical examination. In addition, the EDNRB, EDN3 and SOX10 genes were sequenced in order to identify the pathogenic mutation responsible for the WS4 observed in these patients. The two WS4 cases presented with high phenotypic variability. Two novel heterozygous mutations (c.254G>A and c.698-2A>T) in the SOX10 gene were detected. The mutations identified in the patients were not found in unaffected family members or in 200 unrelated control subjects. This is the first report of WS4 in Chinese patients. In addition, two novel mutations in SOX10 gene have been identified. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  13. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation.

    Science.gov (United States)

    Connolly, Barbara S; Feigenbaum, Annette S J; Robinson, Brian H; Dipchand, Anne I; Simon, David K; Tarnopolsky, Mark A

    2010-11-12

    The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other "classical" mitochondrial phenotypes being manifestations. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. XPC gene mutations in families with xeroderma pigmentosum from Pakistan; prevalent founder effect.

    Science.gov (United States)

    Ijaz, Ambreen; Basit, Sulman; Gul, Ajab; Batool, Lilas; Hussain, Abrar; Afzal, Sibtain; Ramzan, Khushnooda; Ahmad, Jamil; Wali, Abdul

    2018-03-23

    Xeroderma pigmentosum (XP) is a rare autosomal recessive skin disorder characterized by hyperpigmentation, premature skin aging, ocular and cutaneous photosensitivity, and increased risk of skin carcinoma. We investigated seven consanguineous XP families with nine patients from Pakistan. All the Patients exhibited typical clinical symptoms of XP since first year of life. Whole genome SNP genotyping identified a 14 Mb autozygous region segregating with the disease phenotype on chromosome 3p25.1. DNA sequencing of XPC gene revealed a founder homozygous splice site mutation (c.2251-1G>C) in patients from six families (A-F) and a homozygous nonsense mutation (c.1399C>T; p.Gln467*) in patients of family G. This is the first report of XPC mutations, underlying XP phenotype, in Pakistani population. © 2018 Japanese Teratology Society.

  15. Allele frequencies of hemojuvelin gene (HJV I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Directory of Open Access Journals (Sweden)

    Bohannon Sean B

    2004-12-01

    Full Text Available Abstract Background Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis, and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. Methods We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. Results One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. Conclusions HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.

  16. Epidural Analgesia with Ropivacaine during Labour in a Patient with a SCN5A Gene Mutation

    Directory of Open Access Journals (Sweden)

    A. L. M. J. van der Knijff-van Dortmont

    2016-01-01

    Full Text Available SCN5A gene mutations can lead to ion channel defects which can cause cardiac conduction disturbances. In the presence of specific ECG characteristics, this mutation is called Brugada syndrome. Many drugs are associated with adverse events, making anesthesia in patients with SCN5A gene mutations or Brugada syndrome challenging. In this case report, we describe a pregnant patient with this mutation who received epidural analgesia using low dose ropivacaine and sufentanil during labour.

  17. Mutation of katG in a clinical isolate of Mycobacterium tuberculosis: effects on catalase-peroxidase for isoniazid activation.

    Science.gov (United States)

    Purkan; Ihsanawati; Natalia, D; Syah, Y M; Retnoningrum, D S; Kusuma, H S

    2016-01-01

    Mutations in katG gene are often associated with isoniazid (INH) resistance in Mycobacterium tuberculosis strain. This research was perfomed to identify the katG mutation in clinical isolate (L8) that is resistant to INH at 1 μg/ml. In addition to characterize the catalase-peroxidase of KatG L8 and perform the ab initio structural study of the protein to get a more complete understanding in drug activation and the resistan­ce mechanism. The katG gene was cloned and expressed in Escherichia coli, then followed by characterization of catalase-peroxidase of KatG. The structure modelling was performed to know a basis of alterations in enzyme activity. A substitution of A713G that correspond to Asn238Ser replacement was found in the L8 katG. The Asn238Ser modification leads to a decline in the activity of catalase-peroxidase and INH oxidation of the L8 KatG protein. The catalytic efficiency (Kcat/KM) of mutant KatGAsn238Ser respectively decreases to 41 and 52% for catalase and peroxidase. The mutant KatGAsn238Ser also shows a decrease of 62% in INH oxidation if compared to a wild type KatG (KatGwt). The mutant Asn238Ser might cause instability in the substrate binding­ site of KatG, because of removal of a salt bridge connecting the amine group of Asn238 to the carbo­xyl group of Glu233, which presents in KatGwt. The lost of the salt bridge in the substrate binding site in mutant KatGAsn238Ser created changes unfavorable for enzyme activities, which in turn emerge as INH resistan­ce in the L8 isolate of M. tuberculosis.

  18. [Analysis of gene mutation in a Chinese family with Norrie disease].

    Science.gov (United States)

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  19. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  20. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  1. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    International Nuclear Information System (INIS)

    Ostrowski, Jerzy; Dobosz, Anna Jerzak Vel; Jarosz, Dorota; Ruka, Wlodzimierz; Wyrwicz, Lucjan S; Polkowski, Marcin; Paziewska, Agnieszka; Skrzypczak, Magdalena; Goryca, Krzysztof; Rubel, Tymon; Kokoszyñska, Katarzyna; Rutkowski, Piotr; Nowecki, Zbigniew I

    2009-01-01

    Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP ® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status

  2. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due...... to alterations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In the diagnostic setting, sub classification of HCA is based primarily on immunohistochemical analyzes, and has had an increasing impact on choice of treatment and individual prognostic assessment....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  3. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  4. Thyroglobulin Gene Mutation with Cold Nodule on Thyroid Scintigraphy

    Directory of Open Access Journals (Sweden)

    Toshio Kahara

    2012-01-01

    Full Text Available Thyroglobulin gene mutation is a rare cause of congenital hypothyroidism, but thyroglobulin gene mutations are thought to be associated with thyroid cancer development. A 21-year-old Japanese man treated with levothyroxine for congenital hypothyroidism had an enlarged thyroid gland with undetectable serum thyroglobulin despite elevated serum TSH level. The patient was diagnosed with thyroglobulin gene mutation, with compound heterozygosity for Gly304Cys missense mutation and Arg432X nonsense mutation. Ultrasonography showed a hypovascular large tumor in the left lobe that appeared as a cold nodule on thyroid scintigraphy. He underwent total thyroidectomy, but pathological study did not reveal findings of thyroid carcinoma, but rather a hyperplastic nodule with hemorrhage. Strong cytoplasmic thyroglobulin immunostaining was observed, but sodium iodide symporter immunostaining was hardly detected in the hyperplastic nodule. The clinical characteristics of patients with thyroglobulin gene mutations are diverse, and some patients are diagnosed by chance on examination of goiter in adults. The presence of thyroid tumors that appear as cold nodules on thyroid scintigraphy should consider the potential for thyroid carcinoma, if the patient has relatively low serum thyroglobulin concentration in relation to the degree of TSH without thyroglobulin autoantibody.

  5. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    Science.gov (United States)

    Watanabe, Yui; Ebrhim, Reham Shareef; Abdullah, Mohamed A; Weiss, Roy E

    2018-05-15

    Thyroid hormone synthesis requires the presence of iodide. The sodium iodide symporter (NIS) is a glycoprotein which mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is the North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH and she was started on levothyroxine (L-T4). Presumably due to the delayed treatment the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion and umbilical hernia and the youngest brother was also diagnosed with CH based on the TSH >100 µIU/mL at the age of 22 days and 8 days, respectively. Two siblings were treated with L-T4 and had normal development. Their consanguineous parents had no history of thyroid disorders. We performed whole exome sequencing (WES) on the proposita. WES identified a novel homozygous missense mutation in the SLC5A5 gene: c.1042T>G, p.Tyr348Asp, which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus and an intracellular carboxyl terminus. The mutation is located in the TMS IX which has the most β-OH group-containing amino acids (serine and threonine) which is implicated in Na+ binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in the Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein which is essential for NIS function. Low iodine intake in Sudan is considered to affect severity of hypothyroidism in the patients.

  7. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  8. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    Science.gov (United States)

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  9. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  10. Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a mutation in the arginine-vasopressin II gene in four generations of a Korean family

    Directory of Open Access Journals (Sweden)

    Myo-Jing Kim

    2014-12-01

    Full Text Available Autosomal dominant neurohypophyseal diabetes insipidus is a rare form of central diabetes insipidus that is caused by mutations in the vasopressin-neurophysin II (AVP-NPII gene. It is characterized by persistent polydipsia and polyuria induced by deficient or absent secretion of arginine vasopressin (AVP. Here we report a case of familial neurohypophyseal diabetes insipidus in four generations of a Korean family, caused by heterozygous missense mutation in exon 2 of the AVP-NPII gene (c.286G>T. This is the first report of such a case in Korea.

  11. Netherton syndrome in one Chinese adult with a novel mutation in the SPINK5 gene and immunohistochemical studies of LEKTI

    Directory of Open Access Journals (Sweden)

    Zhang Xi-Bao

    2012-01-01

    Full Text Available Background : Netherton syndrome (NS is a severe autosomal recessive ichthyosis. It is characterized by congenital ichthyosiform erythroderma, trichorrhexis invaginata, ichthyosis linearis circumflexa, atopic diathesis, and frequent bacterial infections. The disease is caused by mutations in the SPINK5 (serine protease inhibitor Kazal-type 5 gene, a new type of serine protease inhibitor involved in the regulation of skin barrier formation and immunity. We report one Chinese adult with NS. The patient had typical manifestation of NS except for trichorrhexis invaginata with an atopic diathesis and recurrent staphylococcal infections since birth. Aims: To evaluate the gene mutation and of its product activity of SPINK5 gene in confirmation of the diagnosis of one Chinese adult with NS. Materials and Methods: To screen mutations in the SPINK5 gene, 33 exons and flanking intron boundaries of SPINK5 were amplified with polymerase chain reaction (PCR and used for direct sequencing. In addition, immunohistochemical staining of LEKTI (lymphoepithelial Kazal-type-related inhibitor with specific antibody was used to confirm the diagnosis of NS. The results were compared with that of healthy individuals (twenty-five blood samples. Results: A G318A mutation was found at exon 5 of patient′s SPINK5 gene which is a novel missense mutation. The PCR amplification products with mutation-specific primer were obtained only from the DNA of the patients and their mother, but not from their father and 25 healthy individuals. Immunohistochemical studies indicated there was no LEKTI expression in NS patient′s skin and there was a strong LEKTI expression in the normal human skin. Conclusion: In this report, we describe heterozygous mutation in the SPINK5 gene and expression of LEKTI in one Chinese with NS. The results indicate that defective expression of LEKTI in the epidermis and mutations of SPINK5 gene are reliable for diagnostic feature of NS with atypical

  12. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    Science.gov (United States)

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  13. A Novel WT1 Gene Mutation in a Three-Generation Family with Progressive Isolated Focal Segmental Glomerulosclerosis

    Science.gov (United States)

    Caridi, Gianluca; Malaventura, Cristina; Dagnino, Monica; Leonardi, Emanuela; Artifoni, Lina; Ghiggeri, Gian Marco; Tosatto, Silvio C.E.; Murer, Luisa

    2010-01-01

    Background and objectives: Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping clinical and molecular features have been reported. Few familial cases have been described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been reported. Design, setting, participants, & measurements: Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three generations of a family with late-onset isolated proteinuria. The effect of the detected amino acid substitution on WT1 protein's structure was studied by bioinformatics tools. Results: Three family members reached end-stage renal disease in full adulthood. None had genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 was identified in all of the affected members of the family. Conclusions: The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or presence of typical Denys-Drash or Frasier syndrome clinical features. Structural analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA interactions, impairing target gene transcription. This finding opens up new issues about WT1 function in the maintenance of the complex gene network that regulates normal podocyte function. PMID:20150449

  14. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    receptor 3 (FGFR3) gene, which is a gain-of-function mutation resulting in achondroplasia. The patient had phenotypic characteristics of achondroplasia (e.g. short limbed dwarfism and frontal bossing). Testicular volume was 8 ml at 27 years of age and repeated semen samples showed sperm concentrations of 0...

  15. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Science.gov (United States)

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  16. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    Directory of Open Access Journals (Sweden)

    Zied Riahi

    Full Text Available Usher syndrome (USH is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3 are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys, in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24, and a nonsense mutation, c.52A>T (p.Lys18*. Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  17. Advances in sarcoma gene mutations and therapeutic targets.

