WorldWideScience

Sample records for gene expression protein

  1. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  2. Designing genes for successful protein expression.

    Science.gov (United States)

    Welch, Mark; Villalobos, Alan; Gustafsson, Claes; Minshull, Jeremy

    2011-01-01

    DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.

  3. Engineering genes for predictable protein expression.

    Science.gov (United States)

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  4. Coevolution of gene expression among interacting proteins

    OpenAIRE

    2004-01-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically inter...

  5. Binary gene induction and protein expression in individual cells

    Directory of Open Access Journals (Sweden)

    Conolly Rory B

    2006-04-01

    Full Text Available Abstract Background Eukaryotic gene transcription is believed to occur in either a binary or a graded fashion. With binary induction, a transcription activator (TA regulates the probability with which a gene template is switched from the inactive to the active state without affecting the rate at which RNA molecules are produced from the template. With graded, also called rheostat-like, induction the gene template has continuously varying levels of transcriptional activity, and the TA regulates the rate of RNA production. Support for each of these two mechanisms arises primarily from experimental studies measuring reporter proteins in individual cells, rather than from direct measurement of induction events at the gene template. Methods and results In this paper, using a computational model of stochastic gene expression, we have studied the biological and experimental conditions under which a binary induction mode operating at the gene template can give rise to differentially expressed "phenotypes" (i.e., binary, hybrid or graded at the protein level. We have also investigated whether the choice of reporter genes plays a significant role in determining the observed protein expression patterns in individual cells, given the diverse properties of commonly-used reporter genes. Our simulation confirmed early findings that the lifetimes of active/inactive promoters and half-lives of downstream mRNA/protein products are important determinants of various protein expression patterns, but showed that the induction time and the sensitivity with which the expressed genes are detected are also important experimental variables. Using parameter conditions representative of reporter genes including green fluorescence protein (GFP and β-galactosidase, we also demonstrated that graded gene expression is more likely to be observed with GFP, a longer-lived protein with low detection sensitivity. Conclusion The choice of reporter genes may determine whether protein

  6. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns...... that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns...

  7. Expression of a Carrot Antifreeze Protein Gene in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Ma Xinyu; Shen Xin; Lu Cunfu

    2003-01-01

    The recombinant expression vectorpET43. lb-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA polymerase gene (DE3 lysogen) and induced by 1 mmol. L-1 IPTG (isopropyl-β-D-thiogalactoside) to express 110 kD polypeptide of AFP fusion protein.The analysis of product solubility revealed that pET43. 1b-AFP was predominately soluble, and the expressed amount reached the maximum after the IPTG treatment for 3 h.

  8. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    GAO Lei; LI Xia; GUO Zheng; ZHU MingZhu; LI YanHui; RAO ShaoQi

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to "biology process" by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  9. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  10. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  11. Expression of genes encoding extracellular matrix proteins: a macroarray study.

    Science.gov (United States)

    Futyma, Konrad; Miotła, Paweł; Różyńska, Krystyna; Zdunek, Małgorzata; Semczuk, Andrzej; Rechberger, Tomasz; Wojcierowski, Jacek

    2014-12-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.

  12. Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

    Directory of Open Access Journals (Sweden)

    Igor B. Rogozin

    2014-01-01

    Full Text Available Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC. Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes.

  13. Decreased Expression of GPER1 Gene and Protein in Goiter

    Directory of Open Access Journals (Sweden)

    Raquel Weber

    2015-01-01

    Full Text Available Goiter is more common in women, suggesting that estrogen could be involved in its physiopathology. The presence of classical estrogen receptors (ERα and ERβ has been described in thyroid tissue, suggesting a direct effect of estrogen on the gland. A nonclassic estrogen receptor, the G-protein-coupled estrogen receptor (GPER1, has been described recently in several tissues. However, in goiter, the presence of this receptor has not been studied yet. We investigated GPER1 gene and protein expressions in normal thyroid and goiter using reverse transcription quantitative polymerase chain reaction (RT-qPCR and Western blot, respectively. In normal thyroid (n=16 and goiter (n=19, GPER1 gene was expressed in all samples, while GPER1 protein was expressed in all samples of normal thyroid (n=15 but in only 72% of goiter samples (n=13. When comparing GPER1 gene and protein levels in both conditions, gene expression and protein levels were higher in normal thyroid than in goiter, suggesting a role of this receptor in this condition. Further studies are needed to elucidate the role of GPER1 in normal thyroid and goiter.

  14. The Role of Bromodomain Proteins in Regulating Gene Expression

    Directory of Open Access Journals (Sweden)

    Michael F. Duffy

    2012-05-01

    Full Text Available Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription.

  15. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    OpenAIRE

    Anastasis Stephanou; Latchman, David S.

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  16. Transcriptional modulation of heat-shock protein gene expression.

    OpenAIRE

    A. Stephanou; Latchman, D S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  17. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    Directory of Open Access Journals (Sweden)

    Anastasis Stephanou

    2011-01-01

    Full Text Available Heat-shock proteins (Hsps are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  18. Transcriptional modulation of heat-shock protein gene expression.

    Science.gov (United States)

    Stephanou, Anastasis; Latchman, David S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  19. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  20. Effect of SNPs in protein kinase Czgene on gene expression in the reporter gene detection system

    Institute of Scientific and Technical Information of China (English)

    Zhuo Liu; Hong-Xia Sun; Yong-Wei Zhang; Yun-Feng Li; Jin Zuo; Yan Meng; Fu-De Fang

    2004-01-01

    AIM: To investigated the effects of the SNPs (rs411021,rs436045, rs427811, rs385039 and rs809912) on gene expression and further identify the susceptibility genes of type 2 diabetes.METHODS: Ten allele fragments (49 bp each) were synthesized according to the 5 SNPs mentioned above.These fragments were cloned into luciferase reporter gene vector and then transfected into HepG2 cells. The activity of the luciferase was assayed. Effects of the SNPs on RNA splicing were analyzed by bioinformatics.RESULTS: rs427811T allele and rs809912G allele enhanced the activity of the reporter gene expression. None of the 5 SNPs affected RNA splicing.CONCLUSION: SNPs in protein kinase Cz (PKCZ) gene probably play a role in the susceptibility to type 2 diabetes by affecting the expression level of the relevant genes.

  1. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    Science.gov (United States)

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via

  2. Construction of plant expression vector of Pseudopleuronectes americanus antifreeze protein gene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Pseudopleuronectes americanus antifreeze protein gene was synthesized and control sequences were added such as 35S promoter and nos terminator that can facilitate the transcription and fi sequence and Kozak sequence that can improve the expression in translation level, the high expression cassette of antifreeze protein was constructed. This cassette was connected to pBI121.1 and finally got the high expression vector pBRTSAFP introduced into the maize callus. The expression of gus gene that linked to the antifreeze protein gene was detected, and the results was that the gus gene can express strongly and instantaneously.

  3. PHYSIOLOGY AND GENETIC ASPECTS OF THE REGULATION OF EXPRESSION MILK PROTEIN GENES

    Directory of Open Access Journals (Sweden)

    Jozef Bulla

    2013-06-01

    Full Text Available For the genetic improvement of milk composition and milk yield, both the typing of different protein variants and knowledge about the regulation of expression of the different milk protein genes are important. Some of the processing properties of milk are dependent on the milk composition. Information about the DNA sequence and genes involved in the expression of the milk protein genes,therefore,is big importance for genetic improvement of these traits in animals breeding programmes.In recent years more data has become available concerning the regulation of expression of the milk protein genes and as might have been expected from the complex multihormonal control of these genes it appears to be rather complex. Although several mammary gland specific factors that play a role in expression of some of these genes have been identified,none of these factors has been shown to be involved in the expression of all or the majority of the milk protein genes.

  4. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors

    DEFF Research Database (Denmark)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M;

    2016-01-01

    tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein......The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated...... with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry...

  5. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    CERN Document Server

    Elgart, Vlad; Fenley, Andrew T; Kulkarni, Rahul V

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distributio...

  6. [Expression of rice dwarf virus outer coat protein gene(S8) in insect cells].

    Science.gov (United States)

    Li, S; Liu, H; Chen, Z; Li, Y

    2001-04-01

    Outer coat protein gene(S8) of RDV was cloned into the transfer vector pVL 1393 to construct a recombinant vector pVL1393-S8. The recombinant vector pVL1393-S8 and the linear baculovirus RP23. LacZ were cotransfected into sf9 cells to produce the recombinant virus RP23-S8. RP23-S8 infected sf9 cells were collected and analysed by SDS-PAGE and Western-blot. The results showed that the S8 gene of RDV was expressed in sf9 cells and the expression level of sf9 cells was higher between 72-96 h after infected.

  7. CLONING SEGMENT SPIKE PROTEIN GENE OF SARS-COV AND ITS EXPRESSION IN ESCHERICHIA COLI

    Institute of Scientific and Technical Information of China (English)

    刘中华; 许文波; 毛乃颖; 张燕; 朱贞; 崔爱利; 杨建国; 胡海涛

    2004-01-01

    Objective Expressing and purifying the segment of SARS-CoV spike protein in E.Coli. Methods The target gene was obtained by RT-PCR. The PCR product was cloned into pEGM- T Easy Vector, sequencing and double restriction digestion ( BamHⅠ,PstⅠ) were performed. The target gene was subcloned into PQE30 expression vector. The gene was expressed in the E.coli strain M15 cells induced by IPTG. The protein was purified with a nickel HiTrap chelating metal affinity column. Results The recombinant expression plasmid was successfully constructed and the protein was well expressed in E. coli strain M15 cells. The ideal pure protein was obtained by purification. Western blotting analysis suggested the protein could act with the convalescent sera of lab confirmed SARS patients. Conclusion The segment of SARS-CoV spike protein was well expressed and purified, and can be applied in diagnosis and immunological research of SARS.

  8. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Science.gov (United States)

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  9. The cloning and expression characterization of the centrosome protein genes family (centrin genes) in rat testis

    Institute of Scientific and Technical Information of China (English)

    SUN; Xiaodong(孙晓冬); GE; Yehua(葛晔华); MA; Jing(马静); YU; Zuoren(俞作仁); LI; Sai(李赛); WANG; Yongchao(王永潮); XUE; Shepu(薛社普); HAN; Daishu(韩代书)

    2002-01-01

    Centrins are members of the centrosome protein family, which is highly conserved during revolution. The homologous genes of centrin in many organisms had been cloned, but the sequences of the rat centrin genes were not reported yet in GenBank. We cloned the cDNA fragments of centrin-1, -2 and -3 from the rat testis by RT-PCR, and analyzed the homology of the deduced amino acid sequences. The expression characterization of centrin genes in rat spermatogenesis was carried out by semi-quantitative RT-PCR. The results show that the homology of the corresponding centrin proteins in human, mouse and rat is high. The expression of centrin-1 is testis-specific, spermatogenic cell-specific and developmental stage-related. Centrin-1 begins to be transcribed when the meiosis occurs, and its mRNA level reaches the peak in round spermatids. Centrin-2 and centrin-3 are highly expressed in spermatogonia and their mRNA level decreases markedly when meiosis occurs. These results suggest that centrin-1 may play roles in meiosis and spermiogenesis, and centrin-2 and centrin-3 may be related to mitosis.

  10. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    Science.gov (United States)

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-05-04

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery.

  11. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining

    DEFF Research Database (Denmark)

    Hulsegge, Ina; Woelders, Henri; Smits, Mari

    2013-01-01

    and processes in brain areas and pituitary involved in reproductive traits in cattle using information derived from three different data sources: gene expression, protein-protein interactions, and literature. We identified 59, 89, 53, 23, and 71 genes in bovine amygdala, dorsal hypothalamus, hippocampus......, pituitary, and ventral hypothalamus, respectively, potentially involved in processes underlying estrus and estrous behavior. Functional annotation of the candidate genes points to a number of tissue-specific processes of which the "neurotransmitter/ion channel/synapse" process in the amygdala, "steroid...... hormone receptor activity/ion binding" in the pituitary, "extracellular region" in the ventral hypothalamus, and "positive regulation of transcription/metabolic process" in the dorsal hypothalamus are most prominent. The regulation of the functional processes in the various tissues operate at different...

  12. Expression of green fluoscrescent protein gene in Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-zheng; YANG Qian; YANG Lei

    2009-01-01

    Protoplasts of the pathogenic plant fungus,Sclerotinia sclerotiorum,were transformed using the pPGF plasmid,which contains green fluorescent protein gene,under the control of Aspergillus nidulans regula-tory sequences,The pPGF plasmid was introduced by PEG/CaCl2 treatment.Positive transformants were har-Vested with hygromycin B(HYG) resistance as selective marker,and then were observed with green fluores-cence phenomena in response to blue light,which suggested that GFP gene was cloned into genome DNA of s.sclerotiorum.The transformants were verified mitotically stable by Southern blotting analysis and passage cultu-ring.This study is deVeloped as an initial step for further research into infection mechanisms of S.sclerotiorum to Plants and ineraetions with bio-control fungus.

  13. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  14. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  15. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis.

  16. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  17. [Cloning and prokaryotic expression of transcriptional co-activator gene of Clonorchis sinensis and functional analysis of the expressed protein].

    Science.gov (United States)

    Zhang, Yong-li; Yu, Xin-bing; Wu, De; Wu, Zhong-dao; Bi, Hui-xiang

    2005-02-28

    To construct prokaryotic recombinant plasmids of transcriptional co-activator (TC) gene of Clonorchis sinensis, express and purify the recombinant protein and analyze its biological function. A pair of primers was designed according to the known sequence of TC gene. The TC gene fragment was amplified by PCR. After purification and digestion with BamH I and Sal I, the TC gene was connected to the prokaryotic expression vectors, pGEX-4T-1 and pET30a(+). By cloning target gene into these vectors, pGEX-4T-1 and pET30a(+), prokaryotic recombinant plasmids of TC gene were constructed and transferred into E. coli BL21. The positive expressed recombinants were detected by SDS-PAGE and Western blotting. Immobilized metal (Ni2+) chelation affinity chromatography was used to purify His-TC produced by the expression of the recombinant protein pET30a(+)-TC. The recombinant plasmids, pGEX-4T-1-TC and pET30a(+)-TC, were constructed successfully. SDS-PAGE testified that the molecular weight of the recombinant protein was correct. Western blot analysis of GST-TC recombinant protein testified that the recombinant protein could be recognized by immunized rabbit serum, which means the protein is GST-immune active and the clone can express recombinant Clonorchis sinensis antigen. After affinity chromatography of the pET-TC protein, there was only one protein band with expected size on the SDS-PAGE gel. The TC gene was screened from cDNA library of adult Clonorchis sinensis, cloned, expressed and purified. The purified protein of TC gene will be of importance for further research on the biological function of the gene.

  18. Stable Surface Expression of a Gene for Helicobacter pylori Toxic Porin Protein with pBAD Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhixiang PENG; Xi WEI; Zhengmei LIN

    2009-01-01

    successive passages could express Hope protein, while only 1 from 5 E. coli colonies that contained lac operon-regulated plasmid encoding hopE gene could express HopE. Indi-rect immunofluorescence confirmed the expression of HopE on E. coli cell surface.

  19. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  20. Expression patterns of protein kinases correlate with gene architecture and evolutionary rates.

    Directory of Open Access Journals (Sweden)

    Aleksey Y Ogurtsov

    Full Text Available BACKGROUND: Protein kinase (PK genes comprise the third largest superfamily that occupy approximately 2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood. PRINCIPAL FINDINGS: Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly. CONCLUSIONS

  1. Genes and Proteins Differentially Expressed during In Vitro Malignant Transformation of Bovine Pancreatic Duct Cells

    Directory of Open Access Journals (Sweden)

    R. Jesnowski

    2007-02-01

    Full Text Available Pancreatic carcinoma has an extremely bad prognosis due to lack of early diagnostic markers and lack of effective therapeutic strategies. Recently, we have established an in vitro model recapitulating the first steps in the carcinogenesis of the pancreas. SV40 large T antigen-immortalized bovine pancreatic duct cells formed intrapancreatic adenocarcinoma tumors on k-rasmut transfection after orthotopic injection in the nude mouse pancreas. Here we identified genes and proteins differentially expressed in the course of malignant transformation using reciprocal suppression subtractive hybridization and 2D gel electrophoresis and mass spectrometry, respectively. We identified 34 differentially expressed genes, expressed sequence tags, and 15 unique proteins. Differential expression was verified for some of the genes or proteins in samples from pancreatic carcinoma. Among these genes and proteins, the majority had already been described either to be influenced by a mutated ras or to be differentially expressed in pancreatic adenocarcinoma, thus proving the feasibility of our model. Other genes and proteins (e.g., BBC1, GLTSCR2, and rhoGDlα, up to now, have not been implicated in pancreatic tumor development. Thus, we were able to establish an in vitro model of pancreatic carcinogenesis, which enabled us to identify genes and proteins differentially expressed during the early steps of malignant transformation.

  2. HIVed, a knowledgebase for differentially expressed human genes and proteins during HIV infection, replication and latency

    Science.gov (United States)

    Li, Chen; Ramarathinam, Sri H.; Revote, Jerico; Khoury, Georges; Song, Jiangning; Purcell, Anthony W.

    2017-01-01

    Measuring the altered gene expression level and identifying differentially expressed genes/proteins during HIV infection, replication and latency is fundamental for broadening our understanding of the mechanisms of HIV infection and T-cell dysfunction. Such studies are crucial for developing effective strategies for virus eradication from the body. Inspired by the availability and enrichment of gene expression data during HIV infection, replication and latency, in this study, we proposed a novel compendium termed HIVed (HIV expression database; http://hivlatency.erc.monash.edu/) that harbours comprehensive functional annotations of proteins, whose genes have been shown to be dysregulated during HIV infection, replication and latency using different experimental designs and measurements. We manually curated a variety of third-party databases for structural and functional annotations of the protein entries in HIVed. With the goal of benefiting HIV related research, we collected a number of biological annotations for all the entries in HIVed besides their expression profile, including basic protein information, Gene Ontology terms, secondary structure, HIV-1 interaction and pathway information. We hope this comprehensive protein-centric knowledgebase can bridge the gap between the understanding of differentially expressed genes and the functions of their protein products, facilitating the generation of novel hypotheses and treatment strategies to fight against the HIV pandemic. PMID:28358052

  3. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    Science.gov (United States)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  4. Down Regulation of Gene Expression by the Vaccinia Virus D10 Protein

    OpenAIRE

    Shors, Teri; Keck, James G.; Moss, Bernard

    1999-01-01

    Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indicating that the mechanism did not involve promoter sequence recognition. The inhibition was overcome, ...

  5. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  6. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    Science.gov (United States)

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  7. Expression of Yes-associated protein 1 gene and protein in oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    LI Song-ying; HU Ji-an; WANG Hui-ming

    2013-01-01

    Background Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the oral and maxillofaoial region.Yes-associated protein 1 (YAP1) has been implicated as a bona fide oncogene in solid tumors.We seek to elucidate the role of YAP1 in OSCC tissue.Methods We identified YAP1 gene and protein overexpression in 30 OSCC patients and 10 normal oral mucosa tissues by immunohistochemistry,Western blotting and reverse transcription polymerase chain reaction (RT-PCR).Results In the normal oral mucosa by immunohistochemical staining,YAP1 mainly located in both the cytoplasm and nucleus mainly the nuclei of the basal cells.In OSCC,the expression of YAP1 translocated from the nucleus to cytoplasm;YAP1 being mainly located in both the cytoplasm and nucleus of the adjacent mucosa.The expression of YAP1 gradual increased in normal oral mucosa,tumor adjacent mucosa and low grade,middle grade,high grade OSCC tissue by Western blotting.Significant difference was found between the expressions of the normal oral mucosa and OSCC tissue (P <0.05).The coincidence was detected between the normal oral mucosa and OSCC tissue by RT-PCR (P <0.05).Conclusions YAP1 is involved in the carcinogenesis and development of OSCC.There is a transformation between nucleus and cytoplasm.

  8. Genes encoding FAD-binding proteins in Volvariella volvacea exhibit differential expression in homokaryons and heterokaryons.

    Science.gov (United States)

    Meng, Li; Yan, Junjie; Xie, Baogui; Li, Yu; Chen, Bingzhi; Liu, Shuyan; Li, Dan; Yang, Zhiyun; Zeng, Xiancheng; Deng, Youjin; Jiang, Yuji

    2013-10-01

    Flavin adenine dinucleotide (FAD)-binding proteins play a vital role in energy transfer and utilization during fungal growth and mycelia aggregation. We sequenced the genome of Volvariella volvacea, an economically important edible fungus, and discovered 41 genes encoding FAD-binding proteins. Gene expression profiles revealed that the expression levels of four distinctly differentially expressed genes in heterokaryotic strain H1521 were higher than in homokaryotic strains PYd15 and PYd21 combined. These observations were validated by quantitative real-time PCR. The results suggest that the differential expression of FAD-binding proteins may be important in revealing the distinction between homokaryons and heterokaryons on the basis of FAD-binding protein functionality.

  9. Hypermethylation and aberrant expression of secreted fizzled-related protein genes in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xian-Min Bu; Cheng-Hai Zhao; Ning Zhang; Feng Gao; Shuai Lin; Xian-Wei Dai

    2008-01-01

    AIM:To determine the methylation status and aberrant expression of some secreted frizzled-related protein (SFRP) genes in pancreatic cancer and explore their role in pancreatic carcinogenesis. METHODS:Methylation status and expression of SFRP genes were detected by methylation-specific PCR (MSPCR) and reverse-transcription PCR (RT-PCR) respectively. RESULTS:The frequencies of methylation for SFRP genes 1,2,4,5 were 70%, 48.3%,60% and 76.7% in pancreatic cancer samples, and 21.7%, 20%,10% and 36.7% in matched cancer adjacent normal tissue samples,respectively (χ2=28.23,P<0.0001 for SFRP gene 1; χ2=10.71,P=0.001 for SFRP gene 2;χ2=32.97,P<0.0001 for SFRP gene 4;χ2=19.55,P<0.0001 for SFRP gene 5). Expression loss of SFRP genes 1,2,4 and 5 was found in 65%,40%,55% and 71.7% of 60 pancreatic cancer samples, and 25%,15%,18.3% and 31.7% of matched cancer adjacent normal tissue samples,respectively (χ2=19.39,P<0.0001 for SFRP gene 1;χ2=9.40,P=0.002 for SFRP gene 2;χ2=17.37,P<0.0001 for SFRP gene 4;χ2=19.22,P<0.0001 for SFRP gene 5).SFRP gene 1 was methylated but not expressed in PC-3 and PANC-1,SFRP gene 2 was methylated but not expressed in PANC-1 and CFPAC-1,SFRP gene 4 was methylated but not expressed in PC-3,and SFRP gene 5 was methylated but not expressed in CFPAC-1. CONCLUSION:Hypermethylation and aberrant expression of SFRP genes are common in pancreatic cancer,which may be involved in pancreatic carcinogenesis.

  10. Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster.

    Science.gov (United States)

    Gao, Dahai; Ko, Dennis C; Tian, Xinmin; Yang, Guang; Wang, Liuyang

    2015-01-01

    Gene duplication has been proposed to serve as the engine of evolutionary innovation. It is well recognized that eukaryotic genomes contain a large number of duplicated genes that evolve new functions or expression patterns. However, in mollusks, the evolutionary mechanisms underlying the divergence and the functional maintenance of duplicate genes remain little understood. In the present study, we performed a comprehensive analysis of duplicate genes in the protein kinase superfamily using whole genome and transcriptome data for the Pacific oyster. A total of 64 duplicated gene pairs were identified based on a phylogenetic approach and the reciprocal best BLAST method. By analyzing gene expression from RNA-seq data from 69 different developmental and stimuli-induced conditions (nine tissues, 38 developmental stages, eight dry treatments, seven heat treatments, and seven salty treatments), we found that expression patterns were significantly correlated for a number of duplicate gene pairs, suggesting the conservation of regulatory mechanisms following divergence. Our analysis also identified a subset of duplicate gene pairs with very high expression divergence, indicating that these gene pairs may have been subjected to transcriptional subfunctionalization or neofunctionalization after the initial duplication events. Further analysis revealed a significant correlation between expression and sequence divergence (as revealed by synonymous or nonsynonymous substitution rates) under certain conditions. Taken together, these results provide evidence for duplicate gene sequence and expression divergence in the Pacific oyster, accompanying its adaptation to harsh environments. Our results provide new insights into the evolution of duplicate genes and their expression levels in the Pacific oyster.

  11. Altered surfactant protein A gene expression and protein homeostasis in rats with emphysematous changes

    Institute of Scientific and Technical Information of China (English)

    HU Qiong-jie; XIONG Sheng-dao; ZHANG Hui-lan; SHI Xue-mei; XU Yong-jian; ZHANG Zhen-xiang; ZHEN Guo-hua; ZHAO Jian-ping

    2008-01-01

    Background The decrease of suffactant protein(SP)secreted by the alveolar type Ⅱ cell is one of the important causes of limiting air of pulmonary emphysema.However,the SP-A gene and protein changes in this disease are rarely studied.This study was undertaken to investigate alterations in SP-A gene activity and protein,and to explore their roles in the pathogenesis of emphysematous changes.Methods Twenty Wistar rats were divided randomly into a normal control group(n=10)and a cigarette smoking(CS)+lipopolysaccharide(LPS)group(n=10).Ultra-structural changes were obsewed under an electron microscope.The number of cells positive for SP-A was measured by immunohistochemistry.The mRNA expression and protein Ievel of SP-A in the lung tissues were determined by quantitative polymerase chain reaction(qPCR)and Western blot separately.The protein level of SP-A in lavage fluid was determined by Western blot.Results The number of cells positive for SP-A of the CS+LPS group(0.35±0.03)was lower than that of the blank control group(0.72±0.06,P<0.05).The level of SP-A in the lung tissues of rats in the CS+LPS group(0.2765±0.0890)was lower than that in the blank controI group(0.6875±0.1578,P<0.05).The level of SP-A in the lavage fluid of rats in the CS+LPS group(0.8567±0.1458)was lower than that in the blank controI group(1.3541±0.2475,P<0.05).The lung tissues of rats in the CS+LPS group showed an approximate increase(0.4-fold)in SP-A mRNA levels relative to β-actin mRNA (P<0.05).Conclusions The changes of SP-A may be related to emphysematous changes in the lung.And cigarette smoke and LPS alter lung SP-A gene activity and protein homeostasis.

  12. Study on the protein expression and amplification of HER2 gene in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Sunan Wang; Yingying Li; Zhengshun Xu; Wenzhao Zhao; Tian Yun; Wuling Zhu; Yangkun Wang

    2014-01-01

    Objective:The aim of the study was to investigate the human epidermal growth factor receptor 2 (HER2) gene amplification and protein expression and interpretation points in the stomach mixed carcinomas. Methods:Immunohisto-chemistry (IHC) and fluorescence in situ hybridization (FISH) technique were used to detect HER2 gene amplification and ex-pression of HER2 protein in 442 cases of gastric mixed carcinoma. Results:The expression rate of HER2 protein was 41.2%(182/442):the HER2 protein expression IHC 3+extensive type in 18 cases, partial type in 21 cases, focal type in 8 cases, accounting for 10.6%(47/442);the HER2 protein expression IHC 2+extensive type in 23 cases, partial type in 28 cases, focal type in 11 cases, accounting for 14.0%(62/442);the HER2 protein expression IHC 1+extensive type in 27 cases, partial type in 31 cases, focal type in 15 cases, accounting for 16.5%(73/442). HER2 gene amplification rate of 442 cases was 16.1%(71/442). In 182 cases of HER2 protein positive expression, the HER2 gene cluster amplification rate was 14.8%(27/182), large granular amplification rate 11.0%(20/182), punctate amplification rate 6.0%(11/182) and high polysomy 7.1%(13/182). In 71 cases of HER2 gene amplification, there was 42 cases of HER2 protein expression IHC 3+, 22 cases of HER2 protein expression IHC 2+, and 7 cases of IHC 1+. Conclusion:HER2 detection of gastric mixed carcinoma has great heterogeneity, HER2 protein positive expression is divided into extensive type, partial type and focal type, and HER2 gene positive amplifica-tion is divided into cluster amplification, large granular amplification, punctate amplification and high polysomy. These typing of HER2 protein expression and HER2 gene amplification provide reference index to quantify for targeted therapeutic ef ect of anticancer drugs.

  13. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  14. Effect of monocyte chemoattractant protein-1 on chemotactic gene expression by macrophage cell line U937

    Institute of Scientific and Technical Information of China (English)

    BIAN Guang-xing; GUO Bao-yu; MIAO Hong; QIU Lei; CAO Dong-mei; DAO Shu-yan; ZHANG Ran

    2004-01-01

    Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage line U937 (as control) and U937 with MCP-1 was extracted, made reverse transcript to cDNA and tested with gene expression chip HO2 human. Results: Some chemotactic-related gene expressions were changed in all analyzed genes. Regulated upon activation, normal T cell expressed and secreted (RANTES) was up-regulated over 2-fold and 7 chemotactic-related genes (CCR2, CCR5, CCL16, GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2) were down-regulated over 2-fold inMCP-1 treated U937 cells at mRNA level. Conclusion: MCP-1 can influence some chemokines and receptors expression in macrophage in vitro, in which MCP-1 mainly down-regulates the chemotactic genes expression of those influencing neutrophilic granulocyte (GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2). Another novel finding is that it can also down-regulate the mRNA level of CCR5, which plays a critical role in many disorders and illnesses.

  15. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  16. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants

    Directory of Open Access Journals (Sweden)

    Jagna eChmielowska-Bąk

    2015-06-01

    Full Text Available Reactive oxygen species (ROS are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation.

  17. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Institute of Scientific and Technical Information of China (English)

    YUAN Ye; WANG Xiuli; GUO Sheping; QIU xuemei

    2011-01-01

    Gram-negative vibrio parahaemolyticus is a common pathogen in humans and marine animals.The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host.Thus,the outer membrane proteins are an ideal target for vaccines.We amplified a complete outer membrane protein gene (ompW) from V.parahaemolyticus ATCC 17802.We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells.The gene coded for a protein that was 42.78 kDa.We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting,respectively.Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V.parahaemolyticus.In addition,the purified OmpW protein can be used for further functional and structural studies.

  18. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Science.gov (United States)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  19. CO-EXPRESSIONS OF SURVIVIN GENE,BCL-2 AND BAX PROTEINS IN OVARIAN CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    林蓓; 张淑兰; 赵长清

    2004-01-01

    Objective To characterize the cellular properties of ovarian cancer, we examined the correlation between the expression of apoptosis-related gene survivin and those of Bcl-2 and Bar proteins. Methods Expressions of survivin mRNA, and Bcl-2 and Bax proteins in 35 cases of ovarian carcinoma, 10 cases of borderline carcinoma, 10 cases of benign tumors and 10 cases of normal tissue were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry SABC method, respectively. Results Expression of survivin gene was detected in a significantly greater proportion in ovarian carcinoma and borderline carcinoma than those in benign tumors and normal tissues. Although there was no relationship between expression of survivin gene and FIGO stage, histologic grade, pathological type and lymphatic metastasis, expressions of Bcl-2 and Bar proteins were positively and negatively correlated with that of survivin gene, respectively. Conclusion Survivin may play an important role in pathogenesis of ovarian carcinoma, with a synergistic role of apoptosis-related gene Bcl-2protein and an antagonistic role of Bax protein in formation and progression of ovarian carcinoma.

  20. Differential expression of genes and proteins associated with wool follicle cycling.

    Science.gov (United States)

    Liu, Nan; Li, Hegang; Liu, Kaidong; Yu, Juanjuan; Cheng, Ming; De, Wei; Liu, Jifeng; Shi, Shuyan; He, Yanghua; Zhao, Jinshan

    2014-08-01

    Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation.

  1. Expression Pattern Analysis of Zinc Finger Protein Genes in Wheat (Triticum aestivum L.) Under Phosphorus Deprivation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-juan; GUO Cheng-jin; LU Wen-jing; DUAN Wei-wei; ZHAO Miao; MA Chun-ying; GU Jun-tao; XIAO Kai

    2014-01-01

    Zinc ifnger protein (ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classiifed into various types in wheat were characterized and subjected to expression pattern analysis under inorganic phosphate (Pi) deprivation. The wheat ZFP genes and their corresponding GenBank numbers were obtained from the information of a 4×44K wheat gene expression microarray chip. They were conifrmed by sequence similarity analysis and named based on their homologs in Brachypodium distachyon or Oriza sativa. Expression analysis based on the microarray chip revealed that these ZFP genes are categorized into 11 classes according to their gene expression patterns in a 24-h of Pi deprivation regime. Among them, ten genes were differentially up-regulated, ten genes differentially down-regulated, and two genes both differentially up-and down-regulated by Pi deprivation. The differentially up-or down-regulated genes exhibited signiifcantly more or less transcripts at one, two, or all of the checking time points (1, 6, and 24 h) of Pi stress in comparison with those of normal growth, respectively. The both differentially up-and down-regulated genes exhibited contrasting expression patterns, of these, TaWRKY70;5 showed significantly up-regulated at 1 and 6 h and down-regulated at 24 h whereas TaAN1AN20-8;2 displayed signiifcantly upregulated at 1 h and downregulated at 6 h under deprivation Pi condition. Real time PCR analysis conifrmed the expression patterns of the differentially expressed genes obtained by the microarray chip. Our results indicate that numerous ZFP genes in wheat respond to Pi deprivation and have provided further insight into the molecular basis that plants respond to Pi deprivation mediated by the ZFP gene family.

  2. Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Hellcobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Huang; Guang-Cai Duan; Qing-Tang Fan; Wei-Dong Zhang; Chun-Hua Song; Xue-Yong Huang; Rong-Guang Zhang

    2009-01-01

    AIM: To determine if disruption of the cagA gene of Helicobacter pylori ( H pylori) has an effect on the expression of other proteins at proteome level.METHODS: Construction of a cagA knock out mutant Hp27_. cagA ( cagA-) via homologous recombinat ion wi th the wi ld- type st rain Hp27 ( cagA+) as a recipient was performed. The method of sonicat ion-urea-CHAPS-DTT was employed to extract bacterial proteins from both strains. Soluble proteins were analyzed by two-dimensional electrophoresis (2-DE). Images of 2-DE gels were digitalized and analyzed. Only spots that had a statistical significance in differential expression were selected and analyzed by matrix-assisted laser desorption/ionizationtime of flight mass spectrometry (MALDI-TOF-MS). Biological information was used to search protein database and identify the biological function of proteins. RESULTS: The proteome expressions between wild-type strain and isogenic mutant with the cagA gene knocked-out were compared. Five protein spots with high abundance in bacteria proteins of wild-type strains, down-regulated or absently expressed in bacteria proteins of mutants, were identified and analyzed. From a quantitative point of view, the identified proteins are related to the cagA gene and important antioxidant proteins of H pylori, including alkyl hydroperoxide reductase (Ahp), superoxide dismutase (SOD) and modulator of drug activity (Mda66), respectively, suggesting that cagA is important to maintain the normal activity of antioxidative stress and ensure H pylori persistent colonization in the host. CONCLUSION: cagA gene i s relevant to the expressions of antioxidant proteins of H pylori, which may be a novel mechanism involved in H pylori cagA pathogenesis.

  3. Differential Expression of Motility-Related Protein-1 Gene in Gastric Cancer and Its Premalignant Lesions

    Institute of Scientific and Technical Information of China (English)

    YaoXu; JieZheng; WentianLiu; JunXing; YanyunLi; XinGeng; WeimingZhang

    2004-01-01

    OBJECTIVE To identify genes related to gastric cancer and to analyze their expression profiles in different gastric tissues. METHODS The differentially expressed cDNA bands were assayed by fluorescent differential display from gastric cancer specimens, matched with normal gastric mucosa and premalignant lesions. The motility-related protein-1 (MRP-1/CD9) gene expression was studied by Northern blots and reverse transcription polymerase chain reaction (RT-PCR) in different kinds of gastric tissue. RESULTS A differentially expressed cDNA fragment showed lower expression in all gastric cancers compared to the normal gastric mucosa and premalignant lesions; and it was found to be homologous to the MRP-1/CD9 gene. Northern blot analysis confirmed the differential expression. RT-PCR analysis showed that the MRP-1/CD9 gene was expressed at a much lower rate in gastric cancers (0.31 +0.18) compared to the matched normal gastric tissue (0.49+0.24) and premalignant lesions (0.47+0.18)(P<0.05). Furthermore, its expression in intestinal-type of gastric cancer (0.38+0.16) was higher than that expressed in a diffuse-type of gastric cancer (0.22±0.17)(P<0.05). CCONCLUSION The MRP-1/CD9 gene expression was down-regulated in gastric cancer and its expression may be related to the carcinogenic process and histological type of gastric cancer.

  4. Dexamethasone-Inducible Green Fluorescent Protein Gene Expression in Transgenic Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Hilary Collver; Katherine Kinken

    2004-01-01

    Genomic research has made a large number of sequences of novel genes or expressed sequence tags available. To investigate functions of these genes, a system for conditional control of gene expression would be a useful tool. Inducible transgene expression that uses green fluorescent protein gene (gfp) as a reporter gene has been investigated in transgenic cell lines of cotton (COT; Gossypium hirsutum L.), Fraser fir [FRA; Abies fraseri (Pursh) Poir], Nordmann fir (NOR; Abies nordmanniana Lk.), and rice (RIC; Oryza sativa L. Cv. Radon). Transgenic cell lines were used to test the function of the chemical inducer dexamethasone. Inducible transgene expression was observed with fluorescence and confocal microscopy, and was confirmed by northern blot analyses. Dexamethasone at 5 mg/L induced gfp expression to the nearly highest level 48 h after treatment in COT, FRA, NOR, and RIC. Dexamethasone at 10 mg/L inhibited the growth of transgenic cells in FRA and NOR, but not COT and RIC. These results demonstrated that concentrations of inducer for optimum inducible gene expression system varied among transgenic cell lines. The inducible gene expression system described here was very effective and could be valuable in evaluating the function of novel gene.

  5. Effect of Acupuncture on Uncoupling Protein 1 Gene Expression for Brown Adipose Tissue of Obese Rats

    Institute of Scientific and Technical Information of China (English)

    刘志诚; 孙凤岷; 赵东红; 张中成; 孙志; 吴海涛; 徐炳国; 朱苗花; 李朝军

    2003-01-01

    Objective: To explore the effects of acupuncture on the expression of uncoupling protein 1(UCP1) gene of brown adipose tissue (BAT) in obese rats. Methods: The expression of UCP1 gene of BAT was determined with RT-PCR technique. The changes of body weight, Lee′s index, body fat, and the expression of UCP1 gene of BAT in obese rats were observed before and after acupuncture. Resuits:The body weight, Lee′s index, body fat in obese rats were all markedly higher than those in normal rats,but the expression of UCP1 gene of BAT in obese rats was all lower than that in normal rats. There were negative correlation between the obesity index and the expression of UCP1 gene in BAT. After acupuncture the marked effect of weight loss was achieved while the expression of UCP1 gene of BAT obviously increased in obese rats. Conclusion: The abnormal reduction for expression of UCP1 gene of BAT might be an important cause for the obesity. To promote the expression of UCP1 in obese organism might be an important cellular and molecular mechanism in anti-obesity effect by acupuncture.

  6. Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fang Liu; Hao Zhang; Shi-Guang Zhu; Xian-Ting Zhou; Hai-Long Su; Zheng Xu; Shao-Jun Li

    2006-01-01

    AIM: To characterize the tumor suppressor gene p53 mutations and study the correlation of p53 gene mutation and the expression of P53 protein in cholangiocarcinoma.METHODS: A total of 36 unselected, frozen samples of cholangiocarcinoma were collected. p53 gene status(exon 5-8) and P53 protein were examined by automated sequencing and immunohistochemical staining, combined with the clinical parameters of patients.RESULTS: p53 gene mutations were found in 22 of 36 (61.1%) patients. Nineteen of 36 (52.8%) patients were positive for P53 protein expression. There were significant differences in extent of differentiation and invasion between the positive and negative expression of P53 protein. However, there were no significant differences in pathologic parameters between the mutations and non-mutations.CONCLUSION: The alterations of the p53 gene evaluated by DNA sequence analysis is relatively accurate. Expression of P53 protein could not act as an independent index to estimate the prognosis of cholangiocarcinoma.

  7. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  8. Estrogens and selective estrogen receptor modulators regulate gene and protein expression in the mesenteric arteries.

    Science.gov (United States)

    Mark-Kappeler, Connie J; Martin, Douglas S; Eyster, Kathleen M

    2011-01-01

    Estrogen has both beneficial and detrimental effects on the cardiovascular system. Selective estrogen receptor modulators (SERMs) exhibit partial estrogen agonist/antagonist activity in estrogen target tissues. Gene targets of estrogen and SERMs in the vasculature are not well-known. Thus, the present study tested the hypothesis that estrogens (ethinyl estradiol, estradiol benzoate, and equilin) and SERMs (tamoxifen and raloxifene) cause differential gene and protein expression in the vasculature. DNA microarray and real-time RT-PCR were used to investigate gene expression in the mesenteric arteries of estrogen and SERM treated ovariectomized rats. The genes shown to be differentially expressed included stearoyl-CoA desaturase (SCD), soluble epoxide hydrolase (sEH), secreted frizzled related protein-4 (SFRP-4), insulin-like growth factor-1 (IGF-1), phospholipase A2 group 1B (PLA2-G1B), and fatty acid synthase (FAS). Western blot further confirmed the differential expression of sEH, SFRP-4, FAS, and SCD protein. These results reveal that estrogens and SERMs cause differential gene and protein expression in the mesenteric artery. Consequently, the use of these agents may be associated with a unique profile of functional and structural changes in the mesenteric arterial circulation.

  9. Cloning and expression of nucleocapsid protein gene of TGEV HB06 strain

    Institute of Scientific and Technical Information of China (English)

    FAN Jinghui; ZUO Yuzhu; ZHAO Yuelan; LI Tanqing; ZHANG Xiaobo

    2007-01-01

    The nucleocapsid protein gene of transmissible gastroenteritis virus,1 149 bp in length,was amplified by RT-PCR from isolated strain HB06 and cloned into pMD 18T.Sequence comparison with other transmissible gastroenteritis virus (TGEV) strains selected from the Gene Bank revealed that the homology of N gene complete sequence shares more than 97% in nucleotide.N gene was cloned into BamHI and EcoRI multiple cloning sites of the prokaryotic expression vector pET 20 b,and named pETN.After being induced by isopropyl-β-D-thiogalactopyranoside (IPTG),the recombinant nucleocapsid protein was expressed.The result of SDS-PAGE and Western-blot showed that the recombinant nucleocapsid protein was 47 kDa and had strong positive reactions with TGEV-specific antibody.

  10. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  11. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Moreira Leonilde M

    2010-06-01

    Full Text Available Abstract Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.

  12. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Directory of Open Access Journals (Sweden)

    Serrano Carmen

    2011-01-01

    Full Text Available Abstract Heat shock proteins (Hsp perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease.

  13. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available BACKGROUND: The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. METHODOLOGY/PRINCIPAL FINDINGS: We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. CONCLUSIONS: Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene

  14. Simultaneous stable expression of neomycin phosphotransferase and green fluorescence protein genes in Trypanosoma cruzi.

    Science.gov (United States)

    dos Santos, W G; Buck, G A

    2000-12-01

    The ribosomal RNA (rRNA) gene promoter was used to construct plasmid vectors that simultaneously express multiple exogenous genes in Trypanosoma cruzi. Vector pBSPANEO expresses neomycin phosphotransferase, and pPAGFPAN expresses both green fluorescent protein and neomycin phosphotransferase from a single promoter. Both vectors require the presence of the rRNA promoter for stable transfection; epimastigotes transfected with pPAGFPAN strongly fluoresced due to green fluorescent protein expression. Intact plasmids were rescued from the T. cruzi-transfected population after >8 mo of culture, indicating stable replication of these vectors. Vectors were integrated into the rRNA locus by homologous recombination and into other loci, presumably by illegitimate recombination. Parasites bearing tandem concatamers of plasmids were also found among the transfectants. Transfectants expressing green fluorescent protein showed a bright green fluorescence distributed throughout the cell. Fluorescence was also detected in amastigotes after infection of mammalian cells with transfected parasites, indicating that the rRNA promoter can drive efficient expression of these reporter genes in multiple life-cycle stages of the parasite. Expression of the heterologous genes was detected after passage in mice or in the insect vector. These vectors will be useful for the genetic dissection of T. cruzi biology and pathogenesis.

  15. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity.

  16. Cloning and expression of prion protein encoding gene of flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiwen; SUN Xiuqin; ZHANG Jinxing; ZAN Jindong

    2008-01-01

    The prion protein (PrP) encoding gene of flounder (Paralichthys olivaceus) was cloned.It was not interrupted by an intron.This gene has two promoters in its 5' upstream,indicating that its transcription may be intensive,and should have an important function.It was expressed in all 14 tissues tested,demonstrating that it is a house-keeping gene.Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  17. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  18. [Cloning and prokaryotic expression of the outer membrane protein gene PorB of Neisseria gonorrhoeae].

    Science.gov (United States)

    Wang, Yan; Zhang, Lei; Zhang, Li; Wang, Han

    2011-07-01

    To construct a fused expression vector of the outer membrane protein gene PorB of Neisseria gonorrhoeae, express the fusion protein in the prokaryotic system, and obtain a gene recombination protein, for the purpose of preparing the ground for further research on the pathopoiesis and immune protective response of PorB. A pair of primers were designed according to the known sequence of the PorB gene, and the PorB gene was amplified by PCR from the genome of Neisseria gonorrhoeae 29403 and cloned into the prokaryotic expression plasmid pGEX-4T-1 to generate pGEX-4T-PorB recombinants. The recombinant plasmid pGEX4T-PorB was transferred into competent cells E. coli BL21. After confirmed by restriction endonuclease digestion, PCR and DNA sequencing analysis, the recombinant protein was induced to express by isopropyl-beta-D-thiogalactoside (IPTG), and examined by SDS-PAGE and Western blotting. Restriction endonuclease digestion, PCR amplification and DNA sequencing analysis showed that the PorB gene of 1 047 bp was amplified from Neisseria gonorrhoeae DNA, and the recombinant plasmid pGEX-4T-PorB was successfully constructed and highly expressed in E. coli. The prokaryotic expression vector of pGEX-4T-PorB was successfully constructed and efficiently expressed in the prokaryotic system, which has provided a basis for further study on the biological activity of the PorB protein, as well as animal immune experiment and detection of Neisseria gonorrhoeae, and its application as a mucosal immune vaccine.

  19. Expression of p16 gene and Rb protein in gastric carcinoma and their clinicopathological significance

    Institute of Scientific and Technical Information of China (English)

    Xiu-Sheng He; Ying-Hui Rong; Qi Su; Qiao Luo; Dong-Mei He; Yan-Lan Li; Yan Chen

    2005-01-01

    AIM: To analyze the correlation between the protein expression of p16 and Rb genes in gastric carcinoma (GC),to investigate the role of p16 gene in invasion and lymph node metastasis of GC, and to examine the deletion and mutation in exon 2 of p16 gene in GC.METHODS: The protein expression of p16 and Rb genes was examined by streptavidin-peroxidase conjugated method (S-P) in normal gastric mucosa, dysplastic gastric mucosa and GC. The deletion and mutation of p16 gene were examined by polymerase chain reaction (PCR) and polymerase chain reaction single strand conformation polymorphism (PCR-SSCP) respectively in normal gastric mucosa and GC.RESULTS: The positive rates of P16 and Rb protein expression respectively were 96% (77/80) and 99%(79/80) in normal gastric mucosa, 92% (45/50) and 80%(40/50) in dysplastic gastric mucosa, 48% (58/122) and 60% (73/122) in GC. The positive rates of P16 and Rb protein expression in GC were significantly lower than that in normal gastric mucosa and dysplastic gastric mucosa (P<0.05). The positive rate of P16 protein expression in mucoid carcinoma (10%, 1/10) was significantly lower than that in poorly differentiated carcinoma (51%, 21/41),undifferentiated carcinoma (58%, 15/26) and signet ring cell carcinoma (62%, 10/16) (P<0.05). The positive rates of P16 protein in 30 cases of paired primary and lymph node metastatic GC were 47% (14/30) and 17% (5/30)respectively, being significantly lower in the later than in the former (P<0.05). There was no mutation in exon 2 of p16 gene in the 25 freshly resected primary GCs. But five cases in the 25 freshly resected primary GCs displayed deletion in exon 2 of p16 gene. The positive rate of both P16 and Rb proteins was 16% (14/90), and the negative rate of both P16 and Rb proteins was 8% (7/90) in 90GCs. The rate of positive P16 protein with negative Rb protein was 33% (30/90). The rate of negative P16 protein with positive Rb protein was 43% (39/90). There was reverse correlation

  20. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement.

    Science.gov (United States)

    Cervera, Laura; Gutiérrez-Granados, Sonia; Berrow, Nicholas Simon; Segura, Maria Mercedes; Gòdia, Francesc

    2015-05-01

    Production of recombinant products in mammalian cell cultures can be achieved by stable gene expression (SGE) or transient gene expression (TGE). The former is based on the integration of a plasmid DNA into the host cell genome allowing continuous gene expression. The latter is based on episomal plasmid DNA expression. Conventional TGE is limited to a short production period of usually about 96 h, therefore limiting productivity. A novel gene expression approach termed extended gene expression (EGE) is explored in this study. The aim of EGE is to prolong the production period by the combination of medium exchange and repeated transfection of cell cultures with plasmid DNA to improve overall protein production. The benefit of this methodology was evaluated for the production of three model recombinant products: intracellular GFP, secreted GFP, and a Gag-GFP virus-like particles (VLPs). Productions were carried out in HEK 293 cell suspension cultures grown in animal-derived component free media using polyethylenimine (PEI) as transfection reagent. Transfections were repeated throughout the production process using different plasmid DNA concentrations, intervals of time, and culture feeding conditions in order to identify the best approach to achieve sustained high-level gene expression. Using this novel EGE strategy, the production period was prolonged between 192 and 240 h with a 4-12-fold increase in production levels, depending on the product type considered. © 2014 Wiley Periodicals, Inc.

  1. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  2. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    Institute of Scientific and Technical Information of China (English)

    Guangxiao Yang; Setsuko Komatsu

    2004-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.

  3. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten;

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  4. Expression of non-structural protein NS3 gene of Bombyx mori densovirus (China isolate)

    Institute of Scientific and Technical Information of China (English)

    Huijuan Yin; Qin Yao; Zhongjian Guo; Fang Bao; Wei Yu; Jun Li; Keping Chen

    2008-01-01

    The invertebrate parvovirus Bombyx mori Densonucleosis Virus type 3 (China isolate),named BmDNV-3,is a kind of bidensovirus.It is a new type of virus with unique replication mechanisms.To investigate the effects of the NS3 gene during viral DNA replication,a pair of primers was designed for amplifying NS3 gene of Bombyx mori densovirus (China isolate).Gene NS3 amplified was cloned into a prokaryotic expression vector pET-30a and the donor plasmid pFastBacHTe,respectively.The NS3 protein was expressed in Escherichia coli BL21.The pFastBacHTe-NS3 was transformed to E.coli DH10Bac.The recombinant bacmid baculoviruses (rBacmid-EGFP-NS3)isolated from the white colonies were transfected into BraN-4 cells using a transfection reagent.BmN-4 cells were infected with recom-binant virus to express fusion proteins.The expression of fusion protein around 30 kDa in E.coli BL21 was identified by SDS-PAGE,Western blotting,and mass spectrometry.The expressed NS3 protein by B.mor/nucleopolyhedrovirus bacmid system was confirmed byWestern blotting using an anti-NS3 polyclonal antibody.And about 45 kDa protein was found.The expressed fusion protein was smalleithan the expected size of EGFP-NS3,55 kDa.Western blotting analysis indicated that EGFP-NS3 protein was expressed in infected lar-vae with smaller molecular size.

  5. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  6. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  7. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    Science.gov (United States)

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  8. Repression of insulin gene expression by adenovirus type 5 E1a proteins.

    OpenAIRE

    1987-01-01

    Insulin gene transcription relies on enhancer and promoter elements which are active in pancreatic beta cells. We showed that adenovirus type 5 infection of HIT T-15 cells, a transformed hamster beta cell line, represses insulin gene transcription and mRNA levels. Using expression plasmids transiently introduced into HIT T-15 cells, we showed that adenovirus type 5 E1a transcription regulatory proteins repress insulin enhancer-promoter element activity as assayed with a surrogate xanthine-gua...

  9. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    Science.gov (United States)

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  10. Dissociation between gene and protein expression of metabolic enzymes in a rodent model of heart failure

    Science.gov (United States)

    Studies in advanced heart failure show down-regulation of fatty acid oxidation genes, possibly due to decreased expression of the nuclear transcription factors peroxisome proliferator activated receptor alpha (PPARalpha) and retinoid X receptor alpha (RXRalpha). We assessed mRNA and protein expressi...

  11. Transient changes in intercellular protein variability identify sources of noise in gene expression.

    Science.gov (United States)

    Singh, Abhyudai

    2014-11-01

    Protein levels differ considerably between otherwise identical cells, and these differences significantly affect biological function and phenotype. Previous work implicated various noise mechanisms that drive variability in protein copy numbers across an isogenic cell population. For example, transcriptional bursting of mRNAs has been shown to be a major source of noise in the expression of many genes. Additional expression variability, referred to as extrinsic noise, arises from intercellular variations in mRNA transcription and protein translation rates attributed to cell-to-cell differences in cell size, abundance of ribosomes, etc. We propose a method to determine the magnitude of different noise sources in a given gene of interest. The method relies on blocking transcription and measuring changes in protein copy number variability over time. Our results show that this signal has sufficient information to quantify both the extent of extrinsic noise and transcription bursting in gene expression. Moreover, if the mean mRNA count is known, then the relative contributions of transcription versus translation rate fluctuations to extrinsic noise can also be determined. In summary, our study provides an easy-to-implement method for characterizing noisy protein expression that complements existing techniques for studying stochastic dynamics of genetic circuits.

  12. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Directory of Open Access Journals (Sweden)

    Miyuki Uno

    2011-01-01

    Full Text Available OBJECTIVES: 1 To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT promoter to its gene and protein expression levels in glioblastoma and 2 to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001. However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297. The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing, and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue.

  13. Cloning and expression of catalytic domain of Abl protein tyrosine kinase gene in E. coli

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, differentiation and are involved in signal transduction. Uncontrolled signaling from receptor tyrosine kinases to intracellular tyrosine kinases can lead to inflamma tory responses and diseases such as cancer and atherosclerosis. Thus, inhibitors that block the activity of tyrosine kinases or the signaling pathways of PTKs activation could be assumed as the potential candidate for drug development. On this assumption, we cloned and expressed the Abl PTK gene in E. coli, and purified the PTK, which was used to screen the PTK inhibitors from the extracts of Chinese herbs. The catalytic domain sequence of PTK gene was amplified by PCR us ing the cDNA of abl from Abelson murine leukemia virus as template. The amplified fragment was then cloned into the GST-tagged expression vector pGEX2T. The recombinant plasmid was transformed into host cell E. coli DH5α and was induced to express PTK protein. The expression of the protein was detected using SDS-PAGE. The result showed that a specific protein was induced to express after 12 min induction, and reached peak level about 40% of the host total pro tein after 4 h induction. The molecular weight of the fusion protein was about 58 kD. The purified GST-PTK fusion pro tein presented higher activity for tyrosine phosphorylation.

  14. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  15. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Science.gov (United States)

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  16. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  17. Expression of LIM-domain binding protein (ldb) genes during zebrafish embryogenesis.

    Science.gov (United States)

    Toyama, R; Kobayashi, M; Tomita, T; Dawid, I B

    1998-02-01

    LIM homeodomain proteins are developmental regulators whose functions depend on synergism with LIM domain binding proteins (Ldb proteins). We have isolated four members of the ldb gene family from the zebrafish, Danio rerio. Ldb1, Ldb2 and Ldb3 share 95%, 73% and 62% amino acid identity with mouse Ldb1, respectively. In overlay assays, Ldb proteins bind LIM homeodomain proteins and LMO1, but not zyxin or MLP. Whole mount in situ hybridization showed that zebrafish ldb1 is expressed ubiquitously from gastrulation onward. Ldb2 is ubiquitous at gastrulation, and later is found in many but not all tissues, especially the anterior central nervous system (CNS) and vasculature. Ldb3 mRNA was expressed primarily in the anterior CNS.

  18. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  19. A protein-tagging system for signal amplification in gene expression and fluorescence imaging.

    Science.gov (United States)

    Tanenbaum, Marvin E; Gilbert, Luke A; Qi, Lei S; Weissman, Jonathan S; Vale, Ronald D

    2014-10-23

    Signals in many biological processes can be amplified by recruiting multiple copies of regulatory proteins to a site of action. Harnessing this principle, we have developed a protein scaffold, a repeating peptide array termed SunTag, which can recruit multiple copies of an antibody-fusion protein. We show that the SunTag can recruit up to 24 copies of GFP, thereby enabling long-term imaging of single protein molecules in living cells. We also use the SunTag to create a potent synthetic transcription factor by recruiting multiple copies of a transcriptional activation domain to a nuclease-deficient CRISPR/Cas9 protein and demonstrate strong activation of endogenous gene expression and re-engineered cell behavior with this system. Thus, the SunTag provides a versatile platform for multimerizing proteins on a target protein scaffold and is likely to have many applications in imaging and controlling biological outputs.

  20. Expression of the gene encoding the PR-like protein PRms in germinating maize embryos.

    Science.gov (United States)

    Casacuberta, J M; Raventós, D; Puigdoménech, P; San Segundo, B

    1992-07-01

    The PRms protein is a pathogenesis-related (PR)-like protein whose mRNA accumulates during germination of maize seeds. Expression of the PRms gene is induced after infection of maize seeds with the fungus Fusarium moniliforme. To further our investigations on the expression of the PRms gene we examined the accumulation of PRms mRNA in different tissues of maize seedlings infected with F. moniliforme and studied the effect of fungal elicitors, the mycotoxin moniliformin, the hormone gibberellic acid, and specific chemical agents. Our results indicate that fungal infection, and treatment either with fungal elicitors or with moniliformin, a mycotoxin produced by F. moniliforme, increase the steady-state level of PRms mRNA. PRms mRNA accumulation is also stimulated by the application of the hormone gibberellic acid or by treatment with silver nitrate, whereas acetylsalicylic acid has no effect. In situ RNA hybridization in isolated germinating embryo sections demonstrates that the PRms gene is expressed in the scutellum, particularly in a group of inner cells, and in the epithelium lying at the interface of the scutellum and the endosperm. The pattern of expression of the PRms gene closely resembles that found for hydrolytic enzymes, being confined to the scutellum and the aleurone layer of the germinating maize seed. Our results suggest that the PRms protein has a function during the normal process of seed germination that has become adapted to serve among the defence mechanisms induced in response to pathogens during maize seed germination.

  1. CHANGES IN ENDOGENOUS GENE TRANSCRIPT AND PROTEIN LEVELS IN MAIZE PLANTS EXPRESSING THE SOYBEAN FERRITIN TRANSGENE

    Directory of Open Access Journals (Sweden)

    Milly N Kanobe

    2013-06-01

    Full Text Available Transgenic agricultural crops with increased nutritive value present prospects for contributing to public health. However, their acceptance is poor in many countries due to the perception that genetic modification may cause unintended effects on expression of native genes in the host plant. Here, we tested effects of soybean ferritin transgene (SoyFer1, M64337 on transcript and protein levels of endogenous genes in maize. Results showed that the transgene was successfully introduced and expressed in the maize seed endosperm. mRNA abundance of seven tested iron homeostasis genes and seed storage protein genes differed significantly between seed samples positive and negative for the transgene. The PCR negative samples had higher zein and total protein content compared to the positive samples. However, PCR positive samples had significantly higher concentrations of calcium, magnesium and iron. We have shown that the soybean ferritin transgene affected the expression of native iron homeostasis genes in the maize plant. These results underscore the importance of taking a holistic approach to the evaluation of transgenic events in target plants, comparing the transgenic plant to the untransformed controls.

  2. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors.

    Science.gov (United States)

    Zhang, Yunfei; Charvat, Robert A; Kim, Seong K; O'Callaghan, Dennis J

    2014-01-20

    The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.

  3. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg

    Directory of Open Access Journals (Sweden)

    Sibut Vonick

    2010-01-01

    Full Text Available Abstract Background As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses. Results Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference. The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in

  4. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at pmetabolism

  5. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    Science.gov (United States)

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  6. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  7. Frequency of p53 gene mutation and protein expression in oral squamous cell carcinoma.

    Science.gov (United States)

    Ara, Nighat; Atique, Muhammad; Ahmed, Sohaib; Ali Bukhari, Syed Gulzar

    2014-10-01

    To determine the frequency of p53 gene mutation and protein expression in Oral Squamous Cell Carcinoma (OSCC) and to establish correlation between the two. Analytical study. Histopathology Department and Molecular Biology Laboratory, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from May 2010 to May 2011. Thirty diagnosed cases of OSCC were selected by consecutive sampling. Seventeen were retrieved from the record files of the AFIP, and 13 fresh/frozen sections were selected from patients reporting to the Oral Surgery Department, Armed Forces Institute of Dentistry (AFID). Gene p53 mutation was analyzed in all the cases using PCRSSCP analysis. DNA was extracted from the formalin-fixed and paraffin-embedded tissue sections and fresh/frozen sections. DNA thus extracted was amplified by polymerase chain reaction. The amplified products were denatured and finally analyzed by gel electrophoresis. Gene mutation was detected as electrophoretic mobility shift. The immunohistochemical marker p53 was applied to the same 30 cases and overexpression of protein p53 was recorded. Immunohistochemical expression of marker p53 was positive in 67% [95% Confidence Interval (CI) 48.7-80.9] of the cases. Mutations of the p53 gene were detected in 23% (95% CI 11.5-41.2) of the OSCC. No statistically significant correlation was found between p53 gene mutation and protein p53 expression (rs=-0.057, p=0.765). A substantial number of patients have p53 gene mutation (23%) and protein p53 expression (67%) in oral squamous cell carcinoma (OSCC).

  8. Cloning and Sequencing of the Pokeweed Antiviral Protein Gene and Its Expression in E. coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Ding-hu; WANG Xi-feng; LI Li; ZHOU Guang-he

    2002-01-01

    The total RNA was isolated from pokeweed (Phytolacca americana ) leaves using the method of guanidine isothiocyanite and used as a template to amplify the deleted mutant pokeweed antiviral protein (PAP) gene by RT-PCR and then the gene was cloned into the pGEMR-T vector. The sequencing results showed that the PAP gene consisted of 711nt, which was 99.6% identical to the PAP gene reported by Lin et al (1991). The IPTG-inducible expression vector containing the PAP gene was constructed and transferred into the E. coli strain BL21 (DE3)-plysS. A specific protein was produced after induction with 0.4m mol/L IPTG and its molecular weight was 26ku. The results of the double diffusion on the agar plate and the western blotting test showed that the protein produced in E. coli was highly identical with the PAP extracted by a Frenchman from French pokeweed leaves. These revealed that PAP gene was actually achieved and exactly expressed in E . coli.

  9. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Salido, E.C. (Faculty of Medicine, La Laguna (Spain)); Yen, P.H.; Koprivnikar, K.; Shapiro, L.J. (University of California School of Medicine, Torrence (United States)); Yu, Lohchung (Lawrence Livermore National Laboratory, CA (United States))

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organization of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.

  10. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae

    Science.gov (United States)

    Masser, Anna E.; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan

    2016-01-01

    Abstract Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon‐optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half‐lives of 40 and 5 min, respectively. The commercial substrate Nano‐Glo® is compatible with detection of yNluc bioluminescence in bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C‐terminus of a temperature‐sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:26860732

  11. Sequence and gene expression analysis of the agouti signalling protein gene in Rex rabbits with different coat colours

    Directory of Open Access Journals (Sweden)

    Cuijun Yang

    2015-08-01

    Full Text Available Rex rabbits have a unique fur structure with a variety of different coat colours. In this study, we analysed variability in the agouti signalling protein (ASIP gene in Rex rabbits with different coat colours (castor, red, blue, chinchilla, otter and black. Three alleles at this locus were identified: A, light-bellied agouti (wild type, in castor and chinchilla Rex; at, black and tan, in otter, castor and chinchilla Rex; and a, black non-agouti, in black, red, blue, castor and chinchilla Rex rabbits. Two missense mutations, two synonymous substitutions and one indel were the identified polymorphisms associated to these three alleles, as already described by others. Gene expression of the ASIP gene was also evaluated in different tissues from animals of the six coat colours. Agouti signalling protein expression was always observed in all tissue/coat colour combinations.

  12. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  13. Expression of Lung Resistance Protein (LRP) Gene in Hepatocellular Carcinoma and Its Significance

    Institute of Scientific and Technical Information of China (English)

    WANGBailin; CHENXiaoping; ZHAIShuping; YANGHaiyan; ZHONGYong

    2004-01-01

    To study the multidrug resistance (MDR) mechanism of lung resistance protein (LRP) gene in hepatocellular carcinoma (HCC), and the relations among the expression of the LRP gene and clinicopathologic features, the influence of ~-fetoprotein (AFP), and prognosis of patients who received adjuvant chemotherapy after resection of HCC. Methods: The expression of the LRP gene encoding LRP and mRNA LRP was detected in tissues from 54 untreated patients with HCC, adjacent tissues from 24 patients with HCC and archival paraffin-embedded tissues from 12 patients with posthepatitic cirrhosis. The relationship between the LRP gene expression and the change of AFP level was analyzed in the 24 postoperative HCC patients whose AFP was measured after 2 weeks. All of the HCC patients were followed up. Results: The percentage of positive expression of LRP and mRNA LRP in the 3 tissues was 61.1%, 33.3%, 16.7%, and 75.9%, 37.5%, 33.3% respectively. There was significant difference between the untreated HCC tissue and other tissues (P0.05), but the expression was related to the degree of differentiation of HCC (P<0.05). The effective rate of AFP in the LRP gene positive expression group or in postoperative chemotherapeutic patients was very lower than that in the negative group (P<0.05). Although the mean survival time of postoperative HCC patients in negative LRP gene expression group was longer than that of positive group, there was no difference between them (P<0.05). Conclusion: LRP gene expression is related to MDR of HCC and initiates the intrinsic MDR. Detection of LRP gene expression is of great guiding significance in accessing chemotherapeutic resistance of HCC. As an index to chemotherapy of HCC, detection of LRP expression provides evidence for making individual chemotherapeutic treatment,and reversing MDR in HCC. Although LRP gene expression correlates with the tumor differential degree (P<0.05), it perhaps does not relate with the prognosis of HCC patients.

  14. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  15. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene.

    Science.gov (United States)

    Kim, Tae Hyun; Park, Jong Ho; Kim, Moon Chul; Cho, Sung Ho

    2008-01-01

    Treatment with the cutin monomer 16-hydroxypalmitic acid (HPA), a major component of cutin, elicited the synthesis of hydrogen peroxide (H2O2) in rice leaves and induced the expression of the lipid transfer protein gene OsLTP5. Treatment with HPA also induced expression of OsLTP1, OsLTP2, and the pathogen-related PR-10 genes to a lesser extent. The OsLTP5 transcript was expressed prominently in stems and flowers, but was barely detectable in leaves. Expression of OsLTP5 was induced in shoots in response to ABA and salicylic acid. It is proposed that HPA is perceived by rice as a signal, inducing defense reactions.

  16. Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hindol Rakshit

    Full Text Available BACKGROUND: Parkinson's Disease (PD is one of the most prevailing neurodegenerative diseases. Improving diagnoses and treatments of this disease is essential, as currently there exists no cure for this disease. Microarray and proteomics data have revealed abnormal expression of several genes and proteins responsible for PD. Nevertheless, few studies have been reported involving PD-specific protein-protein interactions. RESULTS: Microarray based gene expression data and protein-protein interaction (PPI databases were combined to construct the PPI networks of differentially expressed (DE genes in post mortem brain tissue samples of patients with Parkinson's disease. Samples were collected from the substantia nigra and the frontal cerebral cortex. From the microarray data, two sets of DE genes were selected by 2-tailed t-tests and Significance Analysis of Microarrays (SAM, run separately to construct two Query-Query PPI (QQPPI networks. Several topological properties of these networks were studied. Nodes with High Connectivity (hubs and High Betweenness Low Connectivity (bottlenecks were identified to be the most significant nodes of the networks. Three and four-cliques were identified in the QQPPI networks. These cliques contain most of the topologically significant nodes of the networks which form core functional modules consisting of tightly knitted sub-networks. Hitherto unreported 37 PD disease markers were identified based on their topological significance in the networks. Of these 37 markers, eight were significantly involved in the core functional modules and showed significant change in co-expression levels. Four (ARRB2, STX1A, TFRC and MARCKS out of the 37 markers were found to be associated with several neurotransmitters including dopamine. CONCLUSION: This study represents a novel investigation of the PPI networks for PD, a complex disease. 37 proteins identified in our study can be considered as PD network biomarkers. These network

  17. Polymorphic CAG Repeat and Protein Expression of Androgen Receptor Gene in Colorectal Cancer.

    Science.gov (United States)

    Huang, Rui; Wang, Guiyu; Song, Yanni; Wang, Feng; Zhu, Bing; Tang, Qingchao; Liu, Zheng; Chen, Yinggang; Zhang, Qian; Muhammad, Shan; Wang, Xishan

    2015-04-01

    Although somatic alterations in CAG repeats in the androgen receptor (AR) gene have been suggested to predispose to colorectal cancer, less is known about AR in colorectal cancer carcinogenesis. Because of lack of relevant analysis on CAG repeat length and AR expression in colorectal cancer, we aimed to investigate the prognostic value of polymorphic CAG and protein expression of the AR gene in patients with colorectal cancer. A case-control study was carried out on 550 patients with colorectal cancer and 540 healthy controls to investigate whether polymorphic CAG within the AR gene is linked to increased risk for colorectal cancer. Polymorphic CAG and AR expression were analyzed to clarify their relationship with clinicopathologic and prognostic factors in patients with colorectal cancer. The study showed that the AR gene in patients with colorectal cancer had a longer CAG repeat sequence than those in the control group, as well as increased risk for colorectal cancer among females (P = 0.013), males (P = 0.002), and total colorectal cancer population (P CAG repeat sequence among males (P CAG repeat sequence and negative AR expression were associated with a short 5-year overall survival (OS) rate in colorectal cancer. Long CAG repeat sequences and the absence of AR expression were closely related to the development of colorectal cancer. Both long CAG and decreased AR expression were correlated with the poor 5-year OS in patients with colorectal cancer.

  18. Construction of the Enhanced Yellow Fluorescent Protein Expression Vector Carrying IFN-γ Gene

    Institute of Scientific and Technical Information of China (English)

    Yuqing Lan; Jian Ge; Yehong Zhuo; Jinlin Wang; Huiyi Chen; Haiquan Liu

    2001-01-01

    Purpose: To construct the enhanced yellow fluorescent protein (EYFP) vector carryinginterferon-y gene (ifn-γ) in order to provide an ideal reporter in the expression of ifn-γand location of protein in vitro and in vivo.Method: According to the nucleotide sequence of ifn-y gene, a pair of oligonucleotideswas designed as primer whose two end contained nucleotide sequence of EcoR V and NotⅠ restriction endonuclease respectively. The gene encoding for inf-y was amplified usingPCR technique. After the PCR product was retrieved and purified, it was digested withEcoR V and Not Ⅰ restriction endonuclease, and then cloned into the plasmidpIRES-EYFP. The recombinant plasmid plRES-EYFPIFN-γwas identified by restrictionendonuclease enzyme analysis and DNA sequence analysis.Results: The ifn-γ was successfully amplified and verified by partial DNA sequenceanalysis. The recombinant plasmid was correctly screened.Conclusion: The EYFP expression vector carrying ifn-γgene was successfully established.This research work has formed a base for monitoring the ifn-y gene expression andprotein position in living cells.

  19. Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Kuballa Anna V

    2007-10-01

    Full Text Available Abstract Background Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992 previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path

  20. Substratum Stiffness and Latrunculin B Regulate Matrix Gene and Protein Expression in Human Trabecular Meshwork Cells

    Science.gov (United States)

    Thomasy, Sara M.; Wood, Joshua A.; Kass, Philip H.; Murphy, Christopher J.

    2012-01-01

    Purpose. To determine the impact of substratum stiffness and latrunculin-B (Lat-B), on the expression of several matrix proteins that are associated with glaucoma. Methods. Human trabecular meshwork (HTM) cells were cultured on hydrogels possessing stiffness values mimicking those found in normal (5 kPa) and glaucomatous meshworks (75 kPa), or tissue culture polystyrene (TCP; >1 GPa). Cells were treated with 2.0 μM Lat-B in dimethyl sulfoxide (DMSO) or DMSO alone. RT-PCR was used to determine the impact of substratum stiffness and/or Lat-B treatment on the expression of secreted protein, acidic, cysteine rich (SPARC), myocilin, angiopoietin-like factor (ANGPTL)-7, and transglutaminase (TGM)-2. Immunofluorescence was used to assess changes in protein expression. Results. SPARC and myocilin mRNA expression were dramatically increased on the 75 kPa hydrogels and decreased on the 5 kPa hydrogels in comparison to TCP. In contrast, ANGPTL-7 mRNA and TGM-2 mRNA was decreased on the 75 kPa and 5 kPa hydrogels, respectively, in comparison with TCP. Treatment with Lat-B dramatically downregulated both SPARC and myocilin on 75 kPa hydrogels. In contrast, cells grown on TCP produced greater or similar amounts of SPARC and myocilin mRNA after Lat-B treatment. SPARC and myocilin protein expression paralleled changes in mRNA expression. Conclusions. Substratum stiffness impacts HTM matrix gene and protein expression and modulates the impact of Lat-B treatment on the expression of these matrix proteins. Integrating the use of biologically relevant substratum stiffness in the conduction of in vitro experiments gives important insights into HTM cell response to drugs that may more accurately predict responses observed in vivo. PMID:22247475

  1. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  2. The effect of transport stress on turkey (Meleagris gallopavo) liver acute phase proteins gene expression.

    Science.gov (United States)

    Marques, Andreia Tomás; Lecchi, Cristina; Grilli, Guido; Giudice, Chiara; Nodari, Sara Rota; Vinco, Leonardo J; Ceciliani, Fabrizio

    2016-02-01

    The aim of this study was to investigate the effects of transport-related stress on the liver gene expression of four acute phase proteins (APP), namely α1-acid glycoprotein (AGP), C-Reactive Protein (CRP), Serum Amyloid A (SAA) and PIT54, in turkeys (Meleagris gallopavo). A group of seven BUT BIG 6 commercial hens was subjected to a two-hour long road transportation and the quantitative gene expression of APP in the liver was compared to that of a non transported control group. The expression of AGP and CRP mRNA was found to be increased in animals slaughtered after road transport. The presence of AGP protein was also confirmed by immunohistochemistry and Western blotting. The results of this study showed that road-transport may induce the mRNA expression of immune related proteins. The finding that AGP and CRP can be upregulated during transport could suggest their use as for the assessment of turkey welfare during transport.

  3. Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development

    Directory of Open Access Journals (Sweden)

    Guilherme Loss-Morais

    2013-01-01

    Full Text Available Ribosome-inactivating proteins (RIPs are enzymes that inhibit protein synthesis after depurination of a specific adenine in rRNA. The RIP family members are classified as type I RIPs that contain an RNA-N-glycosidase domain and type II RIPs that contain a lectin domain (B chain in addition to the glycosidase domain (A chain. In this work, we identified 30 new plant RIPs and characterized 18 Ricinus communis RIPs. Phylogenetic and functional divergence analyses indicated that the emergence of type I and II RIPs probably occurred before the monocot/eudicot split. We also report the expression profiles of 18 castor bean genes, including those for ricin and agglutinin, in five seed stages as assessed by quantitative PCR. Ricin and agglutinin were the most expressed RIPs in developing seeds although eight other RIPs were also expressed. All of the RIP genes were most highly expressed in the stages in which the endosperm was fully expanded. Although the reason for the large expansion of RIP genes in castor beans remains to be established, the differential expression patterns of the type I and type II members reinforce the existence of biological functions other than defense against predators and herbivory.

  4. Gene transfer and expression of enhanced green fluorescent protein in variant HT-29c cells

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Lars Boenicke; Bradley D. Howard; Ilka Vogel; Hoiger Kalthoff

    2003-01-01

    AIM: To study the expression of enhanced green fluorescent protein (EGFP) gene in retrovirally transduced variant HT29 cells.METHODS: The retroviral vector prkat EGFP/neo was constructed and transfected into the 293T cell using a standard calcium phosphate precipitation method. HT-29c cells (selected from HT-29 cells) were transduced by a retroviral vector encoding the GEFP gene. The fluorescence intensity of colorectal carcinoma HT-29c cells after transduced with the EGFP bearing retrovirus was visualized using fluorescence microscope and fluorescence activated cell sorter (FACS) analysis. Multiple biological behaviors of transduced cells such as the proliferating potential and the expression of various antigens were comparatively analyzed between untransduced and transduced cells in vitro. EGFP expression of the fresh tumor tissue was assessed in vivo.RESULTS: After transduced, HT-29c cells displayed a stable and long-term EGFP expression under the nonselective conditionsin vitro. After cells were successively cultured to passage 50 in vitro, EGFP expression was still at a high level. Their biological behaviors, such as expression of tumor antigens, proliferation rate and aggregation capability were not different compared to untransduced parental cells in vitro. In subcutaneous tumors, EGFP was stable and highly expressed.CONCLUSION: An EGFP expressing retroviral vector was used to transduce HT-29c cells. The transduced cells show a stable and long-term EGFP expression in vitro and in vivo.These cells with EGFP are a valuable tool forin vivo research of tumor metastatic spread.

  5. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression.

    Science.gov (United States)

    Grund, Stefanie E; Fischer, Tamás; Cabal, Ghislain G; Antúnez, Oreto; Pérez-Ortín, José E; Hurt, Ed

    2008-09-08

    Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Delta cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation-on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.

  6. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  7. Gene expression profiles of human liver cells mediated by hepatitis B virus X protein

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Fu-qing XU; Chang-liang SHAN; Rong XIANG; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To demonstrate the gene expression profiles mediated by hepatitis B virus X protein (HBx), we characterized the molecular features of pathogenesis associated with HBx in a human liver cell model.Methods: We examined gene expression profiles in L-O2-X cells, an engineered L-O2 cell line that constitutively expresses HBx, relative to L-O2 cells using an Agilent 22 K human 70-mer oligonucleotide microarray representing more than 21,329 unique, well-characterized Homo sapiens genes, Western blot analysis and RNA interference (RNAi) targeting HBx mRNA validated the overexpression of proliferating cell nuclear antigen (PCNA) and Bcl-2 in L-O2-X cells. Meanwhile, the BrdU incorporation assay was used to test cell proliferation mediated by upregulated cyclooxygenase-2 (COX-2).Results: The microarray showed that the expression levels of 152 genes were remarkably altered; 82 of the genes were upregulated and 70 genes were downregulated in L-O2-X cells. The altered genes were associated with signal transduction pathways, cell cycle, metastasis, transcriptional regulation, immune response, metabolism, and other processes. PCNA and Bcl-2 were upregulated in L-O2-X cells. Furthermore, we found that COX-2 upregulation in L-O2-X cells enhanced proliferation using the BrdU incorporation assay, whereas indomethacin (an inhibitor of COX-2) abolished the promotion.Conclusion: Our findings provide new evidence that HBx is able to regulate many genes that may be involved in the car-cinogenesis. These regulated genes mediated by HBx may serve as molecular targets for the prevention and treatment of hepatocellular carcinoma.

  8. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  9. 5-Aza-2'-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins.

    Science.gov (United States)

    Zheng, Zhixing; Li, Lian; Liu, Xiangyu; Wang, Donglai; Tu, Bo; Wang, Lina; Wang, Haiying; Zhu, Wei-Guo

    2012-01-01

    Not only does 5-aza-2'-deoxycytidine (5-aza-CdR) induce the reexpression of silenced genes through the demethylation of CpG islands, but it increases the expression of unmethylated genes. However, the mechanism by which 5-aza-CdR activates the expression of genes is not completely understood. Here, we report that the pRb pocket proteins pRb, p107, and p130 were degraded in various cancer cell lines in response to 5-aza-CdR treatment, and this effect was dependent on the proteasome pathway. Mouse double minute 2 (MDM2) played a critical role in this 5-aza-CdR-induced degradation of pRb. Furthermore, PP2A phosphatase-induced MDM2 dephosphorylation at S260 was found to be essential for MDM2 binding to pRb in the presence of 5-aza-CdR. pRb degradation resulted in the significant reexpression of several genes, including methylated CDKN2A, RASFF1A, and unmethylated CDKN2D. Finally, knockdown of pRb pocket proteins by either RNAi or 5-aza-CdR treatment induced a significant decrease in the recruitment of SUV39H1 and an increase in the enrichment of KDM3B and KDM4A to histones around the promoter of RASFF1A and thus reduced H3K9 di- and trimethylation, by which RASFF1A expression is activated. Our data reveal a novel mechanism by which 5-aza-CdR induces the expression of both methylated and unmethylated genes by degrading pRb pocket proteins.

  10. Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes.

    Science.gov (United States)

    Pires, J Chris; Conant, Gavin C

    2016-11-23

    The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation. Returning to life's curious combination of robustness and sensitivity to dosage changes, we argue that understanding how biological robustness evolved makes these observations less inexplicable. We propose that noise in gene expression and evolutionary strategies for its suppression play a role in generating dosage phenotypes. Finally, we outline an unappreciated mechanism for the preservation of duplicate genes, namely preservation to limit expression noise, arguing that it is particularly relevant in polyploid organisms.

  11. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.

    Science.gov (United States)

    Fu, YuHong; Sengul, Gulgun; Paxinos, George; Watson, Charles

    2012-06-19

    We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6-8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them.

  12. Altered gene and protein expression in liver of the obese spontaneously hypertensive/NDmcr-cp rat.

    Science.gov (United States)

    Chang, Jie; Oikawa, Shinji; Ichihara, Gaku; Nanpei, Yui; Hotta, Yasuhiro; Yamada, Yoshiji; Tada-Oikawa, Saeko; Iwahashi, Hitoshi; Kitagawa, Emiko; Takeuchi, Ichiro; Yuda, Masao; Ichihara, Sahoko

    2012-09-21

    It is difficult to study the mechanisms of the metabolic syndrome in humans due to the heterogeneous genetic background and lifestyle. The present study investigated changes in the gene and protein profiles in an animal model of the metabolic syndrome to identify the molecular targets associated with the pathogenesis and progression of obesity related to the metabolic syndrome. We extracted mRNAs and proteins from the liver tissues of 6- and 25-week-old spontaneously hypertensive/NIH -corpulent rat SHR/NDmcr-cp (CP), SHR/Lean (Lean) and Wistar Kyoto rats (WKY) and performed microarray analysis and two-dimensional difference in gel electrophoresis (2D-DIGE) linked to a matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). The microarray analysis identified 25 significantly up-regulated genes (P  1) and 31 significantly down-regulated genes (P CP compared with WKY and Lean. Several of these genes are known to be involved in important biological processes such as electron transporter activity, electron transport, lipid metabolism, ion transport, transferase, and ion channel activity. MALDI-TOF/TOF MS identified 31 proteins with ±1.2 fold change (P CP, compared with age-matched WKY and Lean. The up-regulated proteins are involved in metabolic processes, biological regulation, catalytic activity, and binding, while the down-regulated proteins are involved in endoplasmic reticulum stress-related unfolded protein response. Genes with significant changes in their expression in transcriptomic analysis matched very few of the proteins identified in proteomics analysis. However, annotated functional classifications might provide an important reference resource to understand the pathogenesis of obesity associated with the metabolic syndrome.

  13. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  14. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Meng Sun

    2014-12-01

    Full Text Available The pink stem borer, Sesamia inferens (Walker, is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  15. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    Science.gov (United States)

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-01-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.

  16. Molecular characterization and gene expression of juvenile hormone binding protein in the bamboo borer, Omphisa fuscidentalis.

    Science.gov (United States)

    Ritdachyeng, Eakartit; Manaboon, Manaporn; Tobe, Stephen S; Singtripop, Tippawan

    2012-11-01

    Juvenile hormone (JH) plays an important role in many physiological processes in insect development, diapause and reproduction. An appropriate JH titer in hemolymph is essential for normal development in insects. Information concerning its carrier partner protein, juvenile hormone binding protein (JHBP), provides an alternative approach to understanding how JH regulates metamorphosis. In this study, we cloned and sequenced the Omphisa juvenile hormone binding protein (OfJHBP). The full-length OfJHBP cDNA sequence is comprised of 849 nucleotides with an open reading frame of 726bp encoding 242 amino acids. The molecular mass of the protein was estimated to be 26.94kDa. The deduced protein sequence of OfJHBP showed moderate homology with the lepidopteran, Heliothis virescens JHBP (52% amino acid identity) and lower homology with the Bombyx mori JHBP (45%) and the Manduca sexta JHBP (44%). The OfJHBP was expressed mainly in the fat body. OfJHBP transcripts in the fat body was moderately high during 3rd, 4th and 5th instars, then rapidly increased, reaching a peak during early diapause. The expression remained high in mid-diapause, then decreased in late-diapause until the pupal stage. Both juvenile hormone analog (JHA), methoprene, 20-hydroxyecdysone (20E) exhibited a similar stimulatory pattern in OfJHBP expression of diapausing larvae. OfJHBP mRNA levels gradually increased and showed a peak of gene expression on the penultimate, then declined to low levels in the pupal stage. For in vitro gene expression, both of JHA and 20E induced OfJHBP mRNA expression in fat body. Fat body maintenance in vitro in the presence of 0.1μg/50μl JHA induced OfJHBP mRNA expression to high levels within the first 30min whereas 0.1μg/50μl 20E induced gene expression at 120min. To study the synergistic effect of these two hormones, fat body was incubated in vitro with 0.1μg/50μl JHA or 0.1μg/50μl 20E or a combination of both hormone for 30min. Induction of OfJHBP expression by

  17. Protein and Amino Acid Supplementation Does Not Alter Proteolytic Gene Expression following Immobilization

    Directory of Open Access Journals (Sweden)

    Jennifer A. Bunn

    2011-01-01

    Full Text Available Objective. To determine if supplementation of protein and amino acids (PAA decreases skeletal muscle expression of atrophy-related genes, muscle mass, and strength during immobilization in humans. Methods. Twenty males wore a lower-limb immobilization boot for 28 days and consumed either a PAA supplement (28 g protein or carbohydrate placebo (28 g maltodextrose, while consuming their normal daily diet. Testing sessions included dietary analysis, lower-leg girth and body composition measurements, strength testing, and gastrocnemius muscle biopsies. Muscle was analyzed for mRNA expression of markers in the ubiquitin and calpain systems, myostatin, TNF-α, and NF-κB. Results. All genes of interest increased over time (P<.05, but there was no difference between groups. Lower-leg girth decreased over time (P=0.02; however, there were no significant changes in body composition or strength. Conclusion. Short-term lower-limb disuse, despite the absence of significant muscle atrophy, is associated with increases in skeletal muscle gene expression of several proteolysis-related genes. These changes do not appear to be altered by oral PAA supplementation.

  18. Altered expression of adipose differentiation-related protein gene in placental tissue of pre-eclampsia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-li; YAO Yuan-qing; LI Dong-hong; ZHANG Wei

    2006-01-01

    Objective: To investigate the altered expression of lipid metabolism-related gene adipose differentiation-related protein (ADRP) in pre-eclampsia. Methods: Semi-quantitative RT-PCR and Western blotting were used to validate the altered expression of ADRP gene between pre-eclamptic placentas (preeclampsia group) and normotensive placentas (control group) respectively. In situ hybridization (ISH)was used to localize ADRP mRNA in pre-eclamptic placentas. Results: There was a significant difference in the levels of placental ADRP mRNA between pre-eclampsia group and control group (1.98± 0. 50 vs 1. 09±0. 20, P<0.01). Western blotting showed that placentas both in pre-eclampsia group and control group expressed the special ADRP band at 48. 1 kD. The relative levels of ADRP protein in pre-eclampsia group were significantly higher than those of control group (0. 40 ±0. 19 vs 0. 19 ±0. 09, P< 0. 01).ADRP mRNA was diffusely distributed in pre-eclamptic placentas. Their positive staining existed in cytoplasm of trophoblast. Conclusion: Abnormal expression of ADRP gene in pre-eclamptic placenta may be associated with the pathogenesis of pre-eclampsia.

  19. A second rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein expression in a cell-free system.

    Science.gov (United States)

    Frassanito, Anna Maria; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valtere; Gualtieri, Paolo

    2013-08-05

    Here we report the identification and expression of a second rhodopsin-like protein in the alga Cyanophora paradoxa (Glaucophyta), named Cyanophopsin_2. This new protein was identified due to a serendipity event, since the RACE reaction performed to complete the sequence of Cyanophopsin_1, (the first rhodopsin-like protein of C. paradoxa identified in 2009 by our group), amplified a 619 bp sequence corresponding to a portion of a new gene of the same protein family. The full sequence consists of 1175 bp consisting of 849 bp coding DNA sequence and 4 introns of 326 bp. The protein is characterized by an N-terminal region of 47 amino acids, followed by a region with 7 α-helices of 213 amino acids and a C-terminal region of 22 amino acids. This protein showed high identity with Cyanophopsin_1 and other rhodopsin-like proteins of Archea, Bacteria, Fungi and Algae. Cyanophosin_2 (CpR2) was expressed in a cell-free expression system, and characterized by means of absorption spectroscopy.

  20. Expression of rice gall dwarf virus outer coat protein gene (S8) in insect cells.

    Science.gov (United States)

    Fan, Guo-cheng; Gao, Fang-luan; Wei, Tai-yun; Huang, Mei-ying; Xie, Li-yan; Wu, Zu-jian; Lin, Qi-ying; Xie, Lian-hui

    2010-12-01

    To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity, its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system. The S8 gene was subcloned into the pFastBac™1 vector, to produce the recombinant baculovirus transfer vector pFB-S8. After transformation, pFB-S8 was introduced into the competent cells (E. coli DH10Bac) containing a shuttle vector, Bacmid, generating the recombinant bacmid rbpFB-S8. After being infected by recombinant baculovirus rvpFB-S8 at different multiplicities of infection, Sf9 cells were collected at different times and analyzed by SDS-PAGE, Western blotting and immunofluorescence microscopy. The expression level of the P8 protein was highest between 48-72 h after transfection of Sf9 cells. Immunofluorescence microscopy showed that P8 protein of RGDV formed punctate structures in the cytoplasm of Sf9 cells.

  1. FRAGILE HISTIDINE TRIAD GENE EXPRESSION AND ITS CORRALATION WITH MISMATCH REPAIR PROTEIN IN HUMAN SPORADIC COLORECTAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    姚成才; 林从尧

    2004-01-01

    Objective: To investigate the expression of fragile histidine triad (FHIT) gene and its correlation with clinicopathological features and correlation with mismatch repair protein (mainly MLH1 and MSH2) in human sporadic colorectal carcinoma (SCC). Methods:Immunohistochemistry SP method was used to determine the expression of FHIT, MLH1 and MSH2 protein in surgically resected specimens of 84 human SCC. Results:The positive rates of FHIT, MLH1 and MSH2 protein expression were 48.81%, 92.86% and 100% respectively.Loss or reduced expression of FHIT protein was not related with tumors clinicopathological features such as age, gender,tumors site and histological type (P>0.05), but was correlated with tumors invade depth, degree of the differentiation, Ducks' stage and metastasis (P<0.05). There was no relationship between FHIT gene expression and MLH1 protein (r=0.0991, P>0.05) and MSH2 protein (r=0.0000, P=l.00) expression in human SCC. Conclusion:Absent or reduction of FHIT gene expression consists of high proportion and is a frequent event in SCC. FHIT gene is involved in the development and progression of human SCC and may be a candidate tumors suppressor gene. The relationship between alteration of FHIT gene expression and mismatch repair protein (mainly MLH1 and MSH2)deserved further study in human SCC.

  2. Recombinant MafA protein containing its own protein transduction domain stimulates insulin gene expression in IEC-6 cells.

    Science.gov (United States)

    Lu, Jun; Luo, Hailan; Wu, Huiling; Lan, Michael S; Tan, Jianming; Lu, Daru

    2011-07-18

    MafA, a basic leucine zipper (bZIP) transcription factor, functions as a potent activator of insulin gene transcription in β-cell. In this paper, we aimed to investigate whether the entire MafA protein has the self-delivery activity, and that the arginine- and lysine-rich sequence in MafA bZIP domain is an efficient protein transduction domain (PTD). Entire MafA protein internalization was evaluated with Western blot and immunofluorescence. The distribution of the PTD-EGFP (enhanced green fluorescence protein) was examined by fluorescent microscope observation. Luciferase reporter assay was used to investigate the effect of the transduced MafA protein on insulin 2 promoter activity. Additionally, we conducted RT-PCR to detect the expression of insulin mRNA in MafA treated IEC-6 cells. The arginine- and lysine-rich peptide of MafA serves as a novel PTD. PTD-EGFP can permeate into various cell types including Min6 (a β-cell line), and transduce in a dose- and time-dependent manner. The cellular uptake of MafA PTD can be completely blocked by heparin, whereas cytochalasin D and amiloride were partially effective in blocking the PTD-EGFP protein entry. Transduced intact MafA protein behaves in the same way as the endogenous MafA, stimulating the transcription of insulin promoter and further inducing insulin expression in treated non-β-cell line (IEC-6). These results indicate that the MafA PTD could serve as a therapeutic delivery vehicle, and further suggest that MafA protein transduction could be a valuable strategy for enhancing insulin gene transcription without requiring gene transfer technology. Copyright © 2011. Published by Elsevier Inc.

  3. Gene and protein expressions of P28gank in rat with liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Qin; Xiao-Yong Fu; Shen-Jing Li; Shu-Qin Liu; Jin-Zhang Zeng; Xiu-Hua Qiu; Meng-Chao Wu; Hong-Yang Wang

    2003-01-01

    AIM: To observe the gene and protein expression changes of p28GANK in regenerating liver tissues, and to reveal the biological function of p28GANK on the regulation of liver regeneration.METHODS: One hundred and thirty two adult male Sprague-Dawley rats were selected, weighing 200-250 g,and divided randomly into sham operation (SO) group and partial hepatectomy (PH) group. Each group had eleven time points: 0, 2, 6, 12, 24, 30, 48, 72, 120, 168 and 240 h,six rats were in each time point. The rats were undergone 70 % PH under methoxyflurane anesthesia by resection of the anterior and left lateral lobes of the liver. SO was conducted by laparotomy plus slight mobilization of the liver without resection. Liver specimens were collected at the indicated time points after PH or SO. The expression level of p28GANK mRNA was determined by Northern blot as well as at protein level via immunohistochemical staining.The expressions of p28GANK mRNA in these tissues were analyzed by imaging analysis system of FLA-2000 FUJIFILM and one way analysis of variance. The protein expressions of p28GANK in these tissues were analyzed with Fromowitz'method and Rank sum test.RESULTS: The expression of p28GANK mRNA in bhe regenerating liver tissues possessed two transcripts, which were 1.5 kb and 1.0 kb. There was a significantly different expression patterns of p28GANK mRNA between SO and PH groups (P<0.01). The expression of p28GANK mRNA increased 2 h after PH, the peak time was 72 h (SO group: 163.83±1.4720; PH group: 510.5±17.0499, P<0.01). There was a significant difference in the 1.5 kb transcript, which decreased gradually after 72 hours. The protein expression of p28GANK was mainly in the cytoplasm of regenerating hepatocytes, and increased near the central region 24 h after PH, and became strongly positive at 48 h (+++, vs the other time points P<0.05),but decreased 72 h after PH.CONCLUSION: The expression of p28GANK mRNA increases in the early stage of rat liver regeneration, the

  4. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    Science.gov (United States)

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3′ untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3′ UTR. Conclusions These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3′ UTRs. PMID:24666827

  5. The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation.

    Science.gov (United States)

    Han, Hesong; Wilson, Adam C

    2013-12-01

    The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.

  6. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice.

    Directory of Open Access Journals (Sweden)

    Valérie Manceau

    Full Text Available The brain-enriched protein kinase KIS (product of the gene UHMK1 has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF(65-SF1-RNA complex which occurs at the 3' end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.

  7. Expression pattern of the CsPK3 auxin-responsive protein kinase gene.

    Science.gov (United States)

    Chono, M; Suzuki, Y; Nemoto, K; Yamane, H; Murofushi, N; Yamaguchi, I

    2001-03-01

    We have previously cloned a cDNA of a putative serine/threonine protein kinase gene named CsPK3 from cucumber, the mRNA level of which was up-regulated by auxin and down-regulated by light irradiation. To examine the CsPK3 gene expression in detail, we cloned a genomic DNA of CsPK3 gene and made transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants containing the fused CsPK3 promoter-beta-glucuronidase gene. The beta-glucuronidase expression was detected in the shoot apex, vascular tissues, and the outermost layer of cortex. The histological distribution of CsPK3 mRNA in cucumber seedlings was supported by in situ hybridization, where the positive signals were observed in similar tissues as those observed by beta-glucuronidase staining. The responsiveness of the CsPK3 gene to auxin and light was also confirmed for beta-glucuronidase activity. The pattern of beta-glucuronidase staining changed during the development of the tobacco seedlings. The results of our experiment showed that CsPK3 was expressed in a wide variety of tissues and cells in which the developmental and growth controls by auxin are suggested.

  8. Construction of eukaryotic expression vector encoding ATP synthase lipid-binding protein-like protein gene of Sj and its expression in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Ouyang Danming; Hu Yongxuan; Li Mulan; Zeng Xiaojun; He Zhixiong; Yuan Caijia

    2008-01-01

    Objective: To clone and construct the recombinant plasmid containing ATP synthase lipid-binding protein-like protein gene of Schistosoma japonicum,(SjAslp) and transfer it into mammalian cells to express the objective protein. Methods: By polymerase chain reaction (PCR) technique, SjAslp was amplified from the constructed recombinant plasmid pBCSK+/SjAslp, and inserted into cloning vector pUCm-T. Then, SjAslp was subcloned into an eukaryotic expression vector pcDNA3.1(+). After identifying it by PCR, restrictive enzymes digestion and DNA sequencing, the recombinant plasmid was transfected into HeLa cells using electroporation, and the expression of the recombinant protein was analyzed by immunocytochemical assay. Resnlts: The specific gene fragment of 558 bp was successfully amplified. The DNA vaccine of SjAslp was successfully constructed. Immunocytochemical assay showed that SjAslp was expressed in the cytoplasm of HeLa cells. Conclusion: SjAslp gene can be expressed in eukaryotic system, which lays the foundation for development of the SjAslp DNA vaccine against schitosomiasis.

  9. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    Science.gov (United States)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  10. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  11. Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression.

    Science.gov (United States)

    Chapa, Travis J; Perng, Yi-Cheih; French, Anthony R; Yu, Dong

    2014-01-01

    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.

  12. Protein Expression of BLM Gene and Its Apoptosis Sensitivity in Hematopoietic Tumor Cell Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaobei WANG; Lihua HU

    2008-01-01

    Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells ex- pressed BLM protein higher than the normal human bone marrow mononuclear cells (P<0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the evelopment of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic esponse.

  13. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays.

    Science.gov (United States)

    Malehorn, D E; Borgmeyer, J R; Smith, C E; Shah, D M

    1994-12-01

    A cDNA clone encoding a basic thaumatin-like protein of Zea mays was recovered from a mid-development seed cDNA library. The gene, Zlp, encoded a protein that was nearly identical with maize zeamatin and alpha-amylase/trypsin inhibitor. Expression of Zlp mRNA was highest in the endosperm tissue of seed 4 weeks after pollination. Expression of zeamatin-like (ZLP) protein correlated with mRNA; also, a low basal level of ZLP expression in leaf was not appreciably induced by abiotic stresses. ZLP was expressed with its own signal peptide in insect cells and in transgenic Arabidopsis and tomato plants. ZLP was secreted in all three systems, with correct processing of the signal peptide. ZLP expressed in transgenic tomato was found to be partially subjected to a proteolytic cleavage after residue 180, by an unknown mechanism, to give a "nicked" isoform of ZLP. Purified ZLP from all three sources, as well as purified "nicked" ZLP from tomato, demonstrated fungal inhibition against Candida albicans and Trichoderma reesei, with marginal inhibition observed against Alternaria solani and Neurospora crassa.

  14. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Chengsheng Zhang

    2016-05-01

    Full Text Available Polygalacturonase inhibiting proteins (PGIPs are major defensive proteins produced by plant cell walls that play a crucial role in pathogen resistance by reducing polygalacturonase (PG activity. In the present study, a novel PGIP gene was isolated from tobacco (Nicotiana tabacum, hereafter referred as NtPGIP. A full-length NtPGIP cDNA of 1,412 bp with a 186 bp 5′-untranslated region (UTR, and 209 bp 3′-UTR was cloned from tobacco, NtPGIP is predicted to encode a protein of 338 amino acids. The NtPGIP sequence from genomic DNA showed no introns and sequence alignments of NtPGIP’s deduced amino acid sequence showed high homology with known PGIPs from other plant species. Moreover, the putative NtPGIP protein was closely clustered with several Solanaceae PGIPs. Further, the expression profile of NtPGIP was examined in tobacco leaves following stimulation with the oomycete Phytophthora nicotianae and other stressors, including salicylic acid (SA, abscisic acid (ABA, salt, and cold treatment. The results showed that all of the treatments up-regulated the expression of NtPGIP at different times. To understand the biochemical activity of NtPGIP gene, a full-length NtPGIP cDNA sequence was subcloned into a pET28a vector and transformed into E. coli BL21 (DE3. Recombinant proteins were successfully induced by 1.0 nmol/L IPTG and the purified proteins effectively inhibited Phytophthora capsici PG activity. The results of this study suggest that NtPGIP may be a new candidate gene with properties that could be exploited in plant breeding.

  15. RAT GDNF GENE TRANSFECTION AND EXPRESSION OF ITS mRNA AND PROTEIN IN SCHWANN CELLS

    Institute of Scientific and Technical Information of China (English)

    平萍; 范志宏; 李青峰; 张涤生

    2004-01-01

    Objective To investigate the possibility of the transfection of glial-cell line derived neurotrophic factor (GDNF) gene into Schwann cells(SCs). Methods SCs cultures from sciatic nerves of neonatal rats were established. A recombinant retrovirus vector containing GDNF gene was constructed and transferred into SCs.Expression levels of GDNF mRNA and protein were respectively identified with reverse transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry. Determination of GDNF synthesis rates from Retro. pLNCX2-GDNF-transduced SCs (GDNF-SCs) in vitro by enzyme-linked immunoassay sensitive assay ( ELISA ). Biololgical activity of conditioned medium from GENF-SCs was analysed by co-culture with rat motoneurons. Results Transfection of GDNF gene into SCs lead to significantly enhanced expression of GDNF mRNA and protein. The rate of GDNF secreted by GDNF-SCs was also enhanced(5. 1-fold), and more motoneurons survived co-cultured with conditioned medium of GNDF-SCs than with that of normal SCs. Conclusion GNDF gene transfection may be a better way to graft SCs promoting regeneration and repairing demyelination in PNS and CNS.

  16. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice.

    Science.gov (United States)

    Charrier, Alyssa; Wang, Li; Stephenson, Erin J; Ghanta, Siddharth V; Ko, Chih-Wei; Croniger, Colleen M; Bridges, Dave; Buchner, David A

    2016-11-01

    The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease. Copyright © 2016 the American Physiological Society.

  17. Dynamics of protein noise can distinguish between alternate sources of gene-expression variability.

    Science.gov (United States)

    Singh, Abhyudai; Razooky, Brandon S; Dar, Roy D; Weinberger, Leor S

    2012-01-01

    Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV-1 model system. Our results support promoter fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.

  18. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  19. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Science.gov (United States)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-02-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  20. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  1. Sustained downregulation of YY1-associated protein-related protein gene expression in rat hippocampus induced by repeated electroconvulsive shock.

    Science.gov (United States)

    Ohtomo, Takayuki; Kanamatsu, Tomoyuki; Fujita, Mariko; Takagi, Mitsuhiro; Yamada, Junji

    2011-01-01

    YY1AP-related protein (YARP) is a structural homolog of YY1-associated protein (YY1AP), which has a YY1-binding domain. During perinatal development, YARP mRNA expression is increased at a late stage of embryonic neurogenesis. It is not known whether YARP expression is regulated during adult neurogenesis. Electroconvulsive shock (ECS), a model for a highly effective depression treatment, is known to induce hippocampal neurogenesis after repeated treatment, so we employed ECS to measure the expression of YARP mRNA. Northern blots revealed significantly decreased expression of the YARP gene after repeated ECS but not single ECS. In situ hybridization clearly demonstrated a reduction of YARP mRNA expression in the CA (CA1, CA2, and CA3) subfields. Although clonic-tonic seizure was induced not only by ECS but also by injection of kainic acid to the striatum, the regulation of YARP mRNA expression was different between ECS and kainic acid. YARP mRNA was decreased only by the ECS method, suggesting that YARP expression is different at embryonic and adult neurogenic stage.

  2. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    赛吉庆; 康良仪; 黄忠; 史春霖; 田波; 谢友菊

    1995-01-01

    The 3’-terminal 1 279 nucleotide sequence of maize dwarf mosaic virus (MDMV) genome has been determined. This sequence contains an open reading frame of 1023 nudeotides and a 3’ -non-coding region of 256 nucleotides. The open reading frame includes all of the coding regions for the viral capsid protein (CP) and part of the viral nuclear inclusion protein (Nib). The predicted viral CP consists of 313 amino acid residues with a calculated molecular weight of 35400. The amino acid sequence of the viral CP derived from MDMV cDNA shows about 47%-54% homology to that of 4 other potyviruses. The viral CP gene was constructed in frame with the lacZ gene in pUC19 plasmid and expressed in E. coli cells. The fusion polypeptide positively reacted in Western blot with an antiserum prepared against the native viral CP.

  3. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity.

    Science.gov (United States)

    Kohnz, Rebecca A; Roberts, Lindsay S; DeTomaso, David; Bideyan, Lara; Yan, Peter; Bandyopadhyay, Sourav; Goga, Andrei; Yosef, Nir; Nomura, Daniel K

    2016-08-19

    Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial cells by oncogenic stimuli commonly shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine pathway metabolite that is converted to CMP-sialic acid by cytidine monophosphate N-acetylneuraminic acid synthase (CMAS) as a precursor to glycoprotein and glycolipid sialylation. We show that CMAS knockdown leads to elevations in intracellular sialic acid levels, a depletion of cellular sialylation, and alterations in the expression of many cancer-relevant genes to impair breast cancer pathogenicity. Our study reveals the heretofore unrecognized role of sialic acid metabolism and protein sialylation in regulating the expression of genes that maintain breast cancer pathogenicity.

  4. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  5. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9

    Directory of Open Access Journals (Sweden)

    Giorgi Dominique

    2008-09-01

    Full Text Available Abstract Background ASAP is a newly characterized microtubule-associated protein (MAP essential for proper cell-cycling. We have previously shown that expression deregulation of human ASAP results in profound defects in mitotic spindle formation and mitotic progression leading to aneuploidy, cytokinesis defects and/or cell death. In the present work we analyze the structure and evolution of the ASAP gene, as well as the domain composition of the encoded protein. Mouse and Xenopus cDNAs were cloned, the tissue expression characterized and the overexpression profile analyzed. Results Bona fide ASAP orthologs are found in vertebrates with more distantly related potential orthologs in invertebrates. This single-copy gene is conserved in mammals where it maps to syntenic chromosomal regions, but is also clearly identified in bird, fish and frog. The human gene is strongly expressed in brain and testis as a 2.6 Kb transcript encoding a ~110 KDa protein. The protein contains MAP, MIT-like and THY domains in the C-terminal part indicative of microtubule interaction, while the N-terminal part is more divergent. ASAP is composed of ~42% alpha helical structures, and two main coiled-coil regions have been identified. Different sequence features may suggest a role in DNA damage response. As with human ASAP, the mouse and Xenopus proteins localize to the microtubule network in interphase and to the mitotic spindle during mitosis. Overexpression of the mouse protein induces mitotic defects similar to those observed in human. In situ hybridization in testis localized ASAP to the germ cells, whereas in culture neurons ASAP localized to the cell body and growing neurites. Conclusion The conservation of ASAP indicated in our results reflects an essential function in vertebrates. We have cloned the ASAP orthologs in mouse and Xenopus, two valuable models to study the function of ASAP. Tissue expression of ASAP revealed a high expression in brain and testis, two

  6. Altered gene and protein expression in liver of the obese spontaneously hypertensive/NDmcr-cp rat

    Directory of Open Access Journals (Sweden)

    Chang Jie

    2012-09-01

    Full Text Available Abstract Background It is difficult to study the mechanisms of the metabolic syndrome in humans due to the heterogeneous genetic background and lifestyle. The present study investigated changes in the gene and protein profiles in an animal model of the metabolic syndrome to identify the molecular targets associated with the pathogenesis and progression of obesity related to the metabolic syndrome. Methods We extracted mRNAs and proteins from the liver tissues of 6- and 25-week-old spontaneously hypertensive/NIH –corpulent rat SHR/NDmcr-cp (CP, SHR/Lean (Lean and Wistar Kyoto rats (WKY and performed microarray analysis and two-dimensional difference in gel electrophoresis (2D-DIGE linked to a matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS. Results The microarray analysis identified 25 significantly up-regulated genes (P 10 > 1 and 31 significantly down-regulated genes (P 10 P  Conclusion Genes with significant changes in their expression in transcriptomic analysis matched very few of the proteins identified in proteomics analysis. However, annotated functional classifications might provide an important reference resource to understand the pathogenesis of obesity associated with the metabolic syndrome.

  7. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  8. Quantitative analysis of tetracycline-inducible expression of the green fluorescent protein gene in transgenic chickens.

    Science.gov (United States)

    Koo, Bon Chul; Kwon, Mo Sun; Roh, Ji Yeol; Kim, Minjee; Kim, Jin-Hoi; Kim, Teoan

    2012-01-01

    The use of transgenic farm animals as "bioreactors" to address the growing demand for biopharmaceuticals, both in terms of increased quantity and greater number, represents a key development in the advancement of medical science. However, the potential for detrimental side-effects as a result of uncontrolled constitutive expression of foreign genes in transgenic animals is a well-recognized limitation of such systems. Previously, using a tetracycline-inducible expression system, we demonstrated the induction of expression of a transgene encoding green fluorescent protein (GFP) in transgenic chickens by feeding with doxycycline, a tetracycline derivative; expression of GFP reverted to pre-induction levels when the inducer was removed from the diet. As a proof of principle study, however, quantitative assessment of expression was not possible, as only one G0 and one G1 transgenic chicken was obtained. In the current study, a sufficient number of G2 and G3 transgenic chickens were obtained, and quantification analysis demonstrated up to a 20-fold induction of expression by doxycycline. In addition, stable transmission of the transgene without any apparent genetic modifications was observed through several generations. The use of an inducible expression system that can be regulated by dietary supplementation could help mitigate the physiological disruption that can occur in transgenic animals as a result of uncontrolled constitutive expression of a transgene. Importantly, these results also support the use of the retroviral system for generating transgenic animals with minimal risk in terms of biosafety.

  9. Baculovirus expression of the glycoprotein gene of Lassa virus and characterization of the recombinant protein.

    Science.gov (United States)

    Hummel, K B; Martin, M L; Auperin, D D

    1992-09-01

    A recombinant baculovirus was constructed that expresses the glycoprotein gene of Lassa virus (Josiah strain) under the transcriptional control of the polyhedrin promoter. The expressed protein (B-LSGPC) comigrated with the authentic viral glycoprotein as observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), was reactive with monoclonal antibodies (MAbs) in Western blots, and was glycosylated. Although the recombinant protein was not processed into the mature glycoproteins, G1 and G2, it demonstrated reactivity with all known epitopes as measured by indirect immunofluorescence (IFA), and it was immunogenic, eliciting antisera in rabbits that recognized whole virus in IFAs. Regarding future applications to diagnostic assays, the recombinant glycoprotein proved to be an effective substitute for Lassa virus-infected mammalian cells in IFAs and it was able to distinguish sera from several human cases of Lassa fever, against a panel of known negative sera of African origin, in an enzyme immunoassay (EIA).

  10. GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula

    National Research Council Canada - National Science Library

    Sibylle Hirsch; Jiyoung Kim; Alfonso Muñoz; Anne B. Heckmann; J. Allan Downie; Giles E. D. Oldroyd

    2009-01-01

    .... Perception of the calcium oscillations is a function of a calcium-and calmodulin-dependent protein kinase, and this activates nodulation gene expression via two GRAS domain transcriptional regulators...

  11. Multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP and lung resistance protein (LRP gene expression in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Elvis Terci Valera

    Full Text Available CONTEXT: Despite the advances in the cure rate for acute lymphoblastic leukemia, approximately 25% of affected children suffer relapses. Expression of genes for the multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP, and lung resistance protein (LRP may confer the phenotype of resistance to the treatment of neoplasias. OBJECTIVE: To analyze the expression of the MDR-1, MRP and LRP genes in children with a diagnosis of acute lymphoblastic leukemia via the semiquantitative reverse transcription polymerase chain reaction (RT-PCR, and to determine the correlation between expression and event-free survival and clinical and laboratory variables. DESIGN: A retrospective clinical study. SETTING: Laboratory of Pediatric Oncology, Department of Pediatrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil. METHODS: Bone marrow aspirates from 30 children with a diagnosis of acute lymphoblastic leukemia were assessed for the expression of messenger RNA for the MDR-1, MRP and LRP genes by semi-quantitative RT-PCR. RESULTS: In the three groups studied, only the increased expression of LRP was related to worsened event-free survival (p = 0.005. The presence of the common acute lymphoblastic leukemia antigen (CALLA was correlated with increased LRP expression (p = 0.009 and increased risk of relapse or death (p = 0.05. The relative risk of relapse or death was six times higher among children with high LRP expression upon diagnosis (p = 0.05, as confirmed by multivariate analysis of the three genes studied (p = 0.035. DISCUSSION: Cell resistance to drugs is a determinant of the response to chemotherapy and its detection via RT-PCR may be of clinical importance. CONCLUSIONS: Evaluation of the expression of genes for resistance to antineoplastic drugs in childhood acute lymphoblastic leukemia upon diagnosis, and particularly the expression of the LRP gene, may be of clinical relevance, and should be the

  12. [The analysis of Bacillus thuringiensis vegetative insecticical protein gene cloning and expression].

    Science.gov (United States)

    Cai, Qi-Liang; Liu, Zi-Duo; Sun, Ming; Wei, Fang; Yu, Zi-Niu

    2002-09-01

    Three kinds of Bacillus thuringiensis serotype-subsp. Leesis(H33) strain YBT-833, subsp. Aizawai(H7) strain YBT-1416 and subsp. Kurstaki(H3ab) strain YBT-1535, which were isolated by our lab, are chosen as original strain to clone vegetative insecticidal protein gene. Southern hybridization showed that vip genes are all localized at roughly 4-5 kb size-fractionated XbaI fragments of total DNA from YBT-833, YBT-1416 and YBT-1535. Three subgenomic libraries containing the vip gene fragment, were constructed with pUC19 as vector. Then, three vegetative insecticidal protein gene vip83, vip14 and vip15 are obtained from the libraries through the methods of colony-blot-in-situ screening and enzyme-cut detection. Comparision of DNA sequence made out that only vip83 gene exist five different base pairs with known vip genes. Because the sequences of vip14 and vip15 are the same, two of the three genes, vip83 and vip14, were subcloned to shuttle vehicle pHT315 to get recombinant plasmids pBMB8901 and pBMB8902 in turn. The plasmids were separately transformed into vip Bt. receptors BMB171 and 4Q7 to obtain four engineered strains BMB8901-171, BMB8902-171, BMB8901-4Q7 and BMB8902-4Q7. SDS-PAGE results indicated that all recombinant strains express 88 kD vegetative insecticidal protein. Bioassay also showed that the proteins of genes vip83 and vip14 both have certain toxicity to Lepidopteran insect larvae such as Heliochis armigera, Spodotera exigua and Plutella xylostella. While the toxicity of vip protein from four engineered strains to Plutella xylostellas are highest, whose LC50 value is 28.6, 31.6, 45.4 and 37.6 microL/mL respectively. This study will contributed to construct high efficacy and wide spectrum engineered strains on theory and reality.

  13. Differential expression of G protein alpha and ß subunit genes during development of Phytophthora infestans

    NARCIS (Netherlands)

    Laxalt, A.M.; Latijnhouwers, M.; Hulten, van M.; Govers, F.

    2002-01-01

    A G protein subunit gene (pigpa1) and a G protein subunit gene (pigpb1) were isolated from the oomycete Phytophthora infestans, the causal agent of potato late blight. Heterotrimeric G proteins are evolutionary conserved GTP-binding proteins that are composed of ,, and subunits and participate in di

  14. Characterization and Expression of Outer Membrane Protein AI Gene of Aeromonas veronii

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-juan; Wang Li

    2015-01-01

    The outer membrane protein, ompA, ofAeromonas veronii has a role in the virulence of the organism and is a potential candidate for vaccine development. In this study, ompAⅠofAeromonas veronii strain WA106 was cloned and sequenced, then, it was expressed inEscherichia coli BL21. The nucleotide sequence of ompAⅠgene was 1 023 base pairs (GenBank Accession NO.KC748024), which showed 100% homology with that ofA. veronii (NO.AB290200.1). This predicted protein was composed of 340 amino acid residues. Its molecular weight was 35.78 ku and isoelectric point was 5.18. The protein was a hydrophilic protein containing alpha helix and random coil with percentage of 35.0% and 49.7%, respectively. The tertiary structure, quaternary structure prediction showed that ompAⅠprotein contained two peptide chains. SDS-PAGE showed that the actual value of the fusion protein was consistent with the expected result. It will facilitate further study of the role of ompAⅠprotein.

  15. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    Science.gov (United States)

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  16. Protein poly(ADP-ribosylation regulates arabidopsis immune gene expression and defense responses.

    Directory of Open Access Journals (Sweden)

    Baomin Feng

    2015-01-01

    Full Text Available Perception of microbe-associated molecular patterns (MAMPs elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose glycohydrolase 1 (atparg1 mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose glycohydrolase (PARG is predicted to remove poly(ADP-ribose polymers on acceptor proteins modified by poly(ADP-ribose polymerases (PARPs with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosylation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  17. Differential gene expression of fatty acid binding proteins during porcine adipogenesis.

    Science.gov (United States)

    Samulin, Johanna; Berget, Ingunn; Lien, Sigbjørn; Sundvold, Hilde

    2008-10-01

    Four different subtypes of fatty acid binding proteins i.e. liver-type FABP1, heart/muscle-type FABP3, adipocyte-type FABP4 and epithelial/epidermal-type FABP5 are expressed in adipose tissue. However, only the regulatory role of FABP4 in adipogenesis has been thoroughly investigated. To increase the knowledge on possible roles of these FABP subtypes in preadipocyte differentiation, gene expression patterns were examined during adipogenesis in pig (Sus scrofa). FABP1 expression was induced in proliferating cells, whereas FABP3, FABP4 and FABP5 expression increased throughout preadipocyte differentiation. Interestingly, the FABP4 and FABP5 expression increased early in the differentiation, followed by FABP3 later in the differentiation process. This indicates a role of FABP4 and FABP5 in intracellular fatty acid transport during initiation of differentiation, whereas, FABP3 likely is involved in the transport of fatty acids during intermediate stages of adipogenesis. In this study we demonstrate that FABP3, FABP4 and FABP5 expression is correlated with that of the peroxisome proliferator-activated receptors alpha and gamma (PPARA and PPARG). Altogether, this suggests a role of FABP1 during cell proliferation, whereas a coordinated expression of FABP3, FABP4 and FABP5 together with that of PPARA, PPARG1 and PPARG2 might be critical for the metabolic regulation during porcine adipogenesis.

  18. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K

    1991-01-01

    -initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched...

  19. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  20. Association of AKT1 gene variants and protein expression in both schizophrenia and bipolar disorder.

    Science.gov (United States)

    Karege, F; Perroud, N; Schürhoff, F; Méary, A; Marillier, G; Burkhardt, S; Ballmann, E; Fernandez, R; Jamain, S; Leboyer, M; La Harpe, R; Malafosse, A

    2010-07-01

    The AKT1 gene has been associated with the genetic aetiology of schizophrenia. Following the overlap model of bipolar disorder and schizophrenia, we aimed to investigate AKT1 genetic variants and protein expression in both diseases. A total of 679 subjects with European ancestry were included: 384 with schizophrenia, 130 with bipolar disorder and 165 controls. Six single nucleotide polymorphisms (SNPs) were investigated for association with the diseases using single- and multi-locus analyses. AKT1 and AKT2 protein levels were measured in post-mortem brain tissues from ante-mortem diagnosed schizophrenia (n = 30) and bipolar disorder subjects (n = 12) and matched controls. The analysis identified a significant global distortion in schizophrenia (P = 0.0026) and a weak association in bipolar disorder (P = 0.046). A sliding window procedure showed a five-SNP haplotype (TCGAG) to be associated with schizophrenia (P = 1.22 x 10(-4)) and bipolar disorder (P = 0.0041) and a four-SNP haplotype (TCGA) with the combined sample (1.73 x 10(-5)). On the basis of selected genotypes, a significant difference in protein expression emerged between subjects (P gene in both schizophrenia and bipolar disorder, support the role of AKT1 in the genetics of both disorders and add support to the view that there is some genetic overlap between them.

  1. Retinoid X receptor gene expression and protein content in tissues of the rock shell Thais clavigera

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Toshihiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)], E-mail: thorigu@nies.go.jp; Nishikawa, Tomohiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Ohta, Yasuhiko [Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553 (Japan); Shiraishi, Hiroaki; Morita, Masatoshi [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2007-10-15

    To elucidate the role of retinoid X receptor (RXR) in the development of imposex caused by organotin compounds in gastropod molluscs, we investigated RXR gene expression and RXR protein content in various tissues of male and female wild rock shells (Thais clavigera). Quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry with a commercial antibody against human RXR {alpha} revealed that RXR gene expression was significantly higher in the penises of males and imposex-exhibiting females than in the penis-forming areas of normal females (P < 0.01 and P < 0.05, respectively). Western blotting demonstrated that the antibody could detect rock shell RXR and showed that the male penis had the highest content of RXR protein among the analyzed tissues of males and normal females. Immunohistochemical staining revealed nuclear localization of RXR protein in the epithelial and smooth muscle cells of the vas deferens and in the interstitial or connective tissues and epidermis of the penis in males and imposex-exhibiting females. RXR could be involved in the mechanism of induction of male-type genitalia (penis and vas deferens) by organotin compounds in female rock shells.

  2. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Science.gov (United States)

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  3. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Paul R Matthews

    Full Text Available Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17 from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]. Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  4. The Impact of Hypergravity and Vibration on Gene and Protein Expression of Thyroid Cells

    Science.gov (United States)

    Wehland, Markus; Warnke, Elisabeth; Frett, Timo; Hemmersbach, Ruth; Hauslage, Jens; Ma, Xiao; Aleshcheva, Ganna; Pietsch, Jessica; Bauer, Johann; Grimm, Daniela

    2016-06-01

    Experiments in space either on orbital missions on-board the ISS, or in suborbital missions using sounding rockets, like TEXUS as well as parabolic flight campaigns are still the gold standard to achieve real microgravity conditions in the field of gravitational biology and medicine. However, during launch, and in flight, hypergravity and vibrations occur which might interfere with the effects of microgravity. It is therefore important to know these effects and discriminate them from the microgravity effects. This can be achieved by ground-based facilities like centrifuges or vibration platforms. Recently, we have conducted several experiments with different thyroid cancer cell lines. This study, as part of the ESA-CORA-GBF 2010-203 project, focused on the influence of vibration and hypergravity on benign human thyroid follicular epithelial cells (Nthy-ori 3-1 cell line). Gene and in part protein expression regulation under both conditions were analyzed for VCAN, ITGA10, ITGB1, OPN, ADAM19, ANXA1, TNFA, ABL2, ACTB, PFN2, TLN1, EZR, RDX, MSN, CTGF, PRKCA, and PRKAA1 using quantitative real-time PCR and Western Blot. We found that hypergravity and vibration affected genes and proteins involved in the extracellular matrix, the cytoskeleton, apoptosis, cell growth and signaling. Vibration always led to a down-regulation, whereas hypergravity resulted in a more heterogeneous expression pattern. Overall we conclude that both conditions can influence gene regulation and production of various genes and proteins. As a consequence, it is important to perform control experiments on hypergravity and vibration facilities in parallel to flight experiments.

  5. Serum amyloid P (female protein) of the Syrian hamster. Gene structure and expression.

    Science.gov (United States)

    Rudnick, C M; Dowton, S B

    1993-10-15

    The structure and expression of the gene encoding serum amyloid P (SAP) component of the Syrian hamster have been studied by isolation of cosmid clones, nucleotide sequence analyses, and quantitation of nuclear run-on transcripts, nuclear RNA, mRNA, and protein levels. Hamster SAP, originally identified as female protein (FP), is a unique pentraxin because pretranslational expression of this gene is modulated by mediators of inflammation and sex steroids. SAP(FP) levels are high in sera from female hamsters and low in males. The response to inflammation is divergent; SAP(FP) levels decrease in females and increase in males during an acute phase response. The SAP(FP) gene encodes a 211 amino acid residue mature polypeptide as well as a 22-residue signal peptide. The intron/exon organization is similar to that of other pentraxins, but additional transcripts are generated from alternate polyadenylation sites in the 3' region. Circulating levels of SAP(FP) and the corresponding hepatic transcript levels are augmented by estrogen, while testosterone, dexamethasone, and progesterone cause a decrease in these levels. In addition the cytokines interleukin-1, -6, and tumor necrosis factor mediate a decrease in hepatic SAP(FP) transcript levels in female hamsters but did not cause a significant elevation of SAP(FP) mRNA in livers of male hamsters. The differences in expression of the SAP(FP) gene between male and female hamsters and between unstimulated male hamsters and male hamsters stimulated with an injection of lipopolysaccharide are due, at least in part, to alterations in transcription.

  6. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  7. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Mandrup, S; Højrup, P; Kristiansen, K;

    1991-01-01

    A synthetic gene encoding the 86 amino acid residues of mature acyl-CoA-binding protein (ACBP), and the initiating methionine was constructed. The synthetic gene was assembled from eight partially overlapping oligonucleotides. Codon usage and nucleotides surrounding the ATG translation......-initiation codon were chosen to allow efficient expression in Escherichia coli as well as in yeast. The synthetic gene was inserted into the expression vector pKK223-3 and expressed in E. coli. In maximally induced cultures, recombinant ACBP constitutes 12-15% of total cellular protein. A fraction highly enriched...

  8. Paternal Low Protein Diet Programs Preimplantation Embryo Gene Expression, Fetal Growth and Skeletal Development in Mice.

    Science.gov (United States)

    Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A

    2017-02-08

    Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development are largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring.

  9. Characterization and expression of bone morphogenetic protein 4 gene in postnatal pigs.

    Science.gov (United States)

    Li, Ming; Chen, Qixin; Sun, Guirong; Shi, Xiaowei; Zhao, Qiaohui; Zhang, Chi; Zhou, Jianshe; Qin, Nan

    2010-06-01

    Bone morphogenetic protein 4 (BMP4) is involved in animal embryonic development and reproductive physiology. The human and murine BMP4 genes have been isolated and characterized. The objectives of this study were to: (1) characterize the full mRNA and genomic sequence for porcine BMP4, and (2) examine BMP4 gene expression in 10 tissues of postnatal female pigs. Using RT-PCR, RACE and general PCR techniques, a 1,626 bp DNA including the full coding region of BMP4 was isolated and identified as a homologue of human BMP4 transcript variant (TV)-c. The porcine TV-c contained 3 exons and astride 3.6 kb in the isolated 7.8 kb porcine BMP4 genome. The In silicon cloning identified other three forms of mRNAs, including the homologues of human TV-1, TV-a and a novel variant related to human TV-3 (TV-3p). The porcine TV-c, TV-1 and TV-3p bear internal ribosome entry sites (IRES) in 5' untranslated region (UTR), while there are two ARE elements in the 3'UTR. The full genomic sequence of porcine BMP4 gene showed 81.38, 76.23 and 64.00% identity with that of bovine, human and murine, respectively. The expression of BMP4 mRNA was determined by RT-PCR in 7, 14, and 28 day old female piglets and non-gestational sows. The results showed that porcine BMP4 occurred in all 10 examined tissues (heart, lung, liver, kidney, ovary, spleen, spinal medulla, brain, duodenum and thymus). The mRNA expression levels were relatively higher in lung and kidney in 7 day old piglets, thymus in 14 day old piglets, and spleen in 28 day old piglets, respectively, while the higher expressions were detected in liver of non-gestational pigs (P < 0.05). Moreover, the mRNA amounts both in 7 day old piglets and sows were generally higher than those in 14 and 28 day old piglets in nearly all examined tissues, except in thymus. It is concluded that the structure of porcine BMP4 gene is highly conservative with other mammalian BMP4 genes, but some differences may present in the regulation of gene expression

  10. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development

    Directory of Open Access Journals (Sweden)

    Francis Sheila E

    2012-09-01

    Full Text Available Abstract Background Most members of the serpin family of proteins are potent, irreversible inhibitors of specific serine or cysteine proteinases. Inhibitory serpins are distinguished from members of other families of proteinase inhibitors by their metastable structure and unique suicide-substrate mechanism. Animal serpins exert control over a remarkable diversity of physiological processes including blood coagulation, fibrinolysis, innate immunity and aspects of development. Relatively little is known about the complement of serpin genes in plant genomes and the biological functions of plant serpins. Results A structurally refined amino-acid sequence alignment of the 14 full-length serpins encoded in the genome of the japonica rice Oryza sativa cv. Nipponbare (a monocot showed a diversity of reactive-centre sequences (which largely determine inhibitory specificity and a low degree of identity with those of serpins in Arabidopsis (a eudicot. A new convenient and functionally informative nomenclature for plant serpins in which the reactive-centre sequence is incorporated into the serpin name was developed and applied to the rice serpins. A phylogenetic analysis of the rice serpins provided evidence for two main clades and a number of relatively recent gene duplications. Transcriptional analysis showed vastly different levels of basal expression among eight selected rice serpin genes in callus tissue, during seedling development, among vegetative tissues of mature plants and throughout seed development. The gene OsSRP-LRS (Os03g41419, encoding a putative orthologue of Arabidopsis AtSerpin1 (At1g47710, was expressed ubiquitously and at high levels. The second most highly expressed serpin gene was OsSRP-PLP (Os11g11500, encoding a non-inhibitory serpin with a surprisingly well-conserved reactive-centre loop (RCL sequence among putative orthologues in other grass species. Conclusions The diversity of reactive-centre sequences among the putatively

  11. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    Science.gov (United States)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    ), we investigated samples from sounding rocket experiments (5 min μ g) and show increased transcript levels for signalling proteins. By means of 2-dimensional SDS polyacrylamide gelelectrophoresis, coupled to spot identification after tryptic digest (MALDI-TOF), we further show that metabolic short-term responses can be adjusted by protein phosphorylation/dephosphorylation. Changes in gene expression / protein modulation are mirrored by respective alterations in metabolite pools. (Supported by a grant from the Deutsches Zentrum für Luft- und Raumfahrt (DLR, 50WB0143)).

  12. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression.

    Science.gov (United States)

    Hicks, Mellissa J; Hu, Qiuping; Macrae, Erin; DeWille, James

    2015-05-01

    The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.

  13. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    Directory of Open Access Journals (Sweden)

    Gioia Altobelli

    Full Text Available A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%. The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  14. Ghrelin Gene Expression in Broiler Proventriculus Tissue are Changed by Feed Restriction, Different Dietary Energy and Protein Levels

    Directory of Open Access Journals (Sweden)

    Shokoufe Ghazanfari

    2010-01-01

    Full Text Available Problem statement: The aim of this study was to investigate the effects of feed restriction and different energy and protein contents of diet on ghrelin gene expression in broiler chicken. Approach: Feeding programs consisted of ad libitum and feed restriction, two energy levels (3100 and 2800 kcal ME kg-1 and three protein levels (22.3, 19.3 and 16.3% CP. Feed restriction was applied during 22-32 days of age. Proventriculus samples were collected at 21, 32 and 49 days of age. Ghrelin mRNA expression in proventriculus tissue was quantitate using Real Time quantitative PCR. Results: We found that ghrelin gene expression was increased in restricted chicks compared with those fed ad libitum at 32 days of age (p = 0.09 but feed restriction had no effect on ghrelin gene expression at 49 days of age. A positive response in ghrelin gene expression was achieved by decreasing energy level in the diet at 21 days of age (pConclusion: The present study, we investigated the effects of feed restriction and different energy and protein contents of the diet on ghrelin gene expression in broiler chicken. We have characterized chicken ghrelin cDNA in proventriculus tissue in broiler chicken. We also found that ghrelin gene expression is differently suppressed by diet manipulations. Additional studies are necessary to investigate the role of nutrition on ghrelin gene expression in proventriculus tissue in broiler chicken.

  15. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  16. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

    Science.gov (United States)

    Lebreton, Alice; Cossart, Pascale

    2017-01-01

    ABSTRACT The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes. PMID:27217337

  17. Protein method for investigating mercuric reductase gene expression in aquatic environments.

    Science.gov (United States)

    Ogunseitan, O A

    1998-02-01

    A colorimetric assay for NADPH-dependent, mercuric ion-specific oxidoreductase activity was developed to facilitate the investigation of mercuric reductase gene expression in polluted aquatic ecosystems. Protein molecules extracted directly from unseeded freshwater and samples seeded with Pseudomonas aeruginosa PU21 (Rip64) were quantitatively assayed for mercuric reductase activity in microtiter plates by stoichiometric coupling of mercuric ion reduction to a colorimetric redox chain through NADPH oxidation. Residual NADPH was determined by titration with phenazine methosulfate-catalyzed reduction of methyl thiazolyl tetrazolium to produce visible formazan. Spectrophotometric determination of formazan concentration showed a positive correlation with the amount of NADPH remaining in the reaction mixture (r2 = 0.99). Mercuric reductase activity in the protein extracts was inversely related to the amount of NADPH remaining and to the amount of formazan produced. A qualitative nitrocellulose membrane-based version of the method was also developed, where regions of mercuric reductase activity remained colorless against a stained-membrane background. The assay detected induced mercuric reductase activity from 10(2) CFU, and up to threefold signal intensity was detected in seeded freshwater samples amended with mercury compared to that in mercury-free samples. The efficiency of extraction of bacterial proteins from the freshwater samples was (97 +/- 2)% over the range of population densities investigated (10(2) to 10(8) CFU/ml). The method was validated by detection of enzyme activity in protein extracts of water samples from a polluted site harboring naturally occurring mercury-resistant bacteria. The new method is proposed as a supplement to the repertoire of molecular techniques available for assessing specific gene expression in heterogeneous microbial communities impacted by mercury pollution.

  18. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues.

    Science.gov (United States)

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-05-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  19. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; a Xia Liu; a Guangyao Zhao; Xinguo Mao; Ang Li; Ruilian Jing

    2014-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.

  20. Clinicopathologic significance of HER-2/neu protein expression and gene amplification in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Yan; Ying Hu; Jian-Gao Fan; Guo-Quan Tao; Yong-Ming Lu; Xu Cai; Bao-Hua Yu; Yi-Qun Du

    2011-01-01

    AIM: To study the HER-2/neu protein expression and gene amplification in gastric carcinoma and their relation. METHODS: One hundred and forty-five formalin-fixed and paraffin- embedded tumor tissue samples from Chinese gastric carcinoma patients were studied with immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) methods. Clinicopathologic data about all patients were collected. RESULTS: The levels of HER-2 3+, HER-2 2+ and HER2 1+ were measurable in 6.9%, 8.3% and 17.2% of the samples, respectively. No HER-2 was stained in 67.6% of the samples. FISH showed that HER-2 gene was amplified in 18 samples, 10 HER-2 3+ samples, 5 HER-2 2+ samples, and 3 HER-2 1+ samples with IHC staining. HER-2 status was not correlated with the sex and age of patients, and tumor size, location or differentiation, but with the depth of invasion, TNM stage, lymph node and distant metastasis as well as histopathological classification of gastric cancer (P < 0.05). CONCLUSION: All samples with IHC as HER-2 expression should be analyzed with FISH. Detection of HER-2 gene amplification can assess the malignant biological behaviors and prognosis of gastric cancer.

  1. Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression.

    Science.gov (United States)

    Jung, Susanne; Sielker, Sonja; Purcz, Nikolai; Sproll, Christoph; Acil, Yahya; Kleinheinz, Johannes

    2015-06-05

    Therapeutic strategies attacking oral squamous cell carcinoma have not essentially succeeded to improve long-term prognosis and overall survival over the last decades. Therefore, in this study, we aimed to illuminate the molecular regulation of angiogenesis in this tumour entity in order to demask novel markers of prognosis or therapeutic approach. A panel of significant transcriptional alterations in angiogenic genes of 83 cancer samples was established by comparison to 30 samples of healthy oral mucosa with microarray technique. Immunohistochemistry (IHC) was performed to trace the signalling cascade from gene to protein level. A distinctive expression profile of VEGFA, EFNB2, PECAM1/CD31, ANGPT1 and ANGPT2 was revealed: VEGFA, EFNB2, and ANGPT2 were found overexpressed in 84 % to 95 % of tumour samples. In contrast, the expression of CD31 and ANGPT1 was downregulated in 80 % to 95 % of tumour samples. IHC confirmed results of the microarray analysis. Tumours with lymphatic spread showed higher gene expression rates of VEGFA, EFNB2 and ANGPT2 in moderately differentiated tumours and of VEGFA and EFNB2 in small tumours, respectively. The ANGPT1/ ANGPT2 transcription ratio was found decreased in larger tumours and especially in tumours without lymphatic spread. A characteristic expression profile of angiogenic markers was established. The specific overexpression of EFNB2 in small tumours with lymphatic spread and the typical decrease of the ANGPT1/ ANGPT2 ratio in larger tumours give weight to EFNB2 and angiopoietins as prognostic factors and potential therapeutic targets.

  2. Molecular Cloning and Expression Analysis of a Zinc Finger Protein Gene in Apple

    Institute of Scientific and Technical Information of China (English)

    CAOQiu-Fen; MasatoWADA; MENGYu-Ping; SUNYi; CUIGui-Mei

    2004-01-01

    A cDNA library was created from stem apex tissue from Jonathan apples (Malus domestica Borkh.), harvested in June to August, during which the plant transitions from vegetative growth to reproductive growth. From this library, we isolated an expressed sequence tag (EST) sequence containing a zinc finger motif, using this sequence, a 779 bp cDNA fragment was obtained by using 5' RACE, and a final full-length cDNA encoding an apple zinc finger protein (named MdZF1; GenBank accession number AB116545) was obtained by further PCR. This zinc finger motif of MdZF1 has high homology with INOETERMINATE1 (ID1) gene from maize which seemed to be involved in the transition to flowering. Northern blot and RT-PCR analyses showed that the MdZF1 expressed in the root, stem, leaves, shoot apex and floral organs of the apple, with expression levels higher in root, stem, leaves and floral shoot apex than that in floral organs (sepals, petals, stamens and pistils). Genomic Southern analysis showed that there was a single copy gene in apple genome.

  3. Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells.

    Science.gov (United States)

    Gu, Lili; Dean, Jonathan; Oliveira, André L A; Sheehy, Noreen; Hall, William W; Gautier, Virginie W

    2009-04-27

    The Human I-mfa domain-Containing protein, HIC, is a 246 amino acid protein that functions as a transcriptional regulator. Although the precise function of HIC remains to be clarified, the association of the HIC gene locus with myeloid neoplasms, its interactions with lymphotropic viruses such as EBV, HIV-1 and HTLV-1 and its expression in immune tissues suggest that HIC might have a modulatory role in immune cells. To further characterise the HIC functional relationship with the immune system, we sought to analyse the HIC gene expression profile in immune cells and to determine if immunomodulatory cytokines, such as interleukin (IL)-2, could regulate the expression of HIC mRNA. Relative quantitative real-time RT-PCR revealed that HIC mRNA is highly expressed in PBMCs and in various hematopoietic cell lines. The immunomodulatory cytokine IL-2 up-regulated HIC gene expression in PBMCs, CEM, MT-2 and U937 but markedly reduced HIC gene expression in Raji. Addition of cycloheximide indicated that the IL-2 effects were independent of de novo protein synthesis and that the HIC gene is a direct target of IL-2. Two cell lines (Jurkat and BJAB) displayed a distinct loss in HIC gene expression. However, when these cell lines were subjected to a combination of DNA methyltransferase and histone-deacetylase inhibitors, (5-aza-2-deoxycytidine and trichostatin A, respectively), HIC expression was de-repressed, indicating possible epigenetic control of HIC expression. Overall, our study describes that the immune expression of HIC is cell-specific, dynamic, and identifies the HIC gene as an IL-2 responsive gene. Furthermore, our de-repression studies support the hypothesis that HIC might represent a candidate tumor suppressor gene. Overall, this report provides new insights for a putative role of HIC in the modulation of immune and inflammatory responses and/or hematological malignancies.

  4. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  5. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring.

    Science.gov (United States)

    Pinheiro, D F; Pacheco, P D G; Alvarenga, P V; Buratini, J; Castilho, A C S; Lima, P F; Sartori, D R S; Vicentini-Paulino, M L M

    2013-03-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  6. MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins[W

    Science.gov (United States)

    Punwani, Jayson A.; Rabiger, David S.; Drews, Gary N.

    2007-01-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98–green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation. PMID:17693534

  7. Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Daojun Cheng

    2014-01-01

    Full Text Available The BTB domain is a conserved protein-protein interaction motif. In this study, we identified 56 BTB domain-containing protein genes in the silkworm, in addition to 46 in the honey bee, 55 in the red flour beetle, and 53 in the monarch butterfly. Silkworm BTB protein genes were classified into nine subfamilies according to their domain architecture, and most of them could be mapped on the different chromosomes. Phylogenetic analysis suggests that silkworm BTB protein genes may have undergone a duplication event in three subfamilies: BTB-BACK-Kelch, BTB-BACK-PHR, and BTB-FLYWCH. Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution. Furthermore, several silkworm BTB protein genes exhibited sex-specific expression in larval tissues or at different stages during metamorphosis. These findings not only contribute to a better understanding of the evolution of insect BTB protein gene families but also provide a basis for further investigation of the functions of BTB protein genes in the silkworm.

  8. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  9. Organisation and expression of a cluster of yolk protein genes in the Australian sheep blowfly, Lucilia cuprina.

    Science.gov (United States)

    Scott, Maxwell J; Atapattu, Asela; Schiemann, Anja H; Concha, Carolina; Henry, Rebecca; Carey, Brandi-lee; Belikoff, Esther J; Heinrich, Jörg C; Sarkar, Abhimanyu

    2011-01-01

    The Australian sheep blowfly Lucilia cuprina is a major pest for the Australian and New Zealand sheep industries. With the long-term aim of making a strain of L. cuprina suitable for a genetic control program, we previously developed a tetracycline-repressible female lethal genetic system in Drosophila. A key part of this system is a female-specific promoter from a yolk protein (yp) gene controlling expression of the tetracycline-dependent transactivator (tTA). Here we report the sequence of a 14.2 kb genomic clone from L. cuprina that contains a cluster of three complete yp genes and one partial yp gene. The Lcyp genes are specifically expressed in females that have received a protein meal. A bioinformatic analysis of the promoter of one of the yp genes (LcypA) identified several putative binding sites for DSX, a known regulator of yp gene expression in other Diptera. A transgenic strain of L. cuprina was made that contained the LcypA promoter driving the expression of the Escherichia coli lacZ reporter gene. Transgenic females express high levels of β-galactosidase after a protein meal. Thus the LcypA promoter could be used to obtain female-specific expression of tTA in transgenic L. cuprina.

  10. Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons.

    Science.gov (United States)

    Inouye, Satoshi; Sahara-Miura, Yuiko; Sato, Jun-ichi; Suzuki, Takahiro

    2015-05-01

    A simple design method for codon optimization of genes to express a heterologous protein in mammalian cells is described. Codon optimization was performed by choosing only codons preferentially used in humans and with over 60% GC content, and the method was named the "preferred human codon-optimized method." To test our simple rule for codon optimization, the preferred human codon-optimized genes for six proteins containing photoproteins (aequorin and clytin II) and luciferases (Gaussia luciferase, Renilla luciferase, and firefly luciferases from Photinus pyralis and Luciola cruciata) were chemically synthesized and transiently expressed in Chinese hamster ovary-K1 cells. All preferred human codon-optimized genes showed higher luminescence activity than the corresponding wild-type genes. Our simple design method could be used to improve protein expression in mammalian cells efficiently. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice.

    Science.gov (United States)

    Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee

    2017-01-01

    The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.

  12. Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis.

    Science.gov (United States)

    Izacc, S M; Gomez, F J; Jesuino, R S; Fonseca, C A; Felipe, M S; Deepe, G S; Soares, C M

    2001-10-01

    A gene encoding the heat shock protein (HSP) 60 from Paracoccidioides brasiliensis (Pb) was cloned and characterized. The hsp60 gene is composed of three exons divided by two introns. Structural analysis of the promoter detected canonical sequences characteristic of regulatory regions from eukaryotic genes. The deduced amino acid sequence of the Pb hsp60 gene and the respective cloned cDNA consists of 592 residues highly homologous to other fungal HSP60 proteins. The hsp60 gene is present as a single copy in the genome, as shown by Southern blot analysis. The HSP60 protein was isolated from Pb yeast cellular extracts. N-terminal amino acid sequencing of HSP60 confirmed that the cloned hsp60 gene correlated to the predicted protein in Pb. HSP60 expression appeared to be regulated during form transition in Pb, as different levels of expression were detected in in vitro labeling of cells and northern blot analysis. The complete coding region of Pb hsp60 was fused with plasmid pGEX-4T-3 and expressed in Escherichia coli as a glutathione S-transferase-tagged recombinant protein. The protein reacted with a mouse monoclonal antibody raised to a human recombinant HSP60. Western immunoblot experiments demonstrated that the recombinant protein and the native HSP60 were recognized by sera from humans with paracoccidioidomycosis (PCM).

  13. Spontaneous silencing of humanized green fluorescent protein (hGFP) gene expression from a retroviral vector by DNA methylation

    DEFF Research Database (Denmark)

    Gram, G J; Nielsen, S D; Hansen, J E

    1998-01-01

    We have constructed a functional murine leukemia virus (MLV)-derived retroviral vector transducing two genes encoding the autofluorescent humanized green fluorescent protein (hGFP) and neomycin phosphotransferase (Neo). This was done to determine whether hGFP could function as a marker gene...... in a retroviral vector and to investigate the expression of genes in a retroviral vector. Surprisingly, clonal vector packaging cell lines showed variable levels of hGFP expression, and expression was detected in as few as 49% of the cells in a clonally derived culture. This indicated that hGFP expression...... was shown to increase the hGFP-expressing MT4 cells from either 10.4% to 11.6% or 3.7% to 4.8%, corresponding to an increase in observed transduction efficiencies of 12% and 30%, respectively. These results indicate that silencing of gene expression from a retroviral vector may result from DNA methylation...

  14. Cloning, tissue expression pattern, and chromosome localization of human protein kinase Bγ gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Protein kinase B (PKB) is a member of the second messenger-regulated subfamily of protein kinases, and plays a key role in cell-cycle regulation, glucose uptake and promotion of cell differentiation. Evidence shows that PKB undergoes activation in some human tumors and is involved in Ras pathway, which implies that PKB can trigger a pathway to induce oncogenic transformation. A nucleotide sequence of mouse Pkb? was used as a probe to screen homolog in a human liver cDNA library. A fragment of 1998 bp containing a 1440 bp ORF encoding 479 amino acid residues was obtained. Then the 3'-terminal of this fragment was extended to 2788 bp by 'electronic walking' screening, and the extended fragment was confirmed by PCR amplification. The protein deduced by the gene had a high identity of 83% and 78% to the human PKBγ and γ, respectively, and was designated as human PKB?. Northern hybridization detected two equally expressed transcripts of 8.5 and 6.5 kb in length in all 16 human tissues tested, with the highest expression level in brain, and lower levels with variation in the other tissues. By RH mapping, the PKBγ was placed on chromosome 1q43, between markers D1S304 and D1S2693. It is a valuable clue for cloning the candidate genes related to prostate cancer; Arrhythmogenic Right Ventricular Dysplasia (ARVD); Chediak-Higashi, NK cell Deficiency (CHS); and Hypoparathyrodism with Short Stature, Mental Retardation and Seizures which have already been mapped in this chromosomal region.

  15. Expression of the Immediate-Early Gene-Encoded Protein Egr-1 ("zif268") during in Vitro Classical Conditioning

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…

  16. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome

    Science.gov (United States)

    Zhang, Wei; Zhang, Xiaoman; Qu, Cheng; Tetreau, Guillaume; Sun, Lujuan; Zhou, Jingjiang

    2017-01-01

    Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) of arthropods are thought to be involved in chemical recognition which regulates pivotal behaviors including host choice, copulation and reproduction. In insects, OBPs and CSPs located mainly in the antenna but they have not been systematically characterized yet in Bemisia tabaci which is a cryptic species complex and could damage more than 600 plant species. In this study, among the 106,893 transcripts in the head assembly, 8 OBPs and 13 CSPs were identified in B. tabaci MED based on head transcriptomes of adults. Phylogenetic analyses were conducted to investigate the relationships of B. tabaci OBPs and CSPs with those from several other important Hemipteran species, and the motif-patterns between Hemiptera OBPs and CSPs were also compared by MEME. The expression profiles of the OBP and CSP genes in different tissues of B. tabaci MED adults were analyzed by real-time qPCR. Seven out of the 8 OBPs found in B. tabaci MED were highly expressed in the head. Conversely, only 4 CSPs were enriched in the head, while the other nine CSPs were specifically expressed in other tissues. Our findings pave the way for future research on chemical recognition of B. tabaci at the molecular level. PMID:28166541

  17. The physics of protein-DNA interaction networks in the control of gene expression

    Science.gov (United States)

    Saiz, Leonor

    2012-05-01

    Protein-DNA interaction networks play a central role in many fundamental cellular processes. In gene regulation, physical interactions and reactions among the molecular components together with the physical properties of DNA control how genes are turned on and off. A key player in all these processes is the inherent flexibility of DNA, which provides an avenue for long-range interactions between distal DNA elements through DNA looping. Such versatility enables multiple interactions and results in additional complexity that is remarkably difficult to address with traditional approaches. This topical review considers recent advances in statistical physics methods to study the assembly of protein-DNA complexes with loops, their effects in the control of gene expression, and their explicit application to the prototypical lac operon genetic system of the E. coli bacterium. In the last decade, it has been shown that the underlying physical properties of DNA looping can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including the balance between robustness and sensitivity of the induction process. These physical properties are largely dependent on the free energy of DNA looping, which accounts for DNA bending and twisting effects. These new physical methods have also been used in reverse to uncover the actual in vivo free energy of looping double-stranded DNA in living cells, which was not possible with existing experimental techniques. The results obtained for DNA looping by the lac repressor inside the E. coli bacterium showed a more malleable DNA than expected as a result of the interplay of the simultaneous presence of two distinct conformations of looped DNA.

  18. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  19. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  20. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Directory of Open Access Journals (Sweden)

    Mohammad-Zaman Nouri

    2015-08-01

    Full Text Available Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4, type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  1. Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer

    2014-06-01

    Full Text Available Gene expression within human glioblastomas were analyzed from data on 20,083 genes entered into the on-line Human Protein Atlas. In selecting genes that are strongly expressed within normal human brain tissue, 58 genes were identified from a search of the 20,083 entries that were rated as showing 90% or greater intensity of expression within normal brain tissues. Of these 58, a subset of 48 genes was identified that not only had expression data for human glioblastomas but also for the human glioblastoma cell line U-251. Four of these 48 selected genes were found to be strongly expressed within the cytoplasm when assessed by both histologic sampling of high grade glioma patient cases as well as U-251 glioblastoma cell line immunofluoresence analysis. These four human genes are: AGBL2 (ATP/GTP binding protein-like 2, BLOC1S6 (biogenesis of lysosomal organelles complex-1, subunit 6, MAP1A (microtubule-associated protein 1A and ZSWIM5 (zinc finger, SWIM-type containing 5, also known as KIAA1511. Further research is advocated to investigate the role of ZSWIM5 and AGBL2 in glioma cell biology.

  2. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    Science.gov (United States)

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  3. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, E.; Clerc, R.G.

    1988-06-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, which have been characterized. Here the authors report that MRP8 and MRP14 mRNAs are specially expressed in human cells of myeloid origin and that their expression is regulated during monocycle-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, the authors cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100..cap alpha.., S100BETA, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting element responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.

  4. Gene expression profiles in mouse embryo fibroblasts lacking stathmin, a microtubule regulatory protein, reveal changes in the expression of genes contributing to cell motility

    Directory of Open Access Journals (Sweden)

    Cassimeris Lynne

    2009-07-01

    Full Text Available Abstract Background Stathmin (STMN1 protein functions to regulate assembly of the microtubule cytoskeleton by destabilizing microtubule polymers. Stathmin over-expression has been correlated with cancer stage progression, while stathmin depletion leads to death of some cancer cell lines in culture. In contrast, stathmin-null mice are viable with minor axonopathies and loss of innate fear response. Several stathmin binding partners, in addition to tubulin, have been shown to affect cell motility in culture. To expand our understanding of stathmin function in normal cells, we compared gene expression profiles, measured by microarray and qRT-PCR, of mouse embryo fibroblasts isolated from STMN1+/+ and STMN1-/- mice to determine the transcriptome level changes present in the genetic knock-out of stathmin. Results Microarray analysis of STMN1 loss at a fold change threshold of ≥ 2.0 revealed expression changes for 437 genes, of which 269 were up-regulated and 168 were down-regulated. Microarray data and qRT-PCR analysis of mRNA expression demonstrated changes in the message levels for STMN4, encoding RB3, a protein related to stathmin, and in alterations to many tubulin isotype mRNAs. KEGG Pathway analysis of the microarray data indicated changes to cell motility-related genes, and qRT-PCR plates specific for focal adhesion and ECM proteins generally confirmed the microarray data. Several microtubule assembly regulators and motors were also differentially regulated in STMN1-/- cells, but these changes should not compensate for loss of stathmin. Conclusion Approximately 50% of genes up or down regulated (at a fold change of ≥ 2 in STMN1-/- mouse embryo fibroblasts function broadly in cell adhesion and motility. These results support models indicating a role for stathmin in regulating cell locomotion, but also suggest that this functional activity may involve changes to the cohort of proteins expressed in the cell, rather than as a direct

  5. Effects of androgen-binding protein (ABP) on spermatid Tnp1 gene expression in vitro.

    Science.gov (United States)

    Della-Maria, Julie; Gerard, Anne; Franck, Patricia; Gerard, Hubert

    2002-12-30

    In vitro studies were designed to determine whether Sertoli cell-delivered ABP could act on spermatogenetic events, whether such an action could occur via a paracrine or a juxtacrine pathway and whether sex steroids could be involved in this action. ABP delivery to germ cells was achieved using an in vitro model based on recombinant rat ABP-producing mouse Sertoli cells cocultivated with rat spermatids. Using semi-quantitative RT-PCR, the expression of the Tnp 1 gene encoding the Transition Protein 1, involved in the histone to protamine replacement during spermatid nuclear transformation, was analyzed. Our results provide clear evidence that Sertoli cell-derived ABP acts on spermatids by modifying the TP1 mRNA level. This outcome, strictly requiring juxtacrine conditions, is obtained in the absence of sex steroid hormones. To our knowledge this is the first evidence of an effect of ABP itself on male germ cells.

  6. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  7. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Lim Qing-En

    2010-01-01

    Full Text Available Abstract Background Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs, β-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions. Results Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder. Conclusions The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes

  8. Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression.

    Science.gov (United States)

    Wang, H G; Wang, X F; Jing, X Y; Li, Z; Zhang, Y; Lv, Z J

    2011-08-26

    Our previous studies have shown that tandem Alu repeats inhibit green fluorescent protein (GFP) gene expression when inserted downstream of the GFP gene in the pEGFP-C1 vector. We found that the 22R sequence (5'-GTGAAAAAAATGCTTTATTTGT-3') from the antisense PolyA (240 bp polyadenylation signal) of simian virus 40, eliminated repression of GFP gene expression when inserted between the GFP gene and the Alu repeats. The 22R sequence contains an imperfect palindrome; based on RNA structure software prediction, it forms an unstable stem-loop structure, including a loop, a first stem, a bulge, and a second stem. Analysis of mutations of the loop length of the 22R sequence showed that the three-nucleotide loop (wild-type, 22R) induced much stronger GFP expression than did other loop lengths. Two mutations, 4TMI (A7→T, A17→T) and 5AMI (A6→T, T18→A), which caused the base type changes in the bulge and in the second stem in the 22R sequence, induced stronger GFP gene expression than 22R itself. Mutation of the bulge base (A17→T), leading to complete complementation of the stem, caused weaker GFP gene expression. Sequences without a palindrome (7pieA, 5'-GTGAAAAAAATG CAAAAAAAGT-3', 7pieT, 5'-GTGTTTTTTTTGCTTTTTTTGT-3') did not activate GFP gene expression. We conclude that an imperfect palindrome affects and can increase GFP gene expression.

  9. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  10. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Science.gov (United States)

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  11. Assessment of Control Tissue for Gene and Protein Expression Studies: A Comparison of Three Alternative Lung Sources

    Directory of Open Access Journals (Sweden)

    Margaret R. Passmore

    2012-01-01

    Full Text Available The use of an appropriate control group in human research is essential in investigating the level of a pathological disorder. This study aimed to compare three alternative sources of control lung tissue and to determine their suitability for gene and protein expression studies. Gene and protein expression levels of the vascular endothelial growth factor (VEGF and gelatinase families and their receptors were measured using real-time reverse transcription polymerase chain reaction (RT-PCR and immunohistochemistry. The gene expression levels of VEGFA, placental growth factor (PGF, and their receptors, fms-related tyrosine kinase 1 (FLT1, and kinase insert domain receptor (KDR as well as matrix metalloproteinase-2 (MMP-2 and the inhibitors, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 and TIMP-2 were significantly higher in lung cancer resections. The gene expression level of MMP-9 was significantly lower in the corresponding samples. Altered protein expression was also detected, depending on the area assessed. The results of this study show that none of the three control groups studied are completely suitable for gene and protein studies associated with the VEGF and gelatinase families, highlighting the need for researchers to be selective in which controls they opt for.

  12. Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning.

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink classical conditioning. The results showed that Egr-1 protein expression as determined by immunocytochemistry and Western blot analysis rapidly increased during the early stages of conditioning and remained elevated during the later stages. Further, expression of Egr-1 protein required NMDA receptor activation as it was blocked by bath application of AP-5. These findings suggest that the IEG-encoded proteins such as Egr-1 are activated during relatively simple forms of learning in vertebrates. In this case, Egr-1 may have a functional role in the acquisition phase of conditioning as well as in maintaining expression of conditioned responses.

  13. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1.

    Science.gov (United States)

    Köhler, Claudia; Hennig, Lars; Spillane, Charles; Pien, Stephane; Gruissem, Wilhelm; Grossniklaus, Ueli

    2003-06-15

    The Polycomb-group (PcG) proteins MEDEA, FERTILIZATION INDEPENDENT ENDOSPERM, and FERTILIZATION INDEPENDENT SEED2 regulate seed development in Arabidopsis by controlling embryo and endosperm proliferation. All three of these FIS-class proteins are likely subunits of a multiprotein PcG complex, which epigenetically regulates downstream target genes that were previously unknown. Here we show that the MADS-box gene PHERES1 (PHE1) is commonly deregulated in the fis-class mutants. PHE1 belongs to the evolutionarily ancient type I class of MADS-box proteins that have not yet been assigned any function in plants. Both MEDEA and FIE directly associate with the promoter region of PHE1, suggesting that PHE1 expression is epigenetically regulated by PcG proteins. PHE1 is expressed transiently after fertilization in both the embryo and the endosperm; however, it remains up-regulated in the fis mutants, consistent with the proposed function of the FIS genes as transcriptional repressors. Reduced expression levels of PHE1 in medea mutant seeds can suppress medea seed abortion, indicating a key role of PHE1 repression in seed development. PHE1 expression in a hypomethylated medea mutant background resembles the wild-type expression pattern and is associated with rescue of the medea seed-abortion phenotype. In summary, our results demonstrate that seed abortion in the medea mutant is largely mediated by deregulated expression of the type I MADS-box gene PHE1.

  14. Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas

    Directory of Open Access Journals (Sweden)

    Walsh Tom

    2009-07-01

    Full Text Available Abstract Background DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy. Additionally, we assessed whether promoter methylation of BRCA1, MLH1 or FANCF influenced response to chemotherapy or explained alterations in protein expression after chemotherapy exposure. Results Of 115 primary sporadic ovarian carcinomas, 39 (34% had low BRCA1 protein and 49 (42% had low BRCA2 expression. BRCA1 and BRCA2 protein expression were highly concordant (p Conclusion Low BRCA1 expression in primary sporadic ovarian carcinoma is associated with prolonged survival. Recurrent ovarian carcinomas commonly have increased BRCA1 and/or BRCA2 protein expression post chemotherapy exposure which could mediate resistance to platinum based therapies. However, alterations in expression of these proteins after chemotherapy are not commonly mediated by promoter methylation, and other regulatory mechanisms are likely to contribute to these alterations.

  15. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    Science.gov (United States)

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  16. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  17. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    Science.gov (United States)

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates.

  18. Coronatine Gene Expression In Vitro and In Planta, and Protein Accumulation During Temperature Downshift in Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Alexander Schenk

    2009-06-01

    Full Text Available The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consisting of a response regulator, CorR, the histidine protein kinase CorS, and a third component, termed CorP. We analyzed at transcriptional and translational levels the expression of corS and the cma operon involved in COR biosynthesis after a temperature downshift from 28 to 18 °C. Expression of cma was induced within 20 min and increased steadily whereas corS expression was only slightly temperature-dependent. Accumulation of CmaB correlated with accumulation of cma mRNA. However, cma transcription was suppressed by inhibition of de novo protein biosynthesis. A transcriptional fusion of the cma promoter to a promoterless egfp gene was used to monitor the cma expression in vitro and in planta. A steady induction of cma::egfp by temperature downshift was observed in both environments. The results indicate that PG4180 responds to a temperature decrease with COR gene expression. However, COR gene expression and protein biosynthesis increased steadily, possibly reflecting adaptation to long-term rather than rapid temperature changes.

  19. Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation.

    Science.gov (United States)

    Bermejo, B; Remacha, M; Ortiz-Reyes, B; Santos, C; Ballesta, J P

    1994-02-11

    Constructions were made from genes encoding ribosomal acidic phosphoproteins YP1 beta (L44') and YP2 beta (L45) from Saccharomyces cerevisiae in which different parts of the 5'-untranslated regions were included. The constructs were inserted into centromeric plasmids under the control of the GAL1 promoter and expressed in yeast strains in which the genes coding for each acidic protein family, P1 and P2, had been disrupted. Deletions in the 5' region of the two genes have been found to oppositely affect their expression. Deletion of most of this region strongly stimulates the expression of YP2 beta (L45), increasing the translation efficiency of the mRNA, and generating a 6-fold excess of protein in the cell. A similar deletion in the rpYP1 beta gene represses the expression of the protein, reducing drastically the amount of the mRNA in the cell. The overexpression of rpYP2 beta affects the cell growth by inhibiting protein synthesis at the level of initiation. Reduction of the YP2 beta(L45) overproduction by growing in controlled concentrations of glucose abolishes the inhibitory effect. The excess protein, probably as a high molecular weight complex, apparently interferes with the joining of the 60 S subunit to the initiation complex generating the accumulation of polysome half-mers. In addition, the results indicate the existence of a regulatory mechanism by which each one of the two acidic proteins controls the expression of the other polypeptide. YP1 beta(L44') represses the expression of YP2 beta(L45), while this protein stimulates the expression of YP1 beta(L44').

  20. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    Science.gov (United States)

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  1. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida

    Directory of Open Access Journals (Sweden)

    Satparkash Singh

    2011-06-01

    Full Text Available Haemorrhagic Septicaemia (HS, an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  2. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    Science.gov (United States)

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  3. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9.

    Directory of Open Access Journals (Sweden)

    Lech Kaczmarczyk

    Full Text Available The mammalian prion protein (PrP, encoded by Prnp is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9, have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs. It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.

  4. Unintended Changes in Genetically Modified Rice Expressing the Lysine-Rich Fusion Protein Gene Revealed by a Proteomics Approach

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-xiang; TANG Tang; LIU Fu-xia; LU Chang-li; HU Xiao-lan; JI Li-lian; LIU Qiao-quan

    2013-01-01

    Development of new technologies for evaluating genetically modiifed (GM) crops has revealed that there are unintended insertions and expression changes in GM crops. Proifling techniques are non-targeted approaches and are capable of detecting more unintended changes in GM crops. Here, we report the application of a comparative proteomic approach to investigate the protein proifle differences between a GM rice line, which has a lysine-rich protein gene, and its non-transgenic parental line. Proteome analysis by two-dimensional gel electrophoresis (2-DE) and mass spectrum analysis of the seeds identiifed 22 differentially expressed protein spots. Apart from a number of glutelins that were detected as targeted proteins in the GM line, the majority of the other changed proteins were involved in carbohydrate metabolism, protein synthesis and stress responses. These results indicated that the altered proteins were not associated with plant allergens or toxicity.

  5. Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenario.

    Science.gov (United States)

    Jesus, Tiago F; Moreno, João M; Repolho, Tiago; Athanasiadis, Alekos; Rosa, Rui; Almeida-Val, Vera M F; Coelho, Maria M

    2017-01-01

    Current knowledge on the biological responses of freshwater fish under projected scenarios of climate change remains limited. Here, we examine differences in the protein configuration of two endemic Iberian freshwater fish species, Squalius carolitertii and the critically endangered S. torgalensis that inhabit in the Atlantic-type northern and in the Mediterranean-type southwestern regions, respectively. We performed protein structure modeling of fourteen genes linked to protein folding, energy metabolism, circadian rhythms and immune responses. Structural differences in proteins between the two species were found for HSC70, FKBP52, HIF1α and GPB1. For S. torgalensis, besides structural differences, we found higher thermostability for two proteins (HSP90 and GBP1), which can be advantageous in a warmer environment. Additionally, we investigated how these species might respond to projected scenarios of 3° climate change warming, acidification (ΔpH = -0.4), and their combined effects. Significant changes in gene expression were observed in response to all treatments, particularly under the combined warming and acidification. While S. carolitertii presented changes in gene expression for multiple proteins related to folding (hsp90aa1, hsc70, fkbp4 and stip1), only one such gene was altered in S. torgalensis (stip1). However, S. torgalensis showed a greater capacity for energy production under both the acidification and combined scenarios by increasing cs gene expression and maintaining ldha gene expression in muscle. Overall, these findings suggest that S. torgalensis is better prepared to cope with projected climate change. Worryingly, under the simulated scenarios, disturbances to circadian rhythm and immune system genes (cry1aa, per1a and gbp1) raise concerns for the persistence of both species, highlighting the need to consider multi-stressor effects when evaluating climate change impacts upon fish. This work also highlights that assessments of the potential of

  6. Comparison of Gene and Protein Expressions in Rats Residing in Standard Cages with Those Having Access to an Exercise Wheel

    Directory of Open Access Journals (Sweden)

    Helaine M. Alessio

    2014-01-01

    Full Text Available Lifelong physical inactivity is associated with morbidity in adulthood, possibly influenced by changes in gene and protein expressions occurring earlier in life. mRNA (Affymetrix gene array and proteomic (2D-DIGE MALDI-TOF/MS analyses were determined in cardiac tissue of young (3 months and old (16 months Sprague-Dawley rats housed with no access to physical activity (SED versus an exercise wheel (EX. Unfavorable phenotypes for body weight, dyslipidemia, and tumorogenesis appeared more often in adult SED versus EX. No differentially expressed genes (DEGs occurred between groups at 3 or 16 months. Within groups, SED and EX shared 215 age-associated DEGs. In SED, ten unique DEGs occurred with age; three had cell adhesion functions (fn1, lgals3, ncam2. In EX, five unique DEGs occurred with age; two involved hypothalamic, pituitary, and gonadal hormone axis (nrob2, xpnpep2. Protein expression involved in binding, sugar metabolic processes, and vascular regulation declined with age in SED (KNT1, ALBU, GPX1, PYGB, LDHB, G3P, PYGM, PGM1, ENOB. Protein expression increased with age in EX for ATP metabolic processes (MYH6, MYH7, ATP5J, ATPA and vascular function (KNT1, ALBU, GPX1. Differences in select gene and protein expressions within sedentary and active animals occurred with age and contributed to distinct health-related phenotypes in adulthood.

  7. Molecular Cloning and Prokaryotic Expression of Non-Structural Protein NS1 Gene of Porcine Parvovirus

    Institute of Scientific and Technical Information of China (English)

    WU Dan; TONG Guang-zhi; QIU Hua-ji; XUE Qiang; ZHOU Yan-jun; LI Jing-peng

    2003-01-01

    Porcine parvovirus (PPV) is one of the major agents causing swine reproductive failure. NS1protein is a non-structural protein of PPV and can be used as a reagent for differentiation of vaccinated ani-mals and infected ones. In present study, a recombinant plasmid pET28a/NS1 was constructed by cloning thecoding sequence for NS1 of PPV into pET28a, a bacterial expression vector. The NS1 protein was expressed inE. coli BL21 (DE3) after induced by IPTG and the recombinant fusion protein was purified with affinity chro-matography. Expression amount of NS1 protein was improved by optimizing the inducing parameters. The re-combinant NS1 protein is reactive to PPV positive sera in Western blot and ELISA test and therefore can beapplicable in differential diagnosis of PPV infections.

  8. Rescue and Preliminary Application of a Recombinant Newcastle Disease Virus Expressing Green Fluorescent Protein Gene

    Institute of Scientific and Technical Information of China (English)

    Shun-lin HU; Qin SUN; Qu-zhi WANG; Yul-iang LIU; Yan-tao WU; Xiu-fan LIU

    2007-01-01

    Based on the complete genome sequence of Newcastle disease virus (NDV) ZJI strain,seven pairs of primers were designed to amplify a cDNA fragment for constructing the plasmid pNDV/ZJI,which contained the full-length cDNA of the NDV ZJI strain.The pNDV/ZJI,with three helper plasmids,pCIneoNP,pCIneoP and pCIneoL,were then cotransfected into BSR-T7/5 cells expressing T7 RNA polymerase.After inoculation of the transfected cell culture supernatant into embryonated chicken eggs from specific-pathogen-free (SPF) flock,an infectious NDV ZJI strain was successfully rescued.Green fluorescent protein (GFP) gene was amplified and inserted into the NDV full-length cDNA to generate a GFP-tagged recombinant plasmid pNDV/ZJIGFP.After cotransfection of the resultant plasmid and the three support plasmids into BSR-T7/5 cells,the recombinant NDV,NDV/ZJIGFP,was rescued.Specific green fluorescence was observed in BSR-T7/5 and chicken embryo fibroblast (CEF) cells 48h post-infection,indicating that the GFP gene was expressed at a relatively high level.NDV/ZJIGFP was inoculated into 10-day-old SPF chickens by oculonasal route.Four days post-infection,strong green fluorescence could be detected in the kidneys and tracheae,indicating that the recombinant GFP-tagged NDV could be a very useful tool for analysis of NDV dissemination and pathogenesis.

  9. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Hayley R Inglis

    Full Text Available BACKGROUND: Experimental autoimmune encephalomyelitis (EAE, the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. METHODOLOGY/PRINCIPAL FINDINGS: MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. CONCLUSIONS/SIGNIFICANCE: EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.

  10. Molecular characterization of Gla-rich protein (GRP) gene expression and function

    OpenAIRE

    Fazenda, Cindy Vitória

    2014-01-01

    Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcifi...

  11. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis.

    Science.gov (United States)

    Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran

    2015-09-01

    Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.

  12. Gene Expression Patterns Define Key Transcriptional Events InCell-Cycle Regulation By cAMP And Protein Kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon; Kanter, Joan R.; Prabhakar, Shyam; Salomonis, Nathan; Vranizan, Karen; Dubchak Inna,; Conklin, Bruce R.; Insel, Paul A.

    2005-06-01

    Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrest of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.

  13. Temperature and Food Influence Shell Growth and Mantle Gene Expression of Shell Matrix Proteins in the Pearl Oyster Pinctada margaritifera

    Science.gov (United States)

    Joubert, Caroline; Linard, Clémentine; Le Moullac, Gilles; Soyez, Claude; Saulnier, Denis; Teaniniuraitemoana, Vaihiti; Ky, Chin Long; Gueguen, Yannick

    2014-01-01

    In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control. PMID:25121605

  14. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera.

    Directory of Open Access Journals (Sweden)

    Caroline Joubert

    Full Text Available In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.

  15. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining

    NARCIS (Netherlands)

    Hulsegge, B.; Woelders, H.; Smits, M.A.; Schokker, D.; Jiang, L.; Sorensen, P.

    2013-01-01

    Reproduction is of significant economic importance in dairy cattle. Improved understanding of mechanisms that control estrous behavior and other reproduction traits could help in developing strategies to improve and/or monitor these traits. The objective of this study was to predict and rank genes

  16. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Sheng-Li; Yu, Chao; Jiang, Jian-Xin; Liu, Li-Ping; Fang, Xiefan; Wu, Chao

    2014-12-01

    The human circadian rhythm is controlled by at least eight circadian clock genes and disruption of the circadian rhythm is associated with cancer development. The present study aims to elucidate the association between the expression of circadian clock genes and the development of hepatocellular carcinoma (HCC), and also to reveal whether the hepatitis B virus X protein (HBx) is the major regulator that contributes to the disturbance of circadian clock gene expression. The mRNA levels of circadian clock genes in 30 HCC and the paired peritumoral tissues were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A stable HBx-expressing cell line, Bel-7404-HBx, was established through transfection of HBx plasmids. The mRNA level of circadian clock genes was also detected by RT-qPCR in these cells. Compared with the paired peritumoral tissues, the mRNA levels of the Per1, Per2, Per3 and Cry2 genes in HCC tissue were significantly lower (P0.05). Compared with Bel-7404 cells, the mRNA levels of the CLOCK, Per1 and Per2 genes in Bel-7404-HBx cells were significantly increased, while the mRNA levels of the BMAL1, Per3, Cry1, Cry2 and CKIɛ genes were decreased (Pgenes is common in HCC. HBx disrupts the expression of circadian clock genes and may, therefore, induce the development of HCC.

  17. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    Science.gov (United States)

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.

  18. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    Science.gov (United States)

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment.

  19. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    Science.gov (United States)

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits.

  20. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.

    Science.gov (United States)

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-08-30

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.

  1. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins.

    Science.gov (United States)

    Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Paredes, Rodolfo; Paludo, Gabriela Prado; da Fonsêca, Marbella Maria; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2012-09-10

    Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay.

  2. Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection.

    Science.gov (United States)

    Dumas, B; Centis, S; Sarrazin, N; Esquerré-Tugayé, M T

    1999-04-01

    The 5' noncoding region of clpg2, an endopolygalacturonase gene of the bean pathogen Colletotrichum lindemuthianum, was fused to the coding sequence of a gene encoding a green fluorescent protein (GFP), and the construct was introduced into the fungal genome. Detection of GFP accumulation by fluorescence microscopy examination revealed that clpg2 was expressed at the early stages of germination of the conidia and during appressorium formation both in vitro and on the host plant.

  3. Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression.

    Directory of Open Access Journals (Sweden)

    Silvia Spanu

    Full Text Available BACKGROUND: In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane. METHODS: Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN. Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry. RESULTS: Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold. CONCLUSION: In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.

  4. A comparative analysis of green fluorescent protein and -glucuronidase protein-encoding genes as a reporter system for studying the temporal expression profiles of promoters

    Indian Academy of Sciences (India)

    P Kavita; Pradeep Kumar Burma

    2008-09-01

    The assessment of activity of promoters has been greatly facilitated by the use of reporter genes. However, the activity as assessed by reporter gene is a reflection of not only promoter strength, but also that of the stability of the mRNA and the protein encoded by the reporter gene. While a stable reporter gene product is an advantage in analysing activities of weak promoters, it becomes a major limitation for understanding temporal expression patterns of a promoter, as the reporter product persists even after the activity of the promoter ceases. In the present study we undertook a comparative analysis of two reporter genes, -glucuronidase (gus) and green fluorescent protein (sgfp), for studying the temporal expression pattern of tapetum-specific promoters A9 (Arabidopsis thaliana) and TA29 (Nicotiana tabacum). The activity of A9 and TA29 promoters as assessed by transcript profiles of the reporter genes (gus or sgfp) remained the same irrespective of the reporter gene used. However, while the deduced promoter activity using gus was extended temporally beyond the actual activity of the promoter, sgfp as recorded through its fluorescence correlated better with the transcription profile. Our results thus demonstrate that sgfp is a better reporter gene compared to gus for assessment of temporal activity of promoters. Although several earlier reports have commented on the possible errors in deducing temporal activities of promoters using GUS as a reporter protein, we experimentally demonstrate the advantage of using reporter genes such as gfp for analysis of temporal expression patterns.

  5. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.

    Science.gov (United States)

    Kawai, M; Aotsuka, S; Uchimiya, H

    1998-12-01

    The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.

  6. Cloning and functional expression in Escherichia coli of the gene encoding the di- and tripeptide transport protein of Lactobacillus helveticus

    NARCIS (Netherlands)

    Nakajima, H.; Hagting, A; Kunji, E.R S; Poolman, B.; Konings, W.N

    1997-01-01

    The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpT(LH)) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coil E1772. Functional expression of the peptide

  7. Effect of Hepatitis C Virus Core Protein on Interferon-Induced Antiviral Genes Expression and Its Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Emerging data indicated that HCV subverts the antiviral activity of interferon (IF); however,whether HCV core protein contributes to the process remains controversial. In the present study, we examined the effect of HCV core protein on interferon-induced antiviral gene expression and whether the effect is involved in the activation and negative regulation of the Jak/STAT signaling pathway. Our results showed that, following treatment with IFN-α, the transcription of PKR, MxA and 2'-5'OAS were down-regulated in HepG2 cells expressing the core protein. In the presence of HCV core protein,ISRE-dependent luciferase activity also decreased. Further study indicated that the core protein could inhibit the tyrosine phosphorylation of STAT1, whereas the level of STAT1 expression was unchanged.Accordingly, SOCS3, the negative regulator of the Jak/STAT pathway, was induced by HCV core protein. These results suggests that HCV core protein may interfere with the expression of some interferon-induced antiviral genes by inhibiting STAT1 phosphorylation and induction of SOCS3.

  8. A Pelargonium ARGONAUTE4 gene shows organ-specific expression and differences in RNA and protein levels.

    Science.gov (United States)

    He, Jie; Gray, John; Leisner, Scott

    2010-03-01

    RNAi-induced gene silencing plays a role in plant DNA methylation and defense. While most gene silencing studies have been performed on annuals, little is known about the expression of key components of this process (like ARGONAUTE proteins) in ornamentals. Using a combination of polymerase chain reaction techniques, an ARGONAUTE4 gene, PhAGO4, was isolated from Pelargonium. PhAGO4 encodes a predicted product of 934 amino acids that contains the PAZ and PIWI domains typical of ARGONAUTE (AGO) proteins. Phylogenetic analyses indicate that PhAGO4 clusters with other plant AGO4 proteins. Organ expression patterns of the AGO4 genes in Pelargonium and Arabidopsis show intriguing differences. AGO4 RNA levels decline with leaf age in both Arabidopsis and Pelargonium. In contrast AGO4 RNA levels in roots relative to leaves are higher in Pelargonium than in Arabidopsis. Both Arabidopsis and Pelargonium AGO4 showed higher RNA levels in flowers than leaves or roots. Even though flowers show higher levels of PhAGO4 RNA when compared to leaves and roots, protein gel blot analysis shows that at the protein level, the reverse is true. This suggests that PhAGO4 expression may be regulated at the translational or post-translational level in Pelargonium flowers.

  9. Chemotherapy modulates intestinal immune gene expression including surfactant Protein-D and deleted in malignant brain tumors 1 in piglets

    DEFF Research Database (Denmark)

    Rathe, Mathias; Thomassen, Mads; Shen, René L.

    2016-01-01

    Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant...... the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces....... the BUCY and DOX piglets. Selected genes of potential biological significance with a similar change in expression across the treatments were controlled by real-time polymerase chain reaction. Key innate defense molecules, including surfactant protein-D and deleted in malignant brain tumors 1, were among...

  10. Expression of putative zinc-finger protein lcn61 gene in lymphocystis disease virus China (LCDV-cn) genome

    Institute of Scientific and Technical Information of China (English)

    YAN Xiuying; SUN Xiuqin

    2009-01-01

    An open reading frame (lcn61) of iymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector.Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.

  11. A temporal switch in the insulin-signalling pathway that regulates hepatic IGF-binding protein-1 gene expression

    OpenAIRE

    2006-01-01

    PUBLISHED Insulin regulation of hepatic gene transcription is a vital component of glucose homeostasis. Understanding the molecular regulationof thisprocess aids the searchfor the defect(s) that promotesinsulin-resistant states, such asdiabetesmellitus. We havepreviously shownthat the insulin regulationof hepatic IGF-binding protein-1 (IGFBP1) expression requiresthe signalling proteins phosphatidylinositol 3-kinase (PI 3-kinase) and mammalian target of rapamycin (mTOR). In this report, we ...

  12. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been con...

  13. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...

  14. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression.

    OpenAIRE

    Bourgouin, C.; Delécluse, A; de la Torre, F; Szulmajster, J.

    1990-01-01

    The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegyp...

  15. CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene

    Science.gov (United States)

    Cvitanich, Cristina; Pallisgaard, Niels; Nielsen, Kirsten A.; Hansen, Anette Chemnitz; Larsen, Knud; Pihakaski-Maunsbach, Kaarina; Marcker, Kjeld A.; Jensen, Erik Østergaard

    2000-01-01

    Nodulin genes are specifically expressed in the nitrogen-fixing root nodules. We have identified a novel type of DNA-binding protein (CPP1) interacting with the promoter of the soybean leghemoglobin gene Gmlbc3. The DNA-binding domain of CPP1 contains two similar Cys-rich domains with 9 and 10 Cys, respectively. Genes encoding similar domains have been identified in Arabidopsis thaliana, Caenorhabditis elegans, the mouse, and human. The domains also have some homology to a Cys-rich region present in some polycomb proteins. The cpp1 gene is induced late in nodule development and the expression is confined to the distal part of the central infected tissue of the nodule. A constitutively expressed cpp1 gene reduces the expression of a Gmlbc3 promoter–gusA reporter construct in Vicia hirsuta roots. These data therefore suggest that CPP1 might be involved in the regulation of the leghemoglobin genes in the symbiotic root nodule. PMID:10859345

  16. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  17. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability

    DEFF Research Database (Denmark)

    Martinez, Virginia; Lauritsen, Ida; Hobel, Tonja

    2017-01-01

    Interference with genes is the foundation of reverse genetics and is key to manipulation of living cells for biomedical and biotechnological applications. However, classical genetic knockout and transcriptional knockdown technologies have different drawbacks and offer no control over existing...... protein levels. Here, we describe an efficient genome editing approach that affects specific protein abundances by changing the rates of both RNA synthesis and protein degradation, based on the two cross-kingdom control mechanisms CRISPRi and the N-end rule for protein stability. In addition, our approach...

  18. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    Science.gov (United States)

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  19. Expression cloning and characterization of a novel gene that encodes the RNA-binding protein FAU-1 from Pyrococcus furiosus.

    Science.gov (United States)

    Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi

    2003-05-15

    We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic.

  20. Analysis of Gene and Protein Expression in Atherosclerotic Mouse Aorta by Western Blot and Quantitative Real-Time PCR.

    Science.gov (United States)

    Rivera-Torres, José

    2015-01-01

    Atherosclerosis involves changes in gene and protein expression patterns in affected arteries. Quantification of these alterations is essential for understanding the molecular mechanisms underlying this pathology. Western blot and real-time PCR-used to quantify protein and messenger RNA levels, respectively-are invaluable molecular biology tools, particularly when material is limited. The availability of many genetically modified mouse models of atherosclerosis makes the mouse aorta an ideal tissue in which to carry out these expression pattern analyses. In this chapter, protocols are presented for mRNA and protein extraction from mouse aorta and for the accurate quantification of mRNA expression by RT-PCR and of proteins by western blot.

  1. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  2. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars.

    Science.gov (United States)

    Mason, H S; Dewald, D B; Creelman, R A; Mullet, J E

    1992-03-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.

  3. Threonine affects intestinal function, protein synthesis and gene expression of TOR in Jian carp (Cyprinus carpio var. Jian.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available This study aimed to investigate the effects of threonine (Thr on the digestive and absorptive ability, proliferation and differentiation of enterocytes, and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian. First, seven isonitrogenous diets containing graded levels of Thr (7.4-25.2 g/kg diet were fed to the fishes for 60 days. Second, enterocyte proliferation and differentiation were assayed by culturing enterocytes with graded levels of Thr (0-275 mg/l in vitro. Finally, enterocytes were cultured with 0 and 205 mg/l Thr to determine protein synthesis. The percent weight gain (PWG, specific growth rate, feed intake, feed efficiency, protein retention value, activities of trypsin, lipase and amylase, weights and protein contents of hepatopancreas and intestine, folds heights, activities of alkaline phosphatase (AKP, γ- glutamyl transpeptidase and Na(+/K(+-ATPase in all intestinal segments, glutamate-oxaloacetate transaminase (GOT and glutamate-pyruvate transaminase (GPT activities in hepatopancreas, and 4E-BP2 gene expression in muscle, hepatopancreas and intestinal segments were significantly enhanced by Thr (p<0.05. However, the plasma ammonia concentration and TOR gene expression decreased (p<0.05. In vitro, Thr supplement significantly increased cell numbers, protein content, the activities of GOT, GPT, AKP and Na(+/K(+-ATPase, and protein synthesis rate of enterocytes, and decreased LDH activity and ammonia content in cell medium (p<0.05. In conclusion, Thr improved growth, digestive and absorptive capacity, enterocyte proliferation and differentiation, and protein synthesis and regulated TOR and 4E-BP2 gene expression in juvenile Jian carp. The dietary Thr requirement of juvenile Jian carp was 16.25 g/kg diet (51.3 g/kg protein based on quadratic regression analysis of PWG.

  4. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    OpenAIRE

    L.P. Khokhlova

    2016-01-01

    Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C) and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2), serine-threonine kinase (W55a), dehydrin (DHN14), and lipocalin (TaTIL)) and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on th...

  5. Differential Gene Expression and Protein Phosphorylation as Factors Regulating the State of the Arabidopsis SNX1 Protein Complexes in Response to Environmental Stimuli

    Science.gov (United States)

    Brumbarova, Tzvetina; Ivanov, Rumen

    2016-01-01

    Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein–protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress. PMID:27725825

  6. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    Science.gov (United States)

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  7. Inhibition of SIRT1 Increases EZH2 Protein Level and Enhances the Repression of EZH2 on Target Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Lu Lu; Lei Li; Xiang Lü; Xue-song Wu; De-pei Liu; Chih-chuan Liang

    2011-01-01

    Objective To study the regulatory roles of SIRT1 on EZH2 expression and the further effects on EZH2's repression of target gene expression. Methods The stable SIRT1 RNAi and Control RNAi HeLa cells were established by infection with retroviruses expressing shSIRT1 and shLuc respectively followed by puromycin selection. EZH2 protein level was detected by Western blot in either whole cell lysate or the fractional cell extract. Reverse transcription-polymerase chain reaction was performed to detect the mRNA level of EZH2. Cycloheximide was used to treat SIRT1 RNAi and Control RNAi cells for protein stability assay. Chromatin immunoprecipitation (CHIP) assay was applied to measure enrichment of SIRT1, EZH2, and trimethylated H3K27 (H3K27me3) at SATB1 promoter in SIRT1 RNAi and Control RNAi cells.Results Western blot results showed that EZH2 protein level increased upon SIRT1 depletion. Fractional extraction results showed unchanged cytoplasmic fraction and increased chromatin fraction of EZH2 protein in SIRTI RNAi cells. The mRNA level of EZH2 was not affected by knockdown of SIRT1. SIRT1 recruitment was not detected at the promoter region of EZH2 gene locus. The protein stability assay showed that the protein stability of EZH2 increases upon SIRTI knockdown. Upon SIRT1 depletion, EZH2 and H3K27me3 recruitment at SATB1 promoter increases and the mRNA level of SATB1 decreases.Conclusions Depletion of SIRT1 increases the protein stability of EZH2. The regulation of EZH2 protein level by SIRTI affects the repressive effects of EZH2 on the target gene expression.

  8. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.

  9. Cloned s-Lap Gene Coding Area, Expression and Localizationof s-Lap/GFP Fusion Protein in Mammal Cells

    Institute of Scientific and Technical Information of China (English)

    SONG Yi-shu; SONG Zhi-yu; LI Hong-jun; Wu Yin; BAO Yong-li; TAN Da-peng; LI Yu-xin

    2005-01-01

    s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. s-Lap/GFP fusion protein can be expressed in CHO and B16 cells with a high rate expression in the nuclei.

  10. Regulation of Nuclear Receptor Interacting Protein 1 (NRIP1) Gene Expression in Response to Weight Loss and Exercise in Humans

    DEFF Research Database (Denmark)

    De Marinis, Yang Z; Sun, Jiangming; Bompada, Pradeep

    2017-01-01

    Objective: Nuclear receptor interacting protein 1 (NRIP1) is an important energy regulator, but few studies have addressed its role in humans. This study investigated adipose tissue and skeletal muscle NRIP1 gene expression and serum levels in response to weight loss and exercise in humans. Methods......: In patients with obesity, adipose tissue NRIP1 mRNA expression increased during weight loss and weight maintenance and showed strong associations with metabolic markers and anthropometric parameters. Serum NRIP1 protein levels also increased after weight loss. In skeletal muscle, imposed rest increased NRIP1...... network/module. Conclusions: NRIP1 gene expression and serum levels are strongly associated with metabolic states such as obesity, weight loss, different types of exercise, and peripheral tissue insulin resistance, potentially as a mediator of sedentary effects....

  11. Regulation of glnB gene promoter expression in Azospirillum brasilense by the NtrC protein.

    Science.gov (United States)

    Huergo, Luciano F; Souza, Emanuel M; Steffens, M Berenice R; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S

    2003-06-01

    In Azospirillum brasilense the glnB and glnA genes are clustered in an operon regulated by three different promoters: two located upstream of glnB (glnBp1-sigma(70), and glnBp2-sigma(N)) and one as yet unidentified promoter, in the glnBA intergenic region. We have investigated the expression of the glnB gene promoter using glnB-lacZ gene fusions, mutation analysis, heterologous expression and DNA band-shift assays. Deletion of the glnB promoter region showed that NtrC-binding sequences were essential for glnB expression under nitrogen limitation. The A. brasilense NtrC protein activated transcription of glnB-lacZ fusions in the heterologous genetic background of Escherichia coli. Expression of glnB-lacZ fusions in two A. brasilense ntrC mutants differed from that in the wild-type strain. In vitro studies also indicated that the purified NtrC protein from E. coli was able to bind to the glnB promoter region of A. brasilense. Our results show that the NtrC protein activates glnBglnA expression under nitrogen limitation in A. brasilense.

  12. Evolution, expression differentiation and interaction specificity of heterotrimeric G-protein subunit gene family in the mesohexaploid Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Gulab C Arya

    Full Text Available Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1, three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3, and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5 genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica

  13. Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio).

    Science.gov (United States)

    Falco, Alberto; Cartwright, Jamie R; Wiegertjes, Geert F; Hoole, David

    2012-05-01

    C-Reactive protein (CRP) plays an important role in the acute phase response. Transcripts encoding two new CRP-like molecules (ccCRP1 and ccCRP2) from European common carp have been characterized which has enabled seven CRP-like genes to be identified in zebrafish. 79.3% (ccCRP1) and 74.5% (ccCRP2) identity to CRP from East-Asian common carp occurs and fish CRP genes form a distinct clade. ccCRP2 gene organization comprises four exons and three introns, in contrast to the two exons/one intron organization of mammalian CRP genes. Gene expression assays showed both ccCRP-like molecules are constitutively expressed in liver, skin, gill, gut, muscle, kidney, spleen and blood. Protein levels of ccCRP in serum and spleen were significantly different from other organs analyzed, and levels were greatest in the liver. It is proposed that the two carp CRP genes defined differ in their expression profiles which may suggest differences in their biological activities.

  14. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    INTRODUCTION: Patients with Ehlers Danlos Syndrome are known to have genetically impaired connective tissue and skeletal muscle symptoms in form of pain, fatigue and cramps, however earlier studies have not been able to link these symptoms to morphological muscle changes. METHODS: We obtained...... skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c...

  15. Gene and protein expression of p53 and p21 in fibroadenomas and adjacent normal mammary tissue.

    Science.gov (United States)

    Schneider, Lolita; Branchini, Gisele; Cericatto, Rodrigo; Capp, Edison; Brum, Ilma Simoni

    2009-02-01

    The aim of this study was to compare p53 and p21 mRNA, and proteins levels between fibroadenomas and adjacent normal mammary tissue of women in reproductive age. A transversal study was performed. Fourteen patients who attended the Breast Service of the Hospital de Clínicas de Porto Alegre were assessed and submitted to surgical resection of fibroadenomas. Fragments of the central area of the fibroadenoma and adjacent normal mammary tissue were obtained. mRNA expression for genes p53 and p21 was evaluated by RT-PCR, and protein expression by the western blot. Paired analyses showed higher gene expression of p53 (P = 0.017) and p21 (P = 0.003), and a higher protein expression of p53 (P = 0.001) in fibroadenomas as compared to normal breast tissue. p21 protein expression was not different (P = 0.97) between the fibroadenoma and the adjacent normal mammary tissue samples. These results suggest the participation of p53 in the formation of fibroadenomas. The role of p21 in fibroadenomas remains to be defined.

  16. Cloning of the coat protein gene from beet necrotic yellow vein virus and its expression in sugar beet hairy roots.

    Science.gov (United States)

    Ehlers, U; Commandeur, U; Frank, R; Landsmann, J; Koenig, R; Burgermeister, W

    1991-06-01

    Expression of the beet necrotic yellow vein virus (BNYVV) coat protein (CP) gene in transgenic sugar beet hairy roots was accomplished as a step towards CP-mediated virus resistance. A cDNA for the CP gene and its 5' terminal untranslated leader sequence was prepared from BNYVV RNA, using two oligodeoxynucleotides to prime the synthesis of both strands. Second-strand synthesis and amplification of the cDNA were done by Taq DNA polymerase chain reactions. Run-off transcripts of the cloned cDNA sequence were obtained and translated in vitro, yielding immunoreactive CP. A binary vector construction containing the CP gene under the control of the 35S promoter of cauliflower mosaic virus was prepared and used for Agrobacterium rhizogenes-mediated transformation of sugar beet tissue. Stable integration and expression of the CP gene in sugar beet hairy roots was demonstrated by Southern, Northern, and Western blot analysis, respectively.

  17. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression.

    Science.gov (United States)

    Benoit, Marie E; Tenner, Andrea J

    2011-03-02

    Activation of the complement cascade, a powerful effector mechanism of the innate immune system, is associated with neuroinflammation but also with elimination of inappropriate synapses during development. Synthesis of C1q, a recognition component of the complement system, occurs in brain during ischemia/reperfusion and Alzheimer's disease, suggesting that C1q may be a response to injury. In vitro, C1q, in the absence of other complement proteins, improves neuronal viability and neurite outgrowth and prevents β-amyloid-induced neuronal death, suggesting that C1q may have a direct neuroprotective role. Here, investigating the molecular basis for this neuroprotection in vitro, addition of C1q to rat primary cortical neurons significantly upregulated expression of genes associated with cholesterol metabolism, such as cholesterol-25-hydroxylase and insulin induced gene 2, and transiently decreased cholesterol levels in neurons, known to facilitate neurite outgrowth. In addition, the expression of syntaxin-3 and its functional association with synaptosomal-associated protein 25 was increased. C1q also increased the nuclear translocation of cAMP response element-binding protein and CCAAT/enhancer-binding protein-δ (C/EBP-δ), two transcription factors involved in nerve growth factor (NGF) expression and downregulated specific microRNAs, including let-7c that is predicted to target (and thus inhibit) NGF and neurotrophin-3 (NT-3) mRNA. Accordingly, C1q increased expression of NGF and NT-3, and small interfering RNA inhibition of C/EBP-δ, NGF, or NT-3 expression prevented the C1q-dependent neurite outgrowth. No such neuroprotective effect is seen in the presence of C3a or C5a. Finally, the induced neuronal gene expression required conformationally intact C1q. These results show that C1q can directly promote neuronal survival, thereby demonstrating new interactions between immune proteins and neuronal cells that may facilitate neuroprotection.

  18. Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Brundel, BJJM; Henning, RH; Tuinenburg, AE; Tieleman, RG; Deelman, L; Grandjean, JG; De Kam, PJ; Van Gilst, WH; Crijns, HJGM

    1999-01-01

    Gene Expression in Human Atrial Fibrillation, Introduction: Atrial fibrillation (AF) leads to a loss of atrial contraction within hours to days. During persistence of AF, cellular dedifferentiation and hypertrophy occur, eventually resulting in degenerative changes and cell death, Abnormalities in t

  19. Establishment of Stable High Expression Cell Line with Green Fluorescent Protein and Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengtao; LIU Wenli; HE Peigen; GONG Feili; YANG Dongliang

    2006-01-01

    In order to establish stable high expression cell lines, the eukaryotic expression vector pIRES2EGFP and recombinant plasmid pIRES2EGFP-TIM-3 were transfected into mammalian cells CHO by Lipofectamine. The transfected cells were cultivated under selective growth medium including G418 and green fluorescent protein (GFP) positive cells were sorted by FACS. Simultaneously, growing transfectants were selected only by G418 in the medium. The GFP expression in stably transfected cells was detected by FACS. Under selective growth conditions with G418, the percentage of GFP positive cells was reduced rapidly and GFP induction was low. In contrast, the percentages of GFP positive cells were increased gradually after FACS. By 3 rounds of GFP selection, the stable high expression cell lines were established. Furthermore, using FACS analysis GFP and the target protein TIM-3 co-expression in the stable transfectants cultured in nonselective medium was detected. Theses results demonstrated that the stably transfected cell lines that express high titer of recombinant protein can be simply and fleetly obtained by using GFP and selective growth medium.

  20. Cloning and expression analysis of a prion protein encoding gene in guppy ( Poecilia reticulata)

    Science.gov (United States)

    Wu, Suihan; Wei, Qiwei; Yang, Guanpin; Wang, Dengqiang; Zou, Guiwei; Chen, Daqing

    2008-11-01

    The full length cDNA of a prion protein (PrP) encoding gene of guppy ( Poecilia reticulata) and the corresponding genomic DNA were cloned. The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a protein of 515 amino acids, which held all typical structural characteristics of the functional PrP. The cloned genomic DNA fragment corresponding to the cDNA was 3720 bp in length, consisting of 2 introns and 2 exons. The 5' untranslated region of cDNA originated from the 2 exons, while the ORF originated from the second exon. Although the gene was transcribed in diverse tissues including brain, eye, liver, intestine, muscle and tail, its transcript was most abundant in the brain. In addition, the transcription of the gene was enhanced by 5 salinity, implying that it was associated with the response of guppy to saline stress.

  1. Quality properties and expression profiling of protein disulfide isomerase genes during grain development of three spring wheat near isogenic lines

    Directory of Open Access Journals (Sweden)

    Dong Liwei

    2016-01-01

    Full Text Available Three wheat glutenin near isogenic lines (NILs CB037A, CB037B and CB037C were used to investigate their quality properties and the transcriptional expression profiles of PDI gene family during grain development. Our purpose is to understand the relationships between the dynamic expression of different PDI genes and glutenin allelic compositions related to gluten quality. The results showed that glutenin allelic variations had no significant effects on main agronomic traits and yield performance, but resulted in clear gluten quality changes. CB037B with 5+10 subunits had higher glutenin macropolymer (GMP content and better breadmaking quality than CB037A with 2+12 while the lack of Glu-B3h encoding one abundant B-subunit in CB037C significantly reduced GMP content, dough strength and breadmaking quality. The dynamic expression patterns of eight protein disulfide isomerase (PDI genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR showed the close correlations between higher expression levels of PDI3-1, PDI5-1 and PDI8-1 and the presence of 5+10 subunits. Meanwhile, Glu-B3h silence resulted in significant decrease of expression levels of five PDI genes (PDI3-1, PDI5-1, PDI6-1, PDI7-2 and PDI8-1, suggesting the vital roles of certain PDI genes in glutenin and GMP synthesis and gluten quality formation.

  2. Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

    Science.gov (United States)

    Leoni, Guido; Cervellati, Franco; Canali, Raffaella; Cortelazzo, Alessio; De Felice, Claudio; Ciccoli, Lucia; Hayek, Joussef

    2013-01-01

    Rett syndrome (RTT) is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2) gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC) isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features. PMID:24453408

  3. Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Alessandra Pecorelli

    2013-01-01

    Full Text Available Rett syndrome (RTT is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2 gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray and SAM (Significance Analysis of Microarrays analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features.

  4. Gene expression profiles of vascular smooth muscle show differential expression of mitogen-activated protein kinase pathways during captopril therapy of heart failure.

    Science.gov (United States)

    Chen, Frank C; Brozovich, Frank V

    2008-01-01

    Congestive heart failure (CHF) is characterized by increased vascular tone and an impairment in nitric-oxide-mediated vasodilatation. We have demonstrated that the blunted response to nitric oxide is due, in part, to a reduction in the leucine-zipper-positive isoform of the myosin-targeting subunit (MYPT1) of myosin light-chain phosphatase. Additionally, we have shown that angiotensin-converting enzyme inhibition, but not afterload reduction with prazosin, preserves leucine-zipper-positive MYPT1 isoform expression in vascular smooth muscle cells and normalizes the sensitivity to cGMP-mediated vasodilatation. We therefore hypothesized that in CHF, growth regulators and cytokines downstream of the angiotensin II receptor are involved in modulating gene expression in vascular tissue. Rats were divided into control and captopril-treated groups following left coronary artery ligation. Gene expression profiles in the aorta and portal vein at baseline and 2 and 4 weeks after myocardial infarction (MI) were analyzed using microarray technology and quantitative real-time PCR. After MI, microarray analysis revealed differential mRNA expression of 21 genes in the aorta of captopril-treated rats 2 and 4 weeks after surgery when compared to gene expression profiles at baseline and without captopril therapy. Real-time PCR demonstrated that captopril suppressed the expression of protein kinases in the angiotensin-II-mediated mitogen-activated protein kinase signaling pathway, including Taok1 and Raf1. These data suggest that in CHF, captopril therapy modulates gene expression in vascular smooth muscle, and some of the beneficial effects of ACE inhibition may be due to differential gene expression in the vasculature.

  5. Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression.

    Science.gov (United States)

    Zhao, Zhichao; Liu, Guangbin; Li, Xinyun; Huang, Ji; Xiao, Yujing; Du, Xiaoyong; Yu, Mei

    2016-01-01

    The keratin-associated proteins (KAPs) are the structural proteins of hair fibers and are thought to play an important role in determining the physical properties of hair fibers. These proteins are activated in a striking sequential and spatial pattern in the keratinocytes of hair fibers. Thus, it is important to elucidate the mechanism that underlies the specific transcriptional activity of these genes. In this study, sheep KRTAP 3-3 and KRTAP11-1 genes were found to be highly expressed in wool follicles in a tissue-specific manner. Subsequently, the promoter regions of the two genes that contained the 5' flanking/5' untranslated regions and the coding regions were cloned. Using an in vivo transgenic approach, we found that the promoter regions from the two genes exhibited transcriptional activity in hair fibers. A much stronger and more uniformly expressed green fluorescent signal was observed in the KRTAP11-1-ZsGreen1 transgenic mice. In situ hybridization revealed the symmetrical expression of sheep KRTAP11-1 in the entire wool cortex. Consistently, immunohistochemical analysis demonstrated that the pattern of ZsGreen1 expression in the hair cortex of transgenic mice matches that of the endogenous KRTAP11-1 gene, indicating that the cloned promoter region contains elements that are sufficient to govern the wool cortex-specific transcription of KRTAP11-1. Furthermore, regulatory regions in the 5' upstream sequence of the sheep KRTAP11-1 gene that may regulate the observed hair keratinocyte specificity were identified using in vivo reporter assays.

  6. Cloning and expression of gene encoding P23 protein from Cryptosporidium parvum

    Directory of Open Access Journals (Sweden)

    Dinh Thi Bich Lan

    2014-12-01

    Full Text Available We cloned the cp23 gene coding P23 (glycoprotein from Cryptosporidium parvum isolated from Thua Thien Hue province, Vietnam. The coding region of cp23 gene from C. parvum is 99% similar with cp23 gene deposited in NCBI (accession number: U34390. SDS-PAGE and Western blot analysis showed that the cp23 gene in E. coli BL21 StarTM (DE3 produced polypeptides with molecular weights of approximately 37, 40 and 49 kDa. These molecules may be non-glycosylated or glycosylated P23 fusion polypeptides. Recombinant P23 protein purified by GST (glutathione S-transferase affinity chromatography can be used as an antigen for C. parvum antibody production as well as to develop diagnostic kit for C. parvum.

  7. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine;

    2013-01-01

    Plasmodium falciparum is responsible for most cases of severe malaria and causes >1 million deaths every year. The particular virulence of this Plasmodium species is highly associated with the expression of certain members of the Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) family...

  8. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  9. Construction of prokaryotic expression system of TGF-β1 epitope gene and identification of recombinant fusion protein immunity

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong Guo; Zhi-Ming Hao; Jin-Yan Luo; Jun-Hong Wang

    2005-01-01

    AIM: To insert the constructed TGF-β1the el loop of C-terminus of truncated hepatitis B core antigen to increase TGF-β1expression system and to identify immunity of the expressed recombinant protein in order to exploit the possibility for obtaining anti- TGF-β1METHODS: The TGF-β1mature TGF-β1TGF-32) was amplified by polymerase chain reaction from the recombinant pGEM-7z/TGF-β1HBcAg gene fragments (encoding HBcAg from 1-71 and 89-144 amino acid residues) were amplified from PYTA1-HBcAg vector. The recombinant vector pGEMEX-1 was used to insert HBcAg1-71, TGF-β1into restrictive endonuclease enzyme and ligated with T4ligase. The fusion gene fragments HBcAg1-71-TGF-β1HBcAg89-144 were recloned to pET28a(+) and the DNA sequence was confirmed by the dideoxy chain termination method. The recombinant vector pET28a (+)/CTC was transformed and expressed in E.. Coli BL21 (DE3)under induction of IPTG. After purification with Ni+2-NTA agarose resins, the antigenicity of purified protein was detected by ELISA and Western blot and visualized under electron microscope.RESULTS: Enzyme digestion analysis and sequencing showed that TGF-β1loop of C-terminus of truncated hepatitis B core antigen.SDS-PAGE analysis showed that relative molecular mass(Mr) of the expressed product by pET28a (+)/CTC was Mr 24 600.The output of the target recombinant protein was approximately 34.8% of the total bacterial protein,mainly presented in the form of inclusion body. Western blotting and ELISA demonstrated that the fusion protein could combine with anti-TGF-β1not with anti-HBcAg. The purity of protein was about 90% and the protein was in the form of self-assembling particles visualized under electron microscope. This fusion protein had good anti-TGF-β1could be used as anti-TGF-β1CONCLUSION: A recombinant prokaryotic expression system with high expression efficiency of the target TGF- epitope gene was successfully established.The fusion protein is in the form of self-assembling particles

  10. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family.

    Science.gov (United States)

    Butt, Haroon; Graner, Sonja; Luschnig, Christian

    2014-03-01

    RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins.

  11. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    OpenAIRE

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T. G.

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupt...

  12. Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica

    Institute of Scientific and Technical Information of China (English)

    Renhua Wu; Lili Wang; Zhi Wang,; Haihong Shang; Xia Liu; Yan Zhu; Dongdong Qi; Xin Deng

    2009-01-01

    Resurrection plants are tolerant to extreme dehydration and are useful model systems to study genes that play a role in drought tolerance.A gene fragment encoding a dirigent protein that is predicted to function in lignin biosynthesis was identified from leaves of the resurrection plant Boea hygrometrica via cDNA microarray screening.A cDNA,designated BhDIRI,containing the complete predicted open reading frame,was obtained by 5'-RACE.BhDIRI transcripts were found to be accumulated in response to changes in plant dehydration status,exogenously applied phytohormones and signaling molecules,and temperature stresses.BhDIRl encodes a protein of 199 amino acids,which shows 20-40% similarity to dirigent proteins reported from other plants.BhDIRI is predicted to contain a cleavable signal peptide at the N-terminal,and its plasma membrane/cell wall localization was confirmed using a GFP fusion protein assay.Consistent with this discovery,the acid-soluble lignin content decreased in dehydrated B.hygrometrica leaves.Taken together,our results indicate a protective role for a dirigent protein in response to drought stress by changing the physical characters of lignin which in turn is predicted to affect the mechanical strength and flexibility of the plant cell wall.

  13. A hemocyte-expressed fibrinogen-related protein gene (LvFrep) from the shrimp Litopenaeus vannamei: Expression analysis after microbial infection and during larval development.

    Science.gov (United States)

    Coelho, Jaqueline da Rosa; Barreto, Cairé; Silveira, Amanda da Silva; Vieira, Graziela Cleusa; Rosa, Rafael Diego; Perazzolo, Luciane Maria

    2016-09-01

    Fibrinogen-related proteins (FREPs) comprise a large family of microbial recognition proteins involved in many biological functions in both vertebrate and invertebrate animals. By taking advantage of publicly accessible databases, we have identified a FREP-like homolog in the most cultivated penaeid shrimp, Litopenaeus vannamei (LvFrep). The obtained sequence showed a conserved fibrinogen-related domain (FReD) and displayed significant similarities to FREP-like proteins from other invertebrates and to ficolins from crustaceans. The expression of LvFrep appeared to be limited to circulating hemocytes. Interestingly, LvFrep gene expression was induced in shrimp hemocytes only in response to a Vibrio infection but not to the White spot syndrome virus (WSSV). Moreover, LvFrep transcript levels were detected early in fertilized eggs, suggesting the participation of this immune-related gene in the antimicrobial defenses during shrimp development.

  14. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    Directory of Open Access Journals (Sweden)

    L.P. Khokhlova

    2016-06-01

    Full Text Available Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2, serine-threonine kinase (W55a, dehydrin (DHN14, and lipocalin (TaTIL and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on the content of transcripts on electrophoregrams. The absence of species-specific responses of two genes, TaNADP-ME2 and W55a, the gene activity of which did not depend on the resistance of cultivars to heat shock and water deficit, has been shown. However, gene expression of two other genes, DHN14 and TaTIL, was genotypically determined and positively correlated with the high resistance of particular cultivars. It has been concluded that the activities of DHN14 and TaTIL are potential molecular markers of heat and drought resistance in spring wheat and, therefore, can be used in transgenic selection technologies to create new phenotypes of agricultural crops that would be better adapted to the environmental conditions.

  15. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  16. Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain.

    Science.gov (United States)

    Berardino, Bruno G; Fesser, Estefanía A; Cánepa, Eduardo T

    2017-04-24

    Due to its widespread incidence, maternal malnutrition remains one of the major non-genetic factors affecting the development of newborn's brain. While all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. An increasing number of studies point out that the effects of early-life nutritional inadequacy has long lasting effects on the brain and lead to permanent deficits in learning and behavior. Epigenetic mechanisms provide a potential link between the nutrition status during critical periods and changes in gene expression that may lead to disease phenotypes. Among those epigenetic mechanisms microRNAs (miRNAs) emerge as promising molecules for the link between nutrition and gene expression due to their relevance in many central nervous system functions. The objective of the current study was to evaluate the impact of perinatal protein malnutrition on the development of male and female mice offspring and to analyze the expression of the genes involved in the miRNA biogenesis pathway in different mouse brain structures. We demonstrated that early nutritional stress such as exposition to a protein-deficient diet during gestation and lactation reduced the hippocampal weight, delayed offspring's development and deregulated the expression of Xpo5 and Ago2 genes in hippocampus and hypothalamus of weanling mice. Moreover, an overall increase in mature miRNAs was consistent with the induction of Xpo5 mRNA. Altered miRNA biogenesis could modify the availability and functionality of miRNA becoming a causal factor of the adverse effects of protein malnutrition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A gene encoding a vicilin-like protein is specifically expressed in fern spores. Evolutionary pathway of seed storage globulins.

    Science.gov (United States)

    Shutov, A D; Braun, H; Chesnokov, Y V; Bäumlein, H

    1998-02-15

    The isolation and characterisation of a cDNA coding for a vicilin-like protein of the fern Matteuccia struthiopteris is described. The corresponding gene is specifically expressed during late stages of spore development. Extensive sequence comparisons suggest that the fern protein can be considered as a molecular missing link between single-domain germin/spherulin-like proteins and two-domain seed storage globulins of gymnosperms and angiosperms. Further, evidence is provided for the existence of a superfamily of structurally related, functionally different proteins which includes storage globulins of the vicilin and legumin families, a membrane-associated sucrose-binding protein of soybean, a Forssman antigen-binding lectin of velvet bean, the precursor of the vacuolar membrane bound proteins MP27/MP32 of pumpkin, the embryogenesis-specific protein Gea8 of carrot, the fern-spore-specific protein described here as well as the functionally diverse family of germins/germin-like proteins and the spherulins of myxomycetes. We propose that seed storage globulins of spermatophytes evolved from desiccation-related single-domain proteins of prokaryotes via a duplicated two-domain ancestor that is best represented by the extant fern spore-specific vicilin-like protein.

  18. Molecular and functional analysis of Popeye genes: A novel family of transmembrane proteins preferentially expressed in heart and skeletal muscle.

    Science.gov (United States)

    Andrée, Birgit; Fleige, Anne; Hillemann, Tina; Arnold, Hans-Henning; Kessler-Icekson, Gania; Brand, Thomas

    2002-01-01

    Popeye (Pop) genes encode novel transmembrane proteins, of which three family members are present in vertebrates, while in Drosophila a single gene is found. By northern blot analysis a restricted expression pattern is observed; Pop genes are predominantly expressed in the heart, skeletal and smooth muscle. Using homologous recombination, a null mutation was generated in the case of Pop1. The homozygous mutants are viable and do not display any obvious phenotype. They display an impaired ability to regenerate skeletal muscle while the hypertropic response of the heart after isoproterenol infusion revealed no difference between genotypes. Recently a function for Pop1 as a prototype of a novel class of cell adhesion molecules was proposed. Further work is required to substantiate these findings and to extend it to other members of the family.

  19. Protein kinase Cθ gene expression is oppositely regulated by GCN5 and EBF1 in immature B cells.

    Science.gov (United States)

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-05-01

    In this study, we revealed that GCN5 and early B cell factor 1 (EBF1) participate in regulation of protein kinase Cθ (PKCθ) gene expression in an opposite manner in immature B cells. GCN5-deficiency in DT40 caused drastic down-regulation of transcription of PKCθ. In contrast, EBF1-deficiency brought about remarkable up-regulation of that of PKCθ, and re-expression of EBF1 dramatically suppressed transcription of PKCθ. Chromatin immunoprecipitation assay revealed that GCN5 binds to the 5'-flanking region of the chicken PKCθ gene and acetylates histone H3, and EBF1 binds to the 5'-flanking region of the gene surrounding putative EBF1 binding motifs.

  20. Evaluation of genistein ability to modulate CTGF mRNA/protein expression, genes expression of TGFβ isoforms and expression of selected genes regulating cell cycle in keloid fibroblasts in vitro.

    Science.gov (United States)

    Jurzak, Magdalena; Adamczyk, Katarzyna; Antończak, Paweł; Garncarczyk, Agnieszka; Kuśmierz, Dariusz; Latocha, Małgorzata

    2014-01-01

    Keloids are characterized by overgrowth of connective tissue in the skin that arises as a consequence of abnormal wound healing. Normal wound healing is regulated by a complex set of interactions within a network of profibrotic and antifibrotic cytokines that regulate new extracellular matrix (ECM) synthesis and remodeling. These proteins include transforming growth factor β (TGFβ) isoforms and connective tissue growth factor (CTGF). TGFβ1 stimulates fibroblasts to synthesize and contract ECM and acts as a central mediator of profibrotic response. CTGF is induced by TGFβ1 and is considered a downstream mediator of TGFβ1action in fibroblasts. CTGF plays a crucial role in keloid pathogenesis by promoting prolonged collagen synthesis and deposition and as a consequence sustained fibrotic response. During keloids formation, besides imbalanced ECM synthesis and degradation, fibroblast proliferation and it's resistance to apoptosis is observed. Key genes that may play a role in keloid formation and growth involve: suppressor gene p53.,cyclin-depend- ent kinase inhibitor CDKN1A (p21) and BCL2 family genes: antiapoptotic BCL-2 and proapoptotic BAX. Genistein (4',5,7-trihydroxyisoflavone) exhibits multidirectional biological action. The concentration of genistein is relatively high in soybean. Genistein has been shown as effective antioxidant and chemopreventive agent. Genistein can bind to estrogen receptors (ERs) and modulate estrogen action due to its structure similarity to human estrogens. Genistein also inhibits transcription factors NFκB. Akt and AP-l signaling pathways, that are important for cytokines expression and cell proliferation, differentiation, survival and apoptosis. The aim of the study was to investigate genistein as a potential inhibitor of CTGF and TGFβ1, β2 and β3 isoforms expression and a potential regulator of p53. CDKN1A(p21), BAX and BCL-2 expression in normal fibroblasts and fibroblasts derived from keloids cultured in vitro. Real time

  1. Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast

    Science.gov (United States)

    Corkins, Mark E.; May, Margot; Ehrensberger, Kate M.; Hu, Ya-Mei; Liu, Yi-Hsuan; Bloor, Sean D.; Jenkins, Blair; Runge, Kurt W.; Bird, Amanda J.

    2013-01-01

    In Schizosaccharomyces pombe, alcohol dehydrogenase 1 (Adh1) is an abundant zinc-requiring enzyme that catalyses the conversion of acetaldehyde to ethanol during fermentation. In a zinc-replete cell, adh1 is highly expressed. However, in zinc-limited cells, adh1 gene expression is repressed, and cells induce the expression of an alternative alcohol dehydrogenase encoded by the adh4 gene. In our studies examining this zinc-dependent switch in alcohol dehydrogenase gene expression, we isolated an adh1Δ strain containing a partial loss of function mutation that resulted in higher levels of adh4 transcripts in zinc-replete cells. This mutation also led to the aberrant expression of other genes that are typically regulated by zinc. Using linkage analysis, we have mapped the position of this mutation to a single gene called Loss Of Zinc sensing 1 (loz1). Loz1 is a 55-kDa protein that contains a double C2H2-type zinc finger domain. The mapped mutation that disrupts Loz1 function leads to an arginine to glycine substitution in the second zinc finger domain, suggesting that the double zinc finger domain is important for Loz1 function. We show that loz1Δ cells hyperaccumulate zinc and that Loz1 is required for gene repression in zinc-replete cells. We also have found that Loz1 negatively autoregulates its own expression. We propose that Loz1 is a unique metalloregulatory factor that plays a central role in zinc homeostasis in S. pombe. PMID:24003116

  2. Increased gene expression of growth associated protein-43 in skin of patients with early-stage peripheral neuropathies.

    Science.gov (United States)

    Scheytt, Sarah; Riediger, Nadja; Braunsdorf, Silvia; Sommer, Claudia; Üçeyler, Nurcan

    2015-08-15

    Growth associated protein-43 (GAP-43) is one of the neural proteins associated with nerve injury that is upregulated after nerve injury. To investigate whether GAP-43 quantification in skin biopsies would differentiate subtypes of peripheral neuropathies, we analyzed GAP-43 expression in skin from the lateral thigh and the distal leg. We prospectively enrolled 130 patients with peripheral neuropathies and compared data with healthy controls. Intraepidermal nerve fiber density (IENFD) was determined using antibodies against protein gene product 9.5 (PGP 9.5); anti-GAP-43 antibodies were applied to visualize regenerating nerve fibers. PGP 9.5 and GAP-43 gene expression was analyzed using qRT-PCR. Patients with neuropathies had a generalized reduction of IENFD and GAP-43 immunoreactive fibers compared to controls (pneuropathies. Diagnostic subgroups and neuropathic pain had no influence on skin innervation. We conclude that peripheral neuropathies lead to an initial increase in GAP-43 gene expression as a potential mechanism of regeneration, which is not sustained in neuropathies of long duration. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Proteomics Perspectives in Rotator Cuff Research: A Systematic Review of Gene Expression and Protein Composition in Human Tendinopathy

    Science.gov (United States)

    Sejersen, Maria Hee Jung; Frost, Poul; Hansen, Torben Bæk; Deutch, Søren Rasmussen; Svendsen, Susanne Wulff

    2015-01-01

    Background Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics – the comprehensive study of protein composition - in tendon research. Materials and Methods We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. Results We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. Conclusions Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus

  4. Proteomics perspectives in rotator cuff research: a systematic review of gene expression and protein composition in human tendinopathy.

    Directory of Open Access Journals (Sweden)

    Maria Hee Jung Sejersen

    Full Text Available Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics--the comprehensive study of protein composition--in tendon research.We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue.We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies and III (13 of 14, metalloproteinase (MMP-1 (6 of 12, -9 (7 of 7, -13 (4 of 7, tissue inhibitor of metalloproteinase (TIMP-1 (4 of 7, and vascular endothelial growth factor (4 of 7, and a decrease in MMP-3 (10 of 12. Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro.Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for

  5. Location of the Protein of RSG6,a Predominantly Expressed Gene in Rice Sperm Cells

    Institute of Scientific and Technical Information of China (English)

    Lan Li-qiong; Miao chen; Zeng yu; Wang Sheng-hua; Xu ying; Tang Lin; BAI Yu; Chen Fang

    2004-01-01

    Using Western blot and immunohistochemistry analysis, here the localization of RSG6 protein was determined in various tissues of rice. Western blot showed only a weak signal in mature pollen. Nevertheless, according to the result of immunohistochemistry with DAB and fluorescent staining, the expression of RSG6 protein appeared to begin at the bicellular microspore stage, and then keep activity in the sperm cells of mature pollens. The fluorescence pattern showed RSG6 polypeptide was present close to or attached to the surface of the isolated sperm cells. And this suggested that RSG6 might take an important part in the process of recognition of sperm cell and ovum.

  6. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein.

    OpenAIRE

    Bondy, C; Chin, E.; Smith, B L; Preston, G M; Agre, P

    1993-01-01

    The CHIP28 water channel is a major component of red cell and renal tubule membranes; however, its ontogeny and tissue distribution remain undefined. Three patterns of expression were identified when CHIP28 mRNA was surveyed by in situ hybridization histochemistry in rats between embryonic day 14 and maturity. (i) CHIP28 mRNA and protein were very abundant in hematopoietic tissue and kidneys of mature rats, but strong expression did not occur until after birth, when it appeared in renal proxi...

  7. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    OpenAIRE

    Andreas Bitter; Nüssler, Andreas K.; Thasler, Wolfgang E.; Kathrin Klein; Zanger, Ulrich M.; Matthias Schwab; Oliver Burk

    2015-01-01

    Background/Aims: Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human li...

  8. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  9. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia

    Science.gov (United States)

    Saraiya, Ashesh A.; Li, Wei; Wang, Ching C.

    2011-01-01

    We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3′ UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2′ O–methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)–mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3′ UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia. PMID:22033329

  10. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    Full Text Available Abstract Background The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84 domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. Results We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5, which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses. The first (ZmSUN1, 2, here designated canonical C-terminal SUN-domain (CCSD, includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5, here designated plant-prevalent mid-SUN 3 transmembrane (PM3, includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. Conclusions The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3

  11. Transient expression of βC1 protein differentially regulates host genes related to stress response, chloroplast and mitochondrial functions

    Directory of Open Access Journals (Sweden)

    Briddon Rob W

    2010-12-01

    Full Text Available Abstract Background Geminiviruses are emerging plant pathogens that infect a wide variety of crops including cotton, cassava, vegetables, ornamental plants and cereals. The geminivirus disease complex consists of monopartite begomoviruses that require betasatellites for the expression of disease symptoms. These complexes are widespread throughout the Old World and cause economically important diseases on several crops. A single protein encoded by betasatellites, termed βC1, is a suppressor of gene silencing, inducer of disease symptoms and is possibly involved in virus movement. Studies of the interaction of βC1 with hosts can provide useful insight into virus-host interactions and aid in the development of novel control strategies. We have used the differential display technique to isolate host genes which are differentially regulated upon transient expression of the βC1 protein of chili leaf curl betasatellite (ChLCB in Nicotiana tabacum. Results Through differential display analysis, eight genes were isolated from Nicotiana tabacum, at two and four days after infitration with βC1 of ChLCB, expressed under the control of the Cauliflower mosaic virus 35S promoter. Cloning and sequence analysis of differentially amplified products suggested that these genes were involved in ATP synthesis, and acted as electron carriers for respiration and photosynthesis processes. These differentially expressed genes (DEGs play an important role in plant growth and development, cell protection, defence processes, replication mechanisms and detoxification responses. Kegg orthology based annotation system analysis of these DEGs demonstrated that one of the genes, coding for polynucleotide nucleotidyl transferase, is involved in purine and pyrimidine metabolic pathways and is an RNA binding protein which is involved in RNA degradation. Conclusion βC1 differentially regulated genes are mostly involved in chloroplast and mitochondrial functions. βC1 also

  12. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts.

    Directory of Open Access Journals (Sweden)

    Y Terry Lee

    Full Text Available Increasing fetal hemoglobin (HbF levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies. Erythroblast LIN28A over-expression (LIN28A-OE did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30-40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts.

  13. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts.

    Science.gov (United States)

    Lee, Y Terry; de Vasconcellos, Jaira F; Byrnes, Colleen; Kaushal, Megha; Rabel, Antoinette; Tumburu, Laxminath; Allwardt, Joshua M; Miller, Jeffery L

    2015-01-01

    Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30-40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts.

  14. Gene expression profiles and phosphorylation patterns of AMP-activated protein kinase subunits in various mesenchymal cell types

    Institute of Scientific and Technical Information of China (English)

    Wang Yugang; Fan Qiming; Ma Rui; Lin Wentao; Tang Tingting

    2014-01-01

    Background Recent studies on bone have shown an endocrine role of the skeleton,which could be impaired in various human diseases,including osteoporosis,obesity,and diabetes-associated bone diseases.As a sensor and regulator of energy metabolism,AMP-activated protein kinase (AMPK) may also play an important role in the regulation of bone metabolism.The current study aimed to establish the expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types.Methods Reverse transcription-polymerase chain reaction (PCR) for relative quantification,real-time PCR for absolute quantification,and Western blotting were used to investigate the gene expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types,including primary human mesenchymal stem cells (hMSCs) and hFOB,Saos-2,C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells.Results AMPKα1 and AMPKβ1 mRNAs were abundantly expressed in all cell types.AMPKY1 mRNA was abundantly expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 but not detected in human-derived cell types.AMPKY2 mRNA was mildly expressed in all cell types.AMPKα1 protein was highly expressed in all cell types and AMPKα2 protein was highly expressed only in hFOB and Saos-2 cells.AMPKβ1 protein was abundantly expressed in all cell types except for Saos-2,in which AMPKβ2 protein overwhelmed AMPKβ1 expression.AMPKy1 and AMPKY2 proteins were expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells and only AMPKY2 protein was expressed in hMSCs,hFOB and Saos2 cells.AMPKα was phosphorylated at Thr172 and Ser485 and AMPKβ1 was phosphorylated at Ser108 and Ser182 in all cell types with a specific pattern in each cell type.Conclusion The combination of AMPK α,β,and Y subunits and phosphorylation of AMPKα (Thr172 and Ser485) and AMPKβ1 (Ser108 and Ser182) showed a specific pattern in each cell type.

  15. Fast protein evolution and germ line expression of a Drosophila parental gene and its young retroposed paralog.

    Science.gov (United States)

    Betrán, Esther; Bai, Yongsheng; Motiwale, Mansi

    2006-11-01

    This is the first detailed study of the evolution, phylogenetic distribution, and transcription of one young retroposed gene, CG13732, and its parental gene CG15645, whose functions are unknown. CG13732 is a recognizable retroposed copy of CG15645 retaining the signals of this process. We name the parental gene Cervantes and the retrogene Quijote. To determine when this duplication occurred and the phylogenetic distribution of Quijote, we employed polymerase chain reaction, Southern blotting, and the available information on sequenced Drosophila genomes. Interestingly, these analyses revealed that Quijote is present only in 4 species of Drosophila (Drosophila melanogaster, Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana) and that retroposed copies of Cervantes have also originated in the lineages leading to Drosophila yakuba and Drosophila erecta independently in the 3 instances. We name the new retrogene in the D. yakuba lineage Rocinante and the new retrogene in the D. erecta lineage Sancho. In this work, we present data on Quijote and its parental gene Cervantes. Polymorphism analysis of the derived gene and divergence data for both parental and derived genes were used to determine that both genes likely produce functional proteins and that they are changing at a fast rate (KA/KS approximately 0.38). The negative value of H of Fay and Wu in the non-African sample reveals an excess of derived variants at high frequency. This could be explained either by positive selection in the region or by demographic effects. The comparative expression pattern shows that both genes express in the same adult tissues (male and female germ line) in D. melanogaster. Quijote is also expressed in male and female in D. simulans, D. sechellia, and D. mauritiana. We argue that the fast rate of evolution of these genes could be related to their putative germ line function and are further studying the independent recruitment of Cervantes-derived retrogenes in

  16. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  17. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    OpenAIRE

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days o...

  18. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E

    2016-01-01

    participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African......The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc...

  19. [Cloning of major outer membrane protein gene of Legionella pneumophila and detection of its expression in prokaryotic cell].

    Science.gov (United States)

    Zhang, Lei; Chen, Jianping; Wang, Tao; Zhang, Li; Tian, Yu

    2006-04-01

    In this study, the ompS gene, a major outer membrane protein gene of Legionella pneumophila, was obtained from the DNA of Legionella pneumophila by PCR. The gene was cloned into prokaryotic expressional plasmid pUC18 to construct recombinant plasmid. The recombinant plasmid was transformed into E. coli strain BL21. The identification was made by means of restriction enzyme analysis, polymerase chain reaction, DNA sequencing analysis, SDS--polyacrylamine gel electrophoresis analysis and Western blot. The results showed that the ompS gene of 914 bp was amplified from Legionella pneumophila DNA, the recombinant plasmid pLPompS was constructed and its expression in prokaryotic cell was detected successfully.

  20. Cloning, expression and characterization of translationally controlled tumor protein (TCTP) gene from flatfish turbot ( Scophthalmus maximus)

    Science.gov (United States)

    Wang, Jian; Guo, Huarong; Zhang, Shicui; Yin, Licheng; Guo, Bin; Wang, Shaojie

    2008-05-01

    A full-length cDNA encoding translationally controlled tumor protein of marine flatfish turbot ( Scophthalmus maximus), SmTCTP, was isolated with rapid amplification of cDNA Ends (RACE). SmTCTP consisted of a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 451 bp and an open reading frame (ORF) of 513 bp, encoding a protein of 170 amino acid residues, which contained two signature sequences of TCTP family. The 5'UTR of SmTCTP started with a 5'-terminal oligopyrimidine tract (5'-TOP), a typical feature for translationally controlled mRNAs. The deduced amino acid sequence of SmTCTP was similar to the other known vertebrate TCTPs in a range of 58.8% to 64.1%. The length of fish TCTPs was diverse among species, e.g., TCP of turbot and sea perch ( Lateolabrax japonicus) is 170 aa in length, while that of zebrafish ( Danio rerio) and rohu ( Labeo rohita) is 171 aa in length. Northern blot analysis revealed that SmTCTP has only one type of mRNA. Its expression level in albino skin was slightly higher than that in normal skin. We constructed the pET30a- SmTCTP expression plasmid. The recombinant protein of His-tag SmTCTP was over-expressed in E. coli, purified and identified with peptide mass fingerprinting. These results may pave the way of further investigation of the biological function of TCTP in fish.

  1. [Molecular cloning and expression analysis of a SUPERMAN-like zinc finger protein gene in upland cotton].

    Science.gov (United States)

    Yang, Yu-Wen; Ni, Wan-Chao; Zhang, Bao-Long; Shen, Xin-Lian; Zhang, Xiang-Gui; Xu, Ying-Jun; Yao, Shu

    2006-04-01

    The zinc finger proteins belong to the largest family of regulatory transcription factors, which play an important role in growth and development in animal and plant systems. SUPERMAN-like zinc finger protein gene has only one "finger like" motif. A pair of degenerate primers was designed according to the conserved regions, and 3 kinds of EST of this family were isolated from cotton through RT-PCR. The full length of one SUPERMAN-like zinc finger protein also has been acquired. The entire coding region is 744 bp and encodes a polypeptide of 248 amino acids with 40% homology to RBE protein of Arabidopsis deposited in the GenBank. This gene was designated as GZFP. It has the conserved zinc finger domain and the leucine rich region at the carboxyl terminus but no intron in the coding region. GZFP also has the plant nuclear localization signal. GZFP shows a more expression pattern in floral buds, ovaries, petals and roots than in phloem, xylem, fibers, leaves and seeds of cotton by RT-PCR, although it has a very low detection level and there is not any homologous ESTs found in the GenBank. Analysis of the 5' flanking sequence shows there are several regulatory elements responsible for pollen and root expression, four core sites required for binding of Dof proteins and four light-regulated elements.

  2. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hye Youn; Choi, Eun Nam [Department of Biochemistry, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of); Ahn Jo, Sangmee [Department of Pharmacy, College of Pharmacy, Dankook University, San 29 Anseo-dong, Dongnam-gu, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Oh, Seikwan [Department of Neuroscience and TIDRC, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of); Ahn, Jung-Hyuck, E-mail: ahnj@ewha.ac.kr [Department of Biochemistry, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory

  3. Expression Profiles of 12 Late Embryogenesis Abundant Protein Genes from Tamarix hispida in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Caiqiu Gao

    2014-01-01

    Full Text Available Twelve embryogenesis abundant protein (LEA genes (named ThLEA-1 to -12 were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR. These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work.

  4. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens.

    Science.gov (United States)

    Dridi, Sami; Temim, Soraya; Derouet, Michel; Tesseraud, Sophie; Taouis, Mohammed

    2008-08-01

    Emerging evidence showed that variations in environmental temperature affect both leptin and uncoupling protein (UCP) gene expression in mammals, whereas a little is known about such interactions in birds. Thus, we conducted the present study to investigate the influence of acute (2 hours) cold (4 degrees C) and chronic (10 days) heat (32 degrees C) exposure on hepatic leptin and muscle UCP gene expression in 5-wk-old broiler chickens. Both cold- and heat-exposure significantly (P < 0.05 to P < 0.001) upregulated hepatic leptin (by 35 and 46%, respectively) and muscle UCP mRNA levels (by 71 and 71%, respectively) compared to the thermoneutrality (22 degrees C). This result suggests that leptin and UCP may be involved in the thermoregulation response of chickens to extreme climate (cold and hot temperatures). The upregulation of hepatic leptin gene expression was accompanied by an increase in plasma leptin levels, indicating that leptin may be regulated at transcriptional level. The increase of leptin and UCP mRNA abundance, and leptinemia we report here were not related to plasma glucose or insulin levels. In conclusion, the exposure of broiler chickens to extreme ambient temperatures (cold and heat) increases hepatic leptin and muscle UCP gene expression.

  5. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man3GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  6. P53 Gene Mutation and Expression of MDM2, P53, P16 Protein and their Relationship in Human Glioma

    Institute of Scientific and Technical Information of China (English)

    CUI Wen; WU Renliang; CAO Huiling; GAO Jifa; WANG Xu; REN Qiwei

    2005-01-01

    To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship with each other, LSAB immunohistochemical staining method and non-isotopic PCR-SSCP techniques were used to detect the expression of MDM2, P53 and P16 pro tein and p53 gene mutation in 48 cases of gliomas. The results showed that the positive expression rate of MDM2, P53 and the negative rate of P16 was 22.9 %, 41.7 % and 60.4 %, respectively.The latter two in high grade (grade Ⅲ , Ⅳ) gliomas had a significantly higher rate than in the low grade (grade Ⅱ ) gliomas. Moreover, the co-expression of MDM2 and P53 protein was confirmed in only 1 of 48 cases. No significant difference was found in the rate of the expression of MDM2 between high grade and low grade gliomas (P>0.1) . PCR SSCP results showed that mutation of 5-8 exons of p53 gene was detected in 17 out of 48 cases (35.42 %) . Mutation was detected in 16of 20 cases of positive p53 expression, and another one was detected in 28 cases of negative expression cases. The correlation between p53 mutation and p53 immunopositivity was observed in 89.6% of the cases. P53 gene mutation and the level of MDM2, P53 and P16 protein were not related to age, gender of the patients, tumor location and size. It is concluded that the mutation of p53 and deletion of p16 might play important roles in the tumorigenesis of gliomas and it was significantly associated with the grade of tumor differentiation. P53 protein accumulation can indirectly reflect p53 mutation. MDM2 amplification and overexpression might be an early event in the growth of human gliomas.

  7. Comparing the functions of equine and canine influenza H3N8 virus PA-X proteins: Suppression of reporter gene expression and modulation of global host gene expression.

    Science.gov (United States)

    Feng, Kurtis H; Sun, Miao; Iketani, Sho; Holmes, Edward C; Parrish, Colin R

    2016-09-01

    The influenza PA-X protein is translated from the PA open reading frame from frameshifting and suppresses cellular gene expression due to its ribonuclease activity. We further defined the functional roles of PA-X by comparing PA-X proteins from two related viruses - equine influenza (EIV) and canine influenza (CIV) H3N8 - that differ in a C-terminal truncation and internal mutations. In vitro reporter gene assays revealed that both proteins were able to suppress gene expression. Interestingly, EIV PA-X demonstrated ~50% greater activity compared to CIV PA-X, and we identified the mutations that caused this difference. We used RNA-seq to evaluate the effects of PA-X on host gene expression after transfection into cultured cells. There were no significant differences in this property between EIV and CIV PA-X proteins, but expression of either resulted in the up-regulation of genes when compared to controls, most notably immunity-related proteins, trafficking proteins, and transcription factors.

  8. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content.

    Directory of Open Access Journals (Sweden)

    Craig A Goodman

    Full Text Available One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST and fast-twitch (FT rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg(-1·day(-1 or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS, endothelial NOS (eNOS and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.

  9. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  10. Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products

    Directory of Open Access Journals (Sweden)

    Lilja Hans

    2011-10-01

    Full Text Available Abstract Background We have previously identified a locus on human chromosome 20q13.1, encompassing related genes of postulated WFDC-type protease inhibitors and semen coagulum proteins. Three of the genes with WFDC motif also coded for the Kunitz-type protease inhibitor motif. In this report, we have reinvestigated the locus for homologous genes encoding Kunitz motif only. The identified genes have been analyzed with respect to structure, expression and function. Results We identified three novel genes; SPINT3, SPINT4 and SPINT5, and the structure of their transcripts were determined by sequencing of DNA generated by rapid amplification of cDNA ends. Each gene encodes a Kunitz domain preceded by a typical signal peptide sequence, which indicates that the proteins of 7.6, 8.7, and 9.7 kDa are secreted. Analysis of transcripts in 26 tissues showed that the genes predominantly are expressed in the epididymis. The recombinantly produced proteins could not inhibit the amidolytic activity of trypsin, chymotrypsin, plasmin, thrombin, coagulation factor Xa, elastase, urokinase and prostate specific antigen, whereas similarly made bovine pancreatic trypsin inhibitor (BPTI had the same bioactivity as the protein isolated from bovine pancreas. Conclusions The similar organization, chromosomal location and site of expression, suggests that the novel genes are homologous with the genes of WFDC-type protease inhibitors and semen coagulum proteins, despite the lack of similarity in primary structure of their protein products. Their restricted expression to the epididymis suggests that they could be important for male reproduction. The recombinantly produced proteins are presumably bioactive, as demonstrated with similarly made BPTI, but may have a narrower spectrum of inhibition, as indicated by the lacking activity against eight proteases with differing specificity. Another possibility is that they have lost the protease inhibiting properties, which is

  11. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  12. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp lactis grown in synthetic medium and reconstituted skim milk

    DEFF Research Database (Denmark)

    Larsen, N.; Boye, Mette; Jakobsen, Marianne

    2006-01-01

    metabolism, glycolysis, stress response, translation, transcription, cell division, amino acid metabolism, and coenzyme synthesis., were identified. Among the identified proteins, > 2-fold induction and down-regulation in the lag phase were determined for 12 proteins in respect to the exponential phase......We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide...... and for 18 proteins in respect to the stationary phase. Transcriptional changes of the lag-phase proteins in L. lactis were studied by oligonucleotide microarrays. Good correlation between protein and gene expression studies was demonstrated for several differentially expressed proteins, including nucleotide...

  13. Impact of STAT4 gene silencing on the expression profile of proteins in EL-4 cells

    Institute of Scientific and Technical Information of China (English)

    WEI XiaoLi; NI Hong; WANG QingShan; XIANG Rong; WANG Yue

    2009-01-01

    The signal transducers and activators of transcription (STATs) have diverse biological functions and are involved in cell differentiation,proliferation,development,apoptosis and inflammation. Several constitutively activated STATs have been observed in a wide variety of human cancer cell lines and primary tumor cells,including blood malignancies and solid neoplasias. Although regulatory T (Treg)cells induce immune tolerance by suppressing host immune responses against self-or nonself-antigens,thus playing critical roles in preventing autoimmune diseases,they might inhibit antitumor immunity and promote tumor growth. Our previous findings suggest that the supernatant from STAT4-silenced tumor cell culture can significantly increase the ratio of CD4+ CD25+ Foxp3+ regulatory T cells among splenic cells in vitro,when compared to that from normal tumor cell culture. In the present study,we identified that the mouse lymphoma cell line EL-4 expressed a high level of STAT4,and silencing of STAT4 by siRNA did not change the expression levels of TGF-β and IL-10 in EL-4 cells. Two-dimensional electrophoresis was conducted to examine the difference of expression profiles of proteins between normal and STAT4-silenced EL4 cells. Some of the protein which has been changed may induce CD4+ CD25+ Foxp3+ regulatory T cells in vitro.

  14. Differential expression of somatostatin receptor subtype-related genes and proteins in non-functioning and functioning adrenal cortex adenomas.

    Science.gov (United States)

    Pisarek, Hanna; Krupiński, Roman; Kubiak, Robert; Borkowska, Edyta; Pawlikowski, Marek; Winczyk, Katarzyna

    2011-01-01

    Adrenocortical adenomas display highly variable expressions of somatostatin receptor (SSTR) subtypes, whose expression is mandatory (although not always sufficient) to achieve the positive effects of somatostatin (SST) analog therapy. Immunohistochemistry (IHC) is the main method used to investigate receptor protein expression. The molecular biology method - polymerase chain reaction (PCR) - is also often used to investigate receptor expression. Nevertheless, the expression of receptor mRNA and the respective receptor protein is not always synchronized. The aim of this study was to investigate SSTR expression by IHC in adrenal adenomas, to compare the results to data obtained by real-time PCR and to determine whether hormonally functioning and non-functioning adenomas differ in this respect. Adrenocortical adenomas were removed surgically from 13 females and 2 males. The tissues were obtained from 9 non-functioning and 6 functioning adenomas. The intensity of IHC reaction was scored semiquantitatively by two independent observers. Real-time PCR was performed using pairs of primers in a reaction amplified along a gradient of temperatures. Amplified DNA was measured by monitoring SYBR-Green fluorescence. In non-functioning tumors, compatibility between IHC and PCR results was observed for SSTR 1 and 2 in 62.5% of the samples. Fifty percent of patients demonstrated compatibility for SSTR 4 and 5 and 37.5% for SSTR 3. In hormonally active adenomas, total compatibility of both methods was noted for SSTR 2 (100%). The compatibility obtained for SSTR 5 was 66.6%. We conclude that receptor gene and respective receptor protein expression are not always synchronized. Messenger RNA detection alone is not sufficient to predict the presence of the receptor protein acting as a target for SST and its analogs.

  15. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes.

    Science.gov (United States)

    Bevec, D; Klier, H; Holter, W; Tschachler, E; Valent, P; Lottspeich, F; Baumruker, T; Hauber, J

    1994-11-08

    The hypusine-containing protein eukaryotic initiation factor 5A (eIF-5A) is a cellular cofactor critically required for the function of the Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1). eIF-5A localizes in the nuclear and cytoplasmic compartments of mammalian cells, suggesting possible activities on the level of regulated mRNA transport and/or protein translation. In this report we show that eIF-5A gene expression is constitutively low but inducible with T-lymphocyte-specific stimuli in human peripheral blood mononuclear cells (PBMCs) of healthy individuals. In contrast, eIF-5A is constitutively expressed at high levels in human cell lines as well as in various human organs. Comparison of eIF-5A levels in the PBMCs of uninfected and HIV-1-infected donors shows a significant upregulation of eIF-5A gene expression in the PBMCs of HIV-1 patients, compatible with a possible role of eIF-5A in HIV-1 replication during T-cell activation.

  16. O-demethylase from Acetobacterium dehalogenans--cloning, sequencing, and active expression of the gene encoding the corrinoid protein.

    Science.gov (United States)

    Kaufmann, F; Wohlfarth, G; Diekert, G

    1998-10-15

    The ether-cleaving O-demethylase from the strictly anaerobic homoacetogen Acetobacterium dehalogenans catalyses the methyltransfer from 4-hydroxy-3-methoxy-benzoate (vanillate) to tetrahydrofolate. In the first step a vanillate :corrinoid protein methyltransferase (methyltransferase I) mediates the methylation of a 25-kDa corrinoid protein with the cofactor reduced to cob(I)alamin. The methyl group is then transferred to tetrahydrofolate by the action of a methylcorrinoid protein:tetrahydrofolate methyltransferase (methyltransferase II). Using primers derived from the amino-terminal sequences of the corrinoid protein and the vanillate:corrinoid protein methyltransferase (methyltransferase I), a 723-bp fragment was amplified by PCR, which contained the gene odmA encoding the corrinoid protein of O-demethylase. Downstream of odmA, part of the odmB gene encoding methyltransferase I was identified. The amino acid sequence deduced from odmA showed about 60% similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli (MetH) and to corrinoid proteins of methyltransferase systems involved in methanogenesis from methanol and methylamines. The sequence contained the DXHXXG consensus sequence typical for displacement of the dimethylbenzimidazole base of the corrinoid cofactor by a histidine from the protein. Heterologous expression of odmA in E. coli yielded a colourless, oxygen-insensitive apoprotein, which was able to bind one mol cobalamin or methylcobalamin/mol protein. Both of these reconstituted forms of the protein were active in the overall O-demethylation reaction. OdmA reconstituted with hydroxocobalamin and reduced by titanium(III) citrate to the cob(I)alamin form was methylated with vanillate by methyltransferase I in an irreversible reaction. Methylcobalamin carrying OdmA served as methyl group donor for the methylation of tetrahydrofolate by methyltransferase II. This reaction was found to be reversible, since methyltranSferase II

  17. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  18. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Iacopino, A.M.; Christakos, S. (Univ. of Medicine and Dentistry of New Jersey, Newark (USA))

    1990-06-01

    The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin{center dot}mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, and nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases.

  19. In vitro Expression in Eukaryotic Cells of a Prion Protein Gene Cloned from Scrapie-Infected Mouse Brain

    Science.gov (United States)

    Caughey, Byron; Race, Richard E.; Vogel, Mari; Buchmeier, Michael J.; Chesebro, Bruce

    1988-07-01

    It has been proposed that the causative agent of scrapie represents a class of infectious particle that is devoid of nucleic acid and that an altered form of the endogenous prion protein (PrP) is the agent. However, it has been difficult to exclude the possibility that PrP purified from scrapie tissues might be contaminated with a more conventional viral agent. To obtain PrP uncontaminated by scrapie-infected tissues, PrP cDNA cloned from a scrapie-infected mouse brain was expressed in mouse C127 cells in vitro. mRNA and protein encoded by the cloned PrP gene were identified. The expressed PrP polypeptides appeared to be glycosylated and were released from the cell surface into the medium. Homogenates of the cells expressing the cloned PrP gene were inoculated into susceptible mice but failed to induce clinical signs of scrapie. Thus, either PrP is not the transmissible agent of scrapie or the expressed PrP requires additional modification to be infectious.

  20. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    Science.gov (United States)

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Cloning, Expression and Characterization of Translationally Controlled Tumor Protein (TCTP) Gene from Flatfish Turbot (Scophthalmus maximus)

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; GUO Huarong; ZHANG Shicui; YIN Licheng; GUO Bin; WANG Shaojie

    2008-01-01

    A full-length cDNA encoding translationally controlled tumor protein of marine flatfish turbot (Scophthalmus maximus), SmTCTP, was isolated with rapid amplification of cDNA Ends (RACE). SmTCTP consisted of a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 451 bp and an open reading flame (ORF) of 513 bp, encoding a protein of 170 amino acid residues, which contained two signature sequences of TCTP family. The 5'UTR of SmTCTP started with a 5'-terminal oligopyrimidine tract (5'-TOP), a typical feature for translationaily controlled mRNAs. The deduced amino acid sequence of SmTCTP was similar to the other known verte-brate TCTPs in a range of 58.8% to 64.1%. The length offish TCTPs was diverse among species, e.g., TCTP of turbot and sea perch (Lateolabrax japonicus) is 170 aa in length, while that of zebrafish (Danio rer/o) and rohu (Labeo rohita) is 171 aa in length. North-ern blot analysis revealed that SmTCTP has only one type of mRNA. Its expression level in albino skin was slightly higher than that in normal skin. We constructed the pET3Oa-SmTCTP expression plasmid. The recombinant protein of His-tag SmTCTP was over-expressed in E. coli, purified and identified with peptide mass fingerprinting. These results may pave the way of further inves-tigation of the biological function of TCTP in fish.

  2. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Tungjitwitayakul, Jatuporn; Tatun, Nujira; Vajarasathira, Boongeua; Sakurai, Sho

    2015-06-01

    The maize weevil, Sitophilus zeamais Motschulsky, is a major pest of rice and other postharvest grain stocks in tropical countries. Heating and cooling treatments have been adopted to control this pest. Because heat shock protein (hsp) genes respond to temperature stress, we examined the association of hsp genes with development and thermal stress in S. zeamais. The temperature response of the insect to heat and cold treatments was assessed at four developmental stages: egg, larva, pupa, and adult. LT50 values at high temperatures were similar among the four developmental stages, while adults were the most tolerant to low temperatures, and eggs, larvae, and pupae exhibited similar LT50 values. Expression levels of three hsps--Szhsp70, Szhsc70, and Szhsp90--fluctuated substantially throughout the four stages at a rearing temperature of 28°C. Heat shock and cold shock increased the expression of all three hsps, and the highest upregulation was observed at 40°C, although the intensity of upregulation varied among the three genes: strongly in Szhsp70, moderately in Szhsp90, and slightly in Szhsc70. Basal expression of the three hsps at 28°C and gene responses to heat and cold shock also varied significantly at the tissue level.

  3. The Effect of a High-Protein Diet and Exercise on Cardiac AQP7 and GLUT4 Gene Expression.

    Science.gov (United States)

    Palabiyik, Orkide; Karaca, Aziz; Taştekin, Ebru; Yamasan, Bilge Eren; Tokuç, Burcu; Sipahi, Tammam; Vardar, Selma Arzu

    2016-10-01

    High-protein (HP) diets are commonly consumed by athletes despite their potential health hazard, which is postulated to enforce a negative effect on bone and renal health. However, its effects on heart have not been known yet. Aquaporin-7 (AQP7) is an aquaglyceroporin that facilitates glycerol and water transport. Glycerol is an important cardiac energy production substrate, especially during exercise, in conjunction with fatty acids and glucose. Glucose transporter 4 (GLUT4) is an insulin-sensitive glucose transporter in heart. We aimed to investigate the effect of HPD on AQP7 and GLUT4 levels in the rat heart subjected to exercise. Male Sprague-Dawley rats were divided into control (n = 12), exercise (E) training (n = 10), HPD (n = 12), and HPD-E training (n = 9) groups. The HPD groups were fed a 45 % protein-containing diet 5 weeks. The HPD-E and E groups were performed the treadmill exercise during the 5-week study period. Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the gene expression and localization of AQP7 and GLUT4 in heart tissue. Results of relative gene expression were calculated by the 'Pfaffl' mathematical method using the REST program. Differences in AQP7 and GLUT4 gene expression were expressed as fold change compared to the control group. Heart weight/tibia ratio and ventricular wall thickness were evaluated as markers of cardiac hypertrophy. Further, serum glucose, glycerol, and insulin levels were also measured. AQP7 gene expression was found to be increased in the E (3.47-fold, p GLUT4 showed a significant increase in the E (2.16-fold, p GLUT4 protein expression was significantly increased in the E, HPD, and HPD-E groups compared to the control group (p = 0.024, p GLUT4 expression in rat heart.

  4. Cloning and Expression Analysis of a Prion Protein Encoding Gene in Guppy (Poecilia reticulata)

    Institute of Scientific and Technical Information of China (English)

    WU Suihan; WEI Qiwei; YANG Guanpin; WANG Dengqiang; ZOU Guiwei; CHEN Daqing

    2008-01-01

    The full length eDNA of a prion protein (PrP) encoding gene of guppy (Poecilia reticulata) and the corresponding ge-nomic DNA were cloned.The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a pro-tein of 515 amino acids,which held all typical structural characteristics of the functional PrP.The cloned genomic DNA fragmentcorresponding to the eDNA was 3720 bp in length,consisting of 2 introns and 2 exons.The 5' untranslated region of eDNA origi-nated from the 2 exons,while the ORF originated from the second exon.Although the gene was transcribed in diverse tissues in-cluding brain,eye,liver,intestine,muscle and tail,its transcript was most abundant in the brain.In addition,the transcription of thegene was enhanced by 5 salinity,implying that it was associated with the response of guppy to saline stress.

  5. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques.

    Science.gov (United States)

    Komatsu, Setsuko; Yamamoto, Ryo; Nanjo, Yohei; Mikami, Yoji; Yunokawa, Harunobu; Sakata, Katsumi

    2009-10-01

    The inducible genes and proteins were analyzed using transcriptome and proteome techniques to explore the mechanisms underlying soybean response to flooding stress. Soybean seedlings were germinated for 2 days and subjected to flooding for 12 h, and the total RNAs and proteins were extracted from the root and hypocotyl. High-coverage gene expression profiling analysis as transcriptome technique was performed. Ninety-seven out of the 29,388 peaks observed demonstrated a greater than 25-fold change following 12 h of flood-induced stress. Furthermore, 34 proteins out of 799 proteins were changed by 12 h stress. Genes associated with alcohol fermentation, ethylene biosynthesis, pathogen defense, and cell wall loosening were significantly up-regulated. Hemoglobin, acid phosphatase, and Kunitz trypsin protease inhibitor were altered at both transcriptional and translational levels. Reactive oxygen species scavengers and chaperons were changed only at the translational level. It is suggested that the early response of soybean under flooding might be important stress adaptation to ensure survival against not only hypoxia but also the direct damage of cell by water.

  6. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Sato, Atsushi; Matsumura, Rie; Hoshino, Naomi; Tsuzuki, Mikio; Sato, Norihiro

    2014-01-01

    Triacylglycerol (TG) synthesis is induced for energy and carbon storage in algal cells under nitrogen(N)-starved conditions, and helps prevent reactive oxygen species (ROS) production through fatty acid synthesis that consumes excessive reducing power. Here, the regulatory mechanism for the TG content in sulfur(S)-starved cells of Chlamydomonas reinhardtii was examined, in comparison to that in N- or phosphorus(P)-starved cells. S- and N- starved cells exhibited markedly increased TG contents with up-regulation of mRNA levels of diacylglycerol acyltransferase (DGAT) genes. S-Starvation also induced expression of the genes for phosphatidate synthesis. In contrast, P-starved cells exhibited little alteration of the TG content with almost no induction of these genes. The results implied deficient nutrient-specific regulation of the TG content. An arg9 disruptant defective in arginine synthesis, even without nutritional deficiencies, exhibited an increased TG content upon removal of supplemented arginine, which repressed protein synthesis. Repression of protein synthesis thus seemed crucial for TG accumulation in S- or N- starved cells. Meanwhile, the results of inhibitor experiments involving cells inferred that TG accumulation during S-starvation is supported by photosynthesis and de novo fatty acid synthesis. During S-starvation, sac1 and snrk2.2 disruptants, which are defective in the response to the ambient S-status, accumulated TG at lower and higher levels, respectively, than the wild type. The sac1 and snrk2.2 disruptants showed no or much greater up-regulation of DGAT genes, respectively. In conclusion, TG synthesis would be activated in S-starved cells, through the diversion of metabolic carbon-flow from protein to TG synthesis, and simultaneously through up-regulation of the expression of a particular set of genes for TG synthesis at proper levels through the actions of SAC1 and SNRK2.2.

  7. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Atsushi eSato

    2014-09-01

    Full Text Available Triacylglycerol (TG synthesis is induced for energy and carbon storage in algal cells under nitrogen(N-starved conditions, and helps prevent reactive oxygen species production through fatty acid synthesis that consumes excessive reducing power. Here, the regulatory mechanism for the TG content in sulfur(S-starved cells of Chlamydomonas reinhardtii was examined, in comparison to that in N- or phosphorus(P-starved cells. S- and N-starved cells exhibited markedly increased TG contents with up-regulation of mRNA levels of diacylglycerol acyltransferase genes. S-Starvation also induced expression of the genes for phosphatidate synthesis. In contrast, P-starved cells exhibited little alteration of the TG content with almost no induction of these genes. The results implied deficient nutrient-specific regulation of the TG content. An arg9 disruptant defective in arginine synthesis, even without nutritional deficiencies, exhibited an increased TG content upon removal of supplemented arginine, which repressed protein synthesis. Repression of protein synthesis thus seemed crucial for TG accumulation in S- or N-starved cells. Meanwhile, the results of inhibitor experiments involving cells inferred that TG accumulation during S-starvation is supported by photosynthesis and de novo fatty acid synthesis. During S-starvation, sac1 and snrk2.2 disruptants, which are defective in the response to the ambient S-status, accumulated TG at lower and higher levels, respectively, than the wild type. The sac1 and snrk2.2 disruptants showed no or much greater up-regulation of diacylglycerol acyltransferase genes, respectively. In conclusion, TG synthesis would be activated in S-starved cells, through the diversion of metabolic carbon-flow from protein to TG synthesis, and simultaneously through up-regulation of the expression of a particular set of genes for TG synthesis at proper levels through the actions of SAC1 and SNRK2.2.

  8. Dose-dependent Inhibition of Gynecophoral Canal Protein Gene Expression in Vitro in the Schistosome (Schistosomajaponicum) by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    Guo-Feng CHENG; Jiao-Jiao LIN; Yi SHI; You-Xin JIN; Zhi-Qiang FU; Ya-Mei JIN; Yuan-Cong ZHOU; You-Min CAI

    2005-01-01

    The gynecophoral canal protein gene SjGCP of Schistosoma japonicum that is necessary for the pairing between the male and female worms is specifically expressed in the adult male worm. This protein is widely distributed in the adult female worm after pairing. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence were employed to analyze the relationship between the RNAi effect and dsRNA dosage in the parasites. The results revealed that the inhibition of SjGCP expression by siRNA is dose-dependent. RT-PCR analysis showed that the SjGCP transcript level was reduced by 75%when 100 nM dsRNA was applied.

  9. Monocyte chemoattractant protein-1 in subcutaneous abdominal adipose tissue: characterization of interstitial concentration and regulation of gene expression by insulin.

    Science.gov (United States)

    Murdolo, Giuseppe; Hammarstedt, Ann; Sandqvist, Madeléne; Schmelz, Martin; Herder, Christian; Smith, Ulf; Jansson, Per-Anders

    2007-07-01

    The chemokine monocyte chemoattractant protein-1 (MCP-1) is implicated in obesity-associated chronic inflammation, insulin resistance, and atherosclerosis. The objectives of this study were to: 1) characterize the interstitial levels and the gene expression of MCP-1 in the sc abdominal adipose tissue (SCAAT), 2) elucidate the response of MCP-1 to acute hyperinsulinemia, and 3) determine the relationship between MCP-1 and arterial stiffness. Nine lean (L) and nine uncomplicated obese (OB) males were studied in the fasting state and during a euglycemic-hyperinsulinemic clamp combined with the microdialysis technique. Interstitial and serum MCP-1 (iMCP-1 and sMCP-1, respectively) levels, pulse wave analysis, and SCAAT biopsies were characterized at baseline and after hyperinsulinemia. OB showed elevated sMCP-1 (P iMCP-1 levels as compared with L. Basal iMCP-1 concentrations were considerably higher than sMCP-1 (P iMCP-1 and sMCP-1 levels was maintained throughout the hyperinsulinemia. At baseline, SCAAT gene expression profile revealed a "co-upregulation" of MCP-1, MCP-2, macrophage inflammatory protein-1alpha, and CD68 in OB, and whole-body glucose disposal inversely correlated with the MCP-1 gene expression. After hyperinsulinemia, MCP-1 and MCP-2 mRNA levels significantly increased in L, but not in OB. Finally, sMCP-1 excess in the OB positively correlated with the stiffer vasculature. These observations demonstrate similar interstitial concentrations and a differential gene response to hyperinsulinemia of MCP-1 in the SCAAT from L and OB individuals. In human obesity, we suggest the SCAAT MCP-1 gene overexpression as a biomarker of an "inflamed" adipose organ and impaired glucose metabolism.

  10. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain.

    Science.gov (United States)

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-06-14

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases.

  11. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression.

    Science.gov (United States)

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R; O'Connor, Paula M; McAuliffe, AnneMarie; Guinane, Caitriona M; Lawton, Elaine M; Crispie, Fiona; Aguilera, Mònica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Silvia; Cryan, John F; Cotter, Paul D

    2017-07-01

    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway. Copyright © 2017 the American Physiological Society.

  12. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens.

    Science.gov (United States)

    Sohn, S H; Subramani, V K; Moon, Y S; Jang, I S

    2012-04-01

    In this longitudinal study with Single Comb White Leghorn chickens, we investigated the effects of stress conditions in birds that were subjected to a high stocking density with feed restrictions on the quantity of telomeric DNA, the rate of DNA damage, and the expression levels of heat shock proteins (HSP) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes. The telomere length and telomere-shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90, and HMGCR genes were measured by quantitative real-time PCR in lymphocytes. The telomere-shortening rate of the lymphocytes was significantly higher in the stress group than in the control. The DNA damage also increased in birds raised under stress conditions, as compared with the control group. The stress conditions had a significant effect on the expressions of HMGCR and HSP90α in lymphocytes but had no significance on HSP70 and HSP90β in blood. We conclude that the telomere length, especially the telomere-shortening rates, the quantification of total DNA damage, and the expression levels of the HMGCR and HSP90α genes can be used as sensitive physiological stress markers in chickens.

  13. A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor gene expression

    Science.gov (United States)

    Falvo, James V.; Brinkman, Brigitta M. N.; Tsytsykova, Alla V.; Tsai, Eunice Y.; Yao, Tso-Pang; Kung, Andrew L.; Goldfeld, Anne E.

    2000-04-01

    The cAMP response element binding protein (CREB)-binding protein (CBP)/p300 family of coactivator proteins regulates gene transcription through the integration of multiple signal transduction pathways. Here, we show that induction of tumor necrosis factor (TNF-) gene expression in T cells stimulated by engagement of the T cell receptor (TCR) or by virus infection requires CBP/p300. Strikingly, in mice lacking one copy of the CBP gene, TNF- gene induction by TCR activation is inhibited, whereas virus induction of the TNF- gene is not affected. Consistent with these findings, the transcriptional activity of CBP is strongly potentiated by TCR activation but not by virus infection of T cells. Thus, CBP gene dosage and transcriptional activity are critical in TCR-dependent TNF-α gene expression, demonstrating a stimulus-specific requirement for CBP in the regulation of a specific gene.

  14. RNA-sequencing reveals previously unannotated protein- and microRNA-coding genes expressed in aleurone cells of rice seeds.

    Science.gov (United States)

    Watanabe, Kenneth A; Ringler, Patricia; Gu, Lingkun; Shen, Qingxi J

    2014-01-01

    The rice genome annotation has been greatly improved in recent years, largely due to the availability of full length cDNA sequences derived from many tissues. Among those yet to be studied is the aleurone layer, which produces hydrolases for mobilization of seed storage reserves during seed germination and post germination growth. Herein, we report transcriptomes of aleurone cells treated with the hormones abscisic acid, gibberellic acid, or both. Using a comprehensive approach, we identified hundreds of novel genes. To minimize the number of false positives, only transcripts that did not overlap with existing annotations, had a high level of expression, and showed a high level of uniqueness within the rice genome were considered to be novel genes. This approach led to the identification of 553 novel genes that encode proteins and/or microRNAs. The transcriptome data reported here will help to further improve the annotation of the rice genome.

  15. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  16. Over-expression of gene encoding heat shock protein 70 from Mycobacterium tuberculosis and its evaluation as vaccine adjuvant

    Directory of Open Access Journals (Sweden)

    J Dhakal

    2013-01-01

    Full Text Available Background: Heat shock proteins (Hsps are evolutionary ancient and highly conserved molecular chaperons found in prokaryotes as well as eukaryotes. Hsp70 is a predominant member of Hsp family. Microbial Hsp70s (mHsp70s have acquired special significance in immunity since they have been shown to be potent activators of the innate immune system and generate specific immune responses against tumours and infectious agents. Objectives: The present study was aimed to clone express and purify recombinant Hsp70 from the Mycobacterium tuberculosis and characterise it immunologically. The study also aimed at determining the potential of recombinant M. tuberculosis heat shock protein (rMTB-Hsp70 as adjuvant or antigen carrier. Materials and Methods: Cloning of M. tuberculosis heat shock protein (MTB-Hsp70 amplicon was carried out using the pGEMT-Easy vector although for expression, pProExHTb prokaryotic expression vector was used. Purification of recombinant Hsp70 was carried out by nickel-nitrilotriacetic acid (Ni-NTA affinity chromatography. For immunological characterization and determining the adjuvant effect of MTB-Hsp70, BALB/c mice were used. The data obtained was statistically analysed. Results: Hsp70 gene was cloned, sequenced and the sequence data were submitted to National Center for Biotechnology Information (NCBI. Recombinant MTB-Hsp70 was successfully over-expressed using the prokaryotic expression system and purified to homogeneity. The protein was found to be immunodominant. Significant adjuvant effect was produced by the rMTB-Hsp70 when inoculated with recombinant outer membrane protein 31; however, effect was less than the conventionally used the Freund′s adjuvant. Conclusion: Protocol standardised can be followed for bulk production of rHsp70 in a cost-effective manner. Significant adjuvant effect was produced by rMTB-Hsp70; however, the effect was than Freund′s adjuvant. Further, studies need to be carried out to explore its

  17. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert;

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...... and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated...

  18. Characterization and expression analysis of calcium-dependent protein kinase genes in rice(Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    WANG Jiaojiao; GUO Li; XIAO Kai

    2007-01-01

    Under abiotic stress,the calcium-dependent protein kinases (CDPKs) in plant species are activated by the fluctuated Ca2+ levels in cytoplasm and thereby provide a mechanism to decode calcium signals.In this paper,twenty-two rice CDPK genes were identified based on scanning the rice genome released in National Center for Biotechnology Information (NCBI).It was found that there were dramatic differences on the DNA length,cDNA length,open reading frame (ORF) and the translated amino acids among the rice CDPK genes,with the highest diversity on the DNA length.Calculations of the exon/intron numbers and the lengths of exon and intron revealed that all of the rice CDPK genes had the longest exon at the position of exon 1,but the lengths of introns in different genes showed different patterns.The gene structure and phylogenetic analysis indicated that the rice CDPK genes had derived at least from two different ancestors during the evolution.The expression analysis elucidated that the rice CDPK genes showed different patterns under normal growth (CK) and salt stress condition,including constitutively expression (OsCDPK4,OsCDPK18,OsCDPK19 and OsCDPK24),down- or up-regulated in roots by salt stress (OsCDPK10 and OsCDPK16),up-regulated in leaves by salt stress (OsCDPK6,OsCDPK20 and OsCDPK13),and no detected transcripts under CK and salt stress condition.There-fore,the members of rice CDPK gene family should be evolutionally divergent and several members could play an important role in transducing the signal of salt stress.

  19. Mutation analysis of presenilin-1 gene in Alzheimer’s disease patients and the effects of its mutation on expression of presenilin-1 and amyloid precursor protein

    Institute of Scientific and Technical Information of China (English)

    刘晓雄

    2013-01-01

    Objective To analyze the presenilin-1(PS-1) gene mutations in Alzheimer’s disease(AD) patients and investigate the influence of the initiation codon mutation on the mRNA expression of PS-1 and amyloid precursor protein

  20. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål

    Science.gov (United States)

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp, organophosphate) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly in...

  1. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae).

    Science.gov (United States)

    Gao, Qiu; Tao, Ju-Hong; Yan, Dan; Wang, Yin-Zheng; Li, Zhen-Yu

    2008-07-01

    CYCLOIDIEA (CYC) and its homologues have been studied intensively in the model organism Antirrhinum majus and related species regarding their function in controlling floral dorsoventral (adaxial-abaxial) asymmetry, including aborting the adaxial and lateral stamens. This raises the question whether the same mechanism underlies the great morphological diversity of zygomorphy in angiosperms, especially in Lamiales sensu lato, a major clade predominantly with zygomorphic flowers. To address this, we selected a representative in Gesneriaceae, the sister to the remainder of Lamiales s.l., to isolate CYC homologues and further investigate their expression patterns using locus-specific semiquantitative reverse transcriptase polymerase chain reaction. Our results showed that four CYC homologues in Chirita heterotricha differentiated spatially and temporally in expression, in which ChCYC1D was only expressed in the adaxial regions, and transcripts of ChCYC1C were distributed in both the adaxial and lateral regions, while ChCYC2A and ChCYC2B transcripts were only detected in the young inflorescences. ChCYC1C expression in the lateral regions correlated with abortion of the lateral stamens in C. heterotricha hinted at its gain of function, i.e., expanding from the adaxial to the lateral regions in expression. Correlatively, the protein sequences of ChCYC genes exhibited remarkable divergences, in which some lineage-specific amino acids between GCYC1 and GCYC2 in conserved functional domains and two sublineage-specific motifs between GCYC1C and GCYC1D in GCYC1 genes had further been identified. Our results indicated that ChCYC genes had probably undergone an expressional differentiation and specialization in establishing the floral dorsoventral asymmetry in C. heterotricha responding to different selective pressure after gene duplication.

  2. Heterologous expression and in-silico characterization of Pathogenesis related protein1 (CsPR1 gene from Camellia sinensis.

    Directory of Open Access Journals (Sweden)

    Niraj Agarwala*

    2014-01-01

    Full Text Available Pathogenesis related protein1 gene induced after pathogen infection in plantshave been frequently used as marker gene for systemic acquired resistance. We have carried out isolation, annotation and expression of CsPR1, a potential disease resistance gene. The full length cDNA consist of 671 bp in length containing 162 amino acids with a signal peptide of 22 amino acids and 17.92 kDa predicted molecular weight. Recombinant CsPR1 was successfully expressed in BL21(DE3pLysS cells using pET 43.1 EK LIC vector system and was purified. Three dimensional models weregenerated using Phyre2 and I-TASSER and built a compact structureconsisting beta sheets surrounded by alpha helixes. The models werevalidated by MolProbity and RAMPAGE servers. Validation of modelledstructures based on Ramachandran plot, revealed I-TASSER producebetter quality and reliable 3D model. Purified recombinant CsPR1 and insilico generated 3D models from this study provide foundation forcomprehensive functional and structural characterization of CsPR1protein.

  3. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays.

    Science.gov (United States)

    Xie, Yu-Rong; Chen, Zhi-Yuan; Brown, Robert L; Bhatnagar, Deepak

    2010-01-15

    A novel PR10 gene (ZmPR10.1) was isolated from maize and its expression and function were compared with the previous ZmPR10. ZmPR10.1 shares 89.8% and 85.7% identity to ZmPR10 at the nucleotide and amino acid sequence level, respectively. ZmPR10 and ZmPR10.1 were mainly expressed in root tissue with low expression in other tissues. ZmPR10.1 had significantly lower expression than ZmPR10 in all tissues examined. The expression of both ZmPR10 and ZmPR10.1 was induced by most abiotic stresses including SA, CuCl(2), H(2)O(2), coldness, darkness and wounding during the 16-h treatments, and biotic stresses such as Erwinia stewartii and Aspergillus flavus infection. However, ZmPR10.1 was induced only 2 HAT and down-regulated thereafter, whereas ZmPR10 remained induced during the 16-h NAA treatment. Also, inoculation with Erwinia chrysanthemi caused about 2-fold induction in ZmPR10.1 expression 60 HAT but not significant changes for ZmPR10. Both ZmPR10.1 and ZmPR10 showed RNase activity in vitro with an optimal pH and temperature of 6.5 and 55 degrees C. Their RNase activities were significantly inhibited by low concentrations (1.0mM) of Cu(2+), Ag(+), Co(2+), SDS, EDTA or DTT. However, ZmPR10.1 possessed significantly higher (8-fold) specific RNase activity than ZmPR10. Also, ZmPR10.1 showed a stronger inhibition against bacterium Pseudomonas syringae pv. tomato DC3000 in vivo and fungus A. flavus in vitro than ZmPR10, indicating that ZmPR10.1 may also play an important role in host plant defense.

  4. Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX.

    Science.gov (United States)

    Mounce, Bryan C; Tsan, Fei Chin; Droit, Lindsay; Kohler, Sarah; Reitsma, Justin M; Cirillo, Lisa A; Tarakanova, Vera L

    2011-11-25

    Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.

  5. Gene Expression of Atrial Calcium-Handling Proteins in Patients with Rheumatic Heart Disease and Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    伍伟锋; 黄从新; 刘唐威; 朱树雄

    2003-01-01

    Objectives To investigate the gene expression of calcium-handling proteins inpatients with rheumatic heart disease (RHD) and atrialfibrillation (AF) . Methods A total of 50 patientswith rheumatic mitral valve disease were included.According to cardiac rhythm and duration of episode ofAF, patients were divided into four groups: sinusrhythm group, paroxysmal AF group, persistent AF forless than 6 months group and persistent AF for morethan 6 months group. Atrial tissue was obtained fromthe right atrial appendage, the right atrial free wall andthe left atrial appendage respectively during open heartsurgery. Total RNA was isolated and reversly tran-scribed into cDNA. In a semi -quantitative polymerasechain reaction the cDNA of interest and of glyceralde-hyde3 -phosphate dehydrogenase (GAPDH) were am-plified and separated by ethidium bromide - stained gelelectrophoresis. Multiple liner regress was used forcorrelation between the mRNA amount and age, sex,right atrial diameter (RAd) and left atrial diameter(LAd) Results The mRNA of L- type calciumchannelα1c subunit, of Ca2 + - ATPase and of ryanodinereceptor in patients with persistent AF for more than 6months were significantly decreased ( P all < 0. 01 ). But no alterations of the mRNA levels for SR phos-pholamban and calsequestrin were observed in patientswith persistent AF for more than 6 months comparedwith patients with sinus rhythm, paroxysmal AF andpersistent AF for less than 6 months( P all > 0.05) .There was no difference of the gene expression amongthe three atrial tissue sampling sites(P all > 0.05). Age, gender, RAd and LAd had no significant effectson the gene expression of calcium- handling proteins( P all> 0. 05). Conclusions The mRNA expressionof calcium -handling proteins is down -regulated onlyin patients with RHD and long- term persistent AF.Such abnormalities may be related to the initiationand/or perpetuation of AF in the patients with RHD.

  6. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia

    Indian Academy of Sciences (India)

    K H Richau; R L Kudahettige; P Pujic; N P Kudahettige; A Sellstedt

    2013-11-01

    The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2

  7. Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis.

    Science.gov (United States)

    Chen, Jiande; Jiang, Siyuan; Cao, Yun; Yang, Yi

    2014-04-01

    The dysregulated expression of miRNAs in the immune system may be critical for immune responses to pathogens and evolve into the inflammation seen in sepsis. The aim of this study is to explore the important role of miRNAs in the regulation of the immune response during neonatal sepsis. Using a microarray we performed the miRNA expression profiling of peripheral blood leukocytes from neonates with sepsis and uninfected neonates. Based on the predicted target genes of these miRNAs we selected 26 immune-related miRNAs out of the differentially expressed miRNAs for further testing by quantitative PCR. We simultaneously detected the immune response genes by PCR array and plasma cytokine levels using a protein chip to investigate the effect of the altered miRNAs on the immune response in neonatal sepsis. There were 10 immune regulatory miRNAs whose expression was significantly changed more than two fold in the neonates with sepsis compared with the uninfected neonates. The expression levels of 11 immune response genes and the plasma levels of 15 cytokines or receptors were significantly up- or down-regulated in the neonates with sepsis compared to the uninfected neonates. This comprehensive analysis suggests that the altered miRNAs modulate the immune response during neonatal sepsis in a way that represses the inflammatory response. Our investigation demonstrated some miRNAs with altered expression levels and their probable association with the regulation of immune response during neonatal sepsis. The characteristics of the neonatal inflammatory response could be attributed to immature immune function of neonates.

  8. Experience Modulates the Effects of Histone Deacetylase Inhibitors on Gene and Protein Expression in the Hippocampus: Impaired Plasticity in Aging

    Science.gov (United States)

    Sewal, Angila S.; Patzke, Holger; Perez, Evelyn J.; Park, Pul; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Fletcher, Bonnie R.; Long, Jeffrey M.

    2015-01-01

    The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus. Training powerfully modulated the response to HDACi treatment, increasing the total number of genes regulated to nearly 3000, including many not typically linked to neural plasticity, compared with experience was provided together with HDACi administration. Next, we tested whether the synaptic protein response to HDACi treatment is similarly dependent on recent cognitive experience, and whether this plasticity is altered in aged rats with memory impairment. Whereas synaptic protein labeling in the young hippocampus was selectively increased when HDACi administration was provided in conjunction with water maze training, combined treatment had no effect on synaptic proteins in the aged hippocampus. Our findings indicate that ongoing experience potently regulates the molecular consequences of HDACi treatment and that the interaction of recent cognitive experience with histone acetylation dynamics is disrupted in the aged hippocampus. SIGNIFICANCE STATEMENT The possibility that interventions targeting epigenetic regulation could be effective in treating a range of neurodegenerative disorders has attracted considerable interest. Here we demonstrate in the rat hippocampus that ongoing experience powerfully modifies the molecular response to one such intervention, histone deacetylase inhibitor (HDACi) administration. A single learning episode dramatically shifts the gene expression profile induced by acute HDACi treatment, yielding a

  9. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP or an adequate protein diet (AP, 12% CP throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc and postnatal stages (1, 28, 188 dpn. Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.

  10. CELL CYCLE REGULATING GENES AND THEIR PROTEIN EXPRESSION IN SQUAMOUS CELL CARCINOMA OF THE LARYNX AND HYPOPHARYNX

    Directory of Open Access Journals (Sweden)

    Metka Volavšek

    2002-12-01

    Full Text Available Background. The major mechanisms involved in genomic instability during tumour progression are loss of heterozygosity (LOH and microsatellite instability (MSI. The most frequently affected are the tumor suppressor genes (TSG. Alterations of cell cycle proteins contribute to the development and biologic behaviour of malignant tumours.Methods. In a prospective study we evaluated the distribution and prognostic significance of immunohistochemically detected proteins p53, p21, p16, Rb, and cyclin D1 in 101 squamous cell carcinomas of the larynx and hypopharynx (LHSCC. Additionally, non isotopic MSI and LOH analysis was performed with microsatellite markers on chromosomes 3p, 9p, 17p, and 11q. Immunohistochemical and molecular alterations were compared to tumour grade, disease stage and three year patients’ overall and disease free survival.Results. Of 101 patients, there were 94 men and 7 women with 73 laryngeal and 28 hypopharyngeal cancers. Immunohistochemical staining was performed on all tumours and molecular analysis in 77 patients.In LHSCC, varying patterns of protein expression were found. A significant correlation was found between cyclin D1 and p21, cyclin D1 and Rb expression, and Rb expression and tumour grade. p53 and p16 expression did not correlate with other proteins. p16 expression correlated with LOH at 9p21, and LOH at 11q13 (cyclin D1 region correlated with the tumour grade. We observed a high incidence of LOH at specific chromosomal regions: 3p (61%, 9p (54.4%, 17p (57.1% and 11q (19.5%. Conversely, MSI was present in 6.5% of cases.In addition to tumour grade and N stage, only cyclin D1 expression revealed independent prognostic value for overall, but not disease free survival after multivariate analysis.Conclusions. In conclusion, our study demonstrated the derailment of the growth promoting and suppressing pathways of cell cycle control in almost all LHSCC. Our results suggest that Rb gene inactivation might also be important

  11. Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.

    Science.gov (United States)

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-10-30

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.

  12. Expression of insulin-like growth factor binding protein-1 and -2 genes through the perinatal period in the rat.

    Science.gov (United States)

    Babajko, S; Hardouin, S; Segovia, B; Groyer, A; Binoux, M

    1993-06-01

    Insulin-like growth factor binding proteins (IGFBPs) are essential mediators of the bioavailability and biological effects of the IGFs. Liver expression of the rat (r) IGFBP-1 and rIGFBP-2 genes has been characterized between day 16 in utero (16 diu) and 16 days postnatally (+16 dpn). Run-on experiments showed transcriptional activity of the rIGFBP-1 and rIGFBP-2 genes at birth (B) to be 25 and 5 times that at 16 diu, respectively. After B, transcriptional activity of the rIGFBP-1 gene remained high (140% B at +6 dpn), but that of the rIGFBP-2 gene dropped to 70% B by +6 dpn. Northern blot analysis done simultaneously showed rIGFBP-1 messenger RNA (mRNA) levels to increase approximately 50-fold between 16 diu and B, whereas rIGFBP-2 mRNA increased only 5- to 10-fold. rIGFBP-1 mRNA levels decreased after birth, reaching about 20% B by +6 dpn; rIGFBP-2 mRNA, however, remained stable (about 80% B) at least up to +6 dpn. Parallel Western ligand blot and immunoblot analyses of serum rIGFBPs revealed rIGFBP-1 and rIGFBP-2 concentrations to be increased 3- and 2-fold, respectively between 20 diu and B. Maximal expression of rIGFBP-1 was at +1 dpn (220% B), and of rIGFBP-2, at B. Both rIGFBPs then decreased, reaching about 5% B at adulthood. All these data indicate that increased transcriptional activity of the rIGFBP-1 and rIGFBP-2 genes at birth would determine the increased synthesis in the liver and circulating levels of these proteins. In addition, it would seem that post-transcriptional events (reduced half-life of the rIGFBP-1 messenger after birth, translation efficiency of the rIGFBP-2 messenger) modulate transcriptional regulation.

  13. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    Science.gov (United States)

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  14. Preliminary Analysis of Gene Expression Profiles in HepG2 Cell Line Induced by Different Genotype Core Proteins of HCV

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Pengbo Liu; Jing Wang; Xinjian Zhang

    2006-01-01

    In present investigation, we constructed recombinants expressing the HCV genotypes 1b, 2a, and 4d core proteins,and established human hepatocellular carcinoma (HepG2) cell line that expressed various genotype core proteins.The gene expression profiles in the cells expressing different HCV genotype core proteins were compared with those in the control by microarray analysis. In data analysis, a threshold was set to eliminate all genes that were not increased or decreased by 2.5-fold change in a comparison between the transfected cells and control cells. The preliminary microarray analysis suggests that the gene expression profiles regulated by three kinds of genotype core proteins are mainly involved in transport, signal transduction, regulation of transcription, protease activity, etc.,and that some pathogenesis/oncogenesis gene expressions are up/down- regulated simultaneously in the HepG2 cell line. The data suggest that each core protein has its gene expressions profile and that the profiles are implicated in HCV replication and pathogenesis, which may open up a novel way to understand the function of the HCV variant core proteins biological and their pathogenic mechanism.

  15. Orally administered lactoperoxidase increases expression of the FK506 binding protein 5 gene in epithelial cells of the small intestine of mice: a DNA microarray study.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Miyauchi, Hirofumi; Shin, Kouichirou; Yamauchi, Koji; Matsumoto, Ichiro; Abe, Keiko; Takase, Mitsunori

    2007-09-01

    Lactoperoxidase (LPO) is a component of milk and other external secretions. To study the influence of ingested LPO on the digestive tract, we performed DNA microarray analysis of the small intestine of mice administered LPO. LPO administration upregulated 78 genes, including genes involved in metabolism, immunity, apoptosis, and the cell cycle, and downregulated nine genes, including immunity-related genes. The most upregulated gene was FK506 binding protein 5 (FKBP5), a glucocorticoid regulating immunophilin. The upregulation of this gene was confirmed by quantitative RT-PCR in other samples. In situ hybridization revealed that expression of the FKBP5 gene in the crypt epithelial cells of the small intestine was enhanced by LPO. These results suggest that ingested LPO modulates gene expression in the small intestine and especially increases FKBP5 gene expression in the epithelial cells of the intestine.

  16. IRE1 KNOCKDOWN MODIFIES THE GLUTAMINE AND GLUCOSE DEPRIVATION EFFECT ON THE EXPRESSION OF NUCLEAR GENES ENCODING MITOCHONDRIAL PROTEINS IN U87 GLIOMA CELLS

    Directory of Open Access Journals (Sweden)

    O. O.

    2016-04-01

    Full Text Available We have studied the glucose and glutamine deprivation effect on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells in relation to inhibition of inositol requiring enzyme-1 (IRE1. It was shown that glutamine deprivation down-regulated the expression of mitochondrial (NADP+-dependent isocitrate dehydrogenase 2 (IDH2, malic enzyme 2 (ME2, mitochondrial aspartate aminotransferase (GOT2, and subunit B of succinate dehydrogenase (SDHB genes in control glioma cells in gene specific manner. At the same time, the expression level of malate dehydrogenase 2 (MDH2 and subunit D of succinate dehydrogenase (SDHD genes in these cells was not changed upon glutamine deprivation. It was also shown that inhibition of ІRE1 signaling enzyme function in U87 glioma cells modified the glutamine deprivation effect on the expression of all studied genes. Furthermore, the expression of the majority of studied genes was resistant to glucose deprivation, except IDH2 and SDHB genes, which expression levels were slightly down-regulated. Inhibition of IRE1 modified the effect of glucose deprivation on ME2, SDHB, SDHD, and GOT2 genes expression. Therefore, glucose and glutamine deprivation affected the expression level of the majority of nuclear genes encoding mitochondrial proteins in relation to the functional activity of IRE1 enzyme, which is a central mediator of endoplasmic reticulum stress and controls cell proliferation and tumor growth.

  17. Gene expression and protein distribution of orexins and orexin receptors in rat retina.

    Science.gov (United States)

    Liu, F; Xu, G Z; Wang, L; Jiang, S X; Yang, X L; Zhong, Y M

    2011-08-25

    Orexins, composed of orexin A and orexin B, are identified as endogenous ligands of two orphan G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). Orexins are implicated in regulating wake/sleep states, feeding behaviors, etc. Using reverse transcription-polymerase chain reactive (RT-PCR) analysis and immunofluorescence double labeling, we investigated the distributions of orexin A, orexin B, OX1R and OX2R in rat retina. RT-PCR analysis revealed the presence of mRNAs of prepro-orexin, OX1R and OX2R in rat retina. Immunostaining for orexin A and orexin B was observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina, horizontal cells, labeled by calbindin, and bipolar cells, labeled by homeobox protein Chx10, were orexin A- and orexin B-positive. In the inner retina, two orexins were both found in GABAergic amacrine cells (ACs), including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase and choline acetyltransferase respectively. Glycinergic ACs, including AII ACs, also expressed orexins. Weak to moderate labeling for orexin A and orexin B was diffusely distributed in the inner plexiform layer. Additionally, orexins were expressed in almost all ganglion cells (GCs) retrogradely labeled by cholera toxin B subunit. Specifically, double-labeling experiments demonstrated that melanopsin-positive GCs (intrinsically photosensitive retinal GCs, ipRGCs) were labeled by two orexins. Morever, OX1R immunoreactivity was observed in most of GCs and all dopaminergic ACs, as well as in both outer and inner plexiform layers. In contrast, no obvious OX2R immunostaining was detectable in the rat retina. These results suggest that orexins may modulate the function of neurons, especially in the inner retina. We further hypothesize that the orexin signaling via ipRGCs may be involved in setting the suprachiasmatic nucleus (SCN) circadian clock.

  18. Associations between gene polymorphisms of thymidylate synthase with its protein expression and chemosensitivity to 5-fluorouracil in pancreatic carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; ZHAO Yu-pei; LIAO Quan; HU Ya; XU Qiang; ZHOU Li; SHU Hong

    2011-01-01

    Background Thymidylate synthase (TS) is a key regulatory enzyme for de novo DNA synthesis.TS activity is also an important determinant of the response to chemotherapy with fluoropyrimidine prodrugs,and its expression may be affected by gene polymorphisms.In this study,we investigated the associations between polymorphisms of the TS gene and its protein expression,and the implications on the efficacy of 5-fluorouracil (5-FU) in pancreatic cancer cells.Methods Genotypes based on the 28-bp TS tandem repeat for pancreatic cell lines were determined by electrophoretic analysis of PCR products.A single nucleotide polymorphism (SNP) at nucleotide 12 of the second 28-bp repeat of the 3R allele was determined by nucleotide sequencing.The chemosensitivity of pancreatic carcinoma cells to 5-FU in vitro was evaluated using Cell Counting Kit-8 (CCK-8).TS protein expression was analyzed by Western blotting.Results Seven pancreatic carcinoma cell lines had different genotypes in terms of the 28-bp TS tandem repeat,as follows:homozygous 2R/2R (T3M4 and BxPC-3 cells),heterozygous 2R/3R (AsPC-1,Capan-1,and SU86.86),and homozygous 3R/3R (PANC-1 and COLO357).The optical density ratio of genotypes 3R/3R,2R/2R and 2R/3R was 1.393±0.374,0.568±0.032 and 0.561±0.056,respectively.Cells with the 2R/3R or 3R/3R genotypes were further analyzed for the G to C SNP at nucleotide 12 of the second 28-bp repeat of the 3R allele,yielding heterozygous 2R/3Rc (AsPC-1,Capan-1,and SU86.86),homozygous 3Rg/3Rg (COLO357) and homozygous 3Rc/3Rc (PANC-1).The optical density ratio of homozygous 3Rg/3Rg cells and homozygous 3Rc/3Rc cells was 1.723±0.062 and 1.063±0.134,respectively,and this difference was statistically significant (P <0.05).Cells with the 2R/2R and 2R/3R genotypes of TS were hypersensitive to 5-FU in vitro as compared with those with the 3R/3R cells.Conclusions Polymorphisms in the TS gene influenced its protein expression and affected sensitivity of 5-FU in seven pancreatic cancer cell

  19. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    Science.gov (United States)

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  20. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    Science.gov (United States)

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  1. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes.

    Science.gov (United States)

    Korenjak, Michael; Kwon, Eunjeong; Morris, Robert T; Anderssen, Endre; Amzallag, Arnaud; Ramaswamy, Sridhar; Dyson, Nicholas J

    2014-08-01

    dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Transforming Growth Factor-β2 Gene Cloning and Protein Expression in Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    曹阳; 魏厚仁; 笪邦红; 李忠玉

    2003-01-01

    Whether cultured human trabecular meshwork cells express transforming growth factor-β2 (TGF-β2) messenger RNA (mRNA) and protein was investigated. Total RNA of 106 cultured human trabecular meshwork cells was extracted with TRIZOL reagent, reverse transcriptase-polymerase chain reaction (RT-PCR) were used for detection of TGF-β2 messenger RNA, and the PCRproduct was verified by sequencing. Immunohistochemical staining was used to detect TGF-β2 protein. The results showed that a single RT-PCR amplified product was obtained, and the sequence was homologous to the known sequence. TGF-β2 immunostaining was positive. It was concluded that trabecular meshwork cells could produce TGF-β2 and contribute to the presence of TGF-β2 in trabecular meshwork microenvironment as well as aqueous humor. Trabecular meshwork cells were affected by TGF-β2 not only through paracrine, but also autocrine action. Whether abnormal changes in TGF-β2 production contribute to the pathogenesis of primary open-angle glaucoma is worth further in vestigation.

  3. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    Institute of Scientific and Technical Information of China (English)

    William M Scovell

    2016-01-01

    High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.

  4. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Directory of Open Access Journals (Sweden)

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  5. Gene expression profiles of heat shock proteins 70 and 90 from Empoasca onukii (Hemiptera: Cicadellidae) in response to temperature stress.

    Science.gov (United States)

    Qiao, Li; Wu, Jun X; Qin, Dao Z; Liu, Xiang C; Lu, Zhao C; Lv, Li Z; Pan, Zi L; Chen, Hao; Li, Guang W

    2015-01-01

    Empoasca onukii Matsuda is a worldwide pest that causes great economic loss in tea growing areas and is significantly affected by temperatures. Heat shock protein (Hsp) genes are important in insects' response to temperature stress. In this study, two full-length Hsp genes, Eohsp90 and Eohsp70, were cloned from E. onukii using rapid amplification of complementary DNA ends. The open reading frames of Eohsp90 and Eohsp70 were 2,172 bp and 2,016 bp in length, respectively. Their deduced amino acid sequences of Eohsp90 and Eohsp70 showed high homology with other species. Subsequently, the transcriptional expression of Eohsp90 and Eohsp70 in E. onukii adults exposed to various temperatures (-5, 0, 10, 15, 20, 25, 30, 35, 38, 41 and 44°C) for 1 h, and at extreme temperatures (0°C and 41°C) for various time duration (0, 20, 40, 60, 80, 100, and 120 min) were investigated via real-time quantitative polymerase chain reaction. The relative expression levels of both Eohsp90 and Eohsp70 in E. onukii adults were upregulated as the temperature rises or falls over time, except in the -5°C or 44°C temperature groups. Moreover, the expression level in the temperature elevated groups was higher than that of the lower temperature groups. In addition, the Eohsp70 generally demonstrated a higher transcriptional level than Eohsp90, and both genes had a higher expression profile in female adults compared with the males. The expression profiles indicated that Eohsp90 and Eohsp70 may play important roles in E. onukii adult responses to ecologically relevant environmental temperature threat.

  6. The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ⅰ on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes

    Institute of Scientific and Technical Information of China (English)

    HU Zong-li; CHEN Xu-qing; CHEN Guo-ping; L(U) Li-juan; Grierson Donald

    2007-01-01

    The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the 1-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeACO1), 1-aminocyclopropane-1-carboxylic acid oxidase 3 gene (LeAC03), EIN3-binding F-box 1 gene (LeEBF1), pathogenesisrelated protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeACO1 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carried out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.

  7. Distribution of Salmonella paratyphi A outer membrane protein X gene and immune-protective effect related to its recombinant expressed products

    Institute of Scientific and Technical Information of China (English)

    李明雷

    2014-01-01

    Objective To determine the distribution and sequence conservation of outer membrane protein X(ompX)gene in Salmonella paratyphi A isolates as well as the immunogenicity and immono-protection of ompX gene products.Methods OmpX gene in Salmonella paratyphi A isolates was detected by PCR and the amplification products were sequenced after the T-A cloning process.OmpX gene product was expressed with E.coli expression system and the expressed rOmpX was extracted by Ni-NTA affinity

  8. FLT-1 gene polymorphisms and protein expression profile in rheumatoid arthritis

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka; Sowinska, Anna; Pawlik, Andrzej; Malinowski, Damian; Stypinska, Barbara; Haladyj, Ewa; Romanowska-Prochnicka, Katarzyna; Olesinska, Marzena

    2017-01-01

    Objectives Inflammation and angiogenesis are a significant element of pathogenesis in rheumatoid arthritis (RA). The FLT-1- triggering factor for production of proinflammatory cytokines-might contributes to inflammation in patients with RA. Association of the FLT-1 polymorphisms with different “angiogenic diseases” suggests that it may be a novel genetic risk factor also for RA. The aim of the study was to identify FLT-1 genetic variants and their possible association with sFLT-1 levels, susceptibility to and severity of RA. Methods The FLT-1 gene polymorphisms were genotyped for 471 RA patients and 684 healthy individuals. Correlation analysis was performed with clinical parameters, cardiovascular disease (CVD) and anti-citrullinated peptide/protein antibody (ACPA) presence. The sFLT-1 serum levels were evaluated. Results The FLT-1 gene polymorphisms showed no significant differences in the proportion of cases and controls. Furthermore, the FLT-1 rs2296188 T/C polymorphism was associated with ACPA-positive RA. Overall, rs9943922 T/C and rs2296283 G/A are in almost completed linkage disequilibrium (LD) with D’ = 0.97 and r2 = 0.83. The FLT-1 rs7324510 A allele has shown association with VAS score (p = 0.035), DAS-28 score (p = 0.013) and ExRA presence (p = 0.027). Moreover, other clinical parameters were also higher in RA patients with this allele. In addition, FLT-1 genetic variants conferred higher sFLT-1 levels in RA patients compared to controls. Conclusion FLT-1 rs7324510 C/A variant may be a new genetic risk factor for severity of RA. Examined factor highly predispose to more severe disease activity as well as higher sFLT-1 levels in RA. PMID:28323906

  9. 22. Proteomic Analysis of Differential Protein Expression in vero Cell with Antisense Blocking of Relevant Gene Involved in inhibition of Nontargeted Mutagenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. But its mechanism is still unknown. A cDNA fragment (fragment 9) has been isolated in MNNG-exposed vero cell by mRNA differential display in this lab. After antisense blocking the expression of its relevant gene (fragment 9 related gene, FNR gene), we found that nontargeted mutation frequency induced by MNNG was enhanced significantly. which implicated that the product of the blocked gene may be involved in the inhibition of nontargeted mutation. In order to elucidate the functional mechanism of the FNR gene, we try to separate the proteins from the established cell line expressing antisense fragment 9 to find out the FNR gene-coded protein. Method: The total cellular proteins of MNNG-exposed vero cell transfected with antisense RNA expression plasmid (vero-pM-amp--9-) and those with vector DNA (vero-pM-amp-) were separated by two-dimensional gel electrophoresis, and the resulting maps were analyzed with 2-D analysis software packages to find out the differentially expressed protein spots. Then the related 2-D PAGE database (http://biobase.dk/cgi-bin/celis/) was searched according to the protein spots information obtained from 2-DE including the position in the gel, isoelectric point (pl) and molecular weight (Mr). Result: Twelve proteins were specifically expressed only in vero-pM-amp-, and 2 proteins in vero-pM-amp--9-. In addition, there were 24 proteins expressed in higher level in vero-pM-amp--9- as compared with vero-pM-amp- (P<0.05), among them the expression of 7 proteins were enhanced by greater than 5 folds. On the other hand, no sequence similarity was found by homology analysis in GenBank through comparing the fragment 9 with the cDNA sequences of those proteins found in this study. Conclusion: Gene expression alterations bave occurred after antisense blocking of the FNR gene expression as demonstrated by

  10. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke;

    2015-01-01

    patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had...... increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic...... protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein...

  11. Association analyses between brain-expressed fatty-acid binding protein (FABP) genes and schizophrenia and bipolar disorder.

    Science.gov (United States)

    Iwayama, Yoshimi; Hattori, Eiji; Maekawa, Motoko; Yamada, Kazuo; Toyota, Tomoko; Ohnishi, Tetsuo; Iwata, Yasuhide; Tsuchiya, Kenji J; Sugihara, Genichi; Kikuchi, Mitsuru; Hashimoto, Kenji; Iyo, Masaomi; Inada, Toshiya; Kunugi, Hiroshi; Ozaki, Norio; Iwata, Nakao; Nanko, Shinichiro; Iwamoto, Kazuya; Okazaki, Yuji; Kato, Tadafumi; Yoshikawa, Takeo

    2010-03-05

    Deficits in prepulse inhibition (PPI) are a biological marker for psychiatric illnesses such as schizophrenia and bipolar disorder. To unravel PPI-controlling mechanisms, we previously performed quantitative trait loci (QTL) analysis in mice, and identified Fabp7, that encodes a brain-type fatty acid binding protein (Fabp), as a causative gene. In that study, human FABP7 showed genetic association with schizophrenia. FABPs constitute a gene family, of which members FABP5 and FABP3 are also expressed in the brain. These FABP proteins are molecular chaperons for polyunsaturated fatty acids (PUFAs) such as arachidonic and docosahexaenoic acids. Additionally, the involvement of PUFAs has been documented in the pathophysiology of schizophrenia and mood disorders. Therefore in this study, we examined the genetic roles of FABP5 and 3 in schizophrenia (N = 1,900 in combination with controls) and FABP7, 5, and 3 in bipolar disorder (N = 1,762 in the case-control set). Three single nucleotide polymorphisms (SNPs) from FABP7 showed nominal association with bipolar disorder, and haplotypes of the same gene showed empirical associations with bipolar disorder even after correction of multiple testing. We could not perform association studies on FABP5, due to the lack of informative SNPs. FABP3 displayed no association with either disease. Each FABP is relatively small and it is assumed that there are multiple regulatory elements that control gene expression. Therefore, future identification of unknown regulatory elements will be necessary to make a more detailed analysis of their genetic contribution to mental illnesses.

  12. The hepatitis E virus ORF3 protein regulates the expression of liver-specific genes by modulating localization of hepatocyte nuclear factor 4.

    Directory of Open Access Journals (Sweden)

    Vivek Chandra

    Full Text Available The hepatitis E virus (HEV is a small RNA virus and the cause of acute viral hepatitis E. The open reading frame 3 protein (pORF3 of HEV appears to be a pleiotropic regulatory protein that helps in the establishment, propagation and progression of viral infection. However, the global cellular effects of this protein remain to be explored. In the absence of traditional in vitro viral infection systems or efficient replicon systems, we made an adenovirus based ORF3 protein expression system to study its effects on host cell gene expression. We infected Huh7 hepatoma cells with recombinant adenoviruses expressing pORF3 and performed microarray-based gene expression analyses. Several genes down regulated in pORF3-expressing cells were found to be under regulation of the liver-enriched hepatocyte nuclear factor 4 (HNF4, which regulates hepatocyte-specific gene expression. While HNF4 localizes to the nucleus, its phosphorylation results in impaired nuclear localization of HNF4. Here we report that pORF3 increases HNF4 phosphorylation through the ERK and Akt kinases, which results in impaired nuclear translocation of HNF4 and subsequently the down modulation of HNF4-responsive genes in pORF3-expressing cells. We propose that modulation of several hepatocyte specific genes by pORF3 will create an environment favorable for viral replication and pathogenesis.

  13. Pathway Detection from Protein Interaction Networks and Gene Expression Data Using Color-Coding Methods and A* Search Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2012-01-01

    Full Text Available With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73GHz and 1GB main memory running under windows operating system.

  14. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  15. Dynamic expression of rat heat shock protein gp96 and its gene during development of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xin-Hua Wu; Deng-Fu Yao; Xiao-Qin Su; Bo-Jun Tai; Hua Huang; Li-Wei Qiu; Wei Wu; Yi-Xiang Shao

    2007-01-01

    BACKGROUND:Hepatocellular carcinoma (HCC) is characterized by multicause, obvious multistage and multifocal processes of tumor progression. The development of HCC is related intimately to overexpression and signal transduction of many cellular factors. This study was undertaken to investigate the dynamic expression and alteration of heat shock protein (HSP) gp96 along with its gene during HCC development. METHODS:A rat model of hepatoma induced with 2-lfuorenylacetamide (2-FAA, 0.05%) was established in male Sprague-Dawley rats. Total RNA and pathological changes were observed during hepatocarcinogenesis. Total RNAs were transcribed into cDNA by reverse transcription and the gene fragment of gp96 was ampliifed by nested RT-PCR. The gp96 expression in rat liver tissues was semi-quantitatively analyzed by immunohistochemistry. RESULTS:Histological examination suggested that hepato-cytes in rats fed with 2-FAA showed vacuole-like denaturation at the early stages, then dysplastic nodules appeared at the middle stage, and ifnally progressed to tubercles of cancerous nests. A tendency of increasing liver gp96 protein level was found from normal liver to precancerous to cancerous tissues during hepatoma development (P<0.01), and was in accordance with the changes in gp96 mRNA (P<0.05).CONCLUSION:HSP gp96 is involved in HCC development and its overexpression may be a useful marker for early diagnosis.

  16. Altered gene expression in hippocampus and depressive-like behavior in young adult female mice by early protein malnutrition.

    Science.gov (United States)

    Belluscio, L M; Alberca, C D; Pregi, N; Cánepa, E T

    2016-11-01

    Perinatal development represents a critical period in the life of an individual. A common cause of poor development is that which comes from undernutrition or malnutrition. In particular, protein deprivation during development has been shown to have deep deleterious effects on brain's growth and plasticity. Early-life stress has also been linked with an increased risk to develop different psychopathologies later in life. We have previously shown that perinatal protein malnutrition in mice leads to the appearance of anxiety-related behaviors in the adulthood. We also found evidence that the female offspring was more susceptible to the development of depression-related behaviors. In the present work, we further investigated this behavior together with its molecular bases. We focused our study on the hippocampus, as it is a structure involved in coping with stressful situations. We found an increase in immobility time in the forced swimming test in perinatally malnourished females, and an alteration in the expression of genes related with neuroplasticity, early growth response 1, calcineurin and c-fos. We also found that perinatal malnutrition causes a reduction in the number of neurons in the hippocampus. This reduction, together with altered gene expression, could be related to the increment in immobility time observed in the forced swimming test. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring's liver and skeletal muscle; protective effect of taurine

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Olsen, Hanne Lodberg; Frandsen, Lis

    2010-01-01

    We examined gene expression changes in liver and skeletal muscle of newborn mice subjected to a maternal low protein (LP) or normal protein (NP) diet during pregnancy, with or without taurine supplementation in the drinking water. LP offspring had a 40% lower birthweight than NP offspring, whereas...... it was reduced by only 20% with taurine supplementation. Microarray gene expression analysis revealed significant changes in 2012 genes in liver and 967 genes in skeletal muscle of LP offspring. By unknown mechanisms, taurine partially or fully prevented 30 and 46% of these expression changes, respectively....... Mitochondrial genes, in particular genes associated with oxidative phosphorylation, were more abundantly changed in LP offspring, with primarily up-regulation in liver but down-regulation in skeletal muscle. In both tissues, citrate synthase activity remained unchanged. Taurine preferentially rescued changes...

  18. Alterations in the expression of myocardial calcium cycling genes in rats fed a low protein diet in utero.

    Science.gov (United States)

    Tappia, Paramjit S; Sandhu, Heather; Abbi, Tina; Aroutiounova, Nina

    2009-04-01

    An adverse environmental experience of the growing fetus leads to permanent changes in the structure and contractile function of the heart; however, the mechanisms are incompletely understood. To examine if a maternal low protein (LP) diet can modulate the gene and protein expression of the Ca(2+)-cycling proteins in the neonatal heart, we employed a rat model in which pregnant dams were fed diets containing either 180 (normal) or 90 g (low) casein/kg diet for 2 weeks before mating and throughout pregnancy. A significant reduction in the L-type Ca(2+)-channel mRNA level in the LP group was detected at 1, 7, and 14 days of age. Although ryanodine receptor (RyR) mRNA levels progressively declined in the aging heart in both groups, the RyR mRNA levels were consistently higher in the LP group. A reduction in RyR protein content was seen only in the hearts of the LP group at 7 days of age. The Na(+)-Ca(2+)-exchanger (NCX) mRNA level was also markedly increased at all ages. Although an increase in sarco(endo)plasmic reticulum ATPase 2a (SERCA) 2a mRNA was only detected in the LP group at 7 days of age, corresponding protein level was depressed. On the other hand, an initial decrease (at 1 day of age) followed by an increase (at 14 and 28 days of age) in phospholamban (PLB) mRNA levels was detected. Although PLB protein level was also depressed at 1 day of age in the LP group, a marked increase was seen at 7 days of age. Moreover, the ratio of serine 16 and threonine 17 phosphorylated PLB to non-phosphorylated PLB was reduced at 7 days of age in the hearts of offspring of the LP group. These data suggest that maternal LP diet can induce alterations in the gene expression and protein levels of the Ca(2+)-cycling proteins in the neonatal heart.

  19. Time course of hepatic gene expression and plasma vitellogenin protein concentrations in estrone-exposed juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Osachoff, Heather L; Brown, Lorraine L Y; Tirrul, Leena; van Aggelen, Graham C; Brinkman, Fiona S L; Kennedy, Christopher J

    2016-09-01

    Estrone (E1), a natural estrogen hormone found in sewage effluents and surface waters, has known endocrine disrupting effects in fish, thus, it is a contaminant of emerging concern. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to an environmentally-relevant concentration of E1 (24ng/L E1 [0.1nM]) for 7d and then placed in clean water for a 9d recovery period. RNA sequencing showed transcripts from numerous affected biological processes (e.g. immune, metabolic, apoptosis, clotting, and endocrine) were altered by E1 after 4d of treatment. The time course of E1-inducible responses relating to vitellogenesis was examined daily during the two phases of exposure. Hepatic gene expression alterations evaluated by quantitative polymerase chain reaction (QPCR) were found during the treatment period for vitellogenin (VTG), vitelline envelope proteins (VEPs) α, β and γ, and estrogen receptor α1 (ERα1) transcripts. ERα1 was the only transcript induced each day during the treatment phase, thus it was a good indicator of E1 exposure. Gradual increases occurred in VEPβ and VEPγ transcripts, peaking at d7. VTG transcript was only elevated at d4, making it less sensitive than VEPs to this low-level E1 treatment. Inductions of ERα1, VEPα, VEPβ and VEPγ transcripts ceased 1d into the recovery phase. Plasma VTG protein concentrations were not immediately elevated but peaked 7d into the recovery phase. Thus, elevated vitellogenesis-related gene expression and protein production occurred slowly but steadily at this concentration of E1, confirming the sequence of events for transcripts and VTG protein responses to xenoestrogen exposure.

  20. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii

    Directory of Open Access Journals (Sweden)

    Gross Roy

    2007-11-01

    Full Text Available Abstract Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a

  1. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  2. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryeo-Ok [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, Jae-Sung [Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Won, Eun-Ji [Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Kyun-Woo [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Science, Seoul 139-709 (Korea, Republic of); Lee, Young-Mi [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac