WorldWideScience

Sample records for gene expression regulation viral

  1. Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression.

    Science.gov (United States)

    Chapa, Travis J; Perng, Yi-Cheih; French, Anthony R; Yu, Dong

    2014-01-01

    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.

  2. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    Science.gov (United States)

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  3. Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2011-07-01

    Full Text Available Abstract Post-transcriptional regulation of HIV-1 gene expression is mediated by interactions between viral transcripts and viral/cellular proteins. For HIV-1, post-transcriptional nuclear control allows for the export of intron-containing RNAs which are normally retained in the nucleus. Specific signals on the viral RNAs, such as instability sequences (INS and Rev responsive element (RRE, are binding sites for viral and cellular factors that serve to regulate RNA-export. The HIV-1 encoded viral Rev protein binds to the RRE found on unspliced and incompletely spliced viral RNAs. Binding by Rev directs the export of these RNAs from the nucleus to the cytoplasm. Previously, Rev co-factors have been found to include cellular factors such as CRM1, DDX3, PIMT and others. In this work, the nuclear matrix protein Matrin 3 is shown to bind Rev/RRE-containing viral RNA. This binding interaction stabilizes unspliced and partially spliced HIV-1 transcripts leading to increased cytoplasmic expression of these viral RNAs.

  4. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    Science.gov (United States)

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.

  5. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  6. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence.

    Science.gov (United States)

    Polyak, Maria J; Vivithanaporn, Pornpun; Maingat, Ferdinand G; Walsh, John G; Branton, William; Cohen, Eric A; Meeker, Rick; Power, Christopher

    2013-07-01

    The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.

  7. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression.

    Science.gov (United States)

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Liu, Bo-Du; Huang, Xian-De; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-09-01

    The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK-NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK-NF-κB signaling pathway to facilitate viral gene expression.

  8. Gene expression in primate liver during viral hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Bryant Joseph

    2009-02-01

    Full Text Available Abstract Background Rhesus macaques infected with lymphocytic choriomeningitis virus (LCMV provide a model for human Lassa fever. Disease begins with flu-like symptoms and progresses rapidly with fatal consequences. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al J. Virol. 2007 showing distinct pre-viremic and viremic stages that discriminated virulent from benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. Results Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a broader effect on liver cell function than did infection with non-virulent LCMV-Armstrong. During the first few days after infection, LCMV altered expression of genes associated with energy production, including fatty acid and glucose metabolism. The transcriptome profile resembled that of an organism in starvation: mRNA for acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis was reduced while genes for enzymes in gluconeogenesis were up-regulated. Expression was also altered for genes associated with complement and coagulation cascades, and with signaling pathways involving STAT1 and TGF-β. Conclusion Most of the 4500 differentially expressed transcripts represented a general response to both virulent and mild infections. However, approximately 250 of these transcripts had significantly different expression in virulent infections as compared to mild infections, with approximately 30 of these being differentially regulated during the pre-viremic stage of infection. The genes that are expressed early and differently in mild and virulent disease are potential biomarkers for prognosis and triage of acute viral disease.

  9. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses.

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2014-12-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus-host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate-early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate-early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  10. Immediate–Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

    Science.gov (United States)

    Torres, Lilith; Tang, Qiyi

    2015-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses. PMID:25501994

  11. Immediate–Early(IE) gene regulation of cytomegalovirus:IE1-and pp71-mediated viral strategies against cellular defenses

    Institute of Scientific and Technical Information of China (English)

    Lilith; Torres; Qiyi; Tang

    2014-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus(HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host(latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early(IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

  12. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  13. Herpesvirus late gene expression: a viral-specific Pre-Initiation Complex is key

    Directory of Open Access Journals (Sweden)

    Henri eGruffat

    2016-06-01

    Full Text Available During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE, early (E and late (L. This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the Transcription Start Site (TSS. Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies ( and . In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors - especially ICP4 - play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.

  14. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Science.gov (United States)

    Kula, Anna; Marcello, Alessandro

    2012-01-01

    Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function. PMID:24832221

  15. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Alessandro Marcello

    2012-07-01

    Full Text Available Gene expression of the human immunodeficiency virus type 1 (HIV-1 is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE. These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.

  16. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV).

    Science.gov (United States)

    Cho, Hyun Kook; Kim, Julan; Moon, Ji Young; Nam, Bo-Hye; Kim, Young-Ok; Kim, Woo-Jin; Park, Jung Youn; An, Cheul Min; Cheong, Jaehun; Kong, Hee Jeong

    2016-02-01

    The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.

  17. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  18. Aggregation of AcMNPV LEF-10 and Its Impact on Viral Late Gene Expression.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xu

    Full Text Available The Autographa californica multiple nucleopolyhedrovirus (AcMNPV late expression factor gene lef-10 has been identified to be required for viral late gene expression by transient expression assay. Our previous work has shown that the gene product LEF-10 can form very stable high-molecular-weight complexes, but the structure and function of the protein remain unknown. In this study, we demonstrated that LEF-10 was essential for the replication of AcMNPV, and its truncated fragment containing amino acid residues 1 to 48 were sufficient to support the virus survival. Our data also suggested that the LEF-10 could spontaneously aggregate to form punctate spots in virus infected Sf9 cells at low frequency, and the aggregation of the protein could be induced by LEF-10 over-expression. When the protein aggregated to form punctate spots, soluble LEF-10 proteins were depleted and this could result in the down-regulation of viral late gene expression.

  19. Chromatin-mediated regulation of cytomegalovirus gene expression.

    Science.gov (United States)

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  20. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  1. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  2. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  3. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene.

    Directory of Open Access Journals (Sweden)

    Hiroki Isomura

    Full Text Available BACKGROUND: Human cytomegalovirus (HCMV can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE: While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.

  4. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  5. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  6. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  7. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  8. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  9. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  10. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  11. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  12. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  13. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob Daniela

    2005-06-01

    Full Text Available Abstract Background The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. Results We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. Conclusion According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  14. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  15. Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression.

    Directory of Open Access Journals (Sweden)

    Nadine C Olthof

    Full Text Available Infection with high-risk human papillomavirus (HPV type 16 is an independent risk factor for the development of oropharyngeal squamous cell carcinomas (OSCC. However, it is unclear whether viral integration is an essential hallmark in the carcinogenic process of OSCC and whether HPV integration correlates with the level of viral gene transcription and influences the expression of disrupted host genes. We analyzed 75 patients with OSCC. HPV16-positivity was proven by p16(INK4A immunohistochemistry, PCR and FISH. Viral integration was examined using DIPS- as well as APOT-PCR. Viral E2, E6 and E7 gene expression levels were quantified by quantitative reverse transcriptase (RT-qPCR. Expression levels of 7 human genes disrupted by the virus were extracted from mRNA expression profiling data of 32 OSCCs. Viral copy numbers were assessed by qPCR in 73 tumors. We identified 37 HPV16-human fusion products indicating viral integration in 29 (39% OSCC. In the remaining tumors (61% only episome-derived PCR products were detected. When comparing OSCC with or without an integration-derived fusion product, we did not find significant differences in the mean RNA expression of viral genes E2, E6 and E7 or the viral copy numbers per cell, nor did the RNA expression of the HPV-disrupted genes differ from either group of OSCC. In conclusion, our data do not support the hypothesis that integration affects the levels of viral and/or HPV-disrupted human gene transcripts. Thus constitutive, rather than a high level, of expression of oncogene transcripts appears to be required in HPV-related OSCC.

  16. Differential gene expression profiles of hepatocellular carcinomas associated or not with viral infection

    Directory of Open Access Journals (Sweden)

    M. Bellodi-Privato

    2009-12-01

    Full Text Available Chronic hepatitis B (HBV and C (HCV virus infections are the most important factors associated with hepatocellular carcinoma (HCC, but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1 were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.

  17. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  18. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  19. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  20. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  1. Endogenous type C viral gene expression in cultures of fetal diploid baboon cells treated with 5'-bromodeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, G.; Kennel, S.J.; Foote, L.J.

    1981-04-30

    Cultures of fetal diploid baboon fibroblasts treated with 5-bromodeoxyuridine synthesized protein antigenically related to baboon endogenous type C viral gag gene product, p28. Radioimmunoassays detected p28 antigenic specificities indistinguishable from those of purified virus. However, viral RNA-dependent DNA polymerase was not detected in culture fluids, and infectious virus was rarely recovered by cocultivation with susceptible heterologous cells. Extracellular particles containing p28 were not readily detected, further indicating that viral gag gene-coded proteins were synthesized independently of whole virus. Normal cultures of the same baboon cells exhibited endogenous expression of a glycoprotein antigenically related to BEV gp70, suggesting differential regulation of the endogenous gag and env gene-coded products. Baboon cell cultures exogenously infected with BEV produced extracellular particles having viral p28 and gp70 as measured by radioimmunoassays of culture fluids. Since induced cultures have about 10% positive cells versus close to 100% for infected culture, the amount of p28 per producing cell was about the same in both cell populations.

  2. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    Science.gov (United States)

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  3. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors.

    Science.gov (United States)

    Zhang, Yunfei; Charvat, Robert A; Kim, Seong K; O'Callaghan, Dennis J

    2014-01-20

    The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.

  4. Shrimp miR-10a Is Co-opted by White Spot Syndrome Virus to Increase Viral Gene Expression and Viral Replication

    Science.gov (United States)

    Huang, Jiun-Yan; Kang, Shih-Ting; Chen, I-Tung; Chang, Li-Kwan; Lin, Shih-Shun; Kou, Guang-Hsiung; Chu, Chia-Ying; Lo, Chu-Fang

    2017-01-01

    Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5′ untranslated region (UTR) of at least three viral genes (vp26, vp28, and wssv102), and plasmids that were controlled by the 5′ UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host–virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins. PMID:28932224

  5. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  6. Redox regulation, gene expression and longevity.

    Science.gov (United States)

    Honda, Yoko; Tanaka, Masashi; Honda, Shuji

    2010-07-01

    Lifespan can be lengthened by genetic and environmental modifications. Study of these might provide valuable insights into the mechanism of aging. Low doses of radiation and short-term exposure to heat and high concentrations of oxygen prolong the lifespan of the nematode Caenorhabditis elegans. These might be caused by adaptive responses to harmful environmental conditions. Single-gene mutations have been found to extend lifespan in C. elegans, Drosophila and mice. So far, the best-characterized system is the C. elegans mutant in the daf-2, insulin/IGF-I receptor gene that is the component of the insulin/IGF-I signaling pathway. The mutant animals live twice as long as the wild type. The insulin/IGF-I signaling pathway regulates the activity of DAF-16, a FOXO transcription factor. However, the unified explanation for the function of DAF-16 transcription targets in the lifespan extension is not yet fully established. As both of the Mn superoxide dismutase (MnSOD) isoforms (sod-2 and sod-3) are found to be targets of DAF-16, we attempted to assess their functions in regulating lifespan and oxidative stress responsivity. We show that the double deletions of sod-2 and sod-3 genes induced oxidative-stress sensitivity but do not shorten lifespan in the daf-2 mutant background, indicating that oxidative stress is not necessarily a limiting factor for longevity. Furthermore, the deletion in the sod-3 gene lengthens lifespan in the daf-2 mutant. We conclude that the MnSOD systems in C. elegans fine-tune the insulin/IGF-I-signaling based regulation of longevity by acting not as anti-oxidants but as physiological-redox-signaling modulators.

  7. Polymorphic cis- and trans-regulation of human gene expression.

    Directory of Open Access Journals (Sweden)

    Vivian G Cheung

    Full Text Available Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

  8. Cytomegalovirus replicon-based regulation of gene expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hermine Mohr

    Full Text Available There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV origin of lytic replication (oriLyt, were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.

  9. Mechanisms of mammalian zinc-regulated gene expression.

    Science.gov (United States)

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne

    2008-12-01

    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  10. Regulating gene-expression by mechanical force

    Science.gov (United States)

    Visscher, Koen

    2008-10-01

    Initiation of transcription is an attractive target for controlling gene expression. Initiation typically involves binding of RNA polymerase to the DNA, followed by a rapid transition into a ``closed'' complex, and a subsequent transition into the ``open'' complex in which the DNA is locally melted. Nature makes good use of this target, for example in the form of repressor proteins that bind DNA and inhibit transcription. Here we will show that initiation of transcription is also dependent upon DNA tension and thus may be controlled by force alone, without the need for any accessory proteins. Using a three-bead assay in conjunction with optical tweezers we have shown that transient interactions of T7 RNA polymerase with the DNA promoter site shorten significantly, by up to a factor of ˜20, when DNA tension is increased. Experiments in the presence and absence of nucleotides have allowed us to conclude that force is likely to affect the rate constants into and/or out of the open complex, rather than the off-rate from the closed complex.

  11. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing.

    Science.gov (United States)

    Zhang, Chunquan; Bradshaw, Jeffrey D; Whitham, Steven A; Hill, John H

    2010-05-01

    Plant viral vectors are valuable tools for heterologous gene expression, and because of virus-induced gene silencing (VIGS), they also have important applications as reverse genetics tools for gene function studies. Viral vectors are especially useful for plants such as soybean (Glycine max) that are recalcitrant to transformation. Previously, two generations of bean pod mottle virus (BPMV; genus Comovirus) vectors have been developed for overexpressing and silencing genes in soybean. However, the design of the previous vectors imposes constraints that limit their utility. For example, VIGS target sequences must be expressed as fusion proteins in the same reading frame as the viral polyprotein. This requirement limits the design of VIGS target sequences to open reading frames. Furthermore, expression of multiple genes or simultaneous silencing of one gene and expression of another was not possible. To overcome these and other issues, a new BPMV-based vector system was developed to facilitate a variety of applications for gene function studies in soybean as well as in common bean (Phaseolus vulgaris). These vectors are designed for simultaneous expression of multiple foreign genes, insertion of noncoding/antisense sequences, and simultaneous expression and silencing. The simultaneous expression of green fluorescent protein and silencing of phytoene desaturase shows that marker gene-assisted silencing is feasible. These results demonstrate the utility of this BPMV vector set for a wide range of applications in soybean and common bean, and they have implications for improvement of other plant virus-based vector systems.

  12. Phosphorylation of the viral coat protein regulates RNA virus infection

    Directory of Open Access Journals (Sweden)

    Hoover HS

    2016-11-01

    Full Text Available Haley S Hoover, C Cheng Kao Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA Abstract: Coat proteins (CPs are the most abundant protein produced during a viral infection. CPs have been shown to regulate the infection processes of RNA viruses, including RNA replication and gene expression. The numerous activities of the CP in infection are likely to require regulation, possibly through posttranslational modifications. Protein posttranslational modifications are involved in signal transduction, expanding and regulating protein function, and responding to changes in the environment. Accumulating evidence suggests that phosphorylation of viral CPs is involved in the regulation of the viral infection process from enabling virion disassembly to regulation of viral protein synthesis and replication. CP phosphorylation also affects viral trafficking and virion assembly. This review focuses on the regulatory roles that phosphorylation of CPs has in the life cycle of viruses with RNA genomes. Keywords: viral capsid protein, posttranslational modification, phosphorylation, protein–RNA interaction

  13. Regulation of gene expression by Goodwin's loop with many genes

    Science.gov (United States)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  14. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  15. Tissue Specific and Hormonal Regulation of Gene Expression

    Science.gov (United States)

    1998-07-01

    cAMP responsive region located at -200 to -99 bp in CRH. 14. SUBJECT TERMS 15. NUMfER OF PAGES Breast Cancer gene regulation, transcription, placenta...known mediators of labor, and it may also the stress response. The peptide sequence and expression of potentiate the effect of oxytocin on uterine...regulation of other rodent trophoblast genes has 220 not yet been investigated. 2. Robinson BG, Arbiser JL, Emanuel RL, Majzoub JA 1989 Species- 3008

  16. Barrier to auto integration factor becomes dephosphorylated during HSV-1 Infection and Can Act as a host defense by impairing viral DNA replication and gene expression.

    Science.gov (United States)

    Jamin, Augusta; Thunuguntla, Prasanth; Wicklund, April; Jones, Clinton; Wiebe, Matthew S

    2014-01-01

    BAF (Barrier to Autointegration Factor) is a highly conserved DNA binding protein that senses poxviral DNA in the cytoplasm and tightly binds to the viral genome to interfere with DNA replication and transcription. To counteract BAF, a poxviral-encoded protein kinase phosphorylates BAF, which renders BAF unable to bind DNA and allows efficient viral replication to occur. Herein, we examined how BAF phosphorylation is affected by herpes simplex virus type 1 (HSV-1) infection and tested the ability of BAF to interfere with HSV-1 productive infection. Interestingly, we found that BAF phosphorylation decreases markedly following HSV-1 infection. To determine whether dephosphorylated BAF impacts HSV-1 productive infection, we employed cell lines stably expressing a constitutively unphosphorylated form of BAF (BAF-MAAAQ) and cells overexpressing wild type (wt) BAF for comparison. Although HSV-1 production in cells overexpressing wtBAF was similar to that in cells expressing no additional BAF, viral growth was reduced approximately 80% in the presence of BAF-MAAAQ. Experiments were also performed to determine the mechanism of the antiviral activity of BAF with the following results. BAF-MAAAQ was localized to the nucleus, whereas wtBAF was dispersed throughout cells prior to infection. Following infection, wtBAF becomes dephosphorylated and relocalized to the nucleus. Additionally, BAF was associated with the HSV-1 genome during infection, with BAF-MAAAQ associated to a greater extent than wtBAF. Importantly, unphosphorylated BAF inhibited both viral DNA replication and gene expression. For example, expression of two regulatory proteins, ICP0 and VP16, were substantially reduced in cells expressing BAF-MAAAQ. However, other viral genes were not dramatically affected suggesting that expression of certain viral genes can be differentially regulated by unphosphorylated BAF. Collectively, these results suggest that BAF can act in a phosphorylation-regulated manner to impair

  17. Amino acids as regulators of gene expression

    Directory of Open Access Journals (Sweden)

    Kimball SR

    2004-08-01

    Full Text Available The role of amino acids as substrates for protein synthesis is well documented. However, a function for amino acids in modulating the signal transduction pathways that regulate mRNA translation has only recently been described. Interesting, some of the signaling pathways regulated by amino acids overlap with those classically associated with the cellular response to hormones such as insulin and insulin-like growth factors. The focus of this review is on the signaling pathways regulated by amino acids, with a particular emphasis on the branched-chain amino acid leucine, and the steps in mRNA translation controlled by the signaling pathways.

  18. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection

    OpenAIRE

    2014-01-01

    The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction ...

  19. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  20. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    Science.gov (United States)

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  1. Gastrin gene expression and regulation in rat islet cell lines.

    Science.gov (United States)

    Brand, S J; Wang, T C

    1988-11-15

    Gastrin gene expression was observed in two permanent rat insulinoma (RIN) cell lines derived from a rat insulinoma. Gastrin expression was selective; highest expression was seen in a cell line which did not express other islet cell hormones. Gastrin mRNA transcription initiated from the same promoter as antral gastrin mRNA. DNA transfection studies with a gastrin chloramphenicol acetyltransferase chimeric gene showed higher expression in gastrin-expressing RIN cells than non-gastrin-expressing islet cells. This implies that gastrin-expressing RIN cells selectively express a trans-acting transcriptional activator which binds to cis-acting regulatory sequences within the 5'-flanking DNA sequence and first exon of the gastrin gene. The gastrin peptide precursor synthesized in these RIN cell lines is subject to the same repertoire of posttranslational modifications within the cell's secretory apparatus (endoproteolytic cleavage, tyrosine sulfation, and C-terminal amidation) as seen in antral G cells. Gastrin mRNA levels in these RIN cells were selectively increased by increasing the extracellular calcium concentration. Membrane depolarization also stimulated gastrin mRNA levels, probably through activation of voltage-sensitive calcium channels. Thus, these gastrin-expressing RIN cell lines provide permanent cell lines useful in analyzing the cellular regulation of gastrin gene expression.

  2. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  3. Translational regulation of human p53 gene expression.

    OpenAIRE

    Fu, L.; Minden, M D; Benchimol, S

    1996-01-01

    In blast cells obtained from patients with acute myelogenous leukemia, p53 mRNA was present in all the samples examined while the expression of p53 protein was variable from patient to patient. Mutations in the p53 gene are infrequent in this disease and, hence, variable protein expression in the majority of the samples cannot be accounted for by mutation. In this study, we examined the regulation of p53 gene expression in human leukemic blasts and characterized the p53 transcripts in these c...

  4. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  5. General and family-specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Jørgensen, H. B. H.; Sørensen, P.; Cooper, G. A.

    2011-01-01

    The ability of rainbow trout (Oncorhynchus mykiss) to respond successfully to infection by viral hemorrhagic septicaemia virus (VHSV) is expected to involve a large number of biochemical processes. We hypothesized that this would be reflected at the gene expression level in infected fish, and we...... challenge) and a relatively high susceptibility (18% survival following challenge) trout family that were both split into a group exposed to virus and a non-exposed control group. In total, 939 genes were differentially expressed between infected and non-infected fish (FDR p = 0.05). Five groups of Gene...... over-represented among the 642 differentially expressed genes in the low-susceptibility trout family but not among the 556 differentially expressed genes in the high-susceptibility trout family. Expression profiles for most immune genes discussed showed increased transcription from day 3 post...

  6. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  7. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  8. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus

    OpenAIRE

    Michalovicz, Lindsay T.; Lally, Brent; Konat, Gregory W.

    2015-01-01

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene e...

  9. JC virus promoter/enhancers contain TATA box-associated Spi-B-binding sites that support early viral gene expression in primary astrocytes.

    Science.gov (United States)

    Marshall, Leslie J; Moore, Lisa D; Mirsky, Matthew M; Major, Eugene O

    2012-03-01

    JC virus (JCV) is the aetiological agent of the demyelinating disease progressive multifocal leukoencephalopathy, an AIDS defining illness and serious complication of mAb therapies. Initial infection probably occurs in childhood. In the working model of dissemination, virus persists in the kidney and lymphoid tissues until immune suppression/modulation causes reactivation and trafficking to the brain where JCV replicates in oligodendrocytes. JCV infection is regulated through binding of host factors such as Spi-B to, and sequence variation in the non-coding control region (NCCR). Although NCCR sequences differ between sites of persistence and pathogenesis, evidence suggests that the virus that initiates infection in the brain disseminates via B-cells derived from latently infected haematopoietic precursors in the bone marrow. Spi-B binds adjacent to TATA boxes in the promoter/enhancer of the PML-associated JCV Mad-1 and Mad-4 viruses but not the non-pathogenic, kidney-associated archetype. The Spi-B-binding site of Mad-1/Mad-4 differs from that of archetype by a single nucleotide, AAAAGGGAAGGGA to AAAAGGGAAGGTA. Point mutation of the Mad-1 Spi-B site reduced early viral protein large T-antigen expression by up to fourfold. Strikingly, the reverse mutation in the archetype NCCR increased large T-antigen expression by 10-fold. Interestingly, Spi-B protein binds the NCCR sequence flanking the viral promoter/enhancer, but these sites are not essential for early viral gene expression. The effect of mutating Spi-B-binding sites within the JCV promoter/enhancer on early viral gene expression strongly suggests a role for Spi-B binding to the viral promoter/enhancer in the activation of early viral gene expression.

  10. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2015-08-01

    Full Text Available In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM. During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E and the Ecdysone-Receptor (EcR. Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH and its receptor Methoprene-Tolerant (Met are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the

  11. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  12. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  13. Early Growth Response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression

    Institute of Scientific and Technical Information of China (English)

    Gautam R Bedadala; Rajeswara C Pinnoji; Shao-Chung V Hsia

    2007-01-01

    The molecular mechanisms mediating herpes simplex virus type 1 (HSV-1) gene silencing during latent infection are not clear. Five copies of early growth response gene 1 (Egr-1) binding elements were identified in the intron of HSV-1 ICP22 (infected cell protein No. 22) gene, leading to the hypothesis that Egr-1 binds to the viral genome and regulates the viral gene expression. Transient co-transfection assays indicated that Egr-1 negatively regulated the transcription of both full-length and intron-removed ICP22 promoters. The same assays also revealed that Egr-1 repressed ICP4 (infected cell protein No. 4) promoter activity in a dose-dependent manner but showed less inhibition when the intron was removed.Histone deacetylation was not involved in this regulation since histone deacetylase inhibitor trichostatin A did not exhibit any effect on Egr-1-mediated repression. Chromatin immunoprecipitation assays showed that Egr-1 reduced the binding of Sp1 to the promoters and that the co-repressor Nab2 (NGFI-A/EGR1-binding protein) was recruited to the proximity of ICP4 in the presence of Egr-1. These results suggested that the multi functional transcription factor Egr-1 can repress HSV-1 immediate-early gene expression through the recruitment of co-repressor Nab2 and reduction of Sp1 occupancy,and thus may play a critical role in HSV-1 gene silencing during latency.

  14. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  15. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  16. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  17. Shh regulates chick Ebf1 gene expression in somite development.

    Science.gov (United States)

    El-Magd, Mohammed Abu; Allen, Steve; McGonnell, Imelda; Mansour, Ali A; Otto, Anthony; Patel, Ketan

    2015-01-01

    The chick early B-cell factor 1 (cEbf1) is a member of EBF family of helix loop helix transcription factors. Recently, we have proved that cEbf1 expression in feather is regulated by Shh. It is therefore possible that the somitic expression of cEbf1 is controlled by Shh signals from the notochord. To assess this hypothesis, the expression profile of cEbf1 was first detailed in somites of chick embryos (from HH8 to HH28). cEbf1 expression was mainly localised in the medial sclerotome and later around the vertebral cartilage anlagen of body and pedicles. Tissue manipulations (notochord ablation) and Shh gain and loss of function experiments were then performed to analyse whether the notochord and/or Shh regulate cEbf1 expression. Results from these experiments confirmed our hypothesis that the medial somitic expression of cEbf1 is regulated by Shh from the notochord. In conclusion, cEbf1 gene is considered as a medial sclerotome marker, downstream to and regulated by the notochord derived Shh, which may be functionally involved in somitogenesis.

  18. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus.

    Science.gov (United States)

    Michalovicz, Lindsay T; Lally, Brent; Konat, Gregory W

    2015-08-15

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene encoding complement factor B (CfB) exhibited the highest response, and its upregulation was commensurate with the development of hyperexcitability. Collectively, these results suggest that the induction of hippocampal hyperexcitability may be mediated by the alternative complement cascades.

  19. General and family-specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Jørgensen, H. B. H.; Sørensen, P.; Cooper, G. A.

    2011-01-01

    The ability of rainbow trout (Oncorhynchus mykiss) to respond successfully to infection by viral hemorrhagic septicaemia virus (VHSV) is expected to involve a large number of biochemical processes. We hypothesized that this would be reflected at the gene expression level in infected fish, and we...... tested it by examining gene expression levels in the head kidney of trout at a genome-wide scale with a 16K cDNA microarray for salmonids. Expression levels were recorded during 16 days following bath challenge. The challenge experiment included a relatively low susceptibility (32% survival following...... challenge) and a relatively high susceptibility (18% survival following challenge) trout family that were both split into a group exposed to virus and a non-exposed control group. In total, 939 genes were differentially expressed between infected and non-infected fish (FDR p = 0.05). Five groups of Gene...

  20. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  1. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  2. Regulation of cry Gene Expression in Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Chao Deng

    2014-07-01

    Full Text Available Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.

  3. The Role of Bromodomain Proteins in Regulating Gene Expression

    Directory of Open Access Journals (Sweden)

    Michael F. Duffy

    2012-05-01

    Full Text Available Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription.

  4. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  7. An optimized, chemically regulated gene expression system for Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Paola Ferrante

    Full Text Available BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM. Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.

  8. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis and viral infection

    Directory of Open Access Journals (Sweden)

    YASUO eARIUMI

    2014-12-01

    Full Text Available The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-ß-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon regulatory factor (IRF 3 and type I interferon (IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus (HIV-1, hepatitis C virus (HCV, hepatitis B virus (HBV, and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.

  9. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection.

    Science.gov (United States)

    Ariumi, Yasuo

    2014-01-01

    The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.

  10. Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after infection with viral haemorrhagic septicaemia virus (VHSV).

    Science.gov (United States)

    Díaz-Rosales, P; Romero, A; Balseiro, P; Dios, S; Novoa, B; Figueras, A

    2012-10-01

    Viral haemorrhagic septicaemia virus (VHSV) is one of the major threats to the development of the aquaculture industry worldwide. The present study was aimed to identify genes differentially expressed in several turbot (Scophthalmus maximus) families showing different mortality rates after VHSV. The expression analysis was conducted through genome-wide expression profiling with an oligo-microarray in the head kidney. A significant proportion of the variation in the gene expression profiles seemed to be explained by the genetic background, indicating that the mechanisms by which particular species and/or populations can resist a pathogen(s) are complex and multifactorial. Before the experimental infections, fish from resistant families (low mortality rates after VHSV infection) showed high expression of different antimicrobial peptides, suggesting that their pre-immune state may be stronger than fish of susceptible families (high mortality rates after VHSV infection). After infection, fish from both high- and low-mortality families showed an up-modulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Low levels of several molecules secreted in the mucus were observed in high-mortality families, but different genes involved in viral entrance into target cells were down-regulated in low-mortality families. Moreover, these families also showed a strong down-modulation of marker genes related to VHSV target organs, including biochemical markers of renal dysfunction and myocardial injury. In general, the expression of different genes involved in the metabolism of sugars, lipids and proteins were decreased in both low- and high-mortality families after infection. The present study serves as an initial screen for genes of interest and provides an extensive overview of the genetic basis underlying the differences between families that are resistant or susceptible to VHSV infection.

  11. Differential gene expression regulated by oscillatory transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Cerone

    Full Text Available Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.

  12. Gene expression dosage regulation in an allopolyploid fish.

    Directory of Open Access Journals (Sweden)

    I Matos

    Full Text Available How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional ''diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles' samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression. Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5. Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock

  13. Regulation of virulence gene expression in pathogenic Listeria.

    Science.gov (United States)

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  14. RNA-seq Analysis of Host and Viral Gene Expression Highlights Interaction between Varicella Zoster Virus and Keratinocyte Differentiation

    Science.gov (United States)

    Singh, Manuraj; Kanda, Ravinder K.; Yee, Michael B.; Kellam, Paul; Hollinshead, Michael; Kinchington, Paul R.; O'Toole, Edel A.; Breuer, Judith

    2014-01-01

    Varicella zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread. PMID:24497829

  15. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Meleri Jones

    2014-01-01

    Full Text Available Varicella zoster virus (VZV is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.

  16. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia

    Institute of Scientific and Technical Information of China (English)

    Bryon; Ellis; Leah; Kaercher; Courtney; Snavely

    2012-01-01

    AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  17. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in Japanese flounder Paralichthys olivaceus leucocytes during Edwardsiella tarda and viral hemorrhagic septicemia virus infection.

    Science.gov (United States)

    Matsuyama, Tomomasa; Fujiwara, Atushi; Takano, Tomokazu; Nakayasu, Chihaya

    2011-10-01

    Transcriptional changes in the peripheral blood leucocytes (PBL) of Japanese flounder Paralichthys olivaceus challenged by Edwardsiella tarda and viral hemorrhagic septicemia virus (VHSV) were investigated using suppression subtractive hybridization (SSH) coupled with cDNA microarray analysis. First, we constructed an SSH cDNA library using mRNA samples isolated from PBL of P. olivaceus that had been experimentally infected with E. tarda. We then examined the transcriptional changes occurring in the PBL due to E. tarda and VHSV infection using a cDNA microarray produced using clones produced from the SSH library. A total of 565 and 180 cDNA sequences corresponding to mRNA species that are either up- or down-regulated by E. tarda infection were isolated by SSH. While host gene expression responses in response to E. tarda and VHSV infection share several response elements, distinct patterns of gene expression were also observed. Specifically, E. tarda infection enhanced the expression of cell adhesion molecules while VHSV enhanced the expression of interferon and proteasome-related genes. In challenge trials of the two infectious agents, expression profiles of chemokines were also observed to differ. The results indicated that distinguishing between viral and bacterial infection is possible based on the RNA expression profiles of PBL from infected fish.

  18. Viral Vectors for in Vivo Gene Transfer

    Science.gov (United States)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  19. Glycerophosphorylcholine regulates Haemophilus influenzae glpQ gene expression.

    Science.gov (United States)

    Alrousan, Enas; Fan, Xin

    2015-05-01

    An important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface of the host is the phosphorylcholine (ChoP) decoration of its lipopolysaccharides, which promotes adherence to the host cells. Haemophilus influenzae is able to use glycerophosphorylcholine (GPC) from host for ChoP synthesis. Utilization of GPC requires glpQ, which encodes a glycerophosphodiester phosphodiesterase enzyme. In this study, we investigate the transcriptional regulation of glpQ gene using real-time PCR and transcriptional fusion of H. influenzae glpQ promoter to the Escherichia coli lacZ reporter gene. The glpQ promoter activities were examined under environmental conditions including changes in temperature, oxygen, high salt and minimal growth medium. Our data showed that under room temperature and anaerobic conditions, the glpQ gene expression levels were significantly higher than under other growth conditions. In addition, the glpQ gene expression levels were upregulated in the presence of GPC. These results suggest that H. influenzae may upregulate glpQ expression in response to different environments it encounters during infection, from the airway surfaces (room temperature) to deep tissues (anaerobic). Upregulation of glpQ by GPC may allow efficient use of abundant GPC from mammalian cells by H. influenzae as a source of nutrient and for ChoP decoration of lipopolysaccharide that facilitates bacterial adhesion to host cells and growth during infection.

  20. Adrenal glucocorticoids regulate adipsin gene expression in genetically obese mice.

    Science.gov (United States)

    Spiegelman, B M; Lowell, B; Napolitano, A; Dubuc, P; Barton, D; Francke, U; Groves, D L; Cook, K S; Flier, J S

    1989-01-25

    Adipsin expression at the protein and mRNA levels is greatly reduced in several distinct syndromes of obesity in the mouse: genetic obesity due to the db/db and ob/ob genes, and a chemically induced model secondary to neonatal exposure to monosodium glutamate. We considered first the possibility that the adipsin gene might be identical to the db or ob locus and the lowered expression of this protein might result from a mutation in this gene. We show here that the adipsin structural gene is located on chromosome 10 and hence is physically distinct from any obesity genes so far identified in the mouse. A major role for the adrenal gland and adrenal glucocorticoids in the aberrant regulation of adipsin in these models of obesity is indicated by several experiments. Adrenalectomy of the ob/ob mouse raises the circulating levels of adipsin protein and the amount of this mRNA in epididymal fat pads (5-fold), although neither is increased to the levels seen in lean controls. Exogenous administration of corticosterone completely blocks the effects of adrenalectomy on adipsin, suggesting that the effect of this endocrine ablation is through reduction of adrenal glucocorticoids. Corticosterone administration also causes suppression in the levels of adipsin mRNA and protein in lean mice, although this decrease is never as severe as that seen in obese mice. The effect of exogenous corticosterone in lean mice occurs within 2 days and hence is not secondary to the obesity which these hormones eventually elicit. These results indicate that glucocorticoids can regulate adipsin expression in vivo and strongly suggest that the hyperglucocorticoid state seen in certain obese models plays a significant role in lowering adipsin mRNA and protein levels. Quantitative analysis of these experiments suggests that other as yet unknown neuroendocrine factors also function to suppress adipsin in obesity.

  1. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  2. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  3. X chromosome regulation of autosomal gene expression in bovine blastocysts

    Science.gov (United States)

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male to female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient. PMID:24817096

  4. Oxygen regulated gene expression in facultatively anaerobic bacteria.

    Science.gov (United States)

    Unden, G; Becker, S; Bongaerts, J; Schirawski, J; Six, S

    1994-01-01

    In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlying principles can be observed. Regulation of anabolism in response to O2 availability is important, too. It is caused by different requirements of cofactors or coenzymes in aerobic and anaerobic metabolism and by the requirement for different O2-independent biosynthetic routes under anoxia. The regulation mainly occurs at the transcriptional level. In E. coli, 4 global regulatory systems are known to be essential for the aerobic/anaerobic switch and the described hierarchy. A two-component sensor/regulator system comprising ArcB (sensor) and ArcA (transcriptional regulator) is responsible for regulation of aerobic metabolism. The FNR protein is a transcriptional sensor-regulator protein which regulates anaerobic respiratory genes in response to O2 availability. The gene activator FhlA regulates fermentative formate and hydrogen metabolism with formate as the inductor. ArcA/B and FNR directly respond to O2, FhlA indirectly by decreased levels of formate in the presence of O2. Regulation of nitrate/nitrite catabolism is effected by two 2-component sensor/regulator systems NarX(Q)/NarL(P) in response to nitrate/nitrite. Co-operation of the different regulatory systems at the target promoters which are in part under dual (or manifold) transcriptional control causes the expression

  5. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection.

    Science.gov (United States)

    Hsu, Mei-Ju; Wu, Ching-Yi; Chiang, Hsiao-Han; Lai, Yu-Lin; Hung, Shan-Ling

    2010-10-01

    Phosphatidylinositol 3-kinases (PI3Ks) function in the anti-apoptotic pathway, and are commonly exploited by various viruses to accomplish the viral life cycle. This study examined the role of the PI3K pathway in human oral epithelial cells following herpes simplex virus type 1 (HSV-1) infection. The results showed that HSV-1 induced the phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3). Phosphorylation of Akt, but not GSK-3, induced by HSV-1 was PI3K-dependent. The expression of HSV-1 immediate-early genes may be involved in the initial phosphorylation of Akt and GSK-3. Inhibition of HSV-1-induced PI3K activity increased DNA fragmentation and cleavage of poly ADP-ribose polymerase (PARP), caspase 3 and caspase 7 compared with infected alone. Inhibition of PI3K attenuated the expression of HSV-1-infected cell protein 0 (ICP0), but not thymidine kinase (TK) and viral replication. Collectively, these data suggested that, in oral epithelial cells, the HSV-1-induced PI3K/Akt activation was involved in the regulation of apoptosis blockage and viral gene expression.

  6. The Cpx System Regulates Virulence Gene Expression in Vibrio cholerae

    Science.gov (United States)

    Acosta, Nicole; Pukatzki, Stefan

    2015-01-01

    Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production. PMID:25824837

  7. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    Energy Technology Data Exchange (ETDEWEB)

    Millette, R. L.; Klaiber, R.

    1980-06-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with (355)methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units.

  8. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  9. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  10. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    Science.gov (United States)

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  11. Feeding Regulates the Expression of Pancreatic Genes in Gastric Mucosa

    Directory of Open Access Journals (Sweden)

    Maria Rita De Giorgio

    2010-01-01

    Full Text Available The ineffective short-term control of feeding behavior compromises energy homeostasis and can lead to obesity. The gastrointestinal tract secretes several regulatory peptides. However, little is known about the stomach peptide contribution to the acute regulation of intake. In an attempt to identify new gastric signals, the serial analysis of gene expression (SAGE method was used for the transcription profiling of stomach mucosa in 7 groups of mice: fasting and sacrificed 30 minutes, 1 hour, 3 hours after a low-fat (LF or high-fat (HF ad libitum meal. In total, 35 genes were differentially modulated by LF and HF meals compared to fasting, including 15 mRNAs coding for digestive enzymes/secretory proteins, and 10 novel transcripts. Although the basic expression profile did not undergo substantial variations, both LF and HF meals influenced the transcription. This study represents the first global analysis of stomach transcriptome as induced by different nutritional stimuli. Further studies including the characterization of novel genes may help to identify new targets for the therapy and prevention of obesity.

  12. Nitrate inhibits soybean nodulation by regulating expression of CLE genes.

    Science.gov (United States)

    Lim, Chae Woo; Lee, Young Woo; Lee, Sung Chul; Hwang, Cheol Ho

    2014-12-01

    Nitrogen compounds such as nitrate act as a potential inhibitor for legume nodulation. In this study, we isolated a new CLE gene, GmNIC2, from nitrate-treated roots, which shares high sequence homology with nitrate-induced CLE gene GmNIC1. Similar to GmNIC1, the expression level of GmNIC2 was not significantly altered in roots by rhizobial inoculation and was much higher in young nodules than in roots. In addition, overexpression of GmNIC2 led to similar nodulation inhibition of transgenic hairy roots to that of GmNIC1, which occurred in GmNARK-dependent manner and at the local level. By analyzing GmNARK loss-of-function mutant, SS2-2, it was found that expression levels of GmNIC1 and GmNIC2 in the SS2-2 roots were lower than in the wild type (WT) roots in response to nitrate. In contrast to GmNIC1 and GmNIC2, expressions of GmRIC1 and GmRIC2 genes that are related to the autoregulation of nodulation (AON) were strongly suppressed both of the soybeans during all periods of nitrate treatment and even were not induced by additional inoculation with rhizobia. Taken together, the results of this study suggest that GmNIC2, as an active homologous gene located in chromosome 13, acts locally to suppress nodulation, like GmNIC1, and nitrate inhibition of nodulation is led by fine-tuned regulation of both nitrate-induced CLEs and rhizobia-induced CLEs. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  14. Prediction of G gene epitopes of viral hemorrhagic septicemia virus and eukaryotic expression of major antigen determinant sequence.

    Science.gov (United States)

    Sun, T; Yin, W-L; Fang, B-H; Wang, Q; Liang, C-Z; Yue, Z-Q

    2017-08-15

    This study aims to express fish Viral hemorrhagic septicemia virus (VHSV) G main antigen domain by using Bac-to-bac expression system. Using bioinformatics tools, B cell epitope of VHSV G gene was predicted, and G main antigen domain was optimized. GM gene was inserted into pFastBac1 vector, then transferred recombinant plasmid into DH10Bac to get recombinant rBacmid-GM. Obtained shuttle plasmid rBacmid-GM was transfected into sf9 cells. GM expression was examined using by PCR and western-blot. Results indicated that G main antigen domain gene of VHSV was successfully cloned and sequenced which contains 1209 bp. PCR proved that shuttle plasmid rBacmid-GM was constructed correctly. SDS-PAGE electrophoresis analysis detected a band of protein about 45kD in expression product of G gene. Obtained recombinant G protein reacted with VHSV-positive serum that was substantiated by western-blot analysis. In conclusion, the main antigen domain of VHSV G was successfully expressed in the Bac-to-Bac baculovirus system.

  15. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  16. Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX.

    Science.gov (United States)

    Mounce, Bryan C; Tsan, Fei Chin; Droit, Lindsay; Kohler, Sarah; Reitsma, Justin M; Cirillo, Lisa A; Tarakanova, Vera L

    2011-11-25

    Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.

  17. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

    Science.gov (United States)

    Sousa, Sílvia A.; Feliciano, Joana R.; Pita, Tiago; Guerreiro, Soraia I.; Leitão, Jorge H.

    2017-01-01

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung. PMID:28106859

  18. In vivo virulence of viral haemorrhagic septicaemia virus (VHSV) in rainbow trout Oncorhynchus mykiss correlates inversely with in vitro Mx gene expression.

    Science.gov (United States)

    Cano, Irene; Collet, Bertrand; Pereira, Clarissa; Paley, Richard; van Aerle, Ronny; Stone, David; Taylor, Nick G H

    2016-05-01

    The in vitro replication of viral haemorrhagic septicaemia virus (VHSV) isolates from each VHSV genotype and the associated cellular host Mx gene expression were analysed. All the isolates were able to infect RTG-2 cells and induce increased Mx gene expression (generic assay detecting isoforms 1 and 3 [Mx1/3]). A trout pathogenic, genotype Ia isolate (J167), showing high replication in RTG-2 cells (by infective titre and N gene expression) induced lower Mx1/3 gene expression than observed in VHSV isolates known to be non-pathogenic to rainbow trout: 96-43/8, 96-43/10 (Ib); 1p49, 1p53 (II); and MI03 (IVb). Paired co-inoculation assays were analysed using equal number of plaque forming units per ml (PFU) of J167 (Ia genotype) with other less pathogenic VHSV genotypes. In these co-inoculations, the Mx1/3 gene expression was significantly lower than for the non-pathogenic isolate alone. Of the three rainbow trout Mx isoforms, J167 did not induce Mx1 up-regulation in RTG-2 or RTgill-W1 cells. Co-inoculating isolates resulted in greater inhibition of Mx in both rainbow trout cell lines studied. Up-regulation of sea bream Mx in SAF-1 cells induced by 96-43/8 was also lower in co-inoculation assays with J167. The RTG-P1 cell line, expressing luciferase under the control of the interferon-induced Mx rainbow trout gene promoter, showed low luciferase activity when inoculated with pathogenic strains: J167, DK-5131 (Ic), NO-A-163/68 (Id), TR-206239-1, TR-22207111 (Ie), 99-292 (IVa), and CA-NB00-01 (IVc). Co-inoculation assays showed a J167-dose dependent inhibition of the luciferase activity. The data suggest that virulent VHSV isolates may interfere in the interferon pathways, potentially determining higher pathogenicity.

  19. Expression kinetics of key genes in the early innate immune response to Great Lakes viral hemorrhagic septicemia virus IVb infection in yellow perch (Perca flavescens)

    Science.gov (United States)

    Olson, Wendy; Emmenegger, Eveline; Glenn, Jolene; Simchick, Crystal; Winton, Jim; Goetz, Frederick

    2013-01-01

    The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, represents an example of the introduction of an extremely pathogenic rhabdovirus capable of infecting a wide variety of new fish species in a new host-environment. The goal of the present study was to delineate the expression kinetics of key genes in the innate immune response relative to the very early stages of VHSV-IVb infection using the yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high susceptibility to this disease. In fish sampled in the very early stages of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-1β and SAA activation in the head kidney, spleen, and liver was directly correlated to viral load. The potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the virus to increase replication.

  20. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory l

  1. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  2. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  3. tRNAs as regulators in gene expression

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transfer RNAs(tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein,thus functioning as "adaptor" molecules.In recent years,however,various studies have shown that tRNAs have additional functions beyond participating in protein synthesis.When suffering from certain nutritional stresses,tRNAs change the level of aminoacylation to became uncharged,and these uncharged tRNAs act as effector molecules to regulate global gene expression,so that the stressed organism copes with the adverse environmental stresses.In budding yeast and certain mammalian cells,the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs.On the other hand,this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation.Quite recently,various publications have shown that tRNAs are not stable molecules in an absolute sense.Under certain physiological or environmental stresses,they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm.These cleavages are not a meaningless random degradation phenomenon.Instead,a novel class of signal molecules such as tRNA halves or sitRNAs may be produced,which are closely correlated with the modulation of global gene expression.Investigation of the regulatory functions of tRNAs is a frontier,which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information.

  4. tRNAs as regulators in gene expression

    Institute of Scientific and Technical Information of China (English)

    LI Yan; ZHOU Hui

    2009-01-01

    Transfer RNAs (tRNAs) hold a central place In protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as "adaptor" molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond par-ticipating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively re-duces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of differ-ent lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Inves-tigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic informa-tion.

  5. The hepatitis E virus ORF3 protein regulates the expression of liver-specific genes by modulating localization of hepatocyte nuclear factor 4.

    Directory of Open Access Journals (Sweden)

    Vivek Chandra

    Full Text Available The hepatitis E virus (HEV is a small RNA virus and the cause of acute viral hepatitis E. The open reading frame 3 protein (pORF3 of HEV appears to be a pleiotropic regulatory protein that helps in the establishment, propagation and progression of viral infection. However, the global cellular effects of this protein remain to be explored. In the absence of traditional in vitro viral infection systems or efficient replicon systems, we made an adenovirus based ORF3 protein expression system to study its effects on host cell gene expression. We infected Huh7 hepatoma cells with recombinant adenoviruses expressing pORF3 and performed microarray-based gene expression analyses. Several genes down regulated in pORF3-expressing cells were found to be under regulation of the liver-enriched hepatocyte nuclear factor 4 (HNF4, which regulates hepatocyte-specific gene expression. While HNF4 localizes to the nucleus, its phosphorylation results in impaired nuclear localization of HNF4. Here we report that pORF3 increases HNF4 phosphorylation through the ERK and Akt kinases, which results in impaired nuclear translocation of HNF4 and subsequently the down modulation of HNF4-responsive genes in pORF3-expressing cells. We propose that modulation of several hepatocyte specific genes by pORF3 will create an environment favorable for viral replication and pathogenesis.

  6. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor.

    Science.gov (United States)

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Tarver, Matthew R; Rinderer, Thomas E; Chen, Yanping; Chantawannakul, Panuwan

    2015-01-01

    The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels. The feeding of different stages of Varroa nymphs did not increase DWV levels of their pupal hosts. Analyses of their corresponding Varroa mites showed the same trends: two foundress Varroa yielded higher DWV levels than one foundress, and the addition of nymphs did not increase viral levels. Using the same pupae examined for the presence of viruses, 16 out of 24 genes evaluated showed significant differential mRNA expression levels among the three honey bee stocks. However, only four genes (Defensin, Dscam, PPOact and spaetzle), which were expressed at similar levels in uninfested pupae, were altered by the number of feeding foundress Varroa and levels of DWV regardless of stocks. This research provides the first evidence that immune response profiles of different honey bee stocks are induced by Varroa parasitism.

  7. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    Science.gov (United States)

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  8. Viral vector vaccines expressing nucleoprotein and phosphoprotein genes of avian bornaviruses ameliorate homologous challenge infections in cockatiels and common canaries.

    Science.gov (United States)

    Olbert, Marita; Römer-Oberdörfer, Angela; Herden, Christiane; Malberg, Sara; Runge, Solveig; Staeheli, Peter; Rubbenstroth, Dennis

    2016-11-10

    Avian bornaviruses are causative agents of proventricular dilatation disease (PDD), an often fatal disease of parrots and related species (order Psittaciformes) which is widely distributed in captive psittacine populations and may affect endangered species. Here, we established a vaccination strategy employing two different well described viral vectors, namely recombinant Newcastle disease virus (NDV) and modified vaccinia virus Ankara (MVA) that were engineered to express the phosphoprotein and nucleoprotein genes of two avian bornaviruses, parrot bornavirus 4 (PaBV-4) and canary bornavirus 2 (CnBV-2). When combined in a heterologous prime/boost vaccination regime, NDV and MVA vaccine viruses established self-limiting infections and induced a bornavirus-specific humoral immune response in cockatiels (Nymphicus hollandicus) and common canaries (Serinus canaria forma domestica). After challenge infection with a homologous bornavirus, shedding of bornavirus RNA and viral loads in tissue samples were significantly reduced in immunized birds, indicating that vaccination markedly delayed the course of infection. However, cockatiels still developed signs of PDD if the vaccine failed to prevent viral persistence. Our work demonstrates that avian bornavirus infections can be repressed by vaccine-induced immunity. It represents a first crucial step towards a protective vaccination strategy to combat PDD in psittacine birds.

  9. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    Directory of Open Access Journals (Sweden)

    Michelle N. Arbeitman

    2016-07-01

    Full Text Available Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.

  10. Detection of PinX1 and 14-3-3 in the shrimp (Litopenaeus vannamei and study on gene expressions during viral infection and environmental stresses

    Directory of Open Access Journals (Sweden)

    Potchanapond Graidist

    2010-12-01

    Full Text Available Two genes, PinX1 and 14-3-3, have been isolated and investigated for their expression in shrimp, Litopenaeusvannamei when infected with white spot syndrome virus (WSSV and subjected to environmental stresses. A putative PinX1protein of 180 amino acids showed a 65% similarity to the zebra fish PinX1 protein (Danio rerio and had a G-patch domainsimilar to human PinX1. The sequence of a full length cDNA of 14-3-3 has a very high similarity (96% to other shrimp 14-3-3-like protein (Feneropenaeus merguiensis and Penaeus monodon. Transcripts of PinX1 and 14-3-3 were up regulated in thehemolymph of viral infected shrimp with the highest expression level at 24 hrs p.i. Shrimp showing mortality characteristicshad very low expression of these two genes. In animals subjected to a combined low temperature (19-20°C and low oxygen(DO 1-1.5 mg/L for 24 hrs, an interesting result was that the transcript of PinX1 was drastically increased. In contrast, 14-3-3did not show any significant differences between the six treatments. The results of this work indicated that the PinX1 proteinmight play an important role in the shrimp response to viral infection and repose to certain stresses. In contrast the 14-3-3protein might play a particularly important role in the immune defended mechanisms of viral infections of shrimps.

  11. Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

    Directory of Open Access Journals (Sweden)

    Janet M. Doolittle-Hall

    2015-11-01

    Full Text Available Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV, hepatitis B virus (HBV or Merkel cell polyomavirus (MCPyV. These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures.

  12. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  13. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics.

    Science.gov (United States)

    Curtin, James F; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R; Castro, Maria G

    2008-03-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.

  14. Signal transduction pathways that regulate CAB gene expression. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.

    1993-12-31

    We have completed the initial genetic and phenotypic characterization of several classes of new mutants that affect CAB gene expression. The doc mutants (for dark overexpression of cab) are characterized by elevated levels of CAB gene expression in the dark; however, unlike the previously isolated de-etiolated mutants (also isolated in my lab), the doc mutants still appear etiolated. The doc alleles define 3 loci, each of which maps to a separate chromosome. The details of the mutant isolation scheme and the genetic and phenotypic description of these new mutants are described. The second class of mutants, the gun mutants (for genomes uncoupled) show accumulation of CAB mRNA in the absence of chloroplast gene expression and development. Thus, the normally tightly coordinated expression between the chloroplast and nuclear genes that encode chloroplast-destined proteins has been uncoupled. We have shown that the Arabidopsis HY3 locus encodes the type B phytochrome apoprotein gene and have characterized the phenotypes of null hy3 alleles to ascertain a role for this phytochrome in Arabidopsis development. We have also isolated and characterized a number of alleles of the phytochrome A gene.

  15. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression.

    Science.gov (United States)

    Whitton, Laura; Cosgrove, Donna; Clarkson, Christopher; Harold, Denise; Kendall, Kimberley; Richards, Alex; Mantripragada, Kiran; Owen, Michael J; O'Donovan, Michael C; Walters, James; Hartmann, Annette; Konte, Betina; Rujescu, Dan; Gill, Michael; Corvin, Aiden; Rea, Stephen; Donohoe, Gary; Morris, Derek W

    2016-12-01

    Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross-referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2. Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P = 0.001) and episodic memory (P = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Nitrogen regulates chitinase gene expression in a marine bacterium

    DEFF Research Database (Denmark)

    Delpin, Marina; Goodman, A.E.

    2009-01-01

    Ammonium concentration and nitrogen source regulate promoter activity and use for the transcription of chiA, the major chitinase gene of Pseudoalteromonas sp. S91 and S91CX, an S91 transposon lacZ fusion mutant. The activity of chiA was quantified by beta-galactosidase assay of S91CX cultures con...

  17. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  18. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes

    Directory of Open Access Journals (Sweden)

    Shunsuke Iizuka

    2017-09-01

    Full Text Available Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX. An adenovirus (Ad vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX (Ad-E4-122aT-AHAFIX maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  19. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.

  20. Modeling classic attenuation regulation of gene expression in bacteria.

    Science.gov (United States)

    Lyubetsky, Vassily A; Pirogov, Sergey A; Rubanov, Lev I; Seliverstov, Alexander V

    2007-02-01

    A model is proposed primarily for the classical RNA attenuation regulation of gene expression through premature transcription termination. The model is based on the concept of the RNA secondary structure macrostate within the regulatory region between the ribosome and RNA-polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate and on views of transcription and translation initiation and elongation, under different values of the four basic model parameters which were varied. A special effort was made to select adequate model parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a specific parentheses structure used to construct a conventional set of hairpins. The originally developed software that realizes the proposed model offers functionality to fully model RNA secondary folding kinetics. Its performance is compared to that of a public server described in Ref. 1. We then describe the delay in RNA-polymerase shifting to the next base or its premature termination caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential concepts are the basic and excited states of the polymerase first introduced in Ref. 2: the polymerase shifting to the next base can occur only in the basic state, and its detachment from DNA strand - only in excited state. As to the authors' knowledge, such a model incorporating the above-mentioned attenuation characteristics is not published elsewhere. The model was implemented in an application with command line interface for running in batch mode in Windows and Linux environments, as well as a public web server.(3) The model was tested with a conventional Monte Carlo procedure. In these simulations, the estimate of correlation between the premature transcription termination probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for many regulatory regions in many bacterial genomes, as well as

  1. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    DEFF Research Database (Denmark)

    Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate...... genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune......-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures...

  2. Regulation of cell-to-cell variability in divergent gene expression

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  3. Isolation of prawn ( Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections

    Science.gov (United States)

    Ge, Qianqian; Li, Jian; Duan, Yafei; Li, Jitao; Sun, Ming; Zhao, Fazhen

    2016-04-01

    The pattern recognition proteins (PRPs) play a major role in immune response of crustacean to resist pathogens. In the present study, as one of PRPs, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) gene in the ridge tail white prawn ( Exopalaemon carinicauda) ( EcLGBP) was isolated. The full-length cDNA of EcLGBP was 1338 bp, encoding a polypeptide of 366 amino acid residules. The deduced amino acid sequence of EcLGBP shared high similarities with LGBP and BGBP from other crustaceans. Some conservative domains were predicted in EcLGBP sequence. EcLGBP constitutively expressed in most tissues at different levels, and the highest expression was observed in hepatopancreas. With infection time, the cumulative mortality increased gradually followed by the proliferation of Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The expression of EcLGBP in response to V. parahaemolyticus infection was up-regulated in hemocytes and hepatopancreas, and the up-regulation in hepatopancreas was earlier than that in hemocytes. EcLGBP expression after WSSV infection increased at 3 h, then significantly decreased in both hemocytes and hepatopancreas. The results indicated that EcLGBP was involved in the immune defense against bacterial and viral infections.

  4. Effects of NV gene knock-out recombinant viral hemorrhagic septicemia virus (VHSV) on Mx gene expression in Epithelioma papulosum cyprini (EPC) cells and olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Kim, Min Sun; Kim, Ki Hong

    2012-03-01

    To determine whether the NV gene of viral hemorrhagic septicemia virus (VHSV) is related to the type I interferon response of hosts, expression of Mx gene in Epithelioma papulosum cyprini (EPC) cells and in olive flounder (Paralichthys olivaceus) in response to infection with either wild-type VHSV or recombinant VHSVs (rVHSV-ΔNV-EGFP and rVHSV-wild) was investigated. A reporter vector was constructed for measuring Mx gene expression using olive flounder Mx promoter, in which the reporter Metridia luciferase was designed to be excreted to culture medium to facilitate measurement. The highest increase of luciferase activity was detected from supernatant of cells infected with rVHSV-ΔNV-EGFP. In contrast cells infected with wild-type VHSV showed a slight increase of the luciferase activity. Interestingly, cells infected with rVHSV-wild that has artificially changed nucleotides just before and after the NV gene ORF, also showed highly increased luciferase activity, but the increased amplitude was lower than that by rVHSV-ΔNV-EGFP. These results strongly suggest that the NV protein of VHSV plays an important role in suppressing interferon response in host cells, which provides a condition for the viruses to efficiently proliferate in host cells. In an in vivo experiment, the Mx gene expression in olive flounder challenged with the rVHSV-ΔNV-EGFP was clearly higher than fish challenged with rVHSV-wild or wild-type VHSV, suggesting that lacking of the NV gene in the genome of rVHSV-ΔNV-EGFP brought to strong interferon response that subsequently inhibit viral replication in fish.

  5. Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Sánchez-Ortiz, Ana Claudia; Angulo, Carlos; Luna-González, Antonio; Álvarez-Ruiz, Píndaro; Mazón-Suástegui, José Manuel; Campa-Córdova, Ángel Isidro

    2016-12-01

    The widespread overuse of antibiotics in aquaculture has led to the emergence of antibiotic-resistance shrimp pathogens, the negative impact on shrimp gut microbiota, and the presence of antimicrobial residues in aquaculture products, with negative consequences on human health. Alternatively, probiotics have positive effects on immunological responses and productive performance of aquatic animals. In this study, three probiotic bacteria, (Bacillus licheniformis MAt32, B. subtilis MAt43 and B. subtilis subsp. subtilis GAtB1), isolated from the Anadara tuberculosa were included in diets for juvenile shrimp, Litopenaeus vannamei, to evaluate their effects on growth, survival, disease prevalence, and immune-related gene expression. Shrimp naturally infected with WSSV and IHHNV were fed with the basal diet (control, T1) and diets supplemented with four levels of bacilli probiotic mix (1:1:1) at final concentration of (T2) 1 × 10(6), (T3) 2 × 10(6), (T4) 4 × 10(6), and (T5) 6 × 10(6) CFU g(-1) of feed. The specific growth rate of shrimp was significantly higher in T2 than in T1 (control) treatment, and the final growth as well as the survival were similar among treated groups. The prevalence of WSSV and IHHNV infected shrimp was reduced in T2 and T4 treatments, respectively, compared with control. The mRNA expression of proPO gene was higher in treatment T4 than control. The LvToll1 gene was significantly up-regulated in treatments T4 and T5 compared to control. The SOD gene was up-regulated in treatment T5 compared to control. In contrast, the mRNA expression of the Hsp70 gene was down-regulated in treatments T4 and T5 respect to control, and the TGase gene remained unaffected by the level of bacillus probiotic mix. As conclusion, the bacilli probiotic mix (Bacillus spp.) enhanced immune-related gene expression in WSSV and IHHNV naturally infected shrimp. This is the first report of probiotic potential of bacteria isolated from A. tuberculosa on the

  6. Leaky Scanning and Reinitiation Regulate BACE1 Gene Expression

    OpenAIRE

    Zhou, Weihui; Song, Weihong

    2006-01-01

    β-Site β-amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the β-secretase in vivo for processing APP to generate amyloid β protein (Aβ). Aβ deposition in the brain is the hallmark of Alzheimer's disease (AD) neuropathology. Inhibition of BACE1 activity has major pharmaceutical potential for AD treatment. The expression of the BACE1 gene is relatively low in vivo. The control of BACE1 expression has not been well defined. There are six upstream AUGs (uAUGs) in the 5′ leader sequenc...

  7. [Ribozyme riboswitch based gene expression regulation systems for gene therapy applications: progress and challenges].

    Science.gov (United States)

    Feng, Jing-Xian; Wang, Jia-wen; Lin, Jun-sheng; Diao, Yong

    2014-11-01

    Robust and efficient control of therapeutic gene expression is needed for timing and dosing of gene therapy drugs in clinical applications. Ribozyme riboswitch provides a promising building block for ligand-controlled gene-regulatory system, based on its property that exhibits tunable gene regulation, design modularity, and target specificity. Ribozyme riboswitch can be used in various gene delivery vectors. In recent years, there have been breakthroughs in extending ribozyme riboswitch's application from gene-expression control to cellular function and fate control. High throughput screening platforms were established, that allow not only rapid optimization of ribozyme riboswitch in a microbial host, but also straightforward transfer of selected devices exhibiting desired activities to mammalian cell lines in a predictable manner. Mathematical models were employed successfully to explore the performance of ribozyme riboswitch quantitively and its rational design predictably. However, to progress toward gene therapy relevant applications, both precision rational design of regulatory circuits and the biocompatibility of regulatory ligand are still of crucial importance.

  8. The stress-regulated transcription factor CHOP promotes hepatic inflammatory gene expression, fibrosis, and oncogenesis.

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    Full Text Available Viral hepatitis, obesity, and alcoholism all represent major risk factors for hepatocellular carcinoma (HCC. Although these conditions also lead to integrated stress response (ISR or unfolded protein response (UPR activation, the extent to which these stress pathways influence the pathogenesis of HCC has not been tested. Here we provide multiple lines of evidence demonstrating that the ISR-regulated transcription factor CHOP promotes liver cancer. We show that CHOP expression is up-regulated in liver tumors in human HCC and two mouse models thereof. Chop-null mice are resistant to chemical hepatocarcinogenesis, and these mice exhibit attenuation of both apoptosis and cellular proliferation. Chop-null mice are also resistant to fibrosis, which is a key risk factor for HCC. Global gene expression profiling suggests that deletion of CHOP reduces the levels of basal inflammatory signaling in the liver. Our results are consistent with a model whereby CHOP contributes to hepatic carcinogenesis by promoting inflammation, fibrosis, cell death, and compensatory proliferation. They implicate CHOP as a common contributing factor in the development of HCC in a variety of chronic liver diseases.

  9. Dissecting cis regulation of gene expression in human metabolic tissues.

    Directory of Open Access Journals (Sweden)

    Radu Dobrin

    Full Text Available Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.

  10. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  11. Gene Regulation, Modulation, and Their Applications in Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Mario Flores

    2013-01-01

    Full Text Available Common microarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection, and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their shared functions. Genetic regulatory network (GRN based approaches have been employed in many large studies in order to scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous RNA (ceRNA, into a modulator framework, we provide two applications to illustrate the network construction, modulation effect, and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated network under different modulators. Not limit to these, the concept of “modulation” can adapt to various biological mechanisms to discover the novel gene regulation mechanisms.

  12. Expression of micro-RNAs and immune-relevant genes in rainbow trout (Oncorhynchus mykiss Walbaum) upon vaccination with a Viral Haemorrhagic Septicemia Virus

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    2012-01-01

    Development of strategies to alleviate potential disease outbreaks in sea-farmed rainbow trout (Oncorhynchus mykiss Walbaum) due to wildlife marine reservoir of Viral hemorrhagic septicemia virus (VHSV) remains imperative. A DNA vaccine expressing VHSV glycoprotein (G) gene has been developed and...

  13. Epigenetic mechanisms of gene expression regulation in neurological diseases.

    Science.gov (United States)

    Gos, Monika

    2013-01-01

    Neurological diseases are a heterogenous group of disorders that are related to alterations in nervous system function. The genetic background of neurological diseases is heterogenous and may include chromosomal aberrations, specific gene mutations and epigenetic defects. This review is aimed at presenting of selected diseases that are associated with different epigenetic alterations. The imprinting defects on chromosome 15 are the cause of Prader-Willi and Angelman syndromes that both are characterized by intellectual disability, developmental delay and specific behavioral phenotype. Besides the imprinting defect, these diseases can also be caused by deletion of chromosome 15 or uniparental disomy. Aberrant epigenetic regulation is also specific for Fragile X syndrome that is caused by expansion of CGG repeats in the FMR1 gene that leads to global methylation of the promoter region and repression of FMR1 transcription. A number of neurological diseases, mainly associated with intellectual impairment, may be caused by mutations in genes encoding proteins involved in epigenetic regulation. The number of such diseases is rapidly growing thanks to the implementation of genomic sequencing for the identification of their molecular causes. One of the best known diseases linked to defects in epigenetic modifiers is Rett syndrome caused by a mutation in the MECP2 gene or its variant - Rett-like syndrome caused by a mutation in CDKL5 or FOXG1 genes. As the epigenetic signature is potentially reversible, much attention is focused on possible therapies with drugs that influence DNA or histone modifications. This is especially important in the case of neurological disorders in which epigenetic changes are observed as the effect of the disease.

  14. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  15. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  16. PHYSIOLOGY AND GENETIC ASPECTS OF THE REGULATION OF EXPRESSION MILK PROTEIN GENES

    Directory of Open Access Journals (Sweden)

    Jozef Bulla

    2013-06-01

    Full Text Available For the genetic improvement of milk composition and milk yield, both the typing of different protein variants and knowledge about the regulation of expression of the different milk protein genes are important. Some of the processing properties of milk are dependent on the milk composition. Information about the DNA sequence and genes involved in the expression of the milk protein genes,therefore,is big importance for genetic improvement of these traits in animals breeding programmes.In recent years more data has become available concerning the regulation of expression of the milk protein genes and as might have been expected from the complex multihormonal control of these genes it appears to be rather complex. Although several mammary gland specific factors that play a role in expression of some of these genes have been identified,none of these factors has been shown to be involved in the expression of all or the majority of the milk protein genes.

  17. Differential expression of early viral gene BmORF51 in Bombyx mori ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... and the susceptible strain 306 were characterized, and Bm51 gene was amplified from BmNPV .... (Novagen) and used to raise polyclonal antibodies in rabbits. The .... Steps of the infectious process with viruses include the.

  18. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  19. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  20. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  1. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  2. Tissue and time specific expression pattern of interferon regulated genes in the chicken.

    Science.gov (United States)

    Röll, Susanne; Härtle, Stefan; Lütteke, Thomas; Kaspers, Bernd; Härtle, Sonja

    2017-03-28

    Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens' immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species.

  3. A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene Expression

    Science.gov (United States)

    Barco, Angel; Feduchi, Elena; Carrasco, Luis

    2000-01-01

    A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2Apro) under the control of tetracycline has been obtained. Synthesis of 2Apro induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2Apro cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2Apro, prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2Apro still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2Apro. Moreover, synthesis of 2Apro in 2A7d cells complements the translational defect of a poliovirus 2Apro-defective variant. These results show that poliovirus 2Apro expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2Apro functions, to complement poliovirus 2Apro mutants, and to test antiviral compounds. PMID:10666269

  4. Retrograde regulation of nuclear gene expression in CW-CMS of rice.

    Science.gov (United States)

    Fujii, Sota; Komatsu, Setsuko; Toriyama, Kinya

    2007-02-01

    The CW-cytoplasmic male sterility (CMS) line has the cytoplasm of Oryza rufipogon Griff, and mature pollen is morphologically normal under an optical microscope but lacks the ability to germinate; restorer gene Rf17 has been identified as restoring this ability. The difference between nuclear gene expression in mature anthers was compared for the CW-CMS line, [cms-CW] rf17rf17, and a maintainer line with normal cytoplasm of Oryza sativa L., [normal] rf17rf17. Using a 22-k rice oligoarray we detected 58 genes that were up-regulated more than threefold in the CW-CMS line. Expression in other organs was further investigated for 20 genes using RT-PCR. Five genes, including genes for alternative oxidase, were found to be preferentially expressed in [cms-CW] rf17rf17 but not in [normal] rf17rf17 or [cms-CW] Rf17Rf17. Such [cms-CW] rf17rf17-specific gene expression was only observed in mature anthers but not in leaves, stems, or roots, indicating the presence of anther-specific mitochondrial retrograde regulation of nuclear gene expression, and that Rf17 has a role in restoring the ectopic gene expression. We also used a proteomic approach to discover the retrograde regulated proteins and identified six proteins that were accumulated differently. These results reveal organ-specific induced mitochondrial retrograde pathways affecting nuclear gene expression possibly related to CMS.

  5. Mendelian and non-Mendelian regulation of gene expression in maize.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73 × Mo17 recombinant inbred line population. RNA-based sequencing (RNA-seq allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL mapping identified 30,774 eQTL including 96 trans-eQTL "hotspots," each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in

  6. Murine cytomegalovirus protein pM79 is a key regulator for viral late transcription.

    Science.gov (United States)

    Chapa, Travis J; Johnson, L Steven; Affolter, Christopher; Valentine, Mark C; Fehr, Anthony R; Yokoyama, Wayne M; Yu, Dong

    2013-08-01

    Herpesvirus genes are temporally expressed during permissive infections, but how their expression is regulated at late times is poorly understood. Previous studies indicate that the human cytomegalovirus (CMV) gene, UL79, is required for late gene expression. However, the mechanism remains to be fully elucidated, and UL79 homologues in other CMVs have not been studied. Here, we characterized the role of the conserved murine CMV (MCMV) gene M79. We showed that M79 encoded a protein (pM79) which was expressed with early-late kinetics and localized to nuclear viral replication compartments. M79 transcription was significantly decreased in the absence of viral DNA synthesis but markedly stimulated by pM79. To investigate its role, we created the recombinant virus SMin79, in which pM79 expression was disrupted. While marker-rescued virus grew efficiently in fibroblasts, SMin79 failed to produce infectious progeny but was rescued by pM79 expression in trans. During SMin79 infection, representative viral immediate-early and early gene products as well as viral DNA accumulated sufficiently. Formation of viral replication compartments also appeared normal. Pulsed-field gel electrophoresis analysis indicated that the overall structure of replicating viral DNA was indistinguishable between wild-type and SMin79 infection. Viral tiled array and quantitative PCR analysis revealed that many late transcripts sensitive to a viral DNA synthesis inhibitor (phosphonoacetic acid) were markedly reduced by pM79 mutation. This study indicates that cytomegaloviruses use a conserved mechanism to promote transcription at late stages of infection and that pM79 is a critical regulator for at least a subset of viral DNA synthesis-dependent transcripts.

  7. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer.

    Science.gov (United States)

    Chapman, Christopher G; Mariani, Christopher J; Wu, Feng; Meckel, Katherine; Butun, Fatma; Chuang, Alice; Madzo, Jozef; Bissonette, Marc B; Kwon, John H; Godley, Lucy A

    2015-12-03

    The formation of differentiated cell types from pluripotent progenitors involves epigenetic regulation of gene expression. DNA hydroxymethylation results from the enzymatic oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) 5-mC dioxygenase enzymes. Previous work has mapped changes in 5-mC during differentiation of intestinal stem cells. However, whether or not 5-hmC regulates colonocyte differentiation is unknown. Here we show that 5-hmC regulates gene expression during colonocyte differentiation and controls gene expression in human colon cancers. Genome-wide profiling of 5-hmC during in vitro colonic differentiation demonstrated that 5-hmC is gained at highly expressed and induced genes and is associated with intestinal transcription factor binding sites, including those for HNF4A and CDX2. TET1 induction occurred during differentiation, and TET1 knockdown altered gene expression and inhibited barrier formation of colonocytes. We find that the 5-hmC distribution in primary human colonocytes parallels the distribution found in differentiated cells in vitro, and that gene-specific 5-hmC changes in human colon cancers are directly correlated with changes in gene expression. Our results support a model in which 5-hmC regulates differentiation of adult human intestine and 5-hmC alterations contribute to the disrupted gene expression in colon cancer.

  8. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    Science.gov (United States)

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  10. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    Science.gov (United States)

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth.

  11. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  12. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    Science.gov (United States)

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  13. Growth hormone regulation of rat liver gene expression assessed by SSH and microarray.

    Science.gov (United States)

    Gardmo, Cissi; Swerdlow, Harold; Mode, Agneta

    2002-04-25

    The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.

  14. Regulation of gene expression by FSP27 in white and brown adipose tissue

    Directory of Open Access Journals (Sweden)

    Xue Bofu

    2010-07-01

    Full Text Available Abstract Background Brown and white adipose tissues (BAT and WAT play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27, a member of the cell death-inducing DFF45-like effector (CIDE family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis. Results BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-β signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBPα/β, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory

  15. Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections.

    Science.gov (United States)

    Arockiaraj, Jesu; Gnanam, Annie J; Muthukrishnan, Dhanaraj; Thirumalai, Muthukumaresan Kuppusamy; Pasupuleti, Mukesh; Milton, James; Kasi, Marimuthu

    2013-11-07

    Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143-154, 286-296 and 304-323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (Prosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.

  16. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  17. Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    OpenAIRE

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene...

  18. Down Regulation of Gene Expression by the Vaccinia Virus D10 Protein

    OpenAIRE

    Shors, Teri; Keck, James G.; Moss, Bernard

    1999-01-01

    Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indicating that the mechanism did not involve promoter sequence recognition. The inhibition was overcome, ...

  19. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo

    National Research Council Canada - National Science Library

    Dalod, Marc; Salazar-Mather, Thais P; Malmgaard, Lene; Lewis, Casey; Asselin-Paturel, Carine; Brière, Francine; Trinchieri, Giorgio; Biron, Christine A

    2002-01-01

    Interferon (IFN)-alpha/beta and interleukin (IL)-12 are cytokines critical in defense against viruses, but their cellular sources and mechanisms of regulation for in vivo expression remain poorly characterized...

  20. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  1. Progressive loss of CD3 expression after HTLV-I infection results from chromatin remodeling affecting all the CD3 genes and persists despite early viral genes silencing

    Directory of Open Access Journals (Sweden)

    Martiat Philippe

    2007-09-01

    Full Text Available Abstract Background HTLV-I infected CD4+ T-cells lines usually progress towards a CD3- or CD3low phenotype. In this paper, we studied expression, kinetics, chromatin remodeling of the CD3 gene at different time-points post HTLV-I infection. Results The onset of this phenomenon coincided with a decrease of CD3γ followed by the subsequent progressive reduction in CD3δ, then CD3ε and CD3ζ mRNA. Transient transfection experiments showed that the CD3γ promoter was still active in CD3- HTLV-I infected cells demonstrating that adequate amounts of the required transcription factors were available. We next looked at whether epigenetic mechanisms could be responsible for this progressive decrease in CD3 expression using DNase I hypersensitivity (DHS experiments examining the CD3γ and CD3δ promoters and the CD3δ enhancer. In uninfected and cells immediately post-infection all three DHS sites were open, then the CD3γ promoter became non accessible, and this was followed by a sequential closure of all the DHS sites corresponding to all three transcriptional control regions. Furthermore, a continuous decrease of in vivo bound transcription initiation factors to the CD3γ promoter was observed after silencing of the viral genome. Coincidently, cells with a lower expression of CD3 grew more rapidly. Conclusion We conclude that HTLV-I infection initiates a process leading to a complete loss of CD3 membrane expression by an epigenetic mechanism which continues along time, despite an early silencing of the viral genome. Whether CD3 progressive loss is an epiphenomenon or a causal event in the process of eventual malignant transformation remains to be investigated.

  2. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  3. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  5. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Mawatari Kazuaki

    2008-09-01

    Full Text Available Abstract Background The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH, which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant. Results The production of TDH in the hfq deletion mutant was much higher than in the parental strain. Quantification of tdh promoter activity and mRNA demonstrated that transcription of the tdh gene was up-regulated in the mutant strain. The hfq-complemented strain had a normal (parental amount of tdh expression. The transcriptional activity of tdhA was particularly increased in the mutant strain. These results indicate that Hfq is closely associated with the expression level of the tdh gene. Interestingly, other genes involved in the pathogenicity of V. parahaemolyticus, such as VP1680, vopC, and vopT, were also up-regulated in the mutant strain. Conclusion Hfq regulates the expression of virulence-associated factors such as TDH and may be involved in the pathogenicity of V. parahaemolyticus.

  6. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  7. Regulation of gene expression in hepatic cells by the mammalian Target of Rapamycin (mTOR.

    Directory of Open Access Journals (Sweden)

    Rosa H Jimenez

    Full Text Available BACKGROUND: We investigated mTOR regulation of gene expression by studying rapamycin effect in two hepatic cell lines, the non-tumorigenic WB-F344 cells and the tumorigenic WB311 cells. The latter are resistant to the growth inhibitory effects of rapamycin, thus providing us with an opportunity to study the gene expression effects of rapamycin without confounding effects on cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: The hepatic cells were exposed to rapamycin for 24 hr. Microarray analysis on total RNA preparations identified genes that were affected by rapamycin in both cell lines and, therefore, modulated independent of growth arrest. Further studies showed that the promoter regions of these genes included E-box-containing transcription factor binding sites at higher than expected rates. Based on this, we tested the hypothesis that c-Myc is involved in regulation of gene expression by mTOR by comparing genes altered by rapamycin in the hepatic cells and by c-Myc induction in fibroblasts engineered to express c-myc in an inducible manner. Results showed enrichment for c-Myc targets among rapamycin sensitive genes in both hepatic cell lines. However, microarray analyses on wild type and c-myc null fibroblasts showed similar rapamycin effect, with the set of rapamycin-sensitive genes being enriched for c-Myc targets in both cases. CONCLUSIONS/SIGNIFICANCE: There is considerable overlap in the regulation of gene expression by mTOR and c-Myc. However, regulation of gene expression through mTOR is c-Myc-independent and cannot be attributed to the involvement of specific transcription factors regulated by the rapamycin-sensitive mTOR Complex 1.

  8. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    Science.gov (United States)

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  9. TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems.

    Directory of Open Access Journals (Sweden)

    Claire Wynne

    Full Text Available In recent years members of the tripartite motif-containing (TRIM family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR- and RIG-I-like receptor (RLR-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ and TRAF family member-associated NF-κB activator (TANK. Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems.

  10. Expression Analysis of Sound Vibration-Regulated Genes by Touch Treatment in Arabidopsis.

    Science.gov (United States)

    Ghosh, Ritesh; Gururani, Mayank A; Ponpandian, Lakshmi N; Mishra, Ratnesh C; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong

    2017-01-01

    Sound vibration (SV) is considered to be a mechanical stimulus which gives rise to various physiological and molecular changes in plants. Previously, we identified 17 SV-regulated genes (SRGs) which were up-regulated by SV treatments in Arabidopsis. Here, we analyzed the expression pattern of similar genes after an exposure of 500 Hertz at 80 decibels, for various time periods. Simultaneously, we confirmed the SV-mediated expression of these genes under lighted condition as many of them were reported to be dark-induced. For this, we designed an improved SV treatment chamber. Additionally, we checked the electrolyte leakage (EL), photosynthetic performance and expression of mechanosensitive (MS) ion channel genes after 5 days of SV treatment in the illuminated chamber. EL was higher, and the photosynthetic performance index was lower in the SV-treated plants compared to control. Seven out of the 13 MS ion channel genes were differentially expressed after the SV treatment. Simultaneously, we checked the touch-mediated expression pattern of 17 SRGs and 13 MS ion channel genes. The distinct expression pattern of 6 SRGs and 1 MS ion channel gene generate an idea that SV as a stimulus is different from touch. Developmental stage-specific expression profiling suggested that the majority of the SRGs were expressed spatiotemporally in different developmental stages of Arabidopsis, especially in imbibed seed, seedlings and leaves.

  11. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activatio...

  12. The use of an adeno-associated viral vector for efficient bicistronic expression of two genes in the central nervous system.

    Science.gov (United States)

    Hutson, Thomas Haynes; Kathe, Claudia; Menezes, Sean Christopher; Rooney, Marie-Claire; Bueler, Hansruedi; Moon, Lawrence David Falcon

    2014-01-01

    Recombinant adeno-associated viral (AAV) vectors are one of the most promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). Preclinical testing of novel gene therapies requires the careful design and production of AAV vectors and their successful application in a model of CNS injury. One major limitation of AAV vectors is their limited packaging capacity (genes (e.g., from two promoters) difficult. An internal ribosomal entry site has been used to express two genes: However, the second transgene is often expressed at lower levels than the first. In addition to this, achieving high levels of transduction in the CNS can be challenging. In this chapter we describe the cloning of a bicistronic AAV vector that uses the foot-and-mouth disease virus 2A sequence to efficiently express two genes from a single promoter. Bicistronic expression of a therapeutic gene and a reporter gene is desirable so that the axons from transduced neurons can be tracked and, after CNS injury, the amount of axonal sprouting or regeneration quantified. We go on to describe how to perform a pyramidotomy model of CNS injury and the injection of AAV vectors into the sensorimotor cortex to provide efficient transduction and bicistronic gene expression in cortical neurons such that transduced axons are detectable in the dorsal columns of the spinal cord.

  13. Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants

    Institute of Scientific and Technical Information of China (English)

    Jinghua Yang; Mingfang Zhang; Jingquan Yu

    2008-01-01

    In plant cells, there are three organelles: the nucleus, chloroplast, and mitochondria that store genetic information. The nucleus possesses the majority of genetic information and controls most aspects of organelles gene expression, growth, and development. In return,organdies also send signals back to regulate nuclear gene expression, a process defined as retrograde regulation. The best studies of organelles to nucleus retrograde regulation exist in plant chloroplast-to-nuclear regulation and yeast mitochondria-to-nuclear regulation. In this review, we summarize the recent understanding of mitochondrial retrograde regulation in higher plant, which involves multiple potential signaling pathway in relation to cytoplasmic male-sterility, biotic stress, and abiotie stress. With respect to mitochondrial retrograde regulation signal pathways involved in cytoplasmic male-sterility, we consider that nuclear transcriptional factor genes are the targeted genes regulated by mitoehondria to determine the abnormal reproductive development, and the MAPK signaling pathway may be involved in this regulation in Brassica juncea. When plants suffer biotic and abiotie stress, plant cells will initiate cell death or other events directed toward recovering from stress. During this process, we propose that mitochondria may determine how plant cell responds to a given stress through retrograde regulation. Meanwhile, several transducer molecules have also been discussed here. In particular, thePaepe research group reported that leaf mitochondrial modulated whole cell redox homeostasis, set antioxidant capacity, and determinedstress resistance through altered signaling and diurnal regulation, which is an indication of plant mitochondria with more active function than ever.

  14. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants

    Directory of Open Access Journals (Sweden)

    Jagna eChmielowska-Bąk

    2015-06-01

    Full Text Available Reactive oxygen species (ROS are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation.

  15. Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo

    NARCIS (Netherlands)

    Koning, Henk; van Oosterhout, Antoon J. M.; Brouwer, Uilke; den Boef, Lisette E.; Gras, Renee; Reinders-Luinge, Marjan; Brandsma, Corry-Anke; van der Toorn, Marco; Hylkema, Machteld N.; Willemse, Brigitte W. M.; Sayers, Ian; Koppelman, Gerard H.; Nawijn, Martijn C.

    2014-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological c

  16. Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo

    NARCIS (Netherlands)

    Koning, Henk; van Oosterhout, Antoon J. M.; Brouwer, Uilke; den Boef, Lisette E.; Gras, Renee; Reinders-Luinge, Marjan; Brandsma, Corry-Anke; van der Toorn, Marco; Hylkema, Machteld N.; Willemse, Brigitte W. M.; Sayers, Ian; Koppelman, Gerard H.; Nawijn, Martijn C.

    2014-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological c

  17. Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo

    NARCIS (Netherlands)

    Koning, Henk; van Oosterhout, Antoon J. M.; Brouwer, Uilke; den Boef, Lisette E.; Gras, Renee; Reinders-Luinge, Marjan; Brandsma, Corry-Anke; van der Toorn, Marco; Hylkema, Machteld N.; Willemse, Brigitte W. M.; Sayers, Ian; Koppelman, Gerard H.; Nawijn, Martijn C.

    2014-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological

  18. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    Institute of Scientific and Technical Information of China (English)

    Guangxiao Yang; Setsuko Komatsu

    2004-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.

  19. Polymorphic GGC repeat differentially regulates human reelin gene expression levels.

    Science.gov (United States)

    Persico, A M; Levitt, P; Pimenta, A F

    2006-10-01

    The human gene encoding Reelin (RELN), a pivotal protein in neurodevelopment, includes a polymorphic GGC repeat in its 5' untranslated region (UTR). CHO cells transfected with constructs encompassing the RELN 5'UTR with 4-to-13 GGC repeats upstream of the luciferase reporter gene show declining luciferase activity with increasing GGC repeat number (P autism.

  20. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression

    OpenAIRE

    Gutu, Andrian; Nesbit, April D.; Alverson, Andrew J.; Palmer, Jeffrey D.; Kehoe, David M.

    2013-01-01

    The regulation of photosynthesis is important, yet poorly understood. Our work reveals a previously undescribed form of photosynthesis gene regulation in cyanobacteria that apparently also controls gene expression in plants, including commercially important crops. This finding may provide a unique approach to modifying the environmental responses and developmental programs of agriculturally important species. In addition, translation is a key biological process, and many of its important feat...

  1. Enhancement of heterologous gene expression in Flammulina velutipes using polycistronic vectors containing a viral 2A cleavage sequence.

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lin

    Full Text Available Agrobacterium tumefaciens-mediated transformation for edible mushrooms has been previously established. However, the enhancement of heterologous protein production and the expression of multi-target genes remains a challenge. In this study, heterologous protein expression in the enoki mushroom Flammulina velutipes was notably enhanced using 2A peptide-mediated cleavage to co-express multiple copies of single gene. The polycistronic expression vectors were constructed by connecting multi copies of the enhanced green fluorescent protein (egfp gene using 2A peptides derived from porcine teschovirus-1. The P2A peptides properly self-cleaved as shown by the formation of the transformants with antibiotic resistant capacity and exciting green fluorescence levels after introducing the vectors into F. velutipes mycelia. The results of western blot analysis, epifluorescent microscopy and EGFP production showed that heterologous protein expression in F. velutipes using the polycistronic strategy increased proportionally as the gene copy number increased from one to three copies. In contrast, much lower EGFP levels were detected in the F. velutipes transformants harboring four copies of the egfp gene due to mRNA instability. The polycistronic strategy using 2A peptide-mediated cleavage developed in this study can not only be used to express single gene in multiple copies, but also to express multiple genes in a single reading frame. It is a promising strategy for the application of mushroom molecular pharming.

  2. Enhancement of heterologous gene expression in Flammulina velutipes using polycistronic vectors containing a viral 2A cleavage sequence.

    Science.gov (United States)

    Lin, Yu-Ju; Huang, Li-Hsin; Huang, Ching-Tsan

    2013-01-01

    Agrobacterium tumefaciens-mediated transformation for edible mushrooms has been previously established. However, the enhancement of heterologous protein production and the expression of multi-target genes remains a challenge. In this study, heterologous protein expression in the enoki mushroom Flammulina velutipes was notably enhanced using 2A peptide-mediated cleavage to co-express multiple copies of single gene. The polycistronic expression vectors were constructed by connecting multi copies of the enhanced green fluorescent protein (egfp) gene using 2A peptides derived from porcine teschovirus-1. The P2A peptides properly self-cleaved as shown by the formation of the transformants with antibiotic resistant capacity and exciting green fluorescence levels after introducing the vectors into F. velutipes mycelia. The results of western blot analysis, epifluorescent microscopy and EGFP production showed that heterologous protein expression in F. velutipes using the polycistronic strategy increased proportionally as the gene copy number increased from one to three copies. In contrast, much lower EGFP levels were detected in the F. velutipes transformants harboring four copies of the egfp gene due to mRNA instability. The polycistronic strategy using 2A peptide-mediated cleavage developed in this study can not only be used to express single gene in multiple copies, but also to express multiple genes in a single reading frame. It is a promising strategy for the application of mushroom molecular pharming.

  3. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    The genomes of plants are marked by reoccurring events of whole-genome duplication. These events are major contributors to speciation and provide the genetic material for organisms to evolve ever greater complexity. Duplicated genes, referred to as paralogs, may be retained because they acquired...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...... have performed in-depth analyses of paralogous genes in Arabidopsis thaliana, their expression profile, their sequence conservation, and their functions, in order to investigate the relationship between gene expression and retention of paralogous genes. Paralogs with lower expression than...

  4. CovR-controlled global regulation of gene expression in Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Alexander Dmitriev

    Full Text Available CovR/S is a two-component signal transduction system (TCS that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI. Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.

  5. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    Science.gov (United States)

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-07-19

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  6. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  7. The Multifaceted Poliovirus 2A Protease: Regulation of Gene Expression by Picornavirus Proteases

    Directory of Open Access Journals (Sweden)

    Alfredo Castelló

    2011-01-01

    Full Text Available After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.

  8. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  9. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    Science.gov (United States)

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  10. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation.

    Science.gov (United States)

    Klosterman, Steven J; Choi, Jane J; Hadwiger, Lee A

    2003-07-01

    SUMMARY HMG-I/Y proteins are characterized by the presence of AT-hook motifs, DNA binding domains that recognize AT-rich tracts of DNA. By facilitating protein:protein and protein:DNA interactions in the vicinity of these AT-rich binding sites, HMG-I/Y positively or negatively regulates gene expression. Several pea defence gene promoters have AT-rich tracts of DNA that are potential targets for modulation via HMG-I/Y. In this study, a comparison of the expression of a pea defence gene (DRR206) mRNA relative to the expression of HMG-I/Y mRNA was monitored by Northern analysis following the inoculation of a fungal pathogen, Fusarium solani or treatment with chitosan and a F. solani DNase (Fsph DNase). In pea pod endocarp tissue, HMG-I/Y expression was observed at high levels in untreated tissue and at lower levels 6 h following inoculation or wounding of the tissue. Western blots with an antipea HMG-I/Y polyclonal antibody also revealed that pea HMG-I/Y is expressed at decreased levels 6 h following inoculation or elicitor treatment. HMG-I/Y extracted from pea caused alterations in the gel migration of radio-labelled AT-rich sequences from the pea DRR206 promoter, suggesting that similar interactions could exist in vivo. Agroinfiltration was utilized to express the pea HMG-I/Y gene in tobacco containing a chimeric gene fusion of a promoter from the PR gene, DRR206, and the beta-glucuronidase (GUS) reporter gene. Transient expression of pea HMG-I/Y led to a decrease in GUS reporter gene activity in the heterologous tobacco system. These data implicate pea HMG-I/Y abundance in the down-regulation of DRR206 gene expression, and possibly HMG-I/Y depletion in the expression of defence genes in pea.

  11. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism

    Directory of Open Access Journals (Sweden)

    Dreyer Erwin

    2010-03-01

    Full Text Available Abstract Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this

  12. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  13. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  14. Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing.

    Science.gov (United States)

    Majerciak, Vladimir; Yamanegi, Koji; Allemand, Eric; Kruhlak, Michael; Krainer, Adrian R; Zheng, Zhi-Ming

    2008-03-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8beta cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8beta and production of K8alpha (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8beta pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.

  15. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep

    Directory of Open Access Journals (Sweden)

    Burny Arsène

    2007-07-01

    Full Text Available Abstract Background During malignant progression, tumor cells need to acquire novel characteristics that lead to uncontrolled growth and reduced immunogenicity. In the Bovine Leukemia Virus-induced ovine leukemia model, silencing of viral gene expression has been proposed as a mechanism leading to immune evasion. However, whether proviral expression in tumors is completely suppressed in vivo was not conclusively demonstrated. Therefore, we studied viral expression in two selected experimentally-infected sheep, the virus or the disease of which had features that made it possible to distinguish tumor cells from their nontransformed counterparts. Results In the first animal, we observed the emergence of a genetically modified provirus simultaneously with leukemia onset. We found a Tax-mutated (TaxK303 replication-deficient provirus in the malignant B-cell clone while functional provirus (TaxE303 had been consistently monitored over the 17-month aleukemic period. In the second case, both non-transformed and transformed BLV-infected cells were present at the same time, but at distinct sites. While there was potentially-active provirus in the non-leukemic blood B-cell population, as demonstrated by ex-vivo culture and injection into naïve sheep, virus expression was completely suppressed in the malignant B-cells isolated from the lymphoid tumors despite the absence of genetic alterations in the proviral genome. These observations suggest that silencing of viral genes, including the oncoprotein Tax, is associated with tumor onset. Conclusion Our findings suggest that silencing is critical for tumor progression and identify two distinct mechanisms-genetic and epigenetic-involved in the complete suppression of virus and Tax expression. We demonstrate that, in contrast to systems that require sustained oncogene expression, the major viral transforming protein Tax can be turned-off without reversing the transformed phenotype. We propose that suppression

  16. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  17. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  18. λ N gene expression regulated by translation termination in ribosome L24 mutant

    Institute of Scientific and Technical Information of China (English)

    LI; Muyang; (李沐阳); HU; Qirui; (胡其锐); XUAN; Jinsong; (宣劲松); DENG; Daiyong; (邓代永); WENG; Manli; (翁曼丽)

    2003-01-01

    Besides transcription regulation, gene expression is also regulated at translation level. Although translation regulation is mainly mediated by translation initiation, an abundance of evidence shows that the termination phase of translation is also important for gene expression. The expression of λN gene is down regulated at translation level in L24 mutant, however the precise mechanism still remains unknown. We report here that in an L24 mutant strain, the expression of lac-λN and GST-λN is decreased to 25% and 50% of that in wild type T83 strain respectively. Strikingly, the yield of GST-λN fusion protein in L24 mutant can be restored to the level as in T83 wild type strain by changing the two codons upstream λN stop codon. These findings imply that the stop codon and its context are involved in the translation regulation. The possible reason is that the translation termination complex containing L24 mutant ribosome may not dissociate properly in stop code region. This failure of disengagement from mRNA will slow down the process of following ribosomes, and consequently decrease the efficiency of λN gene expression.

  19. Regulation of the clock gene expression in human adipose tissue by weight loss.

    Science.gov (United States)

    Pivovarova, O; Gögebakan, Ö; Sucher, S; Groth, J; Murahovschi, V; Kessler, K; Osterhoff, M; Rudovich, N; Kramer, A; Pfeiffer, A F H

    2016-06-01

    The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.

  20. Virally mediated gene manipulation in the adult CNS

    Directory of Open Access Journals (Sweden)

    Efrat eEdry

    2011-12-01

    Full Text Available Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult-brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics – recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance.

  1. Regulation of Propylene and 1-Methylcyclopropene on Expressions of ACS and ACO Genes in Persimmon Fruits

    Institute of Scientific and Technical Information of China (English)

    LIU Le; RAO Jing-ping; CHANG Xiao-xiao; YI Shun-chao

    2009-01-01

    The regulation of postharvest treatment with propylene and 1-MCP on ethylene release rate and expressions of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes in Fuping Janshi persimmon (Diospyros kaki L.) fruit were investigated. Fruits were treated with propylene and 1-MCP, then stored at 20℃, ethylene release rate of the treated fruits was measured at regular intervals and RNA was extracted for Northern blotting analysis. The results suggested that treatment with propylene accelerated the expressions of ACS and ACO genes and then enhanced the ethylene biosynthesis, while treatment with 1-MCP inhibited the expressions of two genes and their ethylene biosynthesis. Furthermore, different effects on expressions caused by treatments with propylene and 1-MCP existed in various fruit tissues, the inhibitory effect on ACS and ACO genes by 1-MCP was the strongest in pericarp, followed by pulp and core tissues, in the area near fruit stalk, the inhibitory effect was the weakest. While the enhanced effect on ACS and ACO genes by propylene increased from pulp, core, and pericarp to the area near fruit stalk. Expression of each member of ACS and ACO families in various tissues was also completely different, in control and propylene treatment, DKACS3 gene just expressed in the area near fruit stalk and did not express in other tissues, but DKACS2 gene expressed in four tissues by treatment with propylene.

  2. PERP regulates enamel formation via effects on cell-cell adhesion and gene expression.

    Science.gov (United States)

    Jheon, Andrew H; Mostowfi, Pasha; Snead, Malcolm L; Ihrie, Rebecca A; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D; Klein, Ophir D

    2011-03-01

    Little is known about the role of cell-cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast-SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation.

  3. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis.

  4. Coordinated Regulation of Gene Expression for Carotenoid Metabolism in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Tian-Hu Sun; Cheng-Qian Liu; Yuan-Yuan Hui; Wen-Kai Wu; Zhi-Gang Zhou; Shan Lu

    2010-01-01

    Carotenoids are important plant pigments for both light harvesting and photooxidation protection.Using the model system of the unicellular green alga Chlamydomonas reinhardtii,we characterized the regulation of gene expression for carotenoid metabolism by quantifying changes in the transcript abundance of dxs,dxr and ipi in the plastidic methylerythritol phosphate pathway and of ggps,psy,pds,lcyb and bchy,directly involved in carotenoid metabolism,under different photoperiod,light and metabolite treatments.The expression of these genes fluctuated with light/dark shifting.Light treatment also promoted the accumulation of transcripts of all these genes.Of the genes studied,dxs,ggps and lcyb displayed the typical circadian pattern by retaining a rhythmic fluctuation of transcript abundance under both constant light and constant dark entrainments.The expression of these genes could also be regulated by metabolic intermediates.For example,ggps was significantly suppressed by a geranylgeranyl pyrophosphate supplement and ipi was upregulated by isopentenyl pyrophosphate.Furthermore,CrOr,a C.reinhardtii homolog of the recently characterized Or gene that accounts for carotenoid accumulation,also showed co-expression with carotenoid biosynthetic genes such as pds and lcyb.Our data suggest a coordinated regulation on carotenoid metabolism in C.reinhardtii at the transcriptional level.

  5. Expression of full-length and truncated Rep genes from Mungbean yellow mosaic virus-Vigna inhibits viral replication in transgenic tobacco.

    Science.gov (United States)

    Shivaprasad, Padubidri V; Thillaichidambaram, P; Balaji, Vasudevan; Veluthambi, Karuppannan

    2006-12-01

    Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.

  6. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    Science.gov (United States)

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  7. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni;

    2009-01-01

    to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...... Saccharomyces and distant Ascomycetes. Transcriptome data were further used to evaluate the high osmolarity glycerol pathway. All the components of this pathway present in yeast have orthologues in the three Aspergilli studied and its gene expression response suggested that this pathway functions as in S...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...

  8. RpoS regulation of gene expression during exponential growth of Escherichia coli K12.

    Science.gov (United States)

    Dong, Tao; Kirchhof, Mark G; Schellhorn, Herb E

    2008-03-01

    RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.

  9. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang

    2015-08-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  10. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  11. Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses.

    Science.gov (United States)

    Aronovich, Elena L; Bell, Jason B; Belur, Lalitha R; Gunther, Roland; Koniar, Brenda; Erickson, David C C; Schachern, Patricia A; Matise, Ilze; McIvor, R Scott; Whitley, Chester B; Hackett, Perry B

    2007-05-01

    The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII. We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA). Plasmids were delivered with and without SB transposase to mouse liver by rapid, high-volume tail-vein injection. We studied the duration of expressed therapeutic enzyme activity, transgene presence by PCR, lysosomal pathology by toluidine blue staining and cell-mediated immune response histologically and by immunohistochemical staining. Transgene frequency, distribution of transgene and enzyme expression in liver and the level of transgenic enzyme required for amelioration of lysosomal pathology were estimated in MPS I and VII mice. Without immunomodulation, initial GUSB and IDUA activities in plasma reached > 100-fold of wild-type (WT) levels but fell to background within 4 weeks post-injection. In immunomodulated transposon-treated MPS I mice plasma IDUA persisted for over 3 months at up to 100-fold WT activity in one-third of MPS I mice, which was sufficient to reverse lysosomal pathology in the liver and, partially, in distant organs. Histological and immunohistochemical examination of liver sections in IDUA transposon-treated WT mice revealed inflammation 10 days post-injection consisting predominantly of mononuclear cells, some of which were CD4- or CD8-positive. Our results demonstrate the feasibility of achieving prolonged expression of lysosomal enzymes in the liver and reversing MPS disease in adult mice with a single dose of therapeutic SB transposons. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Lateral Thinking: How Histone Modifications Regulate Gene Expression.

    Science.gov (United States)

    Lawrence, Moyra; Daujat, Sylvain; Schneider, Robert

    2016-01-01

    The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.

  13. Developmental regulation of expression of schizophrenia susceptibility genes in the primate hippocampal formation.

    Science.gov (United States)

    Favre, G; Banta Lavenex, P; Lavenex, P

    2012-10-23

    The hippocampal formation is essential for normal memory function and is implicated in many neurodevelopmental, neurodegenerative and neuropsychiatric disorders. In particular, abnormalities in hippocampal structure and function have been identified in schizophrenic subjects. Schizophrenia has a strong polygenic component, but the role of numerous susceptibility genes in normal brain development and function has yet to be investigated. Here we described the expression of schizophrenia susceptibility genes in distinct regions of the monkey hippocampal formation during early postnatal development. We found that, as compared with other genes, schizophrenia susceptibility genes exhibit a differential regulation of expression in the dentate gyrus, CA3 and CA1, over the course of postnatal development. A number of these genes involved in synaptic transmission and dendritic morphology exhibit a developmental decrease of expression in CA3. Abnormal CA3 synaptic organization observed in schizophrenics might be related to some specific symptoms, such as loosening of association. Interestingly, changes in gene expression in CA3 might occur at a time possibly corresponding to the late appearance of the first clinical symptoms. We also found earlier changes in expression of schizophrenia susceptibility genes in CA1, which might be linked to prodromal psychotic symptoms. A number of schizophrenia susceptibility genes including APOE, BDNF, MTHFR and SLC6A4 are involved in other disorders, and thus likely contribute to nonspecific changes in hippocampal structure and function that must be combined with the dysregulation of other genes in order to lead to schizophrenia pathogenesis.

  14. MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiumei Xie

    2012-03-01

    Full Text Available Muramyldipeptide (MDP, the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2. Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  15. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    Science.gov (United States)

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  16. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.

    Science.gov (United States)

    Exline, C M; Feng, Z; Stoltzfus, C M

    2008-04-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5' splice site (5'ss) downstream of exon 2 (5'ss D2). Here we show that the mutations within 5'ss D2 that are predicted to lower or increase the affinity of the 5'ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5'ss D2 was not necessary for the effect of 5'ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5'ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5'-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5'ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.

  17. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro

    Science.gov (United States)

    El-Awady, Mostafa K; Tabll, Ashraf A; El-Abd, Yasmine S; Bahgat, Mahmoud M; Shoeb, Hussein A; Youssef, Samar S; Din, Noha G Bader El; Redwan, El-Rashdy M; El-Demellawy, Maha; Omran, Moataza H; El-Garf, Wael T; Goueli, Said A

    2006-01-01

    AIM: To establish a cell culture system with long-term replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS: HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naïve cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS: The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION: HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells. PMID:16937465

  18. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro

    Institute of Scientific and Technical Information of China (English)

    Mostafa K El-Awady; Moataza H Omran; Wael T El-Garf; Said A Goueli; Ashraf A Tabll; Yasmine S El-Abd; Mahmoud M Bahgat; Hussein A Shoeb; Samar S Youssef; Noha G Bader El Din; El-Rashdy M Redwan; Maha El-Demellawy

    2006-01-01

    AIM: To establish a cell culture system with longterm replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS: HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naive cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS: The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION: HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells.

  19. Regulation of hepatic gene expression by saturated fatty acids.

    Science.gov (United States)

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  20. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Indian Academy of Sciences (India)

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  1. Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation

    Directory of Open Access Journals (Sweden)

    José Pedro Faria

    2016-11-01

    Full Text Available Understanding gene function and regulation is essential for the interpretation prediction and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets Atomic Regulons ARs represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here we describe an approach for inferring ARs that leverages large-scale expression data sets gene context and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness CLR analysis finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms we computed ARs for Shewanella oneidensis Pseudomonas aeruginosa Thermus thermophilus and Staphylococcus aureus each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed

  2. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  3. Interleukin-1 controls the constitutive expression of the Cyp7a1 gene by regulating the expression of Cyp7a1 transcriptional regulators in the mouse liver.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2011-01-01

    Our previous study using interleukin-1α/β-knockout (IL-1-KO) and wild-type (WT) mice demonstrated that IL-1 acts as a positive factor for constitutive gene expression of hepatic cytochrome P4507a1 (Cyp7a1). In this study, to clarify the role of IL-1 in the expression of the hepatic Cyp7a1 gene, we focused on Cyp7a1 transcriptional regulators such as α-fetoprotein transcription factor (FTF), liver X receptor α (LXRα), hepatocyte nuclear factor 4α (HNF4α) and small heterodimer partner (SHP) and examined the effects of IL-1 on their gene expression by real-time reverse-transcription polymerase chain reaction using IL-1-KO and WT mice. We observed no significant differences between sex-matched IL-1-KO and WT mice with regard to gene expression levels of FTF, LXRα, and HNF4α, all of which are positive transcriptional regulators for the Cyp7a1 gene. However, interindividual differences in hepatic FTF and LXRα expression were closely dependent on the gene expression level(s) of hepatic IL-1 and tumor necrosis factor-α (TNF-α), while interindividual differences in hepatic HNF4α were clearly correlated with the expression of IL-1, but not TNF-α. In contrast, the gene expression level of SHP, which is a negative transcriptional regulator of the Cyp7a1 gene through inhibition of FTF function, was higher in IL-1-KO mice than in sex-matched WT mice. These findings demonstrate that, like TNF-α, IL-1 positively controls the gene expression of Cyp7a1 transcriptional upregulators but, in contrast to the previously reported action of TNF-α, IL-1 also acts to downregulate SHP gene expression.

  4. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    Directory of Open Access Journals (Sweden)

    Schmidt Eva

    2011-08-01

    Full Text Available Abstract Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.

  5. Heavy alcohol drinking downregulates ALDH2 gene expression but heavy smoking up-regulates SOD2 gene expression in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Lee, Dong Jin; Lee, Hyung Min; Kim, Jin Hwan; Park, Ii Seok; Rho, Young Soo

    2017-08-25

    This study aims to determine the relationship between expression levels of ALDH2 and SOD2 genes and clinical parameters such as alcohol drinking, tobacco smoking, primary site of HNSCC, and human papilloma virus (HPV) state. Gene expression data were obtained from gene expression omnibus (GEO accession number: GSE65858). Clinical data (N = 270) including survival result, gender, age, TNM stage, primary site of HNSCC, HPV status, alcohol drinking, and tobacco smoking habit were analyzed according to gene expression pattern. ALDH2 gene was expressed in low levels in patients with heavy alcohol consumption. It was expressed in high (p = 0.01) levels in patients with no or light alcohol consumption. ALDH2 gene was also expressed in low levels in patients with oral cavity cancers or hypopharynx cancers. However, ALDH2 gene was expressed in high (p = 0.03) levels in patients with oropharyngeal cancers or laryngeal cancers. HPV-positive patients were found to have high (p = 0.02) expression levels of ALDH2. SOD2 gene was expressed in high (p = 0.005) levels in patients who had greater mean pack-year of tobacco smoking. Based on log rank test, the group of patients with high expression of ALDH2 showed better (p = 0.002) clinical results than those with low expression of ALDH2. Difference of survival results between ALDH2 high-expressed group and ALDH2 low-expressed group was validated in another cohort (GSE39368, N = 138). Heavy alcohol drinking downregulates ALDH2 gene expression level. Heavy smoking up-regulates SOD2 gene expression level in patients with head and neck squamous cell carcinoma. The group of patients with low expression levels of ALDH2 showed significantly poorer survival results compared to those with high expression levels of ALDH2.

  6. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    their duplicate were found to be under less purifying selection. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to macromolecular complexes, whereas paralogs with different expression levels were enriched in terms associated......The genomes of plants are marked by reoccurring events of whole-genome duplication. These events are major contributors to speciation and provide the genetic material for organisms to evolve ever greater complexity. Duplicated genes, referred to as paralogs, may be retained because they acquired...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...

  7. Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Askew David S

    2005-01-01

    Full Text Available Abstract Background Although Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp. Results Here we describe the construction of plasmid vectors that can be used to regulate gene expression in A. fumigatus using a simple co-transfection approach. Vectors were generated in which the tetracycline transactivator (tTA or the reverse tetracycline transactivator (rtTA2s-M2 are controlled by the A. nidulans gpdA promoter. Dominant selectable cassettes were introduced into each plasmid, allowing for selection following gene transfer into A. fumigatus by incorporating phleomycin or hygromycin into the medium. To model an essential gene under tetracycline regulation, the E. coli hygromycin resistance gene, hph, was placed under the control of seven copies of the TetR binding site (tetO7 in a plasmid vector and co-transfected into A. fumigatus protoplasts together with one of the two transactivator plasmids. Since the hph gene is essential to A. fumigatus in the presence of hygromycin, resistance to hygromycin was used as a marker of hph reporter gene expression. Transformants were identified in which the expression of tTA conferred hygromycin resistance by activating expression of the tetO7-hph reporter gene, and the addition of doxycycline to the medium suppressed hygromycin resistance in a dose-dependent manner. Similarly, transformants were identified in which expression of rtTA2s-M2 conferred hygromycin resistance only in the presence of doxycycline. The levels of doxycycline required to regulate

  8. Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin.

    Science.gov (United States)

    Mizuno, Tooru M; Lew, Pei San; Luo, Yanming; Leckstrom, Arnold

    2017-02-01

    To investigate the role of glucose and insulin in the regulation of hepatic fat mass and obesity associated (Fto) gene expression and the role of hepatic Fto in the regulation of gluconeogenic gene expression. To determine the effect of hyperglycemia on hepatic Fto expression, levels of Fto mRNA in liver were compared between normoglycemic/normoinsulinemic, hypereglycemic/hyperinsulinemic, and hyperglycemic/hypoinsulinemic mice. To determine the direct effect of insulin on Fto expression, levels of Fto, glucose-6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (Pepck) mRNA levels were compared between control and insulin-treated mouse liver tissues cultured ex vivo and immortalized mouse hepatocytes AML12. To determine the role of Fto in the regulation of gluconeogenic gene expression, we examined the effect of enhanced Fto expression on G6pase and Pepck mRNA levels in AML12 cells. Fto mRNA levels were significantly reduced in hyperglycemic/hyperinsulinemic mice compared to normoglycemic/normoinsulinemic mice, while they were indistinguishable between hyperglycemic/hypoinsulinemic mice and normoglycemic/normoinsulinemic mice. Insulin treatment reduced Fto, G6pase, and Pepck mRNA levels compared to control vehicle treatment in both ex vivo cultured mouse liver tissues and AML12 cells. Enhanced Fto expression significantly increased G6pase and Pepck mRNA level in AML12 cells. Our findings support the hypothesis that hepatic Fto participates in the maintenance of glucose homeostasis possibly by mediating the inhibitory effect of glucose and insulin on gluconeogenic gene expression in liver. It is further suggested that impairments in nutritional and hormonal regulation of hepatic Fto expression may lead to impairments in glycemic control in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. RNA splicing regulates the temporal order of TNF-induced gene expression.

    Science.gov (United States)

    Hao, Shengli; Baltimore, David

    2013-07-16

    When cells are induced to express inflammatory genes by treatment with TNF, the mRNAs for the induced genes appear in three distinct waves, defining gene groups I, II, and III, or early, intermediate, and late genes. To examine the basis for these different kinetic classes, we have developed a PCR-based procedure to distinguish pre-mRNAs from mRNAs. It shows that the three groups initiate transcription virtually simultaneously but that delays in splicing characterize groups II and III. We also examined the elongation times, concluding that pre-mRNA synthesis is coordinate but splicing differences directly regulate the timing of mRNA production.

  10. Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Zhang, Zhen; Dahlsten, Elias; Korkeala, Hannu; Lindström, Miia

    2014-12-01

    Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.

  11. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo

    Science.gov (United States)

    Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182

  12. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells.

  13. The prima donna of epigenetics: the regulation of gene expression by DNA methylation

    Directory of Open Access Journals (Sweden)

    K.F. Santos

    2005-10-01

    Full Text Available This review focuses on the mechanisms of DNA methylation, DNA methylation pattern formation and their involvement in gene regulation. Association of DNA methylation with imprinting, embryonic development and human diseases is discussed. Furthermore, besides considering changes in DNA methylation as mechanisms of disease, the role of epigenetics in general and DNA methylation in particular in transgenerational carcinogenesis, in memory formation and behavior establishment are brought about as mechanisms based on the cellular memory of gene expression patterns.

  14. Threshold-dominated regulation hides genetic variation in gene expression networks

    Directory of Open Access Journals (Sweden)

    Plahte Erik

    2007-12-01

    Full Text Available Abstract Background In dynamical models with feedback and sigmoidal response functions, some or all variables have thresholds around which they regulate themselves or other variables. A mathematical analysis has shown that when the dose-response functions approach binary or on/off responses, any variable with an equilibrium value close to one of its thresholds is very robust to parameter perturbations of a homeostatic state. We denote this threshold robustness. To check the empirical relevance of this phenomenon with response function steepnesses ranging from a near on/off response down to Michaelis-Menten conditions, we have performed a simulation study to investigate the degree of threshold robustness in models for a three-gene system with one downstream gene, using several logical input gates, but excluding models with positive feedback to avoid multistationarity. Varying parameter values representing functional genetic variation, we have analysed the coefficient of variation (CV of the gene product concentrations in the stable state for the regulating genes in absolute terms and compared to the CV for the unregulating downstream gene. The sigmoidal or binary dose-response functions in these models can be considered as phenomenological models of the aggregated effects on protein or mRNA expression rates of all cellular reactions involved in gene expression. Results For all the models, threshold robustness increases with increasing response steepness. The CVs of the regulating genes are significantly smaller than for the unregulating gene, in particular for steep responses. The effect becomes less prominent as steepnesses approach Michaelis-Menten conditions. If the parameter perturbation shifts the equilibrium value too far away from threshold, the gene product is no longer an effective regulator and robustness is lost. Threshold robustness arises when a variable is an active regulator around its threshold, and this function is maintained by

  15. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    Science.gov (United States)

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  16. Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants.

    Science.gov (United States)

    Wang, Hsiao-Lin V; Chekanova, Julia A

    2016-05-01

    Eukaryotic genomes produce thousands of diverse small RNAs (smRNAs), which play vital roles in regulating gene expression in all conditions, including in survival of biotic and abiotic environmental stresses. SmRNA pathways intersect with most of the pathways regulating different steps in the life of a messenger RNA (mRNA), starting from transcription and ending at mRNA decay. SmRNAs function in both nuclear and cytoplasmic compartments; the regulation of mRNA stability and translation in the cytoplasm and the epigenetic regulation of gene expression in the nucleus are the main and best-known modes of smRNA action. However, recent evidence from animal systems indicates that smRNAs and RNA interference (RNAi) also participate in the regulation of alternative pre-mRNA splicing, one of the most crucial steps in the fast, efficient global reprogramming of gene expression required for survival under stress. Emerging evidence from bioinformatics studies indicates that a specific class of plant smRNAs, induced by various abiotic stresses, the sutr-siRNAs, has the potential to target regulatory regions within introns and thus may act in the regulation of splicing in response to stresses. This review summarizes the major types of plant smRNAs in the context of their mechanisms of action and also provides examples of their involvement in regulation of gene expression in response to environmental cues and developmental stresses. In addition, we describe current advances in our understanding of how smRNAs function in the regulation of pre-mRNA splicing. WIREs RNA 2016, 7:356-381. doi: 10.1002/wrna.1340 For further resources related to this article, please visit the WIREs website.

  17. Transcriptional programs that control expression of the autoimmune regulator gene Aire.

    Science.gov (United States)

    Herzig, Yonatan; Nevo, Shir; Bornstein, Chamutal; Brezis, Miriam R; Ben-Hur, Sharon; Shkedy, Aya; Eisenberg-Bord, Michal; Levi, Ben; Delacher, Michael; Goldfarb, Yael; David, Eyal; Weinberger, Leehee; Viukov, Sergey; Ben-Dor, Shifra; Giraud, Matthieu; Hanna, Jacob H; Breiling, Achim; Lyko, Frank; Amit, Ido; Feuerer, Markus; Abramson, Jakub

    2017-02-01

    Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire. In mTECs, however, Aire expression was facilitated by concurrent eviction of CTCF, specific demethylation of exon 2 and the proximal promoter, and the coordinated action of several transcription activators, including Irf4, Irf8, Tbx21, Tcf7 and Ctcfl, which acted on mTEC-specific accessible regions in the Aire locus.

  18. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    Science.gov (United States)

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  19. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  20. Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis

    Institute of Scientific and Technical Information of China (English)

    Haixiong Liu; Shifeng Li; Yunbin Zhang; Yuanchang Yan; Yiping Li

    2009-01-01

    Glutamate decarboxylase 65 (GAD65) produces γ-amino-butyric acid,the main inhibitory neurotransmitter in adult mammalian brain.Previous experiments,per-formed in brain,showed that GAD65 gene possesses two TATA-less promoters,although the significance is unknown.Here,by rapid amplification of cDNA ends method,two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis.RT-PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation,suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level.By using GAD65-speciflc antibodies,western blotting analysis showed that the 58-kDa GAD65,N-terminal 69 amino acids truncated form of full-length GAD65 protein,was developmentally expressed during post-natal testis matu-ration,suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing.Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis,primary spermatocytes and spermatids of post-natal of Day 90 testis.The above results suggested that GAD65 gene expression is dynamically regulated at mul-tiple levels during post-natal testis maturation.

  1. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  2. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  3. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Upstream regulatory region and flanking DNA of yellow gene wereisolated and cloned from a Drosophila genomic library. A vector containing yellow gene and regulatory elements was constructed using the recombinant DNA technique. Then this vector was integrated into Drosophila genome by genetic transformation. Using both FLP/FRT and Cre/LoxP site-specific recombination systems, two new yellow alleles were created at the same position in the genome of transgenic flies. Results from genetic and molecular analysis indicated that transcriptional enhancers regulate the developmental expression of the transgene. Furthermore, interactions between new-created yellow alleles were observed. Such interactions can influence markedly the expression of yellow gene during development. This effect may also be a form of enhancer-mediated gene expression.

  4. Long-distance signals positively regulate the expression of iron uptake genes in tobacco roots.

    Science.gov (United States)

    Enomoto, Yusuke; Hodoshima, Hirotaka; Shimada, Hiroaki; Shoji, Kazuhiro; Yoshihara, Toshihiro; Goto, Fumiyuki

    2007-12-01

    Long-distance signals generated in shoots are thought to be associated with the regulation of iron uptake from roots; however, the signaling mechanism is still unknown. To elucidate whether the signal regulates iron uptake genes in roots positively or negatively, we analyzed the expressions of two representative iron uptake genes: NtIRT1 and NtFRO1 in tobacco (Nicotiana tabacum L.) roots, after shoots were manipulated in vitro. When iron-deficient leaves were treated with Fe(II)-EDTA, the expressions of both genes were significantly reduced; nevertheless iron concentration in the roots maintained a similar level to that in roots grown under iron-deficient conditions. Next, all leaves from tobacco plants grown under the iron-deficient condition were excised. The expression of two genes were quickly reduced below half within 2 h after the leaf excision and gradually disappeared by the end of a 24-h period. The NtIRT1 expression was compared among the plants whose leaves were cut off in various patterns. The expression increased in proportion to the dry weight of iron-deficient leaves, although no relation was observed between the gene expression and the position of excised leaves. Interestingly, the NtIRT1 expression in hairy roots increased under the iron-deficient condition, suggesting that roots also have the signaling mechanism of iron status as well as shoots. Taken together, these results indicate that the long-distance signal generated in iron-deficient tissues including roots is a major factor in positive regulation of the expression of NtIRT1 and NtFRO1 in roots, and that the strength of the signal depends on the size of plants.

  5. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  6. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    Directory of Open Access Journals (Sweden)

    Priya Raja

    2016-05-01

    Full Text Available Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV, for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs and microRNAs (miRNAs as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0 is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections.

  7. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available POU transcription factor Pou5f1 (Oct3/4 is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks.

  8. Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling

    Science.gov (United States)

    Matoba, Ryo; Niwa, Hitoshi; Masui, Shinji; Ohtsuka, Satoshi; Carter, Mark G.; Sharov, Alexei A.; Ko, Minoru S.H.

    2006-01-01

    POU transcription factor Pou5f1 (Oct3/4) is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP) assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks. PMID:17183653

  9. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  10. H-Ferritin-Regulated MicroRNAs Modulate Gene Expression in K562 Cells

    Science.gov (United States)

    Biamonte, Flavia; Zolea, Fabiana; Bisognin, Andrea; Di Sanzo, Maddalena; Saccoman, Claudia; Scumaci, Domenica; Aversa, Ilenia; Panebianco, Mariafranca; Faniello, Maria Concetta; Bortoluzzi, Stefania; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs. PMID:25815883

  11. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens

    Directory of Open Access Journals (Sweden)

    André Gaelle

    2010-09-01

    Full Text Available Abstract Background Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail. Results We first performed a tentative reconstruction of sulfur metabolism in C. perfringens and correlated these data with the growth of strain 13 in the presence of various sulfur sources. Surprisingly, C. perfringens can convert cysteine to methionine by an atypical still uncharacterized pathway. We further compared the expression profiles of strain 13 after growth in the presence of cystine or homocysteine that corresponds to conditions of cysteine depletion. Among the 177 genes differentially expressed, we found genes involved in sulfur metabolism and controlled by premature termination of transcription via a cysteine specific T-box system (cysK-cysE, cysP1 and cysP2 or an S-box riboswitch (metK and metT. We also showed that the ubiG operon was submitted to a triple regulation by cysteine availability via a T-box system, by the VirR/VirS system via the VR-RNA and by the VirX regulatory RNA. In addition, we found that expression of pfoA (theta-toxin, nagL (one of the five genes encoding hyaluronidases and genes involved in the maintenance of cell redox status was differentially expressed in response to cysteine availability. Finally, we showed that the expression of genes involved in [Fe-S] clusters biogenesis and of the ldh gene encoding the lactate dehydrogenase was induced during cysteine limitation. Conclusion Several key functions for the

  12. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    Science.gov (United States)

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.

  13. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression.

    Science.gov (United States)

    Archacki, Rafal; Yatusevich, Ruslan; Buszewicz, Daniel; Krzyczmonik, Katarzyna; Patryn, Jacek; Iwanicka-Nowicka, Roksana; Biecek, Przemyslaw; Wilczynski, Bartek; Koblowska, Marta; Jerzmanowski, Andrzej; Swiezewski, Szymon

    2017-04-07

    ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos.

    Science.gov (United States)

    Lukowski, Chris M; Drummond, Danna Lynne; Waskiewicz, Andrew J

    2011-12-01

    Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development--roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer--a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.

  15. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  16. MicroRNA 429 Regulates Mucin Gene Expression and Secretion in Murine Model of Colitis.

    Science.gov (United States)

    Mo, Ji-Su; Alam, Khondoker Jahengir; Kim, Hun-Soo; Lee, Young-Mi; Yun, Ki-Jung; Chae, Soo-Cheon

    2016-07-01

    miRNAs are non-coding RNAs that play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. We aimed to detect miRNAs related to ulcerative colitis [UC], identify their target molecules, and analyse the correlation between the miRNAs and their target genes in colorectal cells and dextran sulphate sodium [DSS]-induced mouse colitis. UC-associated miRNAs were identified by miRNA microarray analysis using DSS-induced colitis and normal colon tissues. The results were validated by quantitative real-time polymerase chain reaction [RT-PCR]. We identified target genes of MIR429, a colitis-associated miRNA, from our screen by comparing the mRNA microarray analysis in MIR429-overexpressed cells with predicted candidate target genes. We constructed luciferase reporter plasmids to confirm the effect of MIR429 on target gene expression. The protein expression of the target genes was measured by western blot,enzyme-linked immunosorbent assay [ELISA] analysis, or immunohistochemistry. We identified 37 DSS-induced colitis associated miRNAs. We investigated MIR429 that is down-regulated in DSS-induced colitis, and identified 41 target genes of MIR429. We show that the myristoylated alanine-rich protein kinase C substrate [MARCKS] is a direct target of MIR429. MARCKS mRNA and protein expression levels are down-regulated by MIR429, and MIR429 regulates the expression of MARCKS and MARCKS-mediated mucin secretion in colorectal cells and DSS-induced colitis. In addition, anti-MIR429 up-regulates MARCKS expression in colorectal cell lines. Our findings suggest that MIR429 modulates mucin secretion in human colorectal cells and mouse colitis tissues by up-regulating of MARCKS expression, thereby making MIR429 a candidate for anti-colitis therapy in human UC. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email

  17. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert Harvey

    Full Text Available The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG protein Pleiohomeotic (Pho, and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

  18. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  19. QKI-7 regulates expression of interferon-related genes in human astrocyte glioma cells.

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    Full Text Available BACKGROUND: The human QKI gene, called quaking homolog, KH domain RNA binding (mouse, is a candidate gene for schizophrenia encoding an RNA-binding protein. This gene was shown to be essential for myelination in oligodendrocytes. QKI is also highly expressed in astrocytes, but its function in these cells is not known. METHODS/PRINCIPAL FINDINGS: We studied the effect of small interference RNA (siRNA-mediated QKI depletion on global gene expression in human astrocyte glioma cells. Microarray measurements were confirmed with real-time quantitative polymerase chain reaction (qPCR. The presence of QKI binding sites (QRE was assessed by a bioinformatic approach. Viability and cell morphology were also studied. The most significant alteration after QKI silencing was the decreased expression of genes involved in interferon (IFN induction (P = 6.3E-10, including IFIT1, IFIT2, MX1, MX2, G1P2, G1P3, GBP1 and IFIH1. All eight genes were down-regulated after silencing of the splice variant QKI-7, but were not affected by QKI-5 silencing. Interestingly, four of them were up-regulated after treatment with the antipsychotic agent haloperidol that also resulted in increased QKI-7 mRNA levels. CONCLUSIONS/SIGNIFICANCE: The coordinated expression of QKI-7 splice variant and IFN-related genes supports the idea that this particular splice variant has specific functions in astrocytes. Furthermore, a role of QKI-7 as a regulator of an inflammatory gene pathway in astrocytes is suggested. This hypothesis is well in line with growing experimental evidence on the role of inflammatory components in schizophrenia.

  20. Bioinformatic selection of putative epigenetically regulated loci associated with obesity using gene expression data.

    Science.gov (United States)

    Turcot, Valérie; Groom, Alexandra; McConnell, James C; Pearce, Mark S; Potter, Catherine; Embleton, Nicholas D; Swan, Daniel C; Relton, Caroline L

    2012-05-10

    There is considerable interest in defining the relationship between epigenetic variation and the risk of common complex diseases. Strategies which assist in the prioritisation of target loci that have the potential to be epigenetically regulated might provide a useful approach in identifying concrete examples of epigenotype-phenotype associations. Focusing on the postulated role of epigenetic factors in the aetiopathogenesis of obesity this report outlines an approach utilising gene expression data and a suite of bioinformatic tools to prioritise a list of target candidate genes for more detailed experimental scrutiny. Gene expression microarrays were performed using peripheral blood RNA from children aged 11-13years selected from the Newcastle Preterm Birth Growth Study which were grouped by body mass index (BMI). Genes showing ≥2.0 fold differential expression between low and high BMI groups were selected for in silico analysis. Several bioinformatic tools were used for each following step; 1) a literature search was carried out to identify whether the differentially expressed genes were associated with adiposity phenotypes. Of those obesity-candidate genes, putative epigenetically regulated promoters were identified by 2) defining the promoter regions, 3) then by selecting promoters with a CpG island (CGI), 4) and then by identifying any transcription factor binding modules covering CpG sites within the CGI. This bioinformatic processing culminated in the identification of a short list of target obesity-candidate genes putatively regulated by DNA methylation which can be taken forward for experimental analysis. The proposed workflow provides a flexible, versatile and low cost methodology for target gene prioritisation that is applicable to multiple species and disease contexts. Copyright © 2012. Published by Elsevier B.V.

  1. The pseudokinase NIPI-4 is a novel regulator of antimicrobial peptide gene expression.

    Directory of Open Access Journals (Sweden)

    Sid Ahmed Labed

    Full Text Available Hosts have developed diverse mechanisms to counter the pathogens they face in their natural environment. Throughout the plant and animal kingdoms, the up-regulation of antimicrobial peptides is a common response to infection. In C. elegans, infection with the natural pathogen Drechmeria coniospora leads to rapid induction of antimicrobial peptide gene expression in the epidermis. Through a large genetic screen we have isolated many new mutants that are incapable of upregulating the antimicrobial peptide nlp-29 in response to infection (i.e. with a Nipi or 'no induction of peptide after infection' phenotype. More than half of the newly isolated Nipi mutants do not correspond to genes previously associated with the regulation of antimicrobial peptides. One of these, nipi-4, encodes a member of a nematode-specific kinase family. NIPI-4 is predicted to be catalytically inactive, thus to be a pseudokinase. It acts in the epidermis downstream of the PKC∂ TPA-1, as a positive regulator of nlp antimicrobial peptide gene expression after infection. It also controls the constitutive expression of antimicrobial peptide genes of the cnc family that are targets of TGFß regulation. Our results open the way for a more detailed understanding of how host defense pathways can be molded by environmental pathogens.

  2. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis.

    Science.gov (United States)

    Xie, Liqiong; Yang, Cangjing; Wang, Xuelu

    2011-08-01

    The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels of the cellulose synthase genes (CESAs) was measured in BR-related mutants and their wild-type counterpart. The chromatin immunoprecipitation (CHIP) experiments and genetic analysis were used to demonstrate that BRs regulate CESA genes. It was found here that the BR-deficient or BR-perceptional mutants contain less cellulose than the wild type. The expression of CESA genes, especially those related to primary cell wall synthesis, was reduced in det2-1 and bri1-301, and was only inducible by BRs in the BR-deficient mutant det2-1. CHIP experiments show that the BR-activated transcription factor BES1 can associate with upstream elements of most CESA genes particularly those related with the primary cell wall. Furthermore, over-expression of the BR receptor BRI1 in CESA1, 3, and 6 mutants can only partially rescue the dwarf phenotypes. Our findings provide potential insights into the mechanism that BRs regulate cellulose synthesis to accomplish the cell elongation process in plant development.

  3. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor.

    Science.gov (United States)

    Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle

    2016-01-01

    Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP.

  4. Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes.

    Directory of Open Access Journals (Sweden)

    Anjali Bheda

    Full Text Available Deubiquitinating enzymes (DUBs have been increasingly implicated in regulation of cellular processes, but a functional role for Ubiquitin C-terminal Hydrolases (UCHs, which has been largely relegated to processing of small ubiquitinated peptides, remains unexplored. One member of the UCH family, UCH L1, is expressed in a number of malignancies suggesting that this DUB might be involved in oncogenic processes, and increased expression and activity of UCH L1 have been detected in EBV-immortalized cell lines. Here we present an analysis of genes regulated by UCH L1 shown by microarray profiles obtained from cells in which expression of the gene was inhibited by RNAi. Microarray data were verified with subsequent real-time PCR analysis. We found that inhibition of UCH L1 activates genes that control apoptosis, cell cycle arrest and at the same time suppresses expression of genes involved in proliferation and migration pathways. These findings are complemented by biological assays for apoptosis, cell cycle progression and migration that support the data obtained from microarray analysis, and suggest that the multi-functional molecule UCH L1 plays a role in regulating principal pathways involved in oncogenesis.

  5. Regulation of Cardiac Gene Expression by GATA-4/5/6.

    Science.gov (United States)

    Evans, T

    1997-04-01

    The identification of nuclear regulatory proteins provides great promise for advancing our understanding of the transcriptional control of cardiac gene expression. Three new members of the GATA family of DNA-binding transcription factors were recently discovered and designated GATA-4/5/6. On the basis of expression patterns, the identification of candidate cardiac target genes and the current understanding of how other GATA factors function in the hematopoietic system, it appears that these genes are important for regulating programs of cardiac development and terminal differentiation. Indeed, a functional role for GATA-4/5/6 in activating the cardiac differentiation program was demonstrated in cell culture and embryonic systems; however, recent results obtained in embryonic stem (ES) cells with a targeted mutation of GATA-4 raise new questions regarding specificity of action among the three genes. The future direction of research in the field is discussed; understanding GATA-4/5/6 function and regulation is likely to provide important insight into the specification and/or differentiation of cardiac progenitors, development and morphogenesis of the heart, and regulation of cardiac-specific gene expression. (Trends Cardiovasc Med 1997;7:75-83). © 1997, Elsevier Science Inc.

  6. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  7. Stochastic modeling for the expression of a gene regulated by competing transcription factors.

    Directory of Open Access Journals (Sweden)

    Hsih-Te Yang

    Full Text Available It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data.

  8. Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Bruce A Rosa

    2014-02-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus. We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. CONCLUSIONS/SIGNIFICANCE: The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis

  9. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  10. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  11. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  12. A “GC-rich” method for mammalian gene expression:A dominant role of non-coding DNA GC content in the regulation of mammalian gene expression

    Institute of Scientific and Technical Information of China (English)

    Gilbert; Rishton; Matthew; (Mizhou); HUI

    2010-01-01

    High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein.The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment(including intron) of extremely GC-rich at the 5’ or/and 3’ flanking regions of these protein genes or their gene promoters.This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super "chromatin opening element" and plays an important role in mammalian gene expression.This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure,namely DNA GC-content.

  13. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  14. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.

    Science.gov (United States)

    Prigent-Combaret, C; Vidal, O; Dorel, C; Lejeune, P

    1999-10-01

    To get further information on bacterial surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli K-12, random insertion mutagenesis with Mu dX, a mini-Mu carrying the promoterless lacZ gene, was performed with an ompR234 adherent strain, and a simple screen was developed to assess changes in gene expression in biofilm cells versus planktonic cells. This screen revealed that major changes in the pattern of gene expression occur during biofilm development: the transcription of 38% of the genes was affected within biofilms. Different cell functions were more expressed in sessile bacteria: the OmpC porin, the high-affinity transport system of glycine betaine (encoded by the proU operon), the colanic acid exopolysaccharide (wca locus, formerly called cps), tripeptidase T (pepT), and the nickel high-affinity transport system (nikA). On the other hand, the syntheses of flagellin (fliC) and of a putative protein of 92 amino acids (f92) were both reduced in biofilms. Such a genetic reprogramming of gene expression in biofilms seems to result from changes in multiple environmental physicochemical conditions. In this work, we show that bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell density than in the liquid phase.

  15. Primary hemocyte culture of Penaeus monodon as an in vitro model for white spot syndrome virus titration, viral and immune related gene expression and cytotoxicity assays.

    Science.gov (United States)

    Jose, Seena; Mohandas, A; Philip, Rosamma; Bright Singh, I S

    2010-11-01

    Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 gl⁻¹), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 μg ml⁻¹ chloramphenicol, 100 μg ml⁻¹ streptomycin and 100 IU ml⁻¹ penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2'-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24h. Susceptibility of the cells to WSSV was confirmed by immunofluorescence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT(50)/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC(50). The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals.

  16. Regulation of chick early B-cell factor-1 gene expression in feather development.

    Science.gov (United States)

    El-Magd, Mohammed Abu; Sayed-Ahmed, Ahmed; Awad, Ashraf; Shukry, Mustafa

    2014-05-01

    The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.

  17. The Truncated Gene cfaD′ Positively Regulates CFA/Ⅰ Expression of Enterotoxigenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    齐小保; 徐建国

    2004-01-01

    The gene cluster cfaABCED′ of enterotoxigenic Escherichia coli, encoding the fimbriae which is called colonization factor antigen Ⅰ (CFA/Ⅰ), located on a plasmid. It is positively regulated by cfaR, a member of the AraC family, and the cfaD′ gene region, which is located downstream of cfaE and is homologous to cfaR, had been described as a truncated cryptic gene. In the present study we observed that the CFA/Ⅰ fimbriae subunit, cfaB, was expressed in lower amount by the cfoABCED′ clone pNTP513 in host E. coli HB101. The expression of CFA/Ⅰ diminished by deletion of cfaD′ gene region from pNTP513, and was restored by acquisition of cfaD′ in trans. Furthermore, CFA/Ⅰ expression by cfaD′ deletion mutant, the cfaABCE clone, was remarkably increased by the presence of CFA/Ⅰ in trans in a topoisomerase A deficient strain of E. coli DM800. These data suggest that cfaD′ region is a functional region of gene, that regulates the CFA/Ⅰ expression with cfaR by unknown mechanism.

  18. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum.

    Science.gov (United States)

    Fedoreyeva, L I; Dilovarova, T A; Ashapkin, V V; Martirosyan, Yu Ts; Khavinson, V Kh; Kharchenko, P N; Vanyushin, B F

    2017-04-01

    Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10(-7)-10(-9) M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.

  19. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  20. Identification of Adaptive Mutations in the Influenza A Virus Non-Structural 1 Gene That Increase Cytoplasmic Localization and Differentially Regulate Host Gene Expression

    Science.gov (United States)

    Forbes, Nicole; Selman, Mohammed; Pelchat, Martin; Jia, Jian Jun; Stintzi, Alain; Brown, Earl G.

    2013-01-01

    The NS1 protein of influenza A virus (IAV) is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2) (HK) to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30). Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt) virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR) phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I), the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K) were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression. PMID:24391972

  1. Antisense regulation of expression and transactivation functions of the tumorigenic HBx and c-myc genes.

    Science.gov (United States)

    Hung, Le; Kumar, Vijay

    2006-05-26

    Earlier we have shown that the X-myc transgenic mice develop hepatocellular carcinoma (HCC) due to co-expression of c-Myc and HBx protein of hepatitis B virus [R. Lakhtakia, V. Kumar, H. Reddi, M. Mathur, S. Dattagupta, S.K. Panda, Hepatocellular carcinoma in a hepatitis B 'x' transgenic mouse model: a sequential pathological evaluation. J. Gastroenterol. Hepatol. 18 (2003) 80-91]. With the aim to develop therapeutic strategies for HCC, we constructed several mono- and bicistronic antisense recombinants against HBx and c-myc genes to regulate their expression as well as transactivation function in a human hepatoma cell line. A dose-dependent inhibition in the expression levels of HBx and c-Myc was observed with monocistronic constructs. Likewise, the bicistronic recombinants also blocked the expression as well as transactivation functions of cognate genes with equal efficacy. Further, expression of the constituent genes from the X-myc transgene could also be inhibited by these antisense constructs in cell culture. Thus, our study points towards clinical implications of antisense regulation of tumor-promoting genes in the management of HCC.

  2. Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barley

    Science.gov (United States)

    Novák, Aliz; Ahres, Mohamed; Gulyás, Zsolt; Monostori, István; Galiba, Gábor; Vágújfalvi, Attila

    2017-01-01

    CBF (C-repeat binding factor) transcription factors show high expression levels in response to cold; moreover, they play a key regulatory role in cold acclimation processes. Recently, however, more and more information has led to the conclusion that, apart from cold, light—including its spectra—also has a crucial role in regulating CBF expression. Earlier, studies established that the expression patterns of some of these regulatory genes follow circadian rhythms. To understand more of this complex acclimation process, we studied the expression patterns of the signal transducing pathways, including signal perception, the circadian clock and phospholipid signalling pathways, upstream of the CBF gene regulatory hub. To exclude the confounding effect of cold, experiments were carried out at 22 °C. Our results show that the expression of genes implicated in the phospholipid signalling pathway follow a circadian rhythm. We demonstrated that, from among the tested CBF genes expressed in Hordeum vulgare (Hv) under our conditions, only the members of the HvCBF4-phylogenetic subgroup showed a circadian pattern. We found that the HvCBF4-subgroup genes were expressed late in the afternoon or early in the night. We also determined the expression changes under supplemental far-red illumination and established that the transcript accumulation had appeared four hours earlier and more intensely in several cases. Based on our results, we propose a model to illustrate the effect of the circadian clock and the quality of the light on the elements of signalling pathways upstream of the HvCBFs, thus integrating the complex regulation of the early cellular responses, which finally lead to an elevated abiotic stress tolerance. PMID:28829375

  3. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-01-01

    Full Text Available Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours, we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  4. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome.

    Science.gov (United States)

    Frasor, Jonna; Chang, Edmund C; Komm, Barry; Lin, Chin-Yo; Vega, Vinsensius B; Liu, Edison T; Miller, Lance D; Smeds, Johanna; Bergh, Jonas; Katzenellenbogen, Benita S

    2006-07-15

    The beneficial effect of the selective estrogen receptor (ER) modulator tamoxifen in the treatment and prevention of breast cancer is assumed to be through its ability to antagonize the stimulatory actions of estrogen, although tamoxifen can also have some estrogen-like agonist effects. Here, we report that, in addition to these mixed agonist/antagonist actions, tamoxifen can also selectively regulate a unique set of >60 genes, which are minimally regulated by estradiol (E2) or raloxifene in ERalpha-positive MCF-7 human breast cancer cells. This gene regulation by tamoxifen is mediated by ERalpha and reversed by E2 or ICI 182,780. Introduction of ERbeta into MCF-7 cells reverses tamoxifen action on approximately 75% of these genes. To examine whether these genes might serve as markers of tamoxifen sensitivity and/or the development of resistance, their expression level was examined in breast cancers of women who had received adjuvant therapy with tamoxifen. High expression of two of the tamoxifen-stimulated genes, YWHAZ/14-3-3z and LOC441453, was found to correlate significantly with disease recurrence following tamoxifen treatment in women with ER-positive cancers and hence seem to be markers of a poor prognosis. Our data indicate a new dimension in tamoxifen action, involving gene expression regulation that is tamoxifen preferential, and identify genes that might serve as markers of tumor responsiveness or resistance to tamoxifen therapy. This may have a potential effect on the choice of tamoxifen versus aromatase inhibitors as adjuvant endocrine therapy.

  5. Regulation of gene expression in plants through miRNA inactivation.

    Directory of Open Access Journals (Sweden)

    Sergey Ivashuta

    Full Text Available Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA sites embedded in either non-protein-coding or within the 3' untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants.

  6. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells.

    Science.gov (United States)

    Takahashi, S; Takahashi, Y; Ito, K; Nagano, T; Shibahara, S; Miura, T

    1999-10-28

    To elucidate the regulation of the human heme oxygenase-1 (hHO-1) gene expression, we assessed approximately 4 kb of the 5'-flanking region of the hHO-1 gene for basal promoter activity and sequenced approximately 2 kb of the 5'-flanking region. A series of deletion mutants of the 5'-flanking region linked to the luciferase gene was constructed. Basal level expression of these constructs was tested in HepG2 human hepatoma cells and HeLa cervical cancer cells. By measuring luciferase activity, which was transiently expressed in the transfected cells, we found a positive regulatory region at position -1976 to -1655 bp. This region functions in HepG2 cells but not in HeLa cells. A negative regulatory region was also found at position -981 to -412 bp that functions in both HepG2 cells and HeLa cells.

  7. Immunosuppression induced by expression of a viral RNase enhances susceptibility of Plutella xylostella to microbial pesticides

    Institute of Scientific and Technical Information of China (English)

    Bokri Park; Yonggyun Kim

    2012-01-01

    Polydnaviruses are a group of insect DNA viruses and are characterized in their segmented genome that is located in the chromosome(s) of host wasps.A polydnavirus,Cotesia plutellae bracovirus (CpBV),encodes a viral ribonuclease (RNase) T2 in a specific segment #3 (CpBV-S3).This study tested its effect on gene expression associated with host immune responses in the diamondback moth,Plutella xylostella.Micro-injection of CpBV-S3 into nonparasitized larvae induced expression of its two encoded genes,CpBV-ORF301 (=CpBV-RNase T2) and CpBV-ORF302.In response to a bacterial challenge,four antimicrobial peptide genes (hemolin,gloverin,cecropin and lysozyme) and six phenoloxidase (PO)-associated genes (proPO-activating proteinase,PO,serine proteinase homolog and serpins 1-3) were up-regulated in their expressions.However,the transient expression of CpBV-S3 suppressed the expressions of cecropin,PO and serpin 1.Double-stranded RNA specific to the viral RNase T2 could specifically knockdown the viral gene expression and restored the three gene expressions suppressed in the larvae injected with CpBV-S3.The inhibitory activity of the viral RNase T2 on the target genes was further proven by the suppression of PO activation in response to bacterial challenge in the larvae injected with CpBV-S3.This immunosuppression by the expression of the viral RNase T2 resulted in significant increase of pathogen susceptibility ofP.xylostella against Bacillus thuringiensis or baculovirus infection.

  8. Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development

    Indian Academy of Sciences (India)

    Scott F Gilbert

    2005-02-01

    The environment can play a significant role in the production of phenotypes. However, the developmental mechanisms by which the environmental agents effect normal development are just becoming known. At least three paths have been found through which the environment can modify gene activity. The first is the neuroendocrine route. Here, the nervous system monitors the environment and transfers signals to the endocrine system. The endocrine hormones can then alter gene expression. The second route involves environmental factors that change the methylation pattern of genes, thereby altering their transcriptional capabilities. The third route involves the direct induction of gene expression in the host by microbial symbionts. The normal regulation of phenotype production by the environment should be considered a normal component of development and developmental biology.

  9. Analysis of mRNA expression for genes associated with regulatory T lymphocytes (CD25, FoxP3, CTLA4, and IDO) after experimental infection with bovine viral diarrhea virus of low or high virulence in beef calves.

    Science.gov (United States)

    Palomares, Roberto A; Hurley, David J; Woolums, Amelia R; Parrish, Jacqueline E; Brock, Kenny V

    2014-12-01

    Immunosuppression caused by bovine viral diarrhea virus (BVDV) has been associated with lymphocyte depletion, leukopenia and impairment of leukocyte function; however, no work has been done on the relationship between BVDV and regulatory T lymphocytes (Tregs). The objective of this study was to compare the mRNA expression of genes associated with Tregs (CD25, FoxP3, CTLA4, and IDO), after experimental infection of beef calves with low (LV) or high (HV) virulence BVDV. Thirty BVDV-naïve calves were randomly assigned to three groups. Calves were intra-nasally inoculated with LV (n=10, strain SD-1) or HV (n=10, strain 1373) BVDV or BVDV-free cell culture medium (control, n=10). Quantitative RT-PCR was used to determine the expression of target genes in tracheo-bronchial lymph nodes and spleen on day 5 post-infection. The mRNA expression of CD25 was up-regulated in tracheo-bronchial lymph nodes of LV (Pviral strains, or differences in viral infectivity of the host cells.

  10. Co-expression of mitosis-regulating genes contributes to malignant progression and prognosis in oligodendrogliomas.

    Science.gov (United States)

    Liu, Yanwei; Hu, Huimin; Zhang, Chuanbao; Wang, Haoyuan; Zhang, Wenlong; Wang, Zheng; Li, Mingyang; Zhang, Wei; Zhou, Dabiao; Jiang, Tao

    2015-11-10

    The clinical prognosis of patients with glioma is determined by tumor grades, but tumors of different subtypes with equal malignancy grade usually have different prognosis that is largely determined by genetic abnormalities. Oligodendrogliomas (ODs) are the second most common type of gliomas. In this study, integrative analyses found that distribution of TCGA transcriptomic subtypes was associated with grade progression in ODs. To identify critical gene(s) associated with tumor grades and TCGA subtypes, we analyzed 34 normal brain tissue (NBT), 146 WHO grade II and 130 grade III ODs by microarray and RNA sequencing, and identified a co-expression network of six genes (AURKA, NDC80, CENPK, KIAA0101, TIMELESS and MELK) that was associated with tumor grades and TCGA subtypes as well as Ki-67 expression. Validation of the six genes was performed by qPCR in additional 28 ODs. Importantly, these genes also were validated in four high-grade recurrent gliomas and the initial lower-grade gliomas resected from the same patients. Finally, the RNA data on two genes with the highest discrimination potential (AURKA and NDC80) and Ki-67 were validated on an independent cohort (5 NBTs and 86 ODs) by immunohistochemistry. Knockdown of AURKA and NDC80 by siRNAs suppressed Ki-67 expression and proliferation of gliomas cells. Survival analysis showed that high expression of the six genes corporately indicated a poor survival outcome. Correlation and protein interaction analysis provided further evidence for this co-expression network. These data suggest that the co-expression of the six mitosis-regulating genes was associated with malignant progression and prognosis in ODs.

  11. Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Van Niekerk Dirk

    2008-02-01

    Full Text Available Abstract Background The highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN. CIN lesions described as mild dysplasia (CIN I are likely to spontaneously regress while CIN III lesions (severe dysplasia are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development. Results In this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium using the unbiased long serial analysis of gene expression (L-SAGE method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2. Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II indicating a role for chromatin remodelling as part of cervical cancer development. Conclusion We have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI

  12. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus.

    Science.gov (United States)

    Miao, G H; Hirel, B; Marsolier, M C; Ridge, R W; Verma, D P

    1991-01-01

    A full-length cDNA clone encoding cytosolic glutamine synthetase (GS), expressed in roots and root nodules of soybean, was isolated by direct complementation of an Escherichia coli gln A- mutant. This sequence is induced in roots by the availability of ammonia. A 3.5-kilobase promoter fragment of a genomic clone (lambda GS15) corresponding to this cDNA was isolated and fused with a reporter [beta-glucuronidase (GUS)] gene. The GS-GUS fusion was introduced into a legume (Lotus corniculatus) and a nonlegume (tobacco) plant by way of Agrobacterium-mediated transformations. This chimeric gene was found to be expressed in a root-specific manner in both tobacco and L. corniculatus, the expression being restricted to the growing root apices and the vascular bundles of the mature root. Treatment with ammonia increased the expression of this chimeric gene in the legume background (i.e., L. corniculatus); however, no induction was observed in tobacco roots. Histochemical localization of GUS activity in ammonia-treated transgenic L. corniculatus roots showed a uniform distribution across all cell types. These data suggest that the tissue specificity of the soybean cytosolic GS gene is conserved in both tobacco and L. corniculatus; however, in the latter case, this gene is ammonia inducible. Furthermore, the ammonia-enhanced GS gene expression in L. corniculatus is due to an increase in transcription. That this gene is directly regulated by externally supplied or symbiotically fixed nitrogen is also evident from the expression of GS-GUS in the infection zone, including the uninfected cells, and the inner cortex of transgenic L. corniculatus nodules, where a flux of ammonia is encountered by this tissue. The lack of expression of GS-GUS in the outer cortex of the nodules suggests that ammonia may not be able to diffuse outside the endodermis.

  13. Coordinative modulation of human zinc transporter 2 gene expression through active and suppressive regulators.

    Science.gov (United States)

    Lu, Yu-Ju; Liu, Ya-Chuan; Lin, Meng-Chieh; Chen, Yi-Ting; Lin, Lih-Yuan

    2015-04-01

    Zinc transporter 2 (ZnT2) is one of the cellular factors responsible for Zn homeostasis. Upon Zn overload, ZnT2 reduces cellular Zn by transporting it into excretory vesicles. We investigated the molecular mechanism that regulates human ZnT2 (hZnT2) gene expression. Zn induces hZnT2 expression in dose- and time-dependent manners. Overexpression of metal-responsive transcription factor 1 (MTF-1) increases hZnT2 transcription, whereas depletion of MTF-1 reduces hZnT2 expression. There are five putative metal response elements (MREs) within 1kb upstream of the hZnT2 gene. A serial deletion of the hZnT2 promoter region (from 5' to 3') shows that the two MREs proximal to the gene are essential for Zn-induced promoter activity. Further mutation analysis concludes that the penultimate MRE (MREb) supports the metal-induced promoter activity. The hZnT2 promoter has also a zinc finger E-box binding homeobox (ZEB) binding element. Mutation or deletion of this ZEB binding element elevates the basal and Zn-induced hZnT2 promoter activities. Knockdown of ZEB1 mRNA enhances the hZnT2 transcript level in HEK-293 cells. In MCF-7 (ZEB-deficient) cells, expression of ZEB proteins attenuates the Zn-induced hZnT2 expression. However, expressions of MTF-1 target genes such as human ZnT1 and metallothionein IIA were not affected. Our study shows the expression of the hZnT2 gene is coordinately regulated via active and suppressive modulators.

  14. Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression.

    Science.gov (United States)

    Sumantran, Venil N; Mishra, Pratik; Sudhakar, N

    2015-04-01

    A new hallmark of cancer involves acquisition of a lipogenic phenotype which promotes tumorigenesis. Little is known about lipid metabolism in melanomas. Therefore, we used BRB (Biometrics Research Branch) class comparison tool with multivariate analysis to identify differentially expressed genes in human cutaneous melanomas, compared with benign nevi and normal skin derived from the microarray dataset (GDS1375). The methods were validated by identifying known melanoma biomarkers (CITED1, FGFR2, PTPRF, LICAM, SPP1 and PHACTR1) in our results. Eighteen genes regulating metabolism of fatty acids, lipid second messengers and gangliosides were 2-9 fold upregulated in melanomas of GDS-1375. Out of the 18 genes, 13 were confirmed by KEGG pathway analysis and 10 were also significantly upregulated in human melanoma cell lines of NCI-60 Cell Miner database. Results showed that melanomas upregulated PPARGC1A transcription factor and its target genes regulating synthesis of fatty acids (SCD) and complex lipids (FABP3 and ACSL3). Melanoma also upregulated genes which prevented lipotoxicity (CPT2 and ACOT7) and regulated lipid second messengers, such as phosphatidic acid (AGPAT-4, PLD3) and inositol triphosphate (ITPKB, ITPR3). Genes for synthesis of pro-tumorigenic GM3 and GD3 gangliosides (UGCG, HEXA, ST3GAL5 and ST8SIA1) were also upregulated in melanoma. Overall, the microarray analysis of GDS-1375 dataset indicated that melanomas can become lipogenic by upregulating genes, leading to increase in fatty acid metabolism, metabolism of specific lipid second messengers, and ganglioside synthesis.

  15. Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression

    Science.gov (United States)

    Stratigi, Kalliopi; Kapsetaki, Manouela; Aivaliotis, Michalis; Town, Terrence; Flavell, Richard A.; Spilianakis, Charalampos G.

    2015-01-01

    Physiological processes rely on the regulation of total mRNA levels in a cell. In diploid organisms, the transcriptional activation of one or both alleles of a gene may involve trans-allelic interactions that provide a tight spatial and temporal level of gene expression regulation. The mechanisms underlying such interactions still remain poorly understood. Here, we demonstrate that lipopolysaccharide stimulation of murine macrophages rapidly resulted in the actin-mediated and transient homologous spatial proximity of Tnfα alleles, which was necessary for the mono- to biallelic switch in gene expression. We identified two new complementary long noncoding RNAs transcribed from the TNFα locus and showed that their knockdown had opposite effects in Tnfα spatial proximity and allelic expression. Moreover, the observed spatial proximity of Tnfα alleles depended on pyruvate kinase muscle isoform 2 (PKM2) and T-helper-inducing POZ-Krüppel-like factor (ThPOK). This study suggests a role for lncRNAs in the regulation of somatic homologous spatial proximity and allelic expression control necessary for fine-tuning mammalian immune responses. PMID:25770217

  16. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling.

    Directory of Open Access Journals (Sweden)

    Alexandra Stähli

    Full Text Available Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p10-fold. Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.

  17. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling.

    Science.gov (United States)

    Stähli, Alexandra; Bosshardt, Dieter; Sculean, Anton; Gruber, Reinhard

    2014-01-01

    Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.

  18. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes

    Science.gov (United States)

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-01-01

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability. PMID:26735887

  19. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Angela M Mabb

    Full Text Available Topoisomerase 1 (TOP1 inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.

  20. Post-transcriptional regulation of gene expression in neural stem cells.

    Science.gov (United States)

    Kim, Do-Yeon

    2016-06-01

    Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Regulation of X-linked gene expression during early mouse development by Rlim.

    Science.gov (United States)

    Wang, Feng; Shin, JongDae; Shea, Jeremy M; Yu, Jun; Bošković, Ana; Byron, Meg; Zhu, Xiaochun; Shalek, Alex K; Regev, Aviv; Lawrence, Jeanne B; Torres, Eduardo M; Zhu, Lihua J; Rando, Oliver J; Bach, Ingolf

    2016-09-19

    Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.

  2. Effect of environmental stress on regulation of gene expression in the yeast

    Science.gov (United States)

    Gross, Eitan

    2015-07-01

    Several mathematical models have been proposed to predict the activation state of a transcription factor (TF) from the expression levels of its target genes. This inference problem is complicated however due to the fact that different genes may be regulated by different activation schemes (linear, exponential, sigmoidal, etc.). In addition to transcription regulation, the rate of gene expression at any instantaneous point in time is also determined by the independent rates of baseline production and degradation. Consequently, the set of solutions to any model equations describe an infinite number of trajectories in probability space, thus rendering the problem NP-hard. In the current study we used a Gaussian process (GP) approach to address this inverse problem. Experimental gene expression data were modeled by a putative linear activation scheme and discrepancy between theory and experiment was modeled by a GP. Model hyperparameters were calculated using maximum likelihood estimates to generate continuous TF state-space profiles. Identifiability of model parameters was optimized by obtaining TF state-space functions for multiple genes simultaneously. We found that model parameters were sensitive to environmental stress conditions, producing different state-space profiles for different stresses.

  3. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  4. An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets.

    Science.gov (United States)

    Cheng, Chun-Pei; Liu, Yu-Cheng; Tsai, Yi-Lin; Tseng, Vincent S

    2013-01-01

    Observation of gene expression changes implying gene regulations using a repetitive experiment in time course has become more and more important. However, there is no effective method which can handle such kind of data. For instance, in a clinical/biological progression like inflammatory response or cancer formation, a great number of differentially expressed genes at different time points could be identified through a large-scale microarray approach. For each repetitive experiment with different samples, converting the microarray datasets into transactional databases with significant singleton genes at each time point would allow sequential patterns implying gene regulations to be identified. Although traditional sequential pattern mining methods have been successfully proposed and widely used in different interesting topics, like mining customer purchasing sequences from a transactional database, to our knowledge, the methods are not suitable for such biological dataset because every transaction in the converted database may contain too many items/genes. In this paper, we propose a new algorithm called CTGR-Span (Cross-Timepoint Gene Regulation Sequential pattern) to efficiently mine CTGR-SPs (Cross-Timepoint Gene Regulation Sequential Patterns) even on larger datasets where traditional algorithms are infeasible. The CTGR-Span includes several biologically designed parameters based on the characteristics of gene regulation. We perform an optimal parameter tuning process using a GO enrichment analysis to yield CTGR-SPs more meaningful biologically. The proposed method was evaluated with two publicly available human time course microarray datasets and it was shown that it outperformed the traditional methods in terms of execution efficiency. After evaluating with previous literature, the resulting patterns also strongly correlated with the experimental backgrounds of the datasets used in this study. We propose an efficient CTGR-Span to mine several biologically

  5. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Directory of Open Access Journals (Sweden)

    Sandra J Kuhlman

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  6. Genetic analysis of the regulation of TCH gene expression, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Braam, Janet

    2008-10-28

    The Arabidopsis TCH genes, originally isolated as a consequence of their upregulation in response to the mechanical stimulus of touch, are also upregulated by a variety of seemingly disparate environmental and hormonal stimuli. To gain insight into the complexities of TCH gene regulation, a number of approaches were taken. Regulatory elements responsible for regulation were identified and characteristics of the regulation were evaluated. Reporter genes were used to monitor expression localization and dynamics. Microarray analyses of genome-wide expression behavior indicated that touch-inducible gene expression is more widespread than generally appreciated. Identification of all touch-regulated genes shed light on the types of cellular processes that may be altered in response to mechanical stress perturbations. Expression of the TCH2 gene, also called CML24, encoding a calmodulin (CaM)-like (CML) protein, was evaluated. CML24 shares over 40% amino acid sequence identity with CaM, has 4 EF hands and undergoes a Ca2+-dependent change in migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca2+ and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs and is induced from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA) and indole-3-acetic acid. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress, in regions undergoing growth, in vascular tissues and various floral organs and in stomata, trichomes and hydathodes. CML24 underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, defective in long-day induction of flowering, and have enhanced tolerance to CoCl2, molybdic acid, ZnSO4 and MgCl2. These data present evidence that CML24 encodes a potential Ca2+ sensor that may function to enable responses to ABA, day length and presence of various salts. Further

  7. Down-regulation of the beacon gene expression in the regenerating rat adrenal cortex.

    Science.gov (United States)

    Ziolkowska, Agnieszka; Rucinski, Marcin; Tyczewska, Marianna; Belloni, Anna Sandra; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2006-12-01

    Beacon, a hypothalamic peptide involved in the regulation of food intake, has been recently shown to be expressed in the adrenal cortex, and to inhibit its secretion and growth. To further characterize the role of beacon in the control of adrenal growth, we investigated the level of beacon gene expression in the regenerating rat adrenal cortex. Conventional reverse transcription-polymerase chain reaction (PCR) and immunocytochemistry demonstrated the expression of beacon mRNA and protein in the adrenals at both days 5 and 8 of regeneration after enucleation and contralateral adrenalectomy. Semiquantitative real time-PCR revealed a net down-regulation of beacon mRNA in the regenerating glands, as compared to the intact adrenal cortex of sham-operated animals. Beacon gene expression was higher at day 8 than at day 5 of regeneration. Mitotic index, as assayed by the stachmokinetic method with vincristin, was negligible in the intact adrenal, but greatly elevated in regenerating gland, with a higher index found at day 5 than at day 8 after surgery. Taken together our findings indicate that the level of beacon gene expression is inversely correlated with the proliferative activity of adrenocortical cells, and suggest that beacon might act as an endogenous inhibitor of adrenocortical growth in the rat.

  8. Androgen receptor regulation of the seladin-1/DHCR24 gene: altered expression in prostate cancer.

    Science.gov (United States)

    Bonaccorsi, Lorella; Luciani, Paola; Nesi, Gabriella; Mannucci, Edoardo; Deledda, Cristiana; Dichiara, Francesca; Paglierani, Milena; Rosati, Fabiana; Masieri, Lorenzo; Serni, Sergio; Carini, Marco; Proietti-Pannunzi, Laura; Monti, Salvatore; Forti, Gianni; Danza, Giovanna; Serio, Mario; Peri, Alessandro

    2008-10-01

    Prostate cancer (CaP) represents a major leading cause of morbidity and mortality in the Western world. Elevated cholesterol levels, resulting from altered cholesterol metabolism, have been found in CaP cells. Seladin-1 (SELective Alzheimer Disease INdicator-1)/DHCR24 is a recently described gene involved in cholesterol biosynthesis. Here, we demonstrated the androgen regulation of seladin-1/DHCR24 expression, due to the presence of androgen responsive element sequences in its promoter region. In metastatic androgen receptor-negative CaP cells seladin-1/DHCR24 expression and cholesterol amount were reduced compared to androgen receptor-positive cells. In tumor samples from 61 patients who underwent radical prostatectomy the expression of seladin-1/DHCR24 was significantly higher with respect to normal tissues. In addition, in cancer tissues mRNA levels were positively related to T stage. In tumor specimens from 23 patients who received androgen ablation treatment for 3 months before surgery seladin-1/DHCR24 expression was significantly lower with respect to patients treated by surgery only. In conclusion, our study demonstrated for the first time the androgen regulation of the seladin-1/DHCR24 gene and the presence of a higher level of expression in CaP tissues, compared to the normal prostate. These findings, together with the results previously obtained in metastatic disease, suggest an involvement of this gene in CaP.

  9. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  10. Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Muserref Duygu Sacar; Caner Bagc; Jens Allmer

    2014-01-01

    MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene reg-ulation. It may also regulate its hosts’ gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  11. Computational prediction of microRNAs from Toxoplasma gondii potentially regulating the hosts' gene expression.

    Science.gov (United States)

    Saçar, Müşerref Duygu; Bağcı, Caner; Allmer, Jens

    2014-10-01

    MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts' gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  12. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    Science.gov (United States)

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  13. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change

    Science.gov (United States)

    Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi

    2016-01-01

    Background A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. Principal Findings Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change

  14. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    Directory of Open Access Journals (Sweden)

    Akihiko Muto

    2014-09-01

    Full Text Available Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS, the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb, knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  15. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  16. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms.

    Science.gov (United States)

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J

    2016-03-01

    Plants dynamically regulate water use by the movement of stomata on the surface of leaves. Stomatal responses to changes in vapour pressure deficit (VPD) are the principal regulator of daytime transpiration and water use efficiency in land plants. In angiosperms, stomatal responses to VPD appear to be regulated by the phytohormone abscisic acid (ABA), yet the origin of this ABA is controversial. After a 20 min exposure of plants, from three diverse angiosperm species, to a doubling in VPD, stomata closed, foliar ABA levels increased and the expression of the gene encoding the key, rate-limiting carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase, NCED) in the ABA biosynthetic pathway was significantly up-regulated. The NCED gene was the only gene in the ABA biosynthetic pathway to be up-regulated over the short time scale corresponding to the response of stomata. The closure of stomata and rapid increase in foliar ABA levels could not be explained by the release of ABA from internal stores in the leaf or the hydrolysis of the conjugate ABA-glucose ester. These results implicate an extremely rapid de novo biosynthesis of ABA, mediated by a single gene, as the means by which angiosperm stomata respond to natural changes in VPD. © 2015 John Wiley & Sons Ltd.

  17. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  18. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  19. A viral nuclear noncoding RNA binds re-localized poly(A binding protein and is required for late KSHV gene expression.

    Directory of Open Access Journals (Sweden)

    Sumit Borah

    2011-10-01

    Full Text Available During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN RNA avidly binds host poly(A-binding protein C1 (PABPC1, which normally functions in the cytoplasm to bind the poly(A tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection.

  20. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin

    Science.gov (United States)

    Kita, Ryosuke; Fraser, Hunter B.

    2016-01-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual’s gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation. PMID:27760139

  1. Regulation of Sulfotransferase and UDP-Glucuronosyltransferase Gene Expression by the PPARs

    Directory of Open Access Journals (Sweden)

    Melissa Runge-Morris

    2009-01-01

    Full Text Available During phase II metabolism, a substrate is rendered more hydrophilic through the covalent attachment of an endogenous molecule. The cytosolic sulfotransferase (SULT and UDP-glucuronosyltransferase (UGT families of enzymes account for the majority of phase II metabolism in humans and animals. In general, phase II metabolism is considered to be a detoxication process, as sulfate and glucuronide conjugates are more amenable to excretion and elimination than are the parent substrates. However, certain products of phase II metabolism (e.g., unstable sulfate conjugates are genotoxic. Members of the nuclear receptor superfamily are particularly important regulators of SULT and UGT gene transcription. In metabolically active tissues, increasing evidence supports a major role for lipid-sensing transcription factors, such as peroxisome proliferator-activated receptors (PPARs, in the regulation of rodent and human SULT and UGT gene expression. This review summarizes current information regarding the regulation of these two major classes of phase II metabolizing enzyme by PPARs.

  2. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  3. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  4. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato.

    Science.gov (United States)

    Fischer, Iris; Steige, Kim A; Stephan, Wolfgang; Mboup, Mamadou

    2013-01-01

    The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.

  5. PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues

    Directory of Open Access Journals (Sweden)

    Valerio Costa

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is one of the most extensively studied ligand-inducible transcription factors (TFs, able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, atherosclerosis, inflammation, and cancer. Its protein isoforms, the wide number of PPARγ target genes, ligands, and coregulators contribute to determine the complexity of its function. In addition, the presence of genetic variants is likely to affect expression levels of target genes although the impact of PPARG gene variations on the expression of target genes is not fully understood. The introduction of massively parallel sequencing platforms—in the Next Generation Sequencing (NGS era—has revolutionized the way of investigating the genetic causes of inherited diseases. In this context, DNA-Seq for identifying—within both coding and regulatory regions of PPARG gene—novel nucleotide variations and haplotypes associated to human diseases, ChIP-Seq for defining a PPARγ binding map, and RNA-Seq for unraveling the wide and intricate gene pathways regulated by PPARG, represent incredible steps toward the understanding of PPARγ in health and disease.

  6. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications.

  7. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato.

    Directory of Open Access Journals (Sweden)

    Iris Fischer

    Full Text Available The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.

  8. NeuroD1: developmental expression and regulated genes in the rodent pineal gland.

    Science.gov (United States)

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F; Shi, Qiong; Morin, Fabrice; Coon, Steven L; Møller, Morten; Klein, David C

    2007-08-01

    NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.

  9. Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa.

    Science.gov (United States)

    Ouyang, Shouqiang; Beecher, Consuelo N; Wang, Kang; Larive, Cynthia K; Borkovich, Katherine A

    2015-07-20

    The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5-20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.

  10. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  11. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.;

    2010-01-01

    expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials...... of modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use......Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence...

  12. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.

    Directory of Open Access Journals (Sweden)

    Eric Bonnet

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small RNAs that recognize and regulate mRNA target genes. Multiple lines of evidence indicate that they are key regulators of numerous critical functions in development and disease, including cancer. However, defining the place and function of miRNAs in complex regulatory networks is not straightforward. Systems approaches, like the inference of a module network from expression data, can help to achieve this goal. METHODOLOGY/PRINCIPAL FINDINGS: During the last decade, much progress has been made in the development of robust and powerful module network inference algorithms. In this study, we analyze and assess experimentally a module network inferred from both miRNA and mRNA expression data, using our recently developed module network inference algorithm based on probabilistic optimization techniques. We show that several miRNAs are predicted as statistically significant regulators for various modules of tightly co-expressed genes. A detailed analysis of three of those modules demonstrates that the specific assignment of miRNAs is functionally coherent and supported by literature. We further designed a set of experiments to test the assignment of miR-200a as the top regulator of a small module of nine genes. The results strongly suggest that miR-200a is regulating the module genes via the transcription factor ZEB1. Interestingly, this module is most likely involved in epithelial homeostasis and its dysregulation might contribute to the malignant process in cancer cells. CONCLUSIONS/SIGNIFICANCE: Our results show that a robust module network analysis of expression data can provide novel insights of miRNA function in important cellular processes. Such a computational approach, starting from expression data alone, can be helpful in the process of identifying the function of miRNAs by suggesting modules of co-expressed genes in which they play a regulatory role. As shown in this study, those modules can then be

  13. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis.

    Science.gov (United States)

    Tang, Guirong; Wang, Ying; Luo, Li

    2014-09-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.

  14. USP2 Regulates the Intracellular Localization of PER1 and Circadian Gene Expression

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Fahrenkrug, Jan;

    2014-01-01

    Endogenous 24-h rhythms in physiology are driven by a network of circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Posttranslational modifications, including ubiquitination, are important...... of clock gene expression profiles were also observed in livers of Usp2 KO mice. Taken together, our results demonstrate a novel function of USP2 in the molecular clock in which it regulates PER1 function by gating its nuclear entry and accumulation....

  15. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues.

    Science.gov (United States)

    Cao, Heping; Shockey, Jay M; Klasson, K Thomas; Chapital, Dorselyn C; Mason, Catherine B; Scheffler, Brian E

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.

  16. Regulation of adipocyte differentiation and gene expression-crosstalk between TGFβ and wnt signaling pathways.

    Science.gov (United States)

    Lu, Hang; Ward, Meliza G; Adeola, Olayiwola; Ajuwon, Kolapo M

    2013-09-01

    Obesity results in reduced differentiation potential of adipocytes leading to adipose tissue insulin resistance. Elevated proinflammatory cytokines from adipose tissue in obesity, such as TNFα have been implicated in the reduced adipocyte differentiation. Other mediators of reduced adipocyte differentiation include TGFβ and wnt proteins. Although some overlap exists in the signaling cascades of the wnt and TGFβ pathways it is unknown if TGFβ or wnt proteins reciprocally induce the expression of each other to maximize their biological effects in adipocytes. Therefore, we investigated the possible involvement of TGFβ signaling in wnt induced gene expression and vice versa in 3T3-L1 adipocyte. Effect of TGFβ and Wnt pathways on differentiation was studied in preadipocytes induced to differentiate in the presence of Wnt3a or TGFβ1 and their inhibitors (FZ8-CRD and SB431542, respectively). Regulation of intracellular signaling and gene expression was also studied in mature adipocytes. Our results show that both TGFβ1 and Wnt3a lead to increased accumulation of β-catenin, phosphorylation of AKT and p44/42 MAPK. However, differences were found in the pattern of gene expression induced by the two proteins suggesting that distinct, but complex, signaling pathways are activated by TGFβ and wnt proteins to independently regulate adipocyte function.

  17. Early regulation of hypothalamic arcuate nucleus CART gene expression by short photoperiod in the Siberian hamster.

    Science.gov (United States)

    Mercer, Julian G; Ellis, Claire; Moar, Kim M; Logie, Tracy J; Morgan, Peter J; Adam, Clare L

    2003-03-28

    Cocaine- and amphetamine-regulated transcript (CART) mRNA is expressed in a number of hypothalamic nuclei including the arcuate nucleus (ARC). An increase in CART gene expression in the ARC of juvenile female Siberian hamsters (Phodopus sungorus) 14 days after transfer to short photoperiod at weaning and prior to major divergence of body weight trajectory in this seasonal mammal implicates CART in the induction of programmed weight change. In the current series of experiments, elevated CART mRNA in short photoperiod juvenile female animals relative to long photoperiod controls was apparent throughout the caudal-rostral extent of the ARC after 14 days, but was not observed when short photoperiod exposure was limited to 4-7 days. Elevated CART gene expression was also observed in juvenile males 14 days after transfer to short photoperiod at weaning, in adult female hamsters 14 days after transfer to short photoperiod and in adult male hamsters 21 days after transfer to short photoperiod. There were no consistent trends in expression levels of other energy balance-related genes with these relatively short duration photoperiod manipulations, suggesting that CART may be involved in short photoperiod-programmed body weight regulation.

  18. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus.

    Science.gov (United States)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus; Nielsen, Henrik Bjørn; Botanga, Christopher J; Thorgrimsen, Stephan; Palma, Kristoffer; Suarez-Rodriguez, Maria Cristina; Sandbech-Clausen, Signe; Lichota, Jacek; Brodersen, Peter; Grasser, Klaus D; Mattsson, Ole; Glazebrook, Jane; Mundy, John; Petersen, Morten

    2008-08-20

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.

  19. Down-regulation of Flt-1 gene expression by the proteasome inhibitor MG262.

    Science.gov (United States)

    Mezquita, J; Mezquita, B; Pau, M; Mezquita, C

    2003-08-15

    The mechanisms involved in the anti-angiogenic actions of the proteasome inhibitors are poorly understood. Here, we report that the gene expression of the VEGF receptor Flt-1 (vascular endothelial growth factor receptor 1) was down-regulated by the reversible proteasome inhibitor MG262 in explant cultures of the developing chicken pecten oculi, a vascular organ consisting of endothelial cells, pericytes, and macrophages. In addition, the inhibitor prevented the induction of Flt-1 by lipopolysaccharide (LPS) in macrophages and down-regulated the expression of Flt-1 after LPS induction. Flt-1 gene expression was also down regulated by MG262 in cultures of human microvascular endothelial cells. Interestingly, a transcript of Flt-1, coding for a soluble form of the receptor (sFlt-1) with anti-angiogenic properties, was not down-regulated in the same extent. Only a small decrease in the expression of VEGF and Ang-2 was detected in the pecten oculi upon inhibition of the proteasome, while no major changes were observed in the expression of other angiogenic molecules, such as KDR or Ang-1. Since recent experiments have demonstrated the importance of anti-Flt-1 therapy in the inhibition of tumor angiogenesis, retinal angiogenesis, arthritis, and atherosclerosis (Luttun et al. [2002]: Nat Med 8:831-840), our observation on down-regulation of Flt-1 in microvascular endothelial cells and macrophages by MG262 supports the postulated role of the proteasome inhibitors as potential candidates for therapeutic modulation of angiogenesis and inflammation. Copyright 2003 Wiley-Liss, Inc.

  20. Expression and regulation of two novel anther-specific genes in Lilium longiflorum.

    Science.gov (United States)

    Tzeng, Jhih-Deng; Hsu, Ssu-Wei; Chung, Mei-Chu; Yeh, Fung-Ling; Yang, Chin-Ying; Liu, Ming-Che; Hsu, Yi-Feng; Wang, Co-Shine

    2009-03-01

    Two stage-specific genes have been isolated from a subtractive cDNA library constructed from developing anthers of lily (Lilium longiflorum). The proteins encoded by the two genes have a strong hydrophobic region at the N-terminus, indicating the presence of a signal peptide. The deduced LLA-67 is a new type of small cysteine-rich protein whose sequence exhibits four consecutive CX(3)CX(6-10) repeats that could form signal-receiving finger motifs, while the deduced LLA-115 protein shows significant similarities to a rice unknown protein, and putative cell wall proteins of Medicago truncatula and Arabidopsis. The transcripts of LLA-67 and LLA-115 were anther specific and differentially detected at the phase of microspore development. In situ hybridization with antisense riboprobes of the two genes in the anther showed strong signals localized to the tapetal layer of the anther wall. The LLA-67 mRNA was also detected in the microspore at the phase of microspore development but the LLA-115 mRNA was not. The LLA-115 gene can be exogenously induced by gibberellin (GA), whereas the LLA-67 gene cannot be induced. Studies with the GA biosynthesis inhibitor uniconazole and an inhibitor of ethylene activity, 2,5-norbornadien (NBD), revealed that the two genes were negatively regulated by ethylene and a cross-talk between GA and ethylene was involved in the regulation of the two genes occurring in young anthers. The treatment of NBD caused the tapetum to become densely cytoplasmic and highly polarized, whereas uniconazole arrested tapetal development to a status close to that of control. DNA blots of lily genomic DNA indicated that the two genes were encoded by a small gene family. The different actions of hormones on gene expression and the possible function of the gene products in young anthers are discussed.

  1. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression.

    Science.gov (United States)

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T

    2012-07-13

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.

  2. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  3. Iron increases HMOX1 and decreases hepatitis C viral expression in HCV-expressing cells

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Hou; Lisa Rossi; Ying Shan; Jian-Yu Zheng; Richard W Lambrecht; Herbert L Bonkovsky

    2009-01-01

    AIM: To investigate effects of iron on oxidative stress,heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma cells stably expressing HCV proteins.METHODS: Effects of iron on oxidative stress, HMOX1,and HCV expression were assessed in CON1 cells.Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots.RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and up-regulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOX1. Silencing the up-regulation of HMOX1 nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOX1 mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%,nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells,whereas DFO increased them.CONCLUSION: Excess iron up-regulates HMOX1 and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.

  4. Negative regulation of type I IFN expression by OASL1 permits chronic viral infection and CD8⁺ T-cell exhaustion.

    Directory of Open Access Journals (Sweden)

    Myeong Sup Lee

    Full Text Available The type I interferons (IFN-Is are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV and hepatitis C virus (HCV in humans and lymphocytic choriomeningitis virus (LCMV in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2'-5' oligoadenylate synthetase-like 1 (OASL1, a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2-3 days post-infection. Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.

  5. Gene expression profiling identifies a set of transcripts that are up-regulated inhuman testicular seminoma.

    Science.gov (United States)

    Yamada, Shigeyuki; Kohu, Kazuyoshi; Ishii, Tomohiko; Ishidoya, Shigeto; Ishidoya, Shigeru; Hiramatsu, Masayoshi; Kanto, Satoru; Fukuzaki, Atsushi; Adachi, Yutsu; Endoh, Mareyuki; Moriya, Takuya; Sasaki, Hiroki; Satake, Masanobu; Arai, Yoichi

    2004-10-31

    Seminoma constitutes one subtype of human testicular germ cell tumors and is uniformly composed of cells that are morphologically similar to the primordial germ cells and/or the cells in the carcinoma in situ. We performed a genome-wide exploration of the genes that are specifically up-regulated in seminoma by oligonucleotide-based microarray analysis. This revealed 106 genes that are significantly and consistently up-regulated in the seminomas compared to the adjacent normal tissues of the testes. The microarray data were validated by semi-quantitative RT-PCR analysis. Of the 106 genes, 42 mapped to a small number of specific chromosomal regions, namely, 1q21, 2p23, 6p21-22, 7p14-15, 12pll, 12p13, 12q13-14 and 22q12-13. This list of up-regulated genes may be useful in identifying the causative oncogene(s) and/or the origin of seminoma. Furthermore, immunohistochemical analysis revealed that the seminoma cells specifically expressed the six gene products that were selected randomly from the list. These proteins include CCND2 and DNMT3A and may be useful as molecular pathological markers of seminoma.

  6. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    Science.gov (United States)

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.

  7. Primary T-cells from human CD4/CCR5-transgenic rats support all early steps of HIV-1 replication including integration, but display impaired viral gene expression

    Directory of Open Access Journals (Sweden)

    Hermann Volker

    2007-07-01

    Full Text Available Abstract Background In vivo studies on HIV-1 pathogenesis and testing of antiviral strategies have been hampered by the lack of an immunocompetent small animal model that is highly susceptible to HIV-1 infection. Since native rodents are non-permissive, we developed transgenic rats that selectively express the HIV-1 receptor complex, hCD4 and hCCR5, on relevant target cells. These animals display a transient low-level plasma viremia after HIV-1YU-2 infection, demonstrating HIV-1 susceptibility in vivo. However, unlike macrophages, primary CD4 T-cells from double-transgenic animals fail to support viral spread ex vivo. To identify quantitative limitations or absolute blocks in this rodent species, we quantitatively assessed the efficiency of key steps in the early phase of the viral replication cycle in a side-by-side comparison in infected cell lines and primary T-cells from hCD4/hCCR5-transgenic rats and human donors. Results Levels of virus entry, HIV-1 cDNA synthesis, nuclear import, and integration into the host genome were shown to be remarkably similar in cell lines and, where technically accessible, in primary T-cells from both species. In contrast, a profound impairment at the level of early HIV gene expression was disclosed at the single-cell level in primary rat T-cells and most other rat-derived cells. Macrophages were a notable exception, possibly reflecting the unique transcriptional milieu in this evolutionarily conserved target cell of all lentiviruses. Importantly, transient trans-complementation by ex vivo nucleofection with the Tat-interacting protein Cyclin T1 of human origin markedly elevated HIV gene expression in primary rat T-cells. Conclusion This is the first study that has quantitatively determined the efficiency of consecutive steps in the HIV-1 replication cycle in infected primary HIV target cells from a candidate transgenic small animal and compared it to human cells. Unlike cells derived from mice or rabbits, rat

  8. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Simian, Marina; Liaw, Jane; Timpl, Rupert; Werb, Zena; Bissell, Mina J..

    2000-02-01

    Nidogen-1 (entactin) acts as a bridge between the extracellular matrix molecules laminin-1 and type IV collagen, and thus participates in the assembly of basement membranes. To investigate the role of nidogen-1 in regulating cell-type-specific gene expression in mammary epithelium, we designed a culture microecosystem in which each component, including epithelial cells, mesenchymal cells, lactogenic hormones and extracellular matrix, could be controlled. We found that primary and established mesenchymal and myoepithelial cells synthesized and secreted nidogen-1, whereas expression was absent in primary and established epithelial cells. In an epithelial cell line containing mesenchymal cells, nidogen-1 was produced by the mesenchymal cells but deposited between the epithelial cells. In this mixed culture, mammary epithelial cells express b-casein in the presence of lactogenic hormones. Addition of either laminin-1 plus nidogen-1, or laminin-1 alone to mammary epithelial cells induced b- casein production. We asked whether recombinant nidogen-1 alone could signal directly for b-casein. Nidogen-1 did not induce b-casein synthesis in epithelial cells, but it augmented the inductive capacity of laminin-1. These data suggest that nidogen-1 can cooperate with laminin-1 to regulate b-casein expression. Addition of full length nidogen-1 to the mixed cultures had no effect on b-casein gene expression; however, a nidogen-1 fragment containing the laminin-1 binding domain, but lacking the type IV collagen-binding domain, had a dominant negative effect on b-casein expression. These data point to a physiological role for nidogen-1 in the basement membrane-induced gene expression by epithelial cells.

  9. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  10. Regulation of adiponectin gene expression in adipose tissue by thyroid hormones.

    Science.gov (United States)

    Seifi, Samira; Tabandeh, Mohammad Reza; Nazifi, Saed; Saeb, Mehdi; Shirian, Sadegh; Sarkoohi, Parisa

    2012-06-01

    Available experimental data suggest that adiponectin and thyroid hormones have biological interaction in vivo. However, the effects of thyroid hormones on adipose adiponectin gene expression in thyroid dysfunction are unclear. We induced hyper- (HYPER) and hypothyroidism (HYPO) by daily administration of a 12 mg/l of levothyroxine and 250 mg/l of methimazole in drinking water of rats, respectively, for 42 days. The white adipose tissues and serum sample were taken on days 15, 28, 42 and also 2 weeks after treatment cessation. Analysis of adiponectin gene expression was performed by real-time PCR and 2(-ΔΔct) method. The levels of adipose tissue adiponectin mRNA in the HYPO rats were decreased during the 6-week treatment when compared to control rats (adipose adiponectin gene expression was increased in HYPER rats during the 6-week treatment in parallel with an increase the thyroid hormones concentrations (P adipose tissue is regulated by thyroid hormones at the translation level and that lipid and carbohydrate disturbances in a patient with thyroid dysfunction may be, in part, due to adiponectin gene expression changes.

  11. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  12. The Schizophrenia-Associated BRD1 Gene Regulates Behavior, Neurotransmission, and Expression of Schizophrenia Risk Enriched Gene Sets in Mice

    DEFF Research Database (Denmark)

    Qvist, Per; Christensen, Jane Hvarregaard; Vardya, Irina;

    2016-01-01

    BACKGROUND: The schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative. METHODS: This study assessed......-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNA-sequencing analyses of cortical and striatal micropunches from Brd1(+/-) and wild-type mice revealed differential expression of genes enriched for schizophrenia risk, including several schizophrenia genome-wide association study risk...... the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1(+/-) mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus...

  13. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Pettersson, Fredrik; Larsson, Jan

    2007-11-01

    Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF) protein, which, together with heterochromatin protein 1 (HP1), modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  14. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Directory of Open Access Journals (Sweden)

    Anna-Mia Johansson

    2007-11-01

    Full Text Available Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF protein, which, together with heterochromatin protein 1 (HP1, modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  15. Differential expression and co-regulation of carrot AOX genes (Daucus carota).

    Science.gov (United States)

    Campos, Maria Doroteia; Cardoso, Hélia Guerra; Linke, Bettina; Costa, José Hélio; de Melo, Dirce Fernandes; Justo, Lígia; Frederico, António Miguel; Arnholdt-Schmitt, Birgit

    2009-12-01

    Alternative oxidase (AOX) is a mitochondrial protein encoded by the nuclear genome. In higher plants AOX genes form a small multigene family mostly consisting of the two subfamilies AOX1 and AOX2. Daucus carota L. is characterized by a unique extension pattern of AOX genes. Different from other plant species studied so far it contains two genes in both subfamilies. Therefore, carrot was recently highlighted as an important model in AOX stress research to understand the evolutionary importance of both AOX subfamilies. Here we report on the expression patterns of DcAOX1a, DcAOX1b and DcAOX2a and DcAOX2b. Our results demonstrate that all of the four carrot AOX genes are expressed. Differential expression was observed in organs, tissues and during de novo induction of secondary root phloem explants to growth and development. DcAOX1a and DcAOX2a indicated a differential transcript accumulation but a similar co-expression pattern. The genes of each carrot AOX sub-family revealed a differential regulation and responsiveness. DcAOX2a indicated high inducibility in contrast to DcAOX2b, which generally revealed low transcript abundance and rather weak responses. In search for within-gene sequence differences between both genes as a potential reason for the differential expression patterns, the structural organization of the two genes was compared. DcAOX2a and DcAOX2b showed high sequence similarity in their open reading frames (ORFs). However, length variability was observed in the N-terminal exon1 region. The predicted cleavage site of the mitochondrial targeting sequence in this locus is untypical small for both genes and consists of 35 amino acids for DcAOX2a and of 21 amino acids for DcAOX2b. The importance of structural gene organization and the relevancy of within-gene sequence variations are discussed. Our results strengthen the value of carrot as a model plant for future studies on the importance of AOX sub family evolution.

  16. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression.

    Science.gov (United States)

    Grund, Stefanie E; Fischer, Tamás; Cabal, Ghislain G; Antúnez, Oreto; Pérez-Ortín, José E; Hurt, Ed

    2008-09-08

    Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Delta cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation-on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.

  17. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster.

    Science.gov (United States)

    Abraham, I; Doane, W W

    1978-01-01

    Laboratory strains of Drosophila melanogaster were screened for spatial variations in adult midgut alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) expression. No strain-specific differences were found anteriorly, but three patterns of activity were discerned in the posterior midgut: A, activity throughout most of the region; B, activity in the anterior part of the region; and C, little or no activity. Alleles of a control gene, map, are responsible for this tissue-specific regulation of activity; e.g., mapA homozygotes produce the A pattern and mapC homozygotes the C pattern. The map locus was placed at 2--80 +/- on the genetic map of chromosome 2R, about two crossover units distal to the Amy structural gene region for alpha-amylase. Electrophoretic studies showed that mapA is trans acting in mapA/mapC flies, allowing expression of amylase isozymes coded for by genes on the opposite chromosome. The map gene behaves as a temporal gene that is clearly separable from the tightly linked, duplicated Amy structural genes. Images PMID:100784

  18. A novel element (NIRS) participates in the regulation ofinterleukin 2 receptorαgene expression

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel element at -153/- 143 bp in the interleukin 2 receptor α(IL-2Rα) gene has been coined as NRE-inverse repeat sequence (NIRS) due to its inversely repeated to the known negative regulatory element (NRE) further upstream of the gene. In order to explore the role of NIRS in the expression of IL-2Rαgene,luciferase reporter plasmids driven by 4 individually deleted IL-2Rα genes promoter regions were constructed. Transfection of the reporter plasmids into Jurkat cells and HeLa cells respectively, we found that both NIRS and NRE were critical for repressing the constitutive expression of IL-2Rα gene and were also necessary for promoter activity induced by PHA. EMSA results showed that double-stranded NRE- and NIRS-binding proteins existed in both HeLa cells and Jurkat cells. However, single-stranded NIRS- and NRE-binding protein was only found in HeLa cells. Interestingly, the supershift band showed up in EMSA system with Jurkat cells (no matter whether activated or not) adding to the cell lysate of HeLa cells. UV-crosslinking showed a double stranded NRE- and NIRS-binding protein p83 in both Jurkat cells and HeLa cells. Our results suggest that trans-acting factors play a key role in regulating promoter activity of IL-2Rα gene by interacting with double or single stranded NRE and/or NIRS selectively in different cells.

  19. Cloning and expression of embryogenesis-regulating genes in Araucaria angustifolia (Bert. O. Kuntze (Brazilian Pine

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Schlögl

    2012-01-01

    Full Text Available Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz.,ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semiquantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.

  20. (Iron regulation of gene expression in the Bradyrhizobium japonicum/soybean symbiosis)

    Energy Technology Data Exchange (ETDEWEB)

    Guerinot, M.L.

    1992-01-01

    We wish to address the question of whether iron plays a regulatory role in the Bradyrhizobium japonicum/soybeam symbiosis. Iron may be an important regulatory signal in planta as the bacteria must acquire iron from their plant hosts and iron-containing proteins figure prominently in all nitrogen-fixing symbioses. For example, the bacterial partner is believed to synthesize the heme moiety of leghemoglobin, which may represent as much as 25--30% of the total soluble protein in an infected plant cell. For this reason, we have focused our attention on the regulation by iron of the first step in the bacterial heme biosynthetic pathway. The enzyme which catalyzes this step, 5-aminolevulinic acid synthase, is encoded by the hemA gene which we had previously cloned and sequenced. Specific objectives include: to define the cis-acting sequences which confer iron regulation on the B. japonicum hemA gene; to identify trans-acting factors which regulate the expression of hemA by iron; to identify new loci which are transcriptionally responsive to changes in iron availability; and to examine the effects of mutations in various known regulatory genes for their effect on the expression of hemA.

  1. [Iron regulation of gene expression in the Bradyrhizobium japonicum/soybean symbiosis]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Guerinot, M.L.

    1992-06-01

    We wish to address the question of whether iron plays a regulatory role in the Bradyrhizobium japonicum/soybeam symbiosis. Iron may be an important regulatory signal in planta as the bacteria must acquire iron from their plant hosts and iron-containing proteins figure prominently in all nitrogen-fixing symbioses. For example, the bacterial partner is believed to synthesize the heme moiety of leghemoglobin, which may represent as much as 25--30% of the total soluble protein in an infected plant cell. For this reason, we have focused our attention on the regulation by iron of the first step in the bacterial heme biosynthetic pathway. The enzyme which catalyzes this step, 5-aminolevulinic acid synthase, is encoded by the hemA gene which we had previously cloned and sequenced. Specific objectives include: to define the cis-acting sequences which confer iron regulation on the B. japonicum hemA gene; to identify trans-acting factors which regulate the expression of hemA by iron; to identify new loci which are transcriptionally responsive to changes in iron availability; and to examine the effects of mutations in various known regulatory genes for their effect on the expression of hemA.

  2. Cloning and expression of embryogenesis-regulating genes in Araucaria angustifolia (Bert.) O. Kuntze (Brazilian Pine)

    Science.gov (United States)

    Schlögl, Paulo Sérgio; dos Santos, André Luis Wendt; Vieira, Leila do Nascimento; Floh, Eny Iochevet Segal; Guerra, Miguel Pedro

    2012-01-01

    Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz., ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semi-quantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds. PMID:22481892

  3. Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics

    Science.gov (United States)

    Ronen, Michal; Rosenberg, Revital; Shraiman, Boris I.; Alon, Uri

    2002-08-01

    A basic challenge in systems biology is to understand the dynamical behavior of gene regulation networks. Current approaches aim at determining the network structure based on genomic-scale data. However, the network connectivity alone is not sufficient to define its dynamics; one needs to also specify the kinetic parameters for the regulation reactions. Here, we ask whether effective kinetic parameters can be assigned to a transcriptional network based on expression data. We present a combined experimental and theoretical approach based on accurate high temporal-resolution measurement of promoter activities from living cells by using green fluorescent protein (GFP) reporter plasmids. We present algorithms that use these data to assign effective kinetic parameters within a mathematical model of the network. To demonstrate this, we employ a well defined network, the SOS DNA repair system of Escherichia coli. We find a strikingly detailed temporal program of expression that correlates with the functional role of the SOS genes and is driven by a hierarchy of effective kinetic parameter strengths for the various promoters. The calculated parameters can be used to determine the kinetics of all SOS genes given the expression profile of just one representative, allowing a significant reduction in complexity. The concentration profile of the master SOS transcriptional repressor can be calculated, demonstrating that relative protein levels may be determined from purely transcriptional data. This finding opens the possibility of assigning kinetic parameters to transcriptional networks on a genomic scale.

  4. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    Science.gov (United States)

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-04

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  5. Gene expression regulation by upstream open reading frames and human disease.

    Directory of Open Access Journals (Sweden)

    Cristina Barbosa

    Full Text Available Upstream open reading frames (uORFs are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.

  6. Expression of S100A10 gene and its regulation by sex hormones in mouse uterus

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhiqiang; LIU Jing; LI Feixue; SUN Xiaoyang; ZHANG Huaiyun; WANG Yanling

    2005-01-01

    S100A10 belongs to the S100 calcium binding protein superfamily, and functions as one of the mediators of calcium-dependent signaling pathway. Recently, S100A10 gene was proved to be significantly up-regulated at the implantation site. In the present study, semi-quantitative reverse transcriptase-polymerase chain reaction and in situ hybridization are used to investigate the tissue-specificity of S100A10 expression and the expression pattern of S100A10 in the uteri during the estrous cycle and pregnancy. Meanwhile, the regulation of S100A10 expression by sex steroid hormones is studied in ovariectomized mice. The results show that S100A10 could be detected in various kinds of tissues, with relatively high expression in reproductive tracts including ovary, uterus, testis and epididymis.During pregnancy, the expression of S100A10 in the uteri is significantly up-regulated on the 4th day. The transcript is strongly detected in endometrial stromal cells and weakly in luminal epithelium cells at the implantation site, but almost not at the inter-implantation site.From gestational day 5 till labor, S100A10 mRNA maintains a certain level in both uteri and placentae. During the estrous cycle, expression of S100A10 is up-regulated in the uteri at proestrus and estrus. Estradiol significantly induces the expression of S100A10, while progesterone can abolish the effect of estradiol. The data suggests that S100A10 may be involved in preventing luminal epithelial cells from over-apoptosis, inducing proliferation and decidualization of stromal cells during implantation, and responding to reproductive stress triggered by copulation.

  7. The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria.

    Science.gov (United States)

    Badary, Amr; Abe, Koichi; Ferri, Stefano; Kojima, Katsuhiro; Sode, Koji

    2015-06-01

    A green-light-regulated gene expression system derived from Synechocystis sp. PCC 6803 was constructed and introduced into the marine cyanobacterial strain Synechococcus sp. NKBG 15041c. The regulation system was evaluated using gfp uv as a reporter gene under red-light illumination and under simultaneous red- and green-light illumination. Expression of the reporter gene was effectively repressed under red-light illumination and increased over 10-fold by illuminating with green light. Control vectors missing either the ccaS sensor histidine kinase gene or the ccaR response regulator gene showed no detectable induction of GFPuv expression. Green-light induction of gfp uv expression was further confirmed by quantitative reverse transcription PCR. The constructed system was effective at regulating the recombinant expression of a target gene using green light in a marine cyanobacterial strain that does not naturally possess such a green-light regulation system. Thus, constructed green-light-regulated gene expression system may be used as a core platform technology for the development of marine cyanobacterial strains in which bioprocesses will be regulated by light.

  8. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  9. Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo.

    Science.gov (United States)

    Liu, Hong Yan; Zheng, Guolu; Zhu, Hongfa; Woldegiorgis, Gebre

    2007-09-15

    Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.

  10. Continuous versus cyclic progesterone exposure differentially regulates hippocampal gene expression and functional profiles.

    Directory of Open Access Journals (Sweden)

    Liqin Zhao

    Full Text Available This study investigated the impact of chronic exposure to continuous (CoP4 versus cyclic progesterone (CyP4 alone or in combination with 17β-estradiol (E2 on gene expression profiles targeting bioenergetics, metabolism and inflammation in the adult female rat hippocampus. High-throughput qRT-PCR analyses revealed that ovarian hormonal depletion induced by ovariectomy (OVX led to multiple significant gene expression alterations, which were to a great extent reversed by co-administration of E2 and CyP4. In contrast, co-administration of E2 and CoP4 induced a pattern highly resembling OVX. Bioinformatics analyses further revealed clear disparities in functional profiles associated with E2+CoP4 and E2+CyP4. Genes involved in mitochondrial energy (ATP synthase α subunit; Atp5a1, redox homeostasis (peroxiredoxin 5; Prdx5, insulin signaling (insulin-like growth factor I; Igf1, and cholesterol trafficking (liver X receptor α subtype; Nr1h3, differed in direction of regulation by E2+CoP4 (down-regulation relative to OVX and E2+CyP4 (up-regulation relative to OVX. In contrast, genes involved in amyloid metabolism (β-secretase; Bace1 differed only in degree of regulation, as both E2+CoP4 and E2+CyP4 induced down-regulation at different efficacy. E2+CyP4-induced changes could be associated with regulation of progesterone receptor membrane component 1(Pgrmc1. In summary, results from this study provide evidence at the molecular level that differing regimens of hormone therapy (HT can induce disparate gene expression profiles in brain. From a translational perspective, confirmation of these results in a model of natural menopause, would imply that the common regimen of continuous combined HT may have adverse consequences whereas a cyclic combined regimen, which is more physiological, could be an effective strategy to maintain neurological health and function throughout menopausal aging.

  11. KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation

    Directory of Open Access Journals (Sweden)

    Domenick A. Prosdocimo

    2015-01-01

    Full Text Available The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15 is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism.

  12. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  13. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  14. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  15. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Science.gov (United States)

    Simpkins, Jessica A.; Rickel, Kirby E.; Madeo, Marianna; Ahlers, Bethany A.; Carlisle, Gabriel B.; Nelson, Heidi J.; Cardillo, Andrew L.; Weber, Emily A.; Vitiello, Peter F.; Pearce, David A.

    2016-01-01

    ABSTRACT Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  16. The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia.

    Directory of Open Access Journals (Sweden)

    David Lando

    Full Text Available Post-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II-dependent (2-OG-Fe(II dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-Fe(II dioxygenase domain containing protein-2 (Ofd2 is a histone H2A dioxygenase enzyme. Using a combination of peptide screening and alanine scanning substitution analysis, we identify an HxxLR motif in H2A as a substrate for Ofd2 activity. Transcriptional profiling indicates that Ofd2 regulates the repression of oxidative phosphorylation genes during hypoxic stress. We show that Ofd2 is recruited to the 5' end of oxidative phosphorylation genes specifically during hypoxia and that it uses its dioxygenase activity to regulate their transcription. Together, these data uncover a novel histone H2A modifying activity involved in the regulation of gene expression during hypoxia.

  17. ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus

    Science.gov (United States)

    Liu, Jinxin; Lu, Shao-Yeh; Orfe, Lisa H.; Ren, Chun-Hua; Hu, Chao-Qun; Call, Douglas R.; Avillan, Johannetsy J.; Zhao, Zhe

    2016-01-01

    Type III secretion systems (T3SSs) contribute to microbial pathogenesis of Vibrio species, but the regulatory mechanisms are complex. We determined if the classic ExsACDE protein-protein regulatory model from Pseudomonas aeruginosa applies to Vibrio alginolyticus. Deletion mutants in V. alginolyticus demonstrated that, as expected, the T3SS is positively regulated by ExsA and ExsC and negatively regulated by ExsD and ExsE. Interestingly, deletion of exsE enhanced the ability of V. alginolyticus to induce host-cell death while cytotoxicity was inhibited by in trans complementation of this gene in a wild-type strain, a result that differs from a similar experiment with Vibrio parahaemolyticus ExsE. We further showed that ExsE is a secreted protein that does not contribute to adhesion to Fathead minnow epithelial cells. An in vitro co-immunoprecipitation assay confirmed that ExsE binds to ExsC to exert negative regulatory effect on T3SS genes. T3SS in V. alginolyticus can be activated in the absence of physical contact with host cells and a separate regulatory pathway appears to contribute to the regulation of ExsA. Consequently, like ExsE from P. aeruginosa, ExsE is a negative regulator for T3SS gene expression in V. alginolyticus. Unlike the V. parahaemolyticus orthologue, however, deletion of exsE from V. alginolyticus enhanced in vitro cytotoxicity. PMID:27999769

  18. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ma Jianjun

    2008-10-01

    Full Text Available Abstract Background NDRG2 (N-Myc downstream-regulated gene 2 was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. Methods In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40 and carcinomas (n = 35, along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. Results The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Conclusion Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.

  19. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity.

    Science.gov (United States)

    Kohnz, Rebecca A; Roberts, Lindsay S; DeTomaso, David; Bideyan, Lara; Yan, Peter; Bandyopadhyay, Sourav; Goga, Andrei; Yosef, Nir; Nomura, Daniel K

    2016-08-19

    Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial cells by oncogenic stimuli commonly shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine pathway metabolite that is converted to CMP-sialic acid by cytidine monophosphate N-acetylneuraminic acid synthase (CMAS) as a precursor to glycoprotein and glycolipid sialylation. We show that CMAS knockdown leads to elevations in intracellular sialic acid levels, a depletion of cellular sialylation, and alterations in the expression of many cancer-relevant genes to impair breast cancer pathogenicity. Our study reveals the heretofore unrecognized role of sialic acid metabolism and protein sialylation in regulating the expression of genes that maintain breast cancer pathogenicity.

  20. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien

    2016-01-01

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology. PMID:27893965

  1. Down-Regulated Expression of RACK1 Gene by RNA Interference Enhances Drought Tolerance in Rice

    Institute of Scientific and Technical Information of China (English)

    LI Da-hong; LIU Hui; YANG Yan-li; ZHEN Ping-ping; LIANG Jian-sheng

    2009-01-01

    The receptor for activated C-kinase 1 (RACK1) is a highly conserved scaffold protein with versatile functions, and plays important roles in the regulation of plant growth and development. Transgenic rice plants, in which the expression of RACK1 gene was inhibited by RNA interference (RNAi), were studied to elucidate the possible functions of RACK1 in responses to drought stress in rice. Real-time PCR analysis showed that the expression of RACK1 in transgenic rice plants was inhibited by more than 50%. The tolerance to drought stress of the transgenic rice plants was higher as compared with the non-transgenic rice plants. The peroxidation of membrane and the production of malondialdehyde were significantly lower, and the superoxide dismutase activity in transgenic rice plants was significantly higher than those in non-trangenic rice plants. It is suggested that RACK1 negatively regulated the redox system-related tolerance to drought stress of rice plants.

  2. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes

    NARCIS (Netherlands)

    Vennema, H; Godeke, G J; Rossen, J W; Voorhout, W F; Horzinek, M C; Opstelten, D J; Rottier, P J

    1996-01-01

    Budding of enveloped viruses has been shown to be driven by interactions between a nucleocapsid and a proteolipid membrane. By contrast, we here describe the assembly of viral envelopes independent of a nucleocapsid. Membrane particles containing coronaviral envelope proteins were assembled in and r

  3. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple

    Directory of Open Access Journals (Sweden)

    Jensen Philip J

    2012-01-01

    susceptibility of 'Gala' scions, and rootstock-regulated gene expression patterns could be correlated with differences in susceptibility. The results suggest a relationship between rootstock-regulated fire blight susceptibility and sorbitol dehydrogenase, phenylpropanoid metabolism, protein processing in the endoplasmic reticulum, and endocytosis, among others. This study illustrates the utility of our rootstock-regulated gene expression data sets for candidate trait-associated gene data mining.

  4. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  5. Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens.

    Science.gov (United States)

    Mirowska, Agnieszka; Sledzinski, Tomasz; Smolenski, Ryszard T; Swierczynski, Julian

    2014-03-01

    ZAC1 is a zinc-finger protein transcription factor, a transcriptional cofactor for nuclear receptors, and a co-activator of nuclear receptors, which interacts with multiple signaling pathways affecting apoptosis, cell cycle arrest, and metabolism. Some data suggest that ZAC1 regulates the expression of genes associated with function of adipose tissue. Since there is no information about the levels of Zac1 gene expression in white adipose tissue (WAT), and the expression of several genes associated with metabolic function of WAT is significantly lower in male than female animals, we have examined: (a) the relative ZAC1 mRNA levels in some organs/tissues, including three main depots of WAT, in 3-month-old male rats; (b) the relative ZAC1 mRNA levels in WAT of male and female rats; (c) the effect of orchidectomy and orchidectomy with concomitant testosterone treatment on ZAC1 mRNA and protein levels; (d) the effect of ovariectomy and ovariectomy with concomitant 17β-estradiol treatment on ZAC1 mRNA levels; (e) the effect of dihydrotestosterone on ZAC1 mRNA levels in isolated adipocytes. Our results indicate that: (a) ZAC1 mRNA levels are relatively high in WAT in comparison with other organs/tissues; (b) ZAC1 mRNA levels in subcutaneous WAT are approximately 2-fold lower than in epididymal and retroperitoneal adipose tissue; (c) ZAC1 mRNA levels in WAT of adult female rats are approximately 2-fold higher than in male rats; (d) testosterone is inversely related to ZAC1 mRNA and protein levels in WAT of male rats; and (e) dihydrotestosterone decreases the ZAC1 mRNA levels in adipocytes in dose dependent manner. In conclusion, Zac1 gene is highly expressed in white adipose tissue of adult rats. Androgens could play an important role in down-regulation of the ZAC1 mRNA and protein levels in rats.

  6. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    Science.gov (United States)

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3′ untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3′ UTR. Conclusions These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3′ UTRs. PMID:24666827

  7. Expression of Thyroid Hormone Responsive SPOT 14 Gene Is Regulated by Estrogen in Chicken (Gallus gallus).

    Science.gov (United States)

    Ren, Junxiao; Xu, Naiyi; Zheng, Hang; Tian, Weihua; Li, Hong; Li, Zhuanjian; Wang, Yanbin; Tian, Yadong; Kang, Xiangtao; Liu, Xiaojun

    2017-08-31

    Thyroid hormone responsive spot 14 (THRSP) is a small nuclear protein that responds rapidly to thyroid hormone. It has been shown that THRSP is abundant in lipogenic tissues such as liver, fat and the mammary gland in mammals. The THRSP gene acts as a key lipogenic activator and can be activated by thyroid hormone triiodothyronine (T3), glucose, carbohydrate and insulin. Here we report that chicken THRSP is also abundant in lipogenic tissues including the liver and the abdominal fat, and its expression levels increased with sex maturation and reached the highest level at the peak of egg production. Structure analysis of the THRSP gene indicates that there is a conscious estrogen response element (ERE) located in the -2390 - -2402 range of the gene promoter region. Further studies by ChIP-qPCR proved that the ERα interacts with the putative ERE site. In addition, THRSP was significantly upregulated (P estrogen and is involved in the estrogen regulation network in chicken.

  8. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  9. PTRcombiner: mining combinatorial regulation of gene expression from post-transcriptional interaction maps.

    Science.gov (United States)

    Corrado, Gianluca; Tebaldi, Toma; Bertamini, Giulio; Costa, Fabrizio; Quattrone, Alessandro; Viero, Gabriella; Passerini, Andrea

    2014-04-23

    The progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression. Here we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators (RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding information. The tool has been tested on experimental collections of human and yeast interactions, identifying modules that coordinate functionally related messages. This tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/.

  10. HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature.

    Science.gov (United States)

    Mattison, Stacey A; Blatch, Gregory L; Edkins, Adrienne L

    2017-03-01

    The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.

  11. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  12. Use of serial analysis of gene expression to reveal the specific regulation of gene expression profile in asthmatic rats treated by acupuncture

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2009-05-01

    effectively and specifically regulated by acupuncture, which suggests that the gene expression of immune response and steroid hormone may play an important role in the treatment.

  13. A Novel Role for Tm7sf2 Gene in Regulating TNFα Expression

    Science.gov (United States)

    Bellezza, Ilaria; Roberti, Rita; Gatticchi, Leonardo; Del Sordo, Rachele; Rambotti, Maria Grazia; Marchetti, Maria Cristina; Sidoni, Angelo; Minelli, Alba

    2013-01-01

    We have explored the role of Tm7sf2 gene, which codifies for 3β-hydroxysterol Δ14-reductase, an endoplasmic reticulum resident protein, in the sensitivity to endoplasmic reticulum stress and in the resulting inflammatory response. We used mouse embryonic fibroblasts, derived from Tm7sf2+/+ and Tm7sf2−/− mice, to determine the in vitro effects of thapsigargin on NF-κB activation. Our results show that the Tm7sf2 gene controls the launch of the unfolded protein response and presides an anti-inflammatory loop thus its absence correlates with NF-κB activation and TNFα up-regulation. Our data also show that Tm7sf2 gene regulates liver X receptor activation and its absence inhibits LXR signalling. By expressing the hTm7sf2 gene in KO MEFs and observing a reduced NF-κB activation, we have confirmed that Tm7sf2 gene is linked to NF-κB activation. Finally we used genetically modified mice in an in vivo model of ER stress and of inflammation. Our results show a significant increase in renal TNFα expression after tunicamycin exposure and in the oedematogenic response in Tm7sf2−/− mice. In conclusion, we have shown that the Tm7sf2 gene, to date involved only in cholesterol biosynthesis, also controls an anti-inflammatory loop thereby confirming the existence of cross talk between metabolic pathways and inflammatory response. PMID:23935851

  14. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Francisco F Esteves

    2014-09-01

    Full Text Available In a broad variety of bilaterian species the trunk central nervous system (CNS derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs that control localized expression of the Drosophila msh and zebrafish (Danio rerio msxB in the dorsal central nervous system (CNS. Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  15. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12.

    Science.gov (United States)

    Poole, R K; Anjum, M F; Membrillo-Hernández, J; Kim, S O; Hughes, M N; Stewart, V

    1996-01-01

    Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing gluc