    Science.gov (United States)

    Gao, Peng; Seebacher, Nicole A; Hornicek, Francis; Guo, Zheng; Duan, Zhenfeng

    2018-01-01

    Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management. Published by Elsevier Ltd.

  18. Prevalence of 2314delG mutation in Spanish patients with Usher syndrome type II (USH2).

    Science.gov (United States)

    Beneyto, M M; Cuevas, J M; Millán, J M; Espinós, C; Mateu, E; González-Cabo, P; Baiget, M; Doménech, M; Bernal, S; Ayuso, C; García-Sandoval, B; Trujillo, M J; Borrego, S; Antiñolo, G; Carballo, M; Nájera, C

    2000-06-01

    The Usher syndrome (USH) is a group of autosomal recessive diseases characterized by congenital sensorineural hearing loss and retinitis pigmentosa. Three clinically distinct forms of Usher syndrome have so far been recognized and can be distinguished from one another by assessing auditory and vestibular function. Usher syndrome type II (USH2) patients have congenital moderate-to-severe nonprogressive hearing loss, retinitis pigmentosa, and normal vestibular function. Genetic linkage studies have revealed genetic heterogeneity among the three types of USH, with the majority of USH2 families showing linkage to the USH2A locus in 1q41. The USH2A gene (MIM 276901) has been identified: three mutations, 2314delG, 2913delG, and 4353-54delC, were initially reported in USH2A patients, the most frequent of which is the 2314delG mutation. It has been reported that this mutation can give rise to typical and atypical USH2 phenotypes. USH2 cases represent 62% of all USH cases in the Spanish population, and 95% of these cases have provided evidence of linkage to the USH2A locus. In the present study, the three reported mutations were analyzed in 59 Spanish families with a diagnosis of USH type II. The 2314delG was the only mutation identified in our population: it was detected in 25% of families and 16% of USH2 chromosomes analyzed. This study attempts to estimate the prevalence of this common mutation in a homogeneous Spanish population.

  19. A genetic study of Factor V Leiden (G1691A) mutation in young ischemic strokes with large vessel disease in a South Indian population.

    Science.gov (United States)

    Anadure, Ravi; Christopher, Rita; Nagaraja, Dindagur; Narayanan, Coimbatore

    2017-10-01

    Factor V Leiden (FVL) has been, by far, the most investigated gene mutation, with 26 studies to date, on its role in arterial strokes. Overall, a meta-analysis of all these studies taken together showed that carriers of the Factor V Leiden allele were 1.33times more likely to develop arterial strokes when compared to controls. We subjected a highly select subset of young strokes, with large vessel infarcts, to genetic analysis for FVL mutation and compared them with matched healthy controls to look for a statistically significant association. In this prospective study, 6/120 cases (5%) and 2/120 controls (1.6%) were positive for heterozygous FVL (G1691A) mutation. The higher prevalence of FVL mutation in cases (5%) compared to controls (1.6%) did not show statistical significance with a Pearson's Chi square P value of 0.15. The Odds Ratio (OR) for risk of large vessel disease in FVL positive cases was 3.10 (95% CI of 0.61-15.7). FVL mutation (G1691A) in young Indian subjects with ischemic strokes does not seem to be significantly associated with large vessel disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD).

    Science.gov (United States)

    Torniainen, Suvi; Freddara, Roberta; Routi, Taina; Gijsbers, Carolien; Catassi, Carlo; Höglund, Pia; Savilahti, Erkki; Järvelä, Irma

    2009-01-22

    Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT) gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation.

  1. Four novel mutations in the lactase gene (LCT underlying congenital lactase deficiency (CLD

    Directory of Open Access Journals (Sweden)

    Höglund Pia

    2009-01-01

    Full Text Available Abstract Background Congenital lactase deficiency (CLD is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Methods Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Results Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. Conclusion This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation.

  2. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    Science.gov (United States)

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  3. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    Science.gov (United States)

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  4. X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.

    Science.gov (United States)

    Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L

    2017-01-01

    We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.

  5. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    Science.gov (United States)

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  6. Opposing Forces of A/T-Biased Mutations and G/C-Biased Gene Conversions Shape the Genome of the Nematode Pristionchus pacificus

    Science.gov (United States)

    Weller, Andreas M.; Rödelsperger, Christian; Eberhardt, Gabi; Molnar, Ruxandra I.; Sommer, Ralf J.

    2014-01-01

    Base substitution mutations are a major source of genetic novelty and mutation accumulation line (MAL) studies revealed a nearly universal AT bias in de novo mutation spectra. While a comparison of de novo mutation spectra with the actual nucleotide composition in the genome suggests the existence of general counterbalancing mechanisms, little is known about the evolutionary and historical details of these opposing forces. Here, we correlate MAL-derived mutation spectra with patterns observed from population resequencing. Variation observed in natural populations has already been subject to evolutionary forces. Distinction between rare and common alleles, the latter of which are close to fixation and of presumably older age, can provide insight into mutational processes and their influence on genome evolution. We provide a genome-wide analysis of de novo mutations in 22 MALs of the nematode Pristionchus pacificus and compare the spectra with natural variants observed in resequencing of 104 natural isolates. MALs show an AT bias of 5.3, one of the highest values observed to date. In contrast, the AT bias in natural variants is much lower. Specifically, rare derived alleles show an AT bias of 2.4, whereas common derived alleles close to fixation show no AT bias at all. These results indicate the existence of a strong opposing force and they suggest that the GC content of the P. pacificus genome is in equilibrium. We discuss GC-biased gene conversion as a potential mechanism acting against AT-biased mutations. This study provides insight into genome evolution by combining MAL studies with natural variation. PMID:24414549

  7. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alqahtani

    2015-01-01

    Full Text Available Congenital adrenal hyperplasia (CAH due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260∗, resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260∗ was reported in a patient with papillary thyroid cancer (COSMIC database. In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.

  8. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    Science.gov (United States)

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  9. Amelogenesis Imperfecta and Screening of Mutation in Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Fernanda Veronese Oliveira

    2014-01-01

    Full Text Available The aim of this study was to report the clinical findings and the screening of mutations of amelogenin gene of a 7-year-old boy with amelogenesis imperfecta (AI. The genomic DNA was extracted from saliva of patient and his family, followed by PCR and direct DNA sequencing. The c.261C>T mutation was found in samples of mother, father, and brother, but the mutation was not found in the sequence of the patient. This mutation is a silent mutation and a single-nucleotide polymorphism (rs2106416. Thus, it is suggested that the mutation found was not related to the clinical presence of AI. Further research is necessary to examine larger number of patients and genes related to AI.

  10. Identification of Novel Mutations in FAH Gene and Prenatal Diagnosis of Tyrosinemia in Indian Family

    Directory of Open Access Journals (Sweden)

    Jayesh J. Sheth

    2012-01-01

    Full Text Available Carrier of tyrosinemia type I was diagnosed by sequencing FAH (fumarylacetoacetate hydrolase gene. It leads to the identification of heterozygous status for both c.648C>G (p.Ile216Met and c.1159G>A (p.Gly387Arg mutations in exons 8 and 13, respectively, in the parents. The experimental program PolyPhen, SIFT, and MT predicts former missense point mutation as “benign” that creates a potential donor splice site and later one as “probably damaging” which disrupts secondary structure of protein.

  11. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women.

    Science.gov (United States)

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E; Thwai, Kyaw L; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O

    2015-06-15

    The A581 G: mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased placental inflammation and decreased infant birth weight among women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) during pregnancy. Between 2009 and 2011, delivering women without human immunodeficiency virus infection were enrolled in an observational study of IPTp-SP effectiveness in Malawi. Parasites were detected by polymerase chain reaction (PCR); positive samples were sequenced to genotype the dhfr and dhps loci. The presence of K540 E: in dhps was used as a marker for the quintuple mutant. Samples from 1809 women were analyzed by PCR; 220 (12%) were positive for P. falciparum. A total of 202 specimens were genotyped at codon 581 of dhps; 17 (8.4%) harbored the sextuple mutant. The sextuple mutant was associated with higher risks of patent infection in peripheral blood (adjusted prevalence ratio [aPR], 2.76; 95% confidence interval [CI], 1.82-4.18) and placental blood (aPR 3.28; 95% CI, 1.88-5.78) and higher parasite densities. Recent SP use was not associated with increased parasite densities or placental pathology overall and among women with parasites carrying dhps A581 G: . IPTp-SP failed to inhibit parasite growth but did not exacerbate pathology among women infected with sextuple-mutant parasites. New interventions to prevent malaria during pregnancy are needed urgently. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    OpenAIRE

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, delet...

  13. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    Science.gov (United States)

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

  14. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  15. Evidence for prehistoric origins of the G2019S mutation in the North African Berber population.

    Science.gov (United States)

    Ben El Haj, Rafiqua; Salmi, Ayyoub; Regragui, Wafa; Moussa, Ahmed; Bouslam, Naima; Tibar, Houyam; Benomar, Ali; Yahyaoui, Mohamed; Bouhouche, Ahmed

    2017-01-01

    The most common cause of the monogenic form of Parkinson's disease known so far is the G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene. Its frequency varies greatly among ethnic groups and geographic regions ranging from less than 0.1% in Asia to 40% in North Africa. This mutation has three distinct haplotypes; haplotype 1 being the oldest and most common. Recent studies have dated haplotype 1 of the G2019S mutation to about 4000 years ago, but it remains controversial whether the mutation has a Near-Eastern or Moroccan-Berber ancestral origin. To decipher this evolutionary history, we genotyped 10 microsatellite markers spanning a region of 11.27 Mb in a total of 57 unrelated Moroccan PD patients carrying the G2019S mutation for which the Berber or Arab origin was established over 3 generations based on spoken language. We estimated the age of the most recent common ancestor for the 36 Arab-speaking and the 15 Berber-speaking G2019S carriers using the likelihood-based method with a mutation rate of 10-4. Data analysis suggests that the shortest haplotype originated in a patient of Berber ethnicity. The common founder was estimated to have lived 159 generations ago (95% CI 116-224) for Arab patients, and 200 generations ago (95% CI 123-348) for Berber patients. Then, 29 native North African males carrying the mutation were assessed for specific uniparental markers by sequencing the Y-chromosome (E-M81, E-M78, and M-267) and mitochondrial DNA (mtDNA) hypervariable regions (HV1 and HV2) to examine paternal and maternal contributions, respectively. Results showed that the autochthonous genetic component reached 76% for mtDNA (Eurasian and north African haplogroups) and 59% for the Y-chromosome (E-M81 and E-M78), suggesting that the G2019S mutation may have arisen in an autochthonous DNA pool. Therefore, we conclude that LRRK2 G2019S mutation most likely originated in a Berber founder who lived at least 5000 years ago (95% CI 3075-8700).

  16. The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-1 levels in women with polycystic ovary syndrome.

    Science.gov (United States)

    Lin, Sun; Huiya, Zhang; Bo, Liu; Wei, Wei; Yongmei, Guan

    2009-12-01

    Mutations in the plasminogen activator inhibitor-1 (PAI-1) gene, along with increased PAI-1 levels, have been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS). We investigated a possible influence of the promoter polymorphism (-844 A/G and -675 4G/5G) in the PAI-1 gene on plasma PAI-1 levels in 126 PCOS patients and 97 healthy controls. Levels of total testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), fasting plasma glucose (FPG), fasting insulin, and PAI-1 were measured, and body mass index (BMI), waist-to-hip ratio (WHR), LH/FSH ratio, and homeostasis model assessment for insulin resistance (HOMA-IR) were calculated. PAI-1 -675 4G/5G and -844 A/G gene polymorphisms were also performed. Total testosterone, fasting insulin, and PAI-1 levels; BMI, LH/FSH, and HOMA-IR were significantly higher in PCOS patients than controls (P 5G or 5G/5G genotype. The plasma PAI-1 levels of the combination of the PAI-1 -844 A/A and -675 4G/4G or 4G/5G genotypes, or the coadunation of 4G/4G and -844 non-G/G (A/A + A/G) genotypes were significantly high in PCOS women compared with controls. A trend to a positive interaction between PAI-1 -675 4G/5G and -844 A/G gene polymorphism may elevate plasma PAI-1 levels and hypofibrinolysis, which is probably an important hereditary risk factor in PCOS.

  17. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  18. A Novel Missense Mutation of the NSD1 Gene Associated with Overgrowth in Three Generations of an Italian Family: Case Report, Differential Diagnosis, and Review of Mutations of NSD1 Gene in Familial Sotos Syndrome

    Directory of Open Access Journals (Sweden)

    Gianluigi Laccetta

    2017-11-01

    Full Text Available Sotos syndrome (SoS is characterized by overgrowth of prenatal onset, learning disability, and characteristic facial appearance; it is usually due to haploinsufficiency of NSD1 gene at chromosome 5q35. An Italian child was born at 37 weeks of gestation (weight 2,910 g, 25th–50th centiles; length 50 cm, 75th centile; head circumference 36 cm, 97th centile showing cryptorchidism on the right side, hypertelorism, dolichocephaly, broad and prominent forehead, and narrow jaw; the pregnancy was worsened by maternal preeclampsia and gestational diabetes, and his mother had a previous history of four early miscarriages. The patient showed neonatal jaundice, hypotonia, feeding difficulties, frequent vomiting, and gastroesophageal reflux. After the age of 6 months, his weight, length, and head circumference were above the 97th centile; psychomotor development was delayed. At the age of 9 years, the patient showed also joint laxity and scoliosis. DNA sequence analysis of NSD1 gene detected a novel heterozygous mutation (c.521T>A, p.Val174Asp in exon 2. The same mutant allele was also found in the mother and in the maternal grandfather of the proband; both the mother and the maternal grandfather of the proband showed isolated overgrowth with height above the 97th centile in absence of other features of SoS. At present 23 familial cases of SoS have been described (two cases with mutation in exon 2 of NSD1 gene; no familial cases of SoS with mutation of NSD1 gene and isolated overgrowth have been reported. Probably, point mutations of NSD1 gene, and particularly mutations between exon 20 and exon 23, are not likely to affect reproductive fitness. Epigenetic mechanisms and intrauterine environment may influence phenotypes, therefore genetic tests are not useful to predict the phenotype but they are indispensable for the diagnosis of SoS. This is the first Italian familial case of SoS with genetic confirmation and the third report in which a

  19. Mutation analysis of the NRXN1 gene in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Onay H

    2016-12-01

    Full Text Available The aim of this study was to identify the sequence mutations in the Neurexin 1 (NRXN1 gene that has been considered as one of the strong candidate genes. A total of 30 children and adolescents (aged 3-18 with non syndromic autism were enrolled this study. Sequencing of the coding exons and the exon-intron boundaries of the NRXN1 gene was performed. Two known mutations were described in two different cases. Heterozygous S14L was determined in one patient and heterozygous L748I was determined in another patient. The S14L and L748I mutations have been described in the patients with autism before. Both of these mutations were inherited from their father. In this study, two of 30 (6.7% autism spectrum disorder (ASD patients carrying NRXN1 gene mutations were detected. It indicates that variants in the NRXN1 gene might confer a risk of developing nonsyndromic ASD. However, due to the reduced penetrance in the gene, the causal role of the NRXN1 gene mutations must be evaluated carefully in all cases.

  20. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura

    KAUST Repository

    Lancellotti, S.

    2015-08-13

    Congenital thrombotic thrombocytopenic purpura (TTP) is a rare form of thrombotic microangiopathy, inherited with autosomal recessive mode as a dysfunction or severe deficiency of ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin 1 repeats Nr. 13), caused by mutations in the ADAMTS-13 gene. About 100 mutations of the ADAMTS-13 gene were identified so far, although only a few characterised by in vitro expression studies. A new Asp to Gly homozygous mutation at position 173 of ADAMTS-13 sequence was identified in a family of Romanian origin, with some members affected by clinical signs of TTP. In two male sons, this mutation caused a severe (< 3 %) deficiency of ADAMTS-13 activity and antigen level, associated with periodic thrombocytopenia, haemolytic anaemia and mild mental confusion. Both parents, who are cousins, showed the same mutation in heterozygous form. Expression studies of the mutant ADAMTS-13, performed in HEK293 cells, showed a severe decrease of the enzyme’s activity and secretion, although the protease was detected inside the cells. Molecular dynamics found that in the D173G mutant the interface area between the metalloprotease domain and the disintegrin-like domain significantly decreases during the simulations, while the proline-rich 20 residues linker region (LR, 285–304) between them undergoes extensive conformational changes. Inter-domain contacts are also significantly less conserved in the mutant compared to the wild-type. Both a decrease of the inter-domain contacts along with a substantial conformational rearrangement of LR interfere with the proper maturation and folding of the mutant ADAMTS-13, thus impairing its secretion.

  1. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura

    KAUST Repository

    Lancellotti, S.; Peyvandi, F.; Pagliari, M.; Cairo, A.; Abdel-Azeim, Safwat; Chermak, Edrisse; Lazzareschi, I.; Mastrangelo, S.; Cavallo, Luigi; Oliva, R.; De Cristofaro, R.

    2015-01-01

    Congenital thrombotic thrombocytopenic purpura (TTP) is a rare form of thrombotic microangiopathy, inherited with autosomal recessive mode as a dysfunction or severe deficiency of ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin 1 repeats Nr. 13), caused by mutations in the ADAMTS-13 gene. About 100 mutations of the ADAMTS-13 gene were identified so far, although only a few characterised by in vitro expression studies. A new Asp to Gly homozygous mutation at position 173 of ADAMTS-13 sequence was identified in a family of Romanian origin, with some members affected by clinical signs of TTP. In two male sons, this mutation caused a severe (< 3 %) deficiency of ADAMTS-13 activity and antigen level, associated with periodic thrombocytopenia, haemolytic anaemia and mild mental confusion. Both parents, who are cousins, showed the same mutation in heterozygous form. Expression studies of the mutant ADAMTS-13, performed in HEK293 cells, showed a severe decrease of the enzyme’s activity and secretion, although the protease was detected inside the cells. Molecular dynamics found that in the D173G mutant the interface area between the metalloprotease domain and the disintegrin-like domain significantly decreases during the simulations, while the proline-rich 20 residues linker region (LR, 285–304) between them undergoes extensive conformational changes. Inter-domain contacts are also significantly less conserved in the mutant compared to the wild-type. Both a decrease of the inter-domain contacts along with a substantial conformational rearrangement of LR interfere with the proper maturation and folding of the mutant ADAMTS-13, thus impairing its secretion.

  2. Spectrum of benzo[a]pyrene-induced mutations in the Pig-a gene of L5178YTk+/- cells identified with next generation sequencing.

    Science.gov (United States)

    Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N

    2017-12-01

    We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.

  3. Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP.

    Science.gov (United States)

    Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S

    2002-03-20

    Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.

  4. Prevalence of DF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil

    Directory of Open Access Journals (Sweden)

    Araújo F.G. de

    2005-01-01

    Full Text Available Cystic fibrosis (CF is the most common genetic disease among Caucasians and is rare among sub-Saharan Africans. The Brazilian population is not ethnically homogeneous but it is the result of three-way ethnic admixture of Europeans, Africans and Amerindians in varying proportions, depending on the region. In the present study, we investigated 33 patients who had been diagnosed and are currently under treatment for CF at the University Hospital João de Barros Barreto, Belém, Pará State. The molecular analysis for G542X, G551D and R553X mutations was performed by PCR followed by RFLP using BstNI, HincII and MboI, respectively, in polyacrylamide gel eletrophoresis and stained with AgNO3. ThedeltaF508 mutation (a deletion of 3 bp was only analyzed by polyacrylamide gel electrophoresis and stained with AgNO3. Each sample was analyzed for regions of interest in the CFTR gene using amplified by PCR and specific primers. The deltaF508 and G551D mutations presented frequencies of 22.7 and 3%, respectively. In 74.3% of the remaining patients, none of the mutations investigated was found. The present study characterized in a sample of patients with an established clinical diagnosis of CF (asthma, repeated bronchopneumonia, disorders of nutritional status, etc. the most frequent mutation ( deltaF508 in the North region of Brazil and is also the first report of the G551D mutation. In spite of the wide spectrum of CF mutations and the heterogeneous ethnic origin of the Amazon population, the molecular diagnosis is a helpful additional tool for the diagnosis and treatment of CF patients.

  5. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    Science.gov (United States)

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  6. MUTATIONS OF THE SMARCB1 GENE IN HUMAN CANCERS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhaylenko

    2016-01-01

    Full Text Available In the recent years, the full exome sequencing helped to reveal a  set of mutations in the genes that are not oncogenes or tumor suppressor genes by definition, but play an important role in carcinogenesis and encode proteins involved in chromatin remodeling. Among chromatin remodeling systems, which operate through the ATP-dependent mechanism, the complex SWI/ SNF attracts the great attention. The complex consists of the catalytic ATPase (SMARCA2/4, a group of conservative core subunits (SMARCB1, SMARCC1/2, and variant subunits. Abnormalities in the genes coding for each of these components have been identified as driver mutations in various human tumors. The SMARCB1 gene is of interest for practical oncogenetics, with its typical genotype-phenotype correlations. Germinal inactivating mutations (frameshift insertions/deletions, full deletions of the gene, nonsense mutations lead to development of rhabdoid tumors in the kidneys and the brain in children in their first years of life, or even in utero. These tumors are highly malignant (Rhabdoid Tumor Predisposition Syndrome 1 – RTPS1. If a mutation carrier survives his/hers four years of life without manifestation RTPS1 with a missense mutation or has the mutation in the "hot spot" of the first or the last exon, then he/she will not develop rhabdoid tumors, but after 20 years of life, shwannomatosis may develop as multiple benign tumors of peripheral nerves. Finally, some point mutations in the exons 8–9 can result in Coffin-Siris syndrome characterized by mental retardation and developmental disorders, but no neoplasms. In this regard, rational referral of patients for direct DNA diagnostics of each of the described disease entities plays an important role, based on respective minimal criteria, as well as necessity of further development of NGS technologies (full genome and full exome sequencing that are able to sequence not only individual exons, but all candidate genes of the

  7. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    Science.gov (United States)

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  8. Identification of the CFTR c.1666A>G Mutation in Hereditary Inclusion Body Myopathy Using Next-Generation Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2018-05-01

    Full Text Available Hereditary inclusion body myopathy (HIBM is a rare autosomal recessive adult onset muscle disease which affects one to three individuals per million worldwide. This disease is autosomal dominant and occurs in adulthood. Our previous study reported a new subtype of HIBM linked to the susceptibility locus at 7q22.1-31.1. The present study is aimed to identify the candidate gene responsible for the phenotype in HIBM pedigree. After multipoint linkage analysis, we performed targeted capture sequencing on 16 members and whole-exome sequencing (WES on 5 members. Bioinformatics filtering was performed to prioritize the candidate pathogenic gene variants, which were further genotyped by Sanger sequencing. Our results showed that the highest peak of LOD score (4.70 was on chromosome 7q22.1-31.1.We identified 2 and 22 candidates using targeted capture sequencing and WES respectively, only one of which as CFTRc.1666A>G mutation was well cosegregated with the HIBM phenotype. Using transcriptome analysis, we did not detect the differences of CFTR's mRNA expression in the proband compared with healthy members. Due to low incidence of HIBM and there is no other pedigree to assess, mutation was detected in three patients with duchenne muscular dystrophyn (DMD and five patients with limb-girdle muscular dystrophy (LGMD. And we found that the frequency of mutation detected in DMD and LGMD patients was higher than that of being expected in normal population. We suggested that the CFTRc.1666A>G may be a candidate marker which has strong genetic linkage with the causative gene in the HIBM family.

  9. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    Science.gov (United States)

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  10. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Houman Ashrafian

    2010-06-01

    Full Text Available Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM. However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.

  11. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    2013-04-01

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  12. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  13. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Mutations in the VLGR1 Gene Implicate G-Protein Signaling in the Pathogenesis of Usher Syndrome Type II

    Science.gov (United States)

    Weston, Michael D.; Luijendijk, Mirjam W. J.; Humphrey, Kurt D.; Möller, Claes; Kimberling, William J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted. PMID:14740321

  15. Mutations in MC1R Gene Determine Black Coat Color Phenotype in Chinese Sheep

    Directory of Open Access Journals (Sweden)

    Guang-Li Yang

    2013-01-01

    Full Text Available The melanocortin receptor 1 (MC1R plays a central role in regulation of animal coat color formation. In this study, we sequenced the complete coding region and parts of the 5′- and 3′-untranslated regions of the MC1R gene in Chinese sheep with completely white (Large-tailed Han sheep, black (Minxian Black-fur sheep, and brown coat colors (Kazakh Fat-Rumped sheep. The results showed five single nucleotide polymorphisms (SNPs: two non-synonymous mutations previously associated with coat color (c.218 T>A, p.73 Met>Lys. c.361 G>A, p.121 Asp>Asn and three synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu. c.735 C>T, p.245 Ile>Ile. Meanwhile, all mutations were detected in Minxian Black-fur sheep. However, the two nonsynonymous mutation sites were not in all studied breeds (Large-tailed Han, Small-tailed Han, Gansu Alpine Merino, and China Merino breeds, all of which are in white coat. A single haplotype AATGT (haplotype3 was uniquely associated with black coat color in Minxian Black-fur breed (P=9.72E-72, chi-square test. The first and second A alleles in this haplotype 3 represent location at 218 and 361 positions, respectively. Our results suggest that the mutations of MC1R gene are associated with black coat color phenotype in Chinese sheep.

  16. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  17. Novel glucokinase gene mutation in the first Macedonian family tested for MODY.

    Science.gov (United States)

    Kocova, M; Elblova, L; Pruhova, S; Lebl, J; Dusatkova, P

    2017-08-01

    We present a boy with mild hyperglycemia detected during an upper respiratory infection. Novel splicing mutation in the intron 1 of the GCK gene (c.45+1G>A) was detected, and was subsequently confirmed in his father. This is the first case of genetically confirmed Macedonian family with MODY. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Glucose-6-phosphate dehydrogenase (G6PD mutations and haemoglobinuria syndrome in the Vietnamese population

    Directory of Open Access Journals (Sweden)

    Day Nick

    2009-07-01

    Full Text Available Abstract Background In Vietnam the blackwater fever syndrome (BWF has been associated with malaria infection, quinine ingestion and G6PD deficiency. The G6PD variants within the Vietnamese Kinh contributing to the disease risk in this population, and more generally to haemoglobinuria, are currently unknown. Method Eighty-two haemoglobinuria patients and 524 healthy controls were screened for G6PD deficiency using either the methylene blue reduction test, the G-6-PDH kit or the micro-methaemoglobin reduction test. The G6PD gene variants were screened using SSCP combined with DNA sequencing in 82 patients with haemoglobinuria, and in 59 healthy controls found to be G6PD deficient. Results This study confirmed that G6PD deficiency is strongly associated with haemoglobinuria (OR = 15, 95% CI [7.7 to 28.9], P G6PD variants were identified in the Vietnamese population, of which two are novel (Vietnam1 [Glu3Lys] and Vietnam2 [Phe66Cys]. G6PD Viangchan [Val291Met], common throughout south-east Asia, accounted for 77% of the variants detected and was significantly associated with haemoglobinuria within G6PD-deficient ethnic Kinh Vietnamese (OR = 5.8 95% CI [114-55.4], P = 0.022. Conclusion The primary frequency of several G6PD mutations, including novel mutations, in the Vietnamese Kinh population are reported and the contribution of G6PD mutations to the development of haemoglobinuria are investigated.

  19. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  20. The clinical impact of MTHFR polymorphism on the vascular complications of sickle cell disease

    Directory of Open Access Journals (Sweden)

    F. Moreira Neto

    2006-10-01

    Full Text Available Sickle cell disease (SCD is one of the most common inherited diseases in the world and the patients present notorious clinical heterogeneity. It is known that patients with SCD present activation of the blood coagulation and fibrinolytic systems, especially during vaso-occlusive crises, but also during the steady state of the disease. We determined if the presence of the factor V gene G1691A mutation (factor V Leiden, the prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase (MTHFR C677T polymorphism may be risk factors for vascular complications in individuals with SCD. We studied 53 patients with SCD (60% being women, 29 with SS (sickle cell anemia; 28 years, range: 13-52 years and 24 with SC (sickle-hemoglobin C disease; 38.5 years, range: 17-72 years hemoglobinopathy. Factor V Leiden, MTHFR C677T polymorphism, and prothrombin G20210A variant were identified by PCR followed by further digestion of the PCR product with specific endonucleases. The following vascular complications were recorded: stroke, retinopathy, acute thoracic syndrome, and X-ray-documented avascular necrosis. Only one patient was heterozygous for factor V Leiden (1.8% and there was no prothrombin G20210A variant. MTHFR 677TT polymorphism was detected in 1 patient (1.8% and the heterozygous form 677TC was observed in 18 patients (34%, 9 with SS and 9 with SC disease, a prevalence similar to that reported by others. No association was detected between the presence of the MTHFR 677T allele and other genetic modulation factors, such as alpha-thalassemia, ß-globin gene haplotype and fetal hemoglobin. The presence of the MTHFR 677T allele was associated with the occurrence of vascular complications in SCD, although this association was not significant when each complication was considered separately. In conclusion, MTHFR C677T polymorphism might be a risk factor for vascular complications in SCD.

  1. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Daffolyn Rachael Fels Elliott

    2017-05-01

    Full Text Available Esophageal adenocarcinoma (EAC develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5 tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05 tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples, including uterine endometrioid carcinoma (188/320, 58.8%, cutaneous melanoma (377/988, 38.2%, colorectal adenocarcinoma (402/1519, 26.5%, and stomach adenocarcinoma (151/579, 26.1%. TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8% of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.

  2. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  3. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    Science.gov (United States)

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  4. The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson’s disease and other degenerative parkinsonisms

    Science.gov (United States)

    Cannas, Antonino; Borghero, Giuseppe; Floris, Gian Luca; Solla, Paolo; Chiò, Adriano; Traynor, Bryan J.; Calvo, Andrea; Restagno, Gabriella; Majounie, Elisa; Costantino, Emanuela; Piras, Valeria; Lavra, Loredana; Pani, Carla; Orofino, Gianni; Di Stefano, Francesca; Tacconi, Paolo; Mascia, Marcello Mario; Muroni, Antonella; Murru, Maria Rita; Tranquilli, Stefania; Corongiu, Daniela; Rolesu, Marcella; Cuccu, Stefania; Marrosu, Francesco; Marrosu, Maria Giovanna

    2013-01-01

    Background Based on our previous finding of the p.A382T founder mutation in ALS patients with concomitant parkinsonism in the Sardinian population, we hypothesized that the same variant may underlie PD and/or other forms of degenerative parkinsonism on this Mediterranean island. Design We screened a cohort of 611 patients with PD (544 cases) and other forms of degenerative parkinsonism (67 cases), and 604 unrelated controls for the c.1144G>A (p.A382T) missense mutation of the TARDBP gene. Results The p.A382T mutation was identified in 9 patients with parkinsonism. Of these, 5 (0.9% of PD patients) presented a typical PD (2 with familiar forms), while 4 patients (6.0% of all other forms of parkinsonism) presented a peculiar clinical presentation quite different from classical atypical parkinsonism with an overlap of extrapyramidal-pyramidal-cognitive clinical signs. The mutation was found in 8 Sardinian controls (1.3%) consistent with a founder mutation in the island population. Conclusions Our findings suggest that the clinical presentation of the p.A382T TARDBP gene mutation may include forms of parkinsonism in which the extrapyramidal signs are the crucial core of the disease at onset. These forms can present PSP or CBD-like clinical signs, with bulbar and/or extrabulbar pyramidal signs and cognitive impairment. No evidence of association has been found between TARDBP gene mutation and typical PD. PMID:23546887

  5. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Kornel E Schuebel

    2007-09-01

    Full Text Available We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken.

  6. Report of Chinese family with severe dermatitis, multiple allergies and metabolic wasting syndrome caused by novel homozygous desmoglein-1 gene mutation.

    Science.gov (United States)

    Cheng, Ruhong; Yan, Ming; Ni, Cheng; Zhang, Jia; Li, Ming; Yao, Zhirong

    2016-10-01

    Recently, homozygous mutations in the desmoglein-1 (DSG1) gene and heterozygous mutation in the desmoplakin (DSP) gene have been demonstrated to be associated with severe dermatitis, multiple allergies and metabolic wasting (SAM) syndrome (Mendelian Inheritance in Man no. 615508). We aim to identify the molecular basis for a Chinese pedigree of SAM syndrome. A Chinese pedigree of SAM syndrome was subjected to mutation detection in the DSG1 gene. Sequence analysis of the DSG1 gene and quantitative reverse transcriptase polymerase chain reaction analysis for gene expression of DSG1 using cDNA derived from the epidermis of patients and controls were both performed. Skin biopsies were also taken from patients for pathological study and transmission electron microscopy observation. Novel homozygous splicing mutation c.1892-1delG in the exon-intron border of the DSG1 gene has been demonstrated to be associated with SAM syndrome. We report a new family of SAM syndrome of Asian decent and expand the spectrum of mutations in the DSG1 gene. © 2016 Japanese Dermatological Association.

  7. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  8. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter.

    Science.gov (United States)

    Kaga, Naoko; Umitsuki, Genryou; Clark, David P; Nagai, Kazuo; Wachi, Masaaki

    2002-07-05

    Escherichia coli RNase G encoded by the rng gene is involved in degradation of adhE mRNA. Overproduction of the AdhE protein by rng mutants was found to depend on the genetic background of strains derived from DC272 (adhC81) or MC1061. We found that DC272 carried a point mutation in the Cra-binding site of the adhE promoter. The Cra protein encoded by the cra gene is known to act as a repressor of adhE. P1-phage-mediated transduction and lacZ fusion analysis with the mutant adhE promoter confirmed that this mutation is responsible for overproduction. On the other hand, Southern hybridization revealed that MC1061 had a 0.85-kb deletion of the cra gene. Overproduction of AdhE in the MC1061 background was reversed to the wild-type levels by introduction of a plasmid carrying the cra(+) gene. These results indicated that expression of the adhE gene was regulated transcriptionally by Cra and posttranscriptionally by RNase G. (c) 2002 Elsevier Science (USA).

  9. A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome

    DEFF Research Database (Denmark)

    Westbroek, W.; Tuchman, M.; Tinloy, B.

    2008-01-01

    The autosomal recessive Griscelli syndrome type II (GSII) is caused by mutations in the RAB27A gene. Typical clinical features include immunological impairment, silver-gray scalp hair, eyelashes and eyebrows and hypomelanosis of the skin. Rabs help determine the specificity of membrane trafficking......-immunoprecipitation studies showed that Rab27A(G43S) fails to interact with its effector Melanophilin, indicating that the switch I region functions in the recruitment of Rab effector proteins Udgivelsesdato: 2008/6...

  10. Identification of two novel mutations in the PHEX gene in Chinese patients with hypophosphatemic rickets/osteomalacia.

    Science.gov (United States)

    Yue, Hua; Yu, Jin-bo; He, Jin-wei; Zhang, Zeng; Fu, Wen-zhen; Zhang, Hao; Wang, Chun; Hu, Wei-wei; Gu, Jie-mei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Zhang, Zhen-Lin

    2014-01-01

    X-linked dominant hypophosphatemia (XLH) is the most prevalent form of inherited rickets/osteomalacia in humans. The aim of this study was to identify PHEX gene mutations and describe the clinical features observed in 6 unrelated Chinese families and 3 sporadic patients with hypophosphatemic rickets/osteomalacia. For this study, 45 individuals from 9 unrelated families of Chinese Han ethnicity (including 16 patients and 29 normal phenotype subjects), and 250 healthy donors were recruited. All 22 exons and exon-intron boundaries of the PHEX gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The PHEX mutations were detected in 6 familial and 3 sporadic hypophosphatemic rickets/osteomalacia. Altogether, 2 novel mutations were detected: 1 missense mutation c.1183G>C in exon 11, resulting in p.Gly395Arg and 1 missense mutation c.1751A>C in exon 17, resulting in p.His584Pro. No mutations were found in the 250 healthy controls. Our study increases knowledge of the PHEX gene mutation types and clinical phenotypes found in Chinese patients with XLH, which is important for understanding the genetic basis of XLH. The molecular diagnosis of a PHEX genetic mutation is of great importance for confirming the clinical diagnosis of XLH, conducting genetic counseling, and facilitating prenatal intervention, especially in the case of sporadic patients.

  11. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Triosephosphate isomerase gene promoter variation: -5G/A and -8G/A polymorphisms in clinical malaria groups in two African populations.

    Science.gov (United States)

    Guerra, Mónica; Machado, Patrícia; Manco, Licínio; Fernandes, Natércia; Miranda, Juliana; Arez, Ana Paula

    2015-06-01

    TPI1 promoter polymorphisms occur in high prevalence in individuals from African origin. Malaria-patients from Angola and Mozambique were screened for the TPI1 gene promoter variants rs1800200A>G, (-5G>A), rs1800201G>A, (-8G>A), rs1800202T>G, (-24T>G), and for the intron 5 polymorphism rs2071069G>A, (2262G>A). -5G>A and -8G>A variants occur in 47% and 53% in Angola and Mozambique, respectively while -24T>G was monomorphic for the wild-type T allele. Six haplotypes were identified and -8A occurred in 45% of the individuals, especially associated with the GAG haplotype and more frequent in non-severe malaria groups, although not significantly. The arising and dispersion of -5G>A and -8G>A polymorphisms is controversial. Their age was estimated by analyses of two microsatellite loci, CD4 and ATN1, adjacent to TPI1 gene. The -5G>A is older than -8G>A, with an average estimate of approximately 35,000 years. The -8A variant arose in two different backgrounds, suggesting independent mutational events. The first, on the -5G background, may have occurred in East Africa around 20,800 years ago; the second, on the -5A background, may have occurred in West Africa some 7500 years ago. These estimates are within the period of spread of agriculture and the malaria mosquito vector in Africa, which could has been a possible reason for the selection of -8A polymorphism in malaria endemic countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  14. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    Science.gov (United States)

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mutation Analysis of Consanguineous Moroccan Patients with Parkinson’s Disease Combining Microarray and Gene Panel

    Directory of Open Access Journals (Sweden)

    Ahmed Bouhouche

    2017-10-01

    Full Text Available During the last two decades, 15 different genes have been reported to be responsible for the monogenic form of Parkinson’s disease (PD, representing a worldwide frequency of 5–10%. Among them, 10 genes have been associated with autosomal recessive PD, with PRKN and PINK1 being the most frequent. In a cohort of 145 unrelated Moroccan PD patients enrolled since 2013, 19 patients were born from a consanguineous marriage, of which 15 were isolated cases and 4 familial. One patient was homozygous for the common LRRK2 G2019S mutation and the 18 others who did not carry this mutation were screened for exon rearrangements in the PRKN gene using Affymetrix Cytoscan HD microarray. Two patients were determined homozygous for PRKN exon-deletions, while another patient presented with compound heterozygous inheritance (3/18, 17%. Two other patients showed a region of homozygosity covering the 1p36.12 locus and were sequenced for the candidate PINK1 gene, which revealed two homozygous point mutations: the known Q456X mutation in exon 7 and a novel L539F variation in exon 8. The 13 remaining patients were subjected to next-generation sequencing (NGS that targeted a panel of 22 PD-causing genes and overlapping phenotypes. NGS data showed that two unrelated consanguineous patients with juvenile-onset PD (12 and 13 years carried the same homozygous stop mutation W258X in the ATP13A2 gene, possibly resulting from a founder effect; and one patient with late onset (76 years carried a novel heterozygous frameshift mutation in SYNJ1. Clinical analysis showed that patients with the ATP13A2 mutation developed juvenile-onset PD with a severe phenotype, whereas patients having either PRKN or PINK1 mutations displayed early-onset PD with a relatively mild phenotype. By identifying pathogenic mutations in 45% (8/18 of our consanguineous Moroccan PD series, we demonstrate that the combination of chromosomal microarray analysis and NGS is a powerful approach to

  16. The spectrum of HNF1A gene mutations in Greek patients with MODY3: relative frequency and identification of seven novel germline mutations.

    Science.gov (United States)

    Tatsi, Christina; Kanaka-Gantenbein, Christina; Vazeou-Gerassimidi, Adriani; Chrysis, Dionysios; Delis, Dimitrios; Tentolouris, Nikolaos; Dacou-Voutetakis, Catherine; Chrousos, George P; Sertedaki, Amalia

    2013-11-01

    Maturity-Onset Diabetes of the Young (MODY) is the most common type of monogenic diabetes accounting for 1-2% of the population with diabetes. The relative incidence of HNF1A-MODY (MODY3) is high in European countries; however, data are not available for the Greek population. The aims of this study were to determine the relative frequency of MODY3 in Greece, the type of the mutations observed, and their relation to the phenotype of the patients. Three hundred ninety-five patients were referred to our center because of suspected MODY during a period of 15 yr. The use of Denaturing Gradient Gel Electrophoresis of polymerase chain reaction amplified DNA revealed 72 patients carrying Glucokinase gene mutations (MODY2) and 8 patients carrying HNF1A gene mutations (MODY3). After using strict criteria, 54 patients were selected to be further evaluated by direct sequencing or by multiplex ligation probe amplification (MLPA) for the presence of HNF1A gene mutations. In 16 unrelated patients and 13 of their relatives, 15 mutations were identified in the HNF1A gene. Eight of these mutations were previously reported, whereas seven were novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. In our cohort of patients fulfilling strict clinical criteria for MODY, 12% carried an HNF1A gene mutation, suggesting that defects of this gene are responsible for a significant proportion of monogenic diabetes in the Greek population. No clear phenotype-genotype correlations were identified. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    Science.gov (United States)

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  18. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    Directory of Open Access Journals (Sweden)

    Xiaoyan Huang

    2017-01-01

    Full Text Available Purpose: Norrie disease (ND is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  19. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    Science.gov (United States)

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  20. Rapid screening of rpoB and katG mutations in Mycobacterium tuberculosis isolates by high-resolution melting curve analysis

    Directory of Open Access Journals (Sweden)

    M Haeili

    2014-01-01

    Full Text Available Background: Early detection of multidrug-resistant tuberculosis (MDR-TB is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. Materials and Methods: High-resolution melting curve (HRM analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R, 21 isoniazid resistant (INH-R and 54 fully susceptible (S isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. Results: HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates and katG315 (85.7% of INH-R isolates, respectively. Conclusion: HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.

  1. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation.

    Science.gov (United States)

    Chebib, Jobran; Guillaume, Frédéric

    2017-10-01

    Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    Science.gov (United States)

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  3. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present...

  4. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  5. [Clinical features and COMP gene mutation in a family with a pseudoachondroplasia child].

    Science.gov (United States)

    Lu, Chun-Ting; Guo, Li; Zahng, Zhan-Hui; Lin, Wei-Xia; Song, Yuan-Zong; Feng, Lie

    2013-11-01

    This study aimed to report the clinical characteristics and COMP gene mutation of a family with pseudoachondroplasia (PSACH), a relatively rare spinal and epiphyseal dysplasia that is inherited as an autosomal dominant trait. Clinical information on a 5-year-2-month-old PSACH child and his parents was collected and analyzed. Diagnosis was confirmed by PCR amplification and direct sequencing of all the 19 exons and their flanking sequences of COMP gene, and the mutation was further ascertained by cloning analysis of exon 10. The child presented with short and stubby fingers, bow leg, short limb dwarfism and metaphysic broadening in long bone as well as lumbar lordosis. A mutation c.1048_1116del (p.Asn350_Asp372del) in exon 10, inherited from his father who did not demonstrate any phenotypic feature of PSACH, was detected in the child. PSACH was diagnosed definitively by means of COMP mutation analysis, on the basis of the child's clinical and imaging features. The non-penetrance phenomenon of COMP mutation was described for the first time in PSACH.

  6. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress

    Directory of Open Access Journals (Sweden)

    Worman Howard J

    2005-06-01

    Full Text Available Abstract Background Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670 is a rare sporadic disorder with an incidence of approximately 1 per 8 million live births. The phenotypic appearance consists of short stature, sculptured nose, alopecia, prominent scalp veins, small face, loss of subcutaneous fat, faint mid-facial cyanosis, and dystrophic nails. HGPS is caused by mutations in LMNA, the gene that encodes nuclear lamins A and C. The most common mutation in subjects with HGPS is a de novo single-base pair substitution, G608G (GGC>GGT, within exon 11 of LMNA. This creates an abnormal splice donor site, leading to expression of a truncated protein. Results We studied a new case of a 5 year-old girl with HGPS and found a heterozygous point mutation, G608G, in LMNA. Complementary DNA sequencing of RNA showed that this mutation resulted in the deletion of 50 amino acids in the carboxyl-terminal tail domain of prelamin A. We characterized a primary dermal fibroblast cell line derived from the subject's skin. These cells expressed the mutant protein and exhibited a normal growth rate at early passage in primary culture but showed alterations in nuclear morphology. Expression levels and overall distributions of nuclear lamins and emerin, an integral protein of the inner nuclear membrane, were not dramatically altered. Ultrastructural analysis of the nuclear envelope using electron microscopy showed that chromatin is in close association to the nuclear lamina, even in areas with abnormal nuclear envelope morphology. The fibroblasts were hypersensitive to heat shock, and demonstrated a delayed response to heat stress. Conclusion Dermal fibroblasts from a subject with HGPS expressing a mutant truncated lamin A have dysmorphic nuclei, hypersensitivity to heat shock, and delayed response to heat stress. This suggests that the mutant protein, even when expressed at low levels, causes defective cell stability, which may be responsible for phenotypic

  7. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  8. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia.

    Science.gov (United States)

    Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-07-23

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.

  10. Identification and Genetic Analysis of a Factor IX Gene Intron 3 Mutation in a Hemophilia B Pedigree in China

    Directory of Open Access Journals (Sweden)

    Dong Hua Cao

    2014-09-01

    Full Text Available OBJECTIVE: Hemophilia B is caused by coagulation defects in the factor IX gene located in Xq27.1 on the X chromosome. A wide range of mutations, showing extensive molecular heterogeneity, have been described in hemophilia B patients. Our study was aimed at genetic analysis and prenatal diagnosis of hemophilia B in order to further elucidate the pathogenesis of the hemophilia B pedigree in China. METHODS: Polymerase chain reaction amplification and direct sequencing of all the coding regions was conducted in hemophilia B patients and carriers. Prenatal diagnosis of the proband was conducted at 20 weeks. RESULTS: We identified the novel point mutation 10.389 A>G, located upstream of the intron 3 acceptor site in hemophilia B patients. The fetus of the proband’s cousin was identified as a carrier. CONCLUSION: Our identification of a novel mutation in the F9 gene associated with hemophilia B provides novel insight into the pathogenesis of this genetically inherited disorder and also represents the basis of prenatal diagnosis.

  11. Molecular analysis of the eighteen most frequent mutations in the BRCA1 gene in 63 Chilean breast cancer families

    Directory of Open Access Journals (Sweden)

    LILIAN JARA

    2004-01-01

    Full Text Available BRCA1 gene mutations account for nearly all families with multiple cases of both early onset breast and/or ovarian cancer and about 30% of hereditary breast cancer. Although to date more than 1,237 distinct mutations, polymorphisms, and variants have been described, several mutations have been found to be recurrent in this gene. We have analyzed 63 Chilean breast/ovarian cancer families for eighteen frequent BRCA1 mutations. The analysis of the five exons and two introns in which these mutations are located was made using mismatch PCR assay, ASO hybridization assay, restriction fragment analysis, allele specific PCR assay and direct sequentiation techniques. Two BRCA1 mutations (185delAG and C61G and one variant of unknown significance (E1250K were found in four of these families. Also, a new mutation (4185delCAAG and one previously described polymorphism (E1038G were found in two other families. The 185delAG was found in a 3.17 % of the families and the others were present only in one of the families of this cohort. Therefore these mutations are not prominent in the Chilean population. The variant of unknown significance and the polymorphism detected could represent a founder effect of Spanish origin

  12. [Connexin gene 26 (GJB2) mutations in patients with hereditary non-syndromic sensorineural loss of hearing in the Republic of Sakha (Yakutia)].

    Science.gov (United States)

    Barashkov, N A; Dzhemileva, L U; Fedorova, S A; Maksimova, N R; Khusnutdinova, E K

    2008-01-01

    The aim of the study was to elucidate the causes of hereditary non-syndromic loss of hearing, a frequent monogene pathology in the Republic of Sakha (Yakutia). A search for mutations in the coding sequence of the connexin 26 gene gap-junction B2 (GJB2) was undertaken in 79 members of 65 unrelated families with the diagnosis of grade III-IV non-syndromic bilateral sensorineural loss of hearing. Five recessive mutations (35delG, V371, 312-326del14, 333-334delAA, R127H) and three polymorphic variants (V271, M34T, E114G) were identified in Yakut patients. Mutations 35delG (41.7%), 312-326dell4 (4.2%), and 333-334delAA (4.2%) were found in Caucasian patients (Russians, Ukrainians, Inguish). Yakuts were carriers of mutations 35delG (2.1%), V371 (2.1%), R127H (1.0%) and sequence variants V271 (6.3%), M34T (1.0%), E114G (1.0%). GJB2 mutations were identified in 50.1% of the Caucasian patients and in 7.2% of the Yakut patients. The low frequency of GJB2 mutations in Yakuts with non-syndromic sensorineural loss of hearing testifies to the presence of mutations of other genes controlling sound perception in this population.

  13. PROP1 gene mutations in a 36-year-old female presenting with psychosis

    Directory of Open Access Journals (Sweden)

    Durgesh Prasad Chaudhary

    2017-03-01

    Full Text Available Combined pituitary hormonal deficiency (CPHD is a rare disease that results from mutations in genes coding for transcription factors that regulate the differentiation of pituitary cells. PROP1 gene mutations are one of the etiological diagnoses of congenital panhypopituitarism, however symptoms vary depending on phenotypic expression. We present a case of psychosis in a 36-year-old female with congenital panhypopituitarism who presented with paranoia, flat affect and ideas of reference without a delirious mental state, which resolved with hormone replacement and antipsychotics. Further evaluation revealed that she had a homozygous mutation of PROP1 gene. In summary, compliance with hormonal therapy for patients with hypopituitarism appears to be effective for the prevention and treatment of acute psychosis symptoms.

  14. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus.

    Science.gov (United States)

    Ilhan, M; Tiryakioglu, N O; Karaman, O; Coskunpinar, E; Yildiz, R S; Turgut, S; Tiryakioglu, D; Toprak, H; Tasan, E

    2016-03-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI. Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples. Urine osmolality was low (C in all patients. c.-3A>C mutation in 5'UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.

  15. A Missense Mutation of G257A at Exon 3 in PEX7 CDS Was Responsible for the Incidence of Rhizomelic Chondrodysplasia Punctata Type 1

    Directory of Open Access Journals (Sweden)

    Marziyeh Alamatsaz

    2018-02-01

    Full Text Available Background Rhizomelic chondrodysplasia punctata (RCDP type 1 is among of the rare autosomal recessive peroxisome biogenesis disorders caused by mutations in the PEX7 gene. RCDP patients with the classic form of RCDP1 do not live more than 10- year. Materials and Methods In the present study, a two-year-old girl with skeletal abnormalities and dysmorphic facial appearance is reported to be suffered from RCDP. The patient's parents were second cousins and healthy and there was no similar case in the parents’ family. PEX7 gene was sequenced in the patient and her parents. Results A homozygous mutation, G257A, was identified PEX7 in the genome of patient while the parents were compound heterozygous. Conclusion Taken together, clinical presentation and peroxisome profile of the patient suggested a missense mutation led to formation of a pathogenic PEX7, responsible for incidence of RCDP.

  16. Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.

    Science.gov (United States)

    Aykut, Ayça; Karaca, Emin; Onay, Hüseyin; Gökşen, Damla; Çetinkalp, Şevki; Eren, Erdal; Ersoy, Betül; Çakır, Esra Papatya; Büyükinan, Muammer; Kara, Cengiz; Anık, Ahmet; Kırel, Birgül; Özen, Samim; Atik, Tahir; Darcan, Şükran; Özkınay, Ferda

    2018-01-30

    Maturity onset diabetes is a genetic form of diabetes mellitus characterized by an early age at onset and several etiologic genes for this form of diabetes have been identified in many patients. Maturity onset diabetes type 2 [MODY2 (#125851)] caused by mutations in the glucokinase gene (GCK). Although its prevalence is not clear, it is estimated that 1%-2% of patients with diabetes have the monogenic form. The aim of this study was to evaluate the molecular spectrum of GCK gene mutations in 177 Turkish MODY type 2 patients. Mutations in the GCK gene were identified in 79 out of 177. All mutant alleles were identified, including 45 different GCK mutations, 20 of which were novel. Copyright © 2017. Published by Elsevier B.V.

  17. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    International Nuclear Information System (INIS)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan; Dai, Xianning; Zhou, Huihui; Dong, Xujie; Liu, Xiao-Ling; Guan, Min-Xin

    2012-01-01

    Highlights: ► We report the characterization of a four-generation large Chinese family with ADOA. ► We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. ► We do not find any mitochondrial DNA mutations associated with optic atrophy. ► Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  18. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device... Guidance Document: CFTR Gene Mutation Detection System.” See § 866.1(e) for the availability of this...

  19. Association between Thrombophilia and Repeated Assisted Reproductive Technology Failures

    Directory of Open Access Journals (Sweden)

    Kobra Hamdi

    2012-08-01

    Full Text Available Purpose: This study was performed to investigate the incidence of thrombophilic gene mutations in repeated assisted reproductive technology (ART failures. Methods: The prevalence of mutated genes in the patients with a history of three or more previous ART failures was compared with the patients with a history of successful pregnancy following ARTs. The study group included 70 patients, 34 with three or more previously failed ARTs (A and control group consisted of 36 patients with successful pregnancy following ARTs (B. All patients were tested for the presence of mutated thrombophilic genes including factor V Leiden (FVL, Methylenetetrahydrofolate reductase (MTHFR and Prothrombin (G20210A using real-time polymerase chain reaction (RT- PCR. Results: Mutation of FVL gene was detected in 5.9% women of group A (2 of 34 compared with 2.8% women (1 of 36 of control group (P = 0.6. Mutation of MTHFR gene was found in 35.3% (12 cases as compared with 50% (18 cases of control (35.3% versus 50%; P = 0.23. Regarding Prothrombin, only control group had 5.6% mutation (P = 0.49. No significant differences were detected in the incidences of FVL, Prothrombin and MTHFR in the study group A compared with the control group B. Conclusion: The obtained results suggest that thrombophilia does not have a significant effect in ART failures.

  20. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    Science.gov (United States)

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  1. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. W...

  2. Leucocytes Mutation load Declines with Age in Carriers of the m.3243A>G Mutation

    DEFF Research Database (Denmark)

    Langdahl, Jakob Høgild; Larsen, Martin; Frost, Morten

    2018-01-01

    Carriers of the mitochondrial mutation m.3243A>G presents highly variable phenotypes including mitochondrial encephalomyopaty, lactoacidosis and stroke-like episodes (MELAS). We conducted a follow-up study to evaluate changes in leucocyte heteroplasmy and the clinical phenotypes in m.3243A...

  3. Evaluation of the incidence of the G143A mutation and cytb intron presence in the cytochrome bc-1 gene conferring QoI resistance in Botrytis cinerea populations from several hosts.

    Science.gov (United States)

    Samuel, Stylianos; Papayiannis, Lambros C; Leroch, Michaela; Veloukas, Thomas; Hahn, Matthias; Karaoglanidis, George S

    2011-08-01

    Previous studies have shown that resistance of Botrytis cinerea to QoI fungicides has been attributed to the G143A mutation in the cytochrome b (cytb) gene, while, in a part of the fungal population, an intron has been detected at codon 143 of the gene, preventing QoI resistance. During 2005-2009, 304 grey mould isolates were collected from strawberry, tomato, grape, kiwifruit, cucumber and apple in Greece and screened for resistance to pyraclostrobin and for the presence of the cytb intron, using a novel real-time TaqMan PCR assay developed in the present study. QoI-resistant phenotypes existed only within the population collected from strawberries. All resistant isolates possessed the G143A mutation. Differences were observed in the genotypic structure of cytb. Individuals possessing the intron were found at high incidence in apple fruit and greenhouse-grown tomato and cucumber populations, whereas in the strawberry population the intron frequency was lower. Cultivation of QoI-resistant and QoI-sensitive isolates for ten culture cycles on artificial nutrient medium in the presence or absence of fungicide selection showed that QoI resistance was stable. The results of the study suggest that a high risk for selection of QoI-resistant strains exists in crops heavily treated with QoIs, in spite of the widespread occurrence of the cytb intron in B. cinerea populations. The developed real-time TaqMan PCR constitutes a powerful tool to streamline detection of the mutation by reducing pre- and post-amplification manipulations, and can be used for rapid screening and quantification of QoI resistance. Copyright © 2011 Society of Chemical Industry.

  4. PROP1 gene mutations in a 36-year-old female presenting with psychosis

    Science.gov (United States)

    Rijal, Tshristi; Jha, Kunal Kishor; Saluja, Harpreet

    2017-01-01

    Summary Combined pituitary hormonal deficiency (CPHD) is a rare disease that results from mutations in genes coding for transcription factors that regulate the differentiation of pituitary cells. PROP1 gene mutations are one of the etiological diagnoses of congenital panhypopituitarism, however symptoms vary depending on phenotypic expression. We present a case of psychosis in a 36-year-old female with congenital panhypopituitarism who presented with paranoia, flat affect and ideas of reference without a delirious mental state, which resolved with hormone replacement and antipsychotics. Further evaluation revealed that she had a homozygous mutation of PROP1 gene. In summary, compliance with hormonal therapy for patients with hypopituitarism appears to be effective for the prevention and treatment of acute psychosis symptoms. Learning points: Patients with PROP1 gene mutation may present with psychosis with no impairment in orientation and memory. There is currently inadequate literature on this topic, and further study on the possible mechanisms of psychosis as a result of endocrine disturbance is required. Compliance with hormonal therapy for patients with hypopituitarism appears to be effective for prevention and treatment of acute psychosis symptoms. PMID:28458894

  5. A patient with Werner syndrome and adiponectin gene mutation.

    Science.gov (United States)

    Hashimoto, Naotake; Hatanaka, Sachiko; Yokote, Koutaro; Kurosawa, Hiroko; Yoshida, Tomohiko; Iwai, Rie; Takahashi, Hidenori; Yoshida, Katsuya; Horie, Atsuya; Sakurai, Kenichi; Yagui, Kazuo; Saito, Yasushi; Yoshida, Shouji

    2007-01-01

    Werner syndrome is a premature aging disease characterized by genomic instability and increased cancer risk. Here, we report a 45-year-old diabetic man as the first Werner syndrome patient found to have an adiponectin gene mutation. Showing graying and loss of hair, skin atrophy, and juvenile cataract, he was diagnosed with Werner syndrome type 4 by molecular analysis. His serum adiponectin concentration was low. In the globular domain of the adiponectin gene, I164T in exon 3 was detected. When we examined effects of pioglitazone (15 mg/day) on serum adiponectin multimer and monomer concentrations using selective assays, the patient's relative percentage increased in adiponectin concentration was almost same as that in the 18 diabetic patients without an adiponectin mutation, but the absolute adiponectin concentration was half of those seen in diabetic patients treated with the same pioglitazone dose who had no adiponectin mutation. The response suggested that pioglitazone treatment might help to prevent future Werner syndrome-related acceleration of atherosclerosis. Present and further clinical relevant to atherosclerosis in this patient should be imformative concerning the pathogenesis and treatment of atherosclerosis in the presence of hypoadiponectinemia and insulin resistance.

  6. Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA

    DEFF Research Database (Denmark)

    Guo, S.; Esserlind, A-L; Andersson, Z

    2016-01-01

    % vs. 6%; P persons with the mDNA 3243A>G mutation was found. This finding suggests a clinical association between a monogenetically inherited disorder......BACKGROUND AND PURPOSE: Over the last three decades mitochondrial dysfunction has been postulated to be a potential mechanism in migraine pathogenesis. The lifetime prevalence of migraine in persons carrying the 3243A>G mutation in mitochondrial DNA was investigated. METHODS: In this cross......-sectional study, 57 mDNA 3243A>G mutation carriers between May 2012 and October 2014 were included. As a control group, a population-based cohort from our epidemiological studies on migraine in Danes was used. History of headache and migraine was obtained by telephone interview, based on a validated semi...

  7. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  8. Inherited Genetic Markers for Thrombophilia in Northeastern Iran (a Clinical-Based Report

    Directory of Open Access Journals (Sweden)

    Fatemeh Keify

    2014-05-01

    Full Text Available Background: Thrombophilia is a main predisposition to thrombosis due to a procoagulant state. Several point mutations play key roles in blood-clotting disorders, which are grouped under the term thrombophilia. These thrombophilic mutations are methylenetetrahydrofolate reductase (MTHFR, C677T, and A1298C, factor V Leiden (G1691A, prothrombin gene mutation (factor II, G20210A, and plasminogen activator inhibitor (PAI. In the present study, we assessed the prevalence of the above thrombophilia markers in patients with recurrent pregnancy loss or first and second trimester abortions, infertility, and failed in vitro fertilization (IVF. Methods: This study was conducted among 457 cases those were referred to detect the inherited genetic markers for thrombophilia. Markers for MTHFR, Factor II, and Factor V were assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP, and PAI was assessed by Amplification Refractory Mutation System (ARMS-PCR. Results: Two hundred sixty cases (56.89% were diagnosed as having at least one thrombophilia marker, whereas 197 cases (43.11% had no thrombophilia markers and were normal. Conclusion: According to the current study, the pattern of abnormal genetic markers for thrombophilia in northeastern Iran demonstrates the importance of genetic evaluations in patients who show clinical abnormalities with recurrent spontaneous abortion (RSA or other serious obstetric complications.

  9. HFE gene mutation and iron overload in Egyptian pediatric acute lymphoblastic leukemia survivors: a single-center study.

    Science.gov (United States)

    El-Rashedi, Farida H; El-Hawy, Mahmoud A; El-Hefnawy, Sally M; Mohammed, Mona M

    2017-08-01

    Hereditary hemochromatosis gene (HFE) mutations have a role in iron overload in pediatric acute lymphoblastic leukemia (ALL) survivors. We aimed to evaluate the genotype frequency and allelic distribution of the two HFE gene mutations (C282Y and H63D) in a sample of Egyptian pediatric ALL survivors and to detect the impact of these two mutations on their iron profile. This study was performed on 35 ALL survivors during their follow-up visits to the Hematology and Oncology Unit, Pediatric Department, Menoufia University Hospitals. Thirty-five healthy children of matched age and sex were chosen as controls. After completing treatment course, ALL survivors were screened for the prevalence of these two mutations by polymerase chain reaction-restriction fragment length polymorphism. Serum ferritin levels were measured by an enzyme-linked immunosorbent assay technique (ELISA). C282Y mutation cannot be detected in any of the 35 survivors or the 35 controls. The H63D heterozygous state (CG) was detected in 28.6% of the survivors group and in 20% of controls, while the H63D homozygous (GG) state was detected in 17.1% of survivors. No compound heterozygosity (C282Y/H63D) was detected at both groups with high G allele frequency (31.4%) in survivors more than controls (10%). There were significant higher levels of iron parameters in homozygote survivors than heterozygotes and the controls. H63D mutation aggravates the iron overload status in pediatric ALL survivors.

  10. Significance of Coexisting Mutations on Determination of the Degree of Isoniazid Resistance in Mycobacterium tuberculosis Strains.

    Science.gov (United States)

    Karunaratne, Galbokka Hewage Roshanthi Eranga; Wijesundera, Sandhya Sulochana; Vidanagama, Dhammika; Adikaram, Chamila Priyangani; Perera, Jennifer

    2018-04-23

    The emergence and spread of drug-resistant tuberculosis (TB) pose a threat to TB control in Sri Lanka. Isoniazid (INH) is a key element of the first-line anti-TB treatment regimen. Resistance to INH is mainly associated with point mutations in katG, inhA, and ahpC genes. The objective of this study was to determine mutations of these three genes in INH-resistant Mycobacterium tuberculosis (MTb) strains in Sri Lanka. Complete nucleotide sequence of the three genes was amplified by polymerase chain reaction and subjected to DNA sequencing. Point mutations in the katG gene were identified in 93% isolates, of which the majority (78.6%) were at codon 315. Mutations at codons 212 and 293 of the katG gene have not been reported previously. Novel mutations were recognized in the promoter region of the inhA gene (C deletion at -34), fabG1 gene (codon 27), and ahpC gene (codon 39). Single S315T mutation in the katG gene led to a high level of resistance, while a low level of resistance with high frequency (41%) was observed when katG codon 315 coexisted with the mutation at codon 463. Since most of the observed mutations of all three genes coexisted with the katG315 mutation, screening of katG315 mutations will be a useful marker for molecular detection of INH resistance of MTb in Sri Lanka.

  11. Recurrent and founder mutations in the PMS2 gene.

    Science.gov (United States)

    Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A

    2013-03-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.

  12. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  13. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  14. Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies.

    Science.gov (United States)

    Paloma, E; Martínez-Mir, A; Vilageliu, L; Gonzàlez-Duarte, R; Balcells, S

    2001-06-01

    The ABCA4 gene has been involved in several forms of inherited macular dystrophy. In order to further characterize the complex genotype-phenotype relationships involving this gene, we have performed a mutation analysis of ABCA4 in 14 Spanish patients comprising eight STGD (Stargardt), four FFM (fundus flavimaculatus), and two CRD (Cone-rod dystrophy) patients. SSCP (single-strand conformation polymorphism) analysis and DNA sequencing of the coding and 5' upstream regions of this gene allowed the identification of 16 putatively pathogenic alterations, nine of which are novel. Most of these were missense changes, and no patient was found to carry two null alleles. Overall, the new data agree with a working model relating the different pathogenic phenotypes to the severity of the mutations. When considering the information presented here together with that of previous reports, a picture of the geographic distribution of three particular mutations emerges. The R212C change has been found in French, Italian, Dutch, German, and Spanish but not in British patients. In the Spanish collection, R212C was found in a CRD patient, indicating that it may be a rather severe change. In contrast, c.2588G>C, a very common mild allele in the Dutch population, is rarely found in Southern Europe. Interestingly, the c.2588G>C mutation has been found in a double mutant allele together with the missense R1055W. Finally, the newly described L1940P was found in two unrelated Spanish patients, and may be a moderate to severe allele. Copyright 2001 Wiley-Liss, Inc.

  15. Novel mutations in MYO7A and USH2A in Usher syndrome.

    Science.gov (United States)

    Maubaret, Cécilia; Griffoin, Jean-Michel; Arnaud, Bernard; Hamel, Christian

    2005-03-01

    Usher syndrome is an autosomal recessive disease associating retinitis pigmentosa and neurosensory deafness. Three clinical types (USH1, USH2, USH3) and 11 mutated genes or loci have been described. Mutations in MYO7A and USH2A are responsible for about 40% and 60% of Usher syndromes type 1 and 2, respectively. These genes were screened in a series of patients suffering from Usher syndrome. We performed SSCP screening of MYO7A in 12 unrelated patients suffering from Usher syndrome type 1 (USH1) and USH2A in 28 unrelated patients affected by Usher syndrome type 2 (USH2). Six mutations in MYO7A were found in five patients, including two novel mutations c.397C > G (His133Asp) and 1244-2A > G (Glu459Stop), accounting for 42% of our USH1 patients. Twelve mutations in USH2A were found in 11 patients, including four new mutations c.850delGA, c.1841-2A > G, c.3129insT, and c.3920C > G (Ser1307Stop), accounting for 39% of our USH2 patients

  16. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    Science.gov (United States)

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  17. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    Science.gov (United States)

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  18. Law-medicine interfacing: patenting of human genes and mutations.

    Science.gov (United States)

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  19. Language disorder with mild intellectual disability in a child affected by a novel mutation of SLC6A8 gene.

    Science.gov (United States)

    Battini, R; Chilosi, A M; Casarano, M; Moro, F; Comparini, A; Alessandrì, M G; Leuzzi, V; Tosetti, M; Cioni, G

    2011-02-01

    We describe the clinical and molecular features of a child harboring a novel mutation in SLC6A8 gene in association with a milder phenotype than other creatine transporter (CT1) deficient patients (OMIM 300352) [1-7]. The mutation c.757 G>C p.G253R in exon 4 of SLC6A8 was hemizygous in the child, aged 6 years and 6 months, who showed mild intellectual disability with severe speech and language delay. His carrier mother had borderline intellectual functioning. Although the neurochemical and biochemical parameters were fully consistent with those reported in the literature for subjects with CT1 deficit, in our patient within a general cognitive disability, a discrepancy between nonverbal and verbal skills was observed, confirming the peculiar vulnerability of language development under brain Cr depletion. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  1. Mutation analysis of the PAH gene in phenylketonuria patients from Rio de Janeiro, Southeast Brazil.

    Science.gov (United States)

    Vieira Neto, Eduardo; Laranjeira, Francisco; Quelhas, Dulce; Ribeiro, Isaura; Seabra, Alexandre; Mineiro, Nicole; D M Carvalho, Lilian; Lacerda, Lúcia; G Ribeiro, Márcia

    2018-05-10

    Phenylketonuria (PKU) is an autosomal recessive disease resulting from mutations in the PAH gene. Most of the patients are compound heterozygotes, and genotype is a major factor in determining the phenotypic variability of PKU. More than 1,000 variants have been described in the PAH gene. Rio de Janeiro's population has a predominance of Iberian, followed by African and Amerindian ancestries. It is expected that most PKU variants in this Brazilian state have originated in the Iberian Peninsula. However, rare European, African or pathogenic variants that are characteristic of the admixed population of the state might also be found. A total of 102 patients were included in this study. Genomic DNA was isolated from dried blood spots. Sanger sequencing was used for PAH gene variant identification. Deletions and duplications were also screened using MLPA analysis. Haplotypes were also determined. Nine (8.8%) homozygous and 93 (91.2%) compound heterozygous patients were found. The spectrum included 37 causative mutations. Missense, nonsense, and splicing pathogenic variants corresponded to 63.7%, 2.9%, and 22.6% of the mutant alleles, respectively. Large (1.5%), and small deletions, inframe (5.4%) and with frameshift (3.9%), comprised the remainder. The most frequent pathogenic variants were: p.V388M (12.7%), p.R261Q (11.8%), IVS10-11G>A (10.3%), IVS2+5G>C (6.4%), p.S349P (6.4%), p.R252W (5.4%), p.I65T (4.4%), p.T323del (4.4%), and p.P281L (3.4%). One novel variant was detected: c.934G>T (p.G312C) [rs763115697]. The three most frequent pathogenic variants in our study (34.8% of the alleles) were also the most common in other Brazilian states, Portugal, and Spain (p.V388M, p.R261Q, IVS10-11G>A), corroborating that the Iberian Peninsula is the major source of PAH mutations in Rio de Janeiro. Pathogenic variants that have other geographical origins, such IVS2+5G>C, p.G352Vfs*48, and IVS12+1G>A were also detected. Genetic drift and founder effect may have also played a role

  2. Cross-Sectional Study for the Detection of Mutations in the Beta-Globin Gene Among Patients with Hemoglobinopathies in the Bengali Population.

    Science.gov (United States)

    Panja, Amrita; Chowdhury, Prosanto; Chakraborty, Sharmistha; Ghosh, Tapan Kumar; Basu, Anupam

    2017-01-01

    Thalassemia is a common autosomal recessive blood disorder, which is most prevalent in South East Asian and Mediterranean populations. It is considered as a major health burden in the Indian population. The aims of the present study were to investigate the common, as well as uncommon, mutations responsible for thalassemia in the Bengali population. The Bengali state was divided into four sampling zones. Mutation detection was done using Sanger sequencing of the HBB gene. A total of 14 different mutations were observed, including rare mutations IVS1-130(G>C), IVS1-129(A>C), -90(T>C), CD16(-C), -30(T>C), CD15(-T), and a novel mutation CD53(C>T). The frequencies of IVS1-5(G>C) and CD26(G>A) mutations were higher than other mutations. There were also some silent polymorphisms found in the studied group, CD3(T>C), CD10(C>A), IVSII-16(G>C), IVSII-74(T>G), -42(C>G). The present study is the first attempt to screen for β-thalassemia-causing mutations by direct sequencing in different districts of West Bengal. The information obtained from the present study may be helpful for thalassemia management and prenatal mutation detection.

  3. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti.

    Science.gov (United States)

    Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya

    2017-10-10

    Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.

  4. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  5. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  6. Waardenburg Syndrome: description of two novel mutations in the PAX3 gene, one of which incompletely penetrant

    Directory of Open Access Journals (Sweden)

    Eliete Pardono

    2006-01-01

    Full Text Available We describe two different novel mutations in the PAX3 gene, detected in two families with cases of Waardenburg syndrome type I (WSI. The missense mutation detected in one family involved a single substitution in exon 2 (c.142 G > T and was present both in the affected individual and in his clinically normal father. The mutation found in the second family consisted of a deletion of 13 bases, c.764-776del(TTACCCTGACATT, in exon 5.

  7. High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh.

    Science.gov (United States)

    Islam, Md Tarikul; Sarkar, Suprovath Kumar; Sultana, Nusrat; Begum, Mst Noorjahan; Bhuyan, Golam Sarower; Talukder, Shezote; Muraduzzaman, A K M; Alauddin, Md; Islam, Mohammad Sazzadul; Biswas, Pritha Promita; Biswas, Aparna; Qadri, Syeda Kashfi; Shirin, Tahmina; Banu, Bilquis; Sadya, Salma; Hussain, Manzoor; Sarwardi, Golam; Khan, Waqar Ahmed; Mannan, Mohammad Abdul; Shekhar, Hossain Uddin; Chowdhury, Emran Kabir; Sajib, Abu Ashfaqur; Akhteruzzaman, Sharif; Qadri, Syed Saleheen; Qadri, Firdausi; Mannoor, Kaiissar

    2018-01-02

    Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and

  8. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    Science.gov (United States)

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  9. A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected].

    Directory of Open Access Journals (Sweden)

    Marialuisa Barbagallo

    Full Text Available The genome of Shigella, a gram negative bacterium which is the causative agent of bacillary dysentery, shares strong homologies with that of its commensal ancestor, Escherichia coli. The acquisition, by lateral gene transfer, of a large plasmid carrying virulence determinants has been a crucial event in the evolution towards the pathogenic lifestyle and has been paralleled by the occurrence of mutations affecting genes, which negatively interfere with the expression of virulence factors. In this context, we have analysed to what extent the presence of the plasmid-encoded virF gene, the major activator of the Shigella regulon for invasive phenotype, has modified the transcriptional profile of E. coli. Combining results from transcriptome assays and comparative genome analyses we show that in E. coli VirF, besides being able to up-regulate several chromosomal genes, which potentially influence bacterial fitness within the host, also activates genes which have been lost by Shigella. We have focused our attention on the speG gene, which encodes spermidine acetyltransferase, an enzyme catalysing the conversion of spermidine into the physiologically inert acetylspermidine, since recent evidence stresses the involvement of polyamines in microbial pathogenesis. Through identification of diverse mutations, which prevent expression of a functional SpeG protein, we show that the speG gene has been silenced by convergent evolution and that its inactivation causes the marked increase of intracellular spermidine in all Shigella spp. This enhances the survival of Shigella under oxidative stress and allows it to better face the adverse conditions it encounters inside macrophage. This is supported by the outcome of infection assays performed in mouse peritoneal macrophages and of a competitive-infection assay on J774 macrophage cell culture. Our observations fully support the pathoadaptive nature of speG inactivation in Shigella and reveal that the accumulation

  10. N1303K (c.3909C>G) Mutation and Splicing: Implication of Its c.[744-33GATT(6); 869+11C>T] Complex Allele in CFTR Exon 7 Aberrant Splicing

    Science.gov (United States)

    Farhat, Raëd; Puissesseau, Géraldine; El-Seedy, Ayman; Pasquet, Marie-Claude; Adolphe, Catherine; Corbani, Sandra; Megarbané, André; Kitzis, Alain; Ladeveze, Véronique

    2015-01-01

    Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasians. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys, old nomenclature: N1303K) is one of the most common worldwide mutations. This mutation has been found at high frequencies in the Mediterranean countries with the highest frequency in the Lebanese population. Therefore, on the genetic level, we conducted a complete CFTR gene screening on c.3909C>G Lebanese patients. The complex allele c.[744-33GATT(6); 869+11C>T] was always associated with the c.3909C>G mutation in cis in the Lebanese population. In cellulo splicing studies, realized by hybrid minigene constructs, revealed no impact of the c.3909C>G mutation on the splicing process, whereas the associated complex allele induces minor exon skipping. PMID:26075213

  11. A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated.

    Science.gov (United States)

    Hornemann, Thorsten; Penno, Anke; Richard, Stephane; Nicholson, Garth; van Dijk, Fleur S; Rotthier, Annelies; Timmerman, Vincent; von Eckardstein, Arnold

    2009-04-01

    Hereditary sensory neuropathy type 1 (HSAN I) is an autosomal dominant inherited neurodegenerative disorder of the peripheral nervous system associated with mutations in the SPTLC1 subunit of the serine palmitoyltransferase (SPT). Four missense mutations (C133W, C133Y, V144D and G387A) in SPTLC1 were reported to cause HSAN I. SPT catalyses the condensation of Serine and Palmitoyl-CoA, which is the first and rate-limiting step in the de novo synthesis of ceramides. Earlier studies showed that C133W and C133Y mutants have a reduced activity, whereas the impact of the V144D and G387A mutations on the human enzyme was not tested yet. In this paper, we show that none of the HSAN I mutations interferes with SPT complex formation. We demonstrate that also V144D has a reduced SPT activity, however to a lower extent than C133W and C133Y. In contrast, the G387A mutation showed no influence on SPT activity. Furthermore, the growth phenotype of LY-B cells--a SPTLC1 deficient CHO cell line--could be reversed by expressing either the wild-type SPTLC1 or the G387A mutant, but not the C133W mutant. This indicates that the G387A mutation is most likely not directly associated with HSAN I. These findings were genetically confirmed by the identification of a nuclear HSAN family which showed segregation of the G387A variant as a non-synonymous SNP.

  12. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Dai, Xianning; Zhou, Huihui [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Dong, Xujie [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Liu, Xiao-Ling, E-mail: lxl@mail.eye.ac.cn [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Guan, Min-Xin, E-mail: min-xin.guan@cchmc.org [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310012 (China); Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, OH 45229 (United States)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  13. Deep learning of mutation-gene-drug relations from the literature.

    Science.gov (United States)

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  14. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    Science.gov (United States)

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  15. Mitchell-Riley Syndrome: A Novel Mutation in RFX6 Gene

    Directory of Open Access Journals (Sweden)

    Marta Zegre Amorim

    2015-01-01

    Full Text Available A novel RFX6 homozygous missense mutation was identified in an infant with Mitchell-Riley syndrome. The most common features of Mitchell-Riley syndrome were present, including severe neonatal diabetes associated with annular pancreas, intestinal malrotation, gallbladder agenesis, cholestatic disease, chronic diarrhea, and severe intrauterine growth restriction. Perijejunal tissue similar to pancreatic tissue was found in the submucosa, a finding that has not been previously reported in this syndrome. This case associating RFX6 mutation with structural and functional pancreatic abnormalities reinforces the RFX6 gene role in pancreas development and β-cell function, adding information to the existent mutation databases.

  16. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  17. Age-Related Hearing Impairment (ARHI) associated with GJB2 single mutation IVS1+1G>A in the Yakut population isolate in Eastern Siberia.

    Science.gov (United States)

    Barashkov, Nikolay A; Teryutin, Fedor M; Pshennikova, Vera G; Solovyev, Aisen V; Klarov, Leonid A; Solovyeva, Natalya A; Kozhevnikov, Andrei A; Vasilyeva, Lena M; Fedotova, Elvira E; Pak, Maria V; Lekhanova, Sargylana N; Zakharova, Elena V; Savvinova, Kyunney E; Gotovtsev, Nyurgun N; Rafailo, Adyum M; Luginov, Nikolay V; Alexeev, Anatoliy N; Posukh, Olga L; Dzhemileva, Lilya U; Khusnutdinova, Elza K; Fedorova, Sardana A

    2014-01-01

    Age-Related Hearing Impairment (ARHI) is one of the frequent sensory disorders registered in 50% of individuals over 80 years. ARHI is a multifactorial disorder due to environmental and poor-known genetic components. In this study, we present the data on age-related hearing impairment of 48 heterozygous carriers of mutation IVS1+1G>A (GJB2 gene) and 97 subjects with GJB2 genotype wt/wt in the Republic of Sakha/Yakutia (Eastern Siberia, Russia). This subarctic territory was found as the region with the most extensive accumulation of mutation IVS1+1G>A in the world as a result of founder effect in the unique Yakut population isolate. The GJB2 gene resequencing and detailed audiological analysis in the frequency range 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 kHz were performed in all examined subjects that allowed to investigate genotype-phenotype correlations between the presence of single mutation IVS1+1G>A and hearing of subjects from examined groups. We revealed the linear correlation between increase of average hearing thresholds at speech frequencies (PTA0.5,1.0,2.0,4.0 kHz) and age of individuals with GJB2 genotype IVS1+1G>A/wt (rs = 0.499, p = 0.006860 for males and rs = 0.427, p = 0.000277 for females). Moreover, the average hearing thresholds on high frequency (8.0 kHz) in individuals with genotype IVS1+1G>A/wt (both sexes) were significantly worse than in individuals with genotype wt/wt (pA/wt was estimated to be ∼40 years (rs = 0.504, p = 0.003). These findings demonstrate that the single IVS1+1G>A mutation (GJB2) is associated with age-related hearing impairment (ARHI) of the IVS1+1G>A carriers in the Yakuts.

  18. Age-Related Hearing Impairment (ARHI associated with GJB2 single mutation IVS1+1G>A in the Yakut population isolate in Eastern Siberia.

    Directory of Open Access Journals (Sweden)

    Nikolay A Barashkov

    Full Text Available Age-Related Hearing Impairment (ARHI is one of the frequent sensory disorders registered in 50% of individuals over 80 years. ARHI is a multifactorial disorder due to environmental and poor-known genetic components. In this study, we present the data on age-related hearing impairment of 48 heterozygous carriers of mutation IVS1+1G>A (GJB2 gene and 97 subjects with GJB2 genotype wt/wt in the Republic of Sakha/Yakutia (Eastern Siberia, Russia. This subarctic territory was found as the region with the most extensive accumulation of mutation IVS1+1G>A in the world as a result of founder effect in the unique Yakut population isolate. The GJB2 gene resequencing and detailed audiological analysis in the frequency range 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 kHz were performed in all examined subjects that allowed to investigate genotype-phenotype correlations between the presence of single mutation IVS1+1G>A and hearing of subjects from examined groups. We revealed the linear correlation between increase of average hearing thresholds at speech frequencies (PTA0.5,1.0,2.0,4.0 kHz and age of individuals with GJB2 genotype IVS1+1G>A/wt (rs = 0.499, p = 0.006860 for males and rs = 0.427, p = 0.000277 for females. Moreover, the average hearing thresholds on high frequency (8.0 kHz in individuals with genotype IVS1+1G>A/wt (both sexes were significantly worse than in individuals with genotype wt/wt (pA/wt was estimated to be ∼40 years (rs = 0.504, p = 0.003. These findings demonstrate that the single IVS1+1G>A mutation (GJB2 is associated with age-related hearing impairment (ARHI of the IVS1+1G>A carriers in the Yakuts.

  19. Association between nucleotide mutation of eNOS gene and serum ...

    African Journals Online (AJOL)

    Various mutation on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the expansion factor (VEF) and may accelerate the process of atherosclerosis. The study was designed to investigate the frequency of T-786C polymorphism of the gene or nucleotide mutation of eNOS gene in patients ...

  20. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene.

    Science.gov (United States)

    Verheij, Joke B G M; Kunze, Jürgen; Osinga, Jan; van Essen, Anthonie J; Hofstra, Robert M W

    2002-03-15

    ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome.