WorldWideScience

Sample records for gene expression profiling

  1. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  2. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  3. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  4. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  5. Gene expression profiling of solitary fibrous tumors.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Solitary fibrous tumors (SFTs are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. METHODS: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs. Immunohistochemistry was applied to validate the expression of some discriminating genes. RESULTS: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (∼30% of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2, histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. CONCLUSION: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1, prognostic (AURKA and/or therapeutic targets.

  6. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  7. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  8. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  9. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  10. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  11. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  12. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  13. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  14. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  15. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  16. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  17. Gene Expression Profiling in an in Vitro Model of Angiogenesis

    OpenAIRE

    Kahn, Jeanne; Mehraban, Fuad; Ingle, Gladys; Xin, Xiaohua; Bryant, Juliet E.; Vehar, Gordon; Schoenfeld, Jill; Grimaldi, Chrisopher J.; Peale, Franklin; Draksharapu, Aparna; Lewin, David A.; Gerritsen, Mary E.

    2000-01-01

    In the present study we have used a novel, comprehensive mRNA profiling technique (GeneCalling) for determining differential gene expression profiles of human endothelial cells undergoing differentiation into tubelike structures. One hundred fifteen cDNA fragments were identified and shown to represent 90 distinct genes. Although some of the genes identified have previously been implicated in angiogenesis, potential roles for many new genes, including OX-40, white protein homolog, KIAA0188, a...

  18. Gene expression profiling of mouse embryos with microarrays

    OpenAIRE

    Sharov, Alexei A; Piao, Yulan; Minoru S.H. Ko

    2010-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing s...

  19. Bioinformatics analysis of the gene expression profile in Bladder carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    2013-01-01

    Full Text Available Bladder carcinoma, which has the ninth highest incidence among malignant tumors in the world, is a complex, multifactorial disease. The malignant transformation of bladder cells results from DNA mutations and alterations in gene expression levels. In this work, we used a bioinformatics approach to investigate the molecular mechanisms of bladder carcinoma. Biochips downloaded from the Gene Expression Omnibus (GEO were used to analyze the gene expression profile in urinary bladder cells from individuals with carcinoma. The gene expression profile of normal genomes was used as a control. The analysis of gene expression revealed important alterations in genes involved in biological processes and metabolic pathways. We also identified some small molecules capable of reversing the altered gene expression in bladder carcinoma; these molecules could provide a basis for future therapies for the treatment of this disease.

  20. Gene expression profiling predicts the development of oral cancer.

    Science.gov (United States)

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K; Papadimitrakopoulou, Vassiliki A; Feng, Lei; Lee, J Jack; Kim, Edward S; Ki Hong, Waun; Mao, Li

    2011-02-01

    Patients with oral premalignant lesion (OPL) have a high risk of developing oral cancer. Although certain risk factors, such as smoking status and histology, are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develop multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinicopathologic risk factors. On the basis of the gene expression profile data, we also identified 2,182 transcripts significantly associated with oral cancer risk-associated genes (P value oral cancer risk. In multiple independent data sets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. ©2011 AACR.

  1. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  2. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  3. Gene expression profiling of benign and malignant pheochromocytoma.

    NARCIS (Netherlands)

    Brouwers, F.M.; Elkahloun, A.G.; Munson, P.J.; Eisenhofer, G.; Barb, J.; Linehan, W.M.; Lenders, J.W.M.; Krijger, R.R. de; Mannelli, M.; Udelsman, R.; Ocal, I.T.; Shulkin, B.L.; Bornstein, S.R.; Breza, J.; Ksinantova, L.; Pacak, K.

    2006-01-01

    There are currently no reliable diagnostic and prognostic markers or effective treatments for malignant pheochromocytoma. This study used oligonucleotide microarrays to examine gene expression profiles in pheochromocytomas from 90 patients, including 20 with malignant tumors, the latter including

  4. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  5. Gene expression profile analysis of human intervertebral disc degeneration

    OpenAIRE

    Kai Chen; Dajiang Wu; Xiaodong Zhu; Haijian Ni; Xianzhao Wei; Ningfang Mao; Yang Xie; Yunfei Niu; Ming Li

    2013-01-01

    In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were signi...

  6. A functional profile of gene expression in ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Johnson Dianna A

    2005-11-01

    Full Text Available Abstract Background Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium. Methods Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile. Results We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel. Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes. Conclusion The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes

  7. Gene expression profile analysis of type 2 diabetic mouse liver.

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    Full Text Available Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases.

  8. Gene Expression Profiling of Clostridium botulinum under Heat Shock Stress

    Directory of Open Access Journals (Sweden)

    Wan-dong Liang

    2013-01-01

    Full Text Available During growth, C. botulinum is always exposed to different environmental changes, such as temperature increase, nutrient deprivation, and pH change; however, its corresponding global transcriptional profile is uncharacterized. This study is the first description of the genome-wide gene expression profile of C. botulinum in response to heat shock stress. Under heat stress (temperature shift from 37°C to 45°C over a period of 15 min, 176 C. botulinum ATCC 3502 genes were differentially expressed. The response included overexpression of heat shock protein genes (dnaK operon, groESL, hsp20, and htpG and downregulation of aminoacyl-tRNA synthetase genes (valS, queA, tyrR, and gatAB and ribosomal and cell division protein genes (ftsZ and ftsH. In parallel, several transcriptional regulators (marR, merR, and ompR families were induced, suggesting their involvement in reshuffling of the gene expression profile. In addition, many ABC transporters (oligopeptide transport system, energy production and conversion related genes (glpA and hupL, cell wall and membrane biogenesis related genes (fabZ, fabF, and fabG, flagella-associated genes (flhA, flhM, flhJ, flhS, and motAB, and hypothetical genes also showed changed expression patterns, indicating that they may play important roles in survival under high temperatures.

  9. BPH gene expression profile associated to prostate gland volume.

    Science.gov (United States)

    Descazeaud, Aurelien; Rubin, Mark A; Hofer, Matthias; Setlur, Sunita; Nikolaief, Nathalie; Vacherot, Francis; Soyeux, Pascale; Kheuang, Laurence; Abbou, Claude C; Allory, Yves; de la Taille, Alexandre

    2008-12-01

    The aim of the current study was to analyze gene expression profiles in benign prostatic hyperplasia and to compare them with phenotypic properties. Thirty-seven specimens of benign prostatic hyperplasia were obtained from symptomatic patients undergoing surgery. RNA was extracted and hybridized to Affymetrix Chips containing 54,000 gene expression probes. Gene expression profiles were analyzed using cluster, TreeView, and significance analysis of microarrays softwares. In an initial unsupervised analysis, our 37 samples clustered hierarchically in 2 groups of 18 and 19 samples, respectively. Five clinical parameters were statistically different between the 2 groups: in group 1 compared with group 2, patients had larger prostate glands, had higher prostate specific antigen levels, were more likely to be treated by alpha blockers, to be operated by prostatectomy, and to have major irritative symptoms. The sole independent parameter associated with this dichotome clustering, however, was the prostate gland volume. Therefore, the role of prostate volume was explored in a supervised analysis. Gene expression of prostate glands 60 mL were compared using significance analysis of microarrays and 227 genes were found differentially expressed between the 2 groups (>2 change and false discovery rate of <5%). Several specific pathways including growth factors genes, cell cycle genes, apoptose genes, inflammation genes, and androgen regulated genes, displayed major differences between small and large prostate glands.

  10. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  11. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E

    2009-01-01

    BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described...... the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...

  12. Gene expression profiling of mouse embryos with microarrays

    Science.gov (United States)

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  13. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  14. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

    differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... the physiological age as the level of cumulative mortality. Eighty-four genes were differentially expressed between the control and longevity-selected lines at the same physiological age, and the overlap between the same chronological and physiological age gene lists included 40 candidate genes for increased...... longevity. Among these candidates were genes with roles in starvation resistance, immune response regulation, and several that have not yet been linked to longevity. Investigating these genes would provide new knowledge of the pathways that affect life span in invertebrates and, potentially, mammals....

  15. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  16. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  17. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    expression profiles between the microarray and real-time RT-PCR data. In situ hybridization revealed both expression level and cellular distribution of NNAT in retina. Finally, the chromosomal locations of 106 differentially expressed genes were also searched and one of these genes is associated with autosomal dominant cone or cone-rod dystrophy. The data from present study provide insights into understanding genetic programs during human retinal development and help identify additional retinal disease genes.

  18. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  19. Super-paramagnetic clustering of yeast gene expression profiles

    Science.gov (United States)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  20. Comparative gene expression profiling of Neospora caninum strains

    Science.gov (United States)

    To understand the genetic basis of virulence, gene expression profiles of a temperature-sensitive strain (NCts-8) and its wild type (NC-1) of Neospora caninum were characterized and compared using a high-density microarray with approximately 63,000 distinct oligonucleotides. Each sequence is represe...

  1. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  2. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Science.gov (United States)

    Seita, Jun; Sahoo, Debashis; Rossi, Derrick J; Bhattacharya, Deepta; Serwold, Thomas; Inlay, Matthew A; Ehrlich, Lauren I R; Fathman, John W; Dill, David L; Weissman, Irving L

    2012-01-01

    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  3. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  4. Age-related vascular gene expression profiling in mice.

    Science.gov (United States)

    Rammos, Christos; Hendgen-Cotta, Ulrike B; Deenen, Rene; Pohl, Julia; Stock, Pia; Hinzmann, Christian; Kelm, Malte; Rassaf, Tienush

    2014-01-01

    Increasing age involves a number of detrimental changes in the cardiovascular system and particularly on the large arteries. It deteriorates vascular integrity and leads to increased vascular stiffness entailing hypertension with increased cardiovascular morbidity and mortality. The consequences of continuous oxidative stress and damages to biomolecules include altered gene expression, genomic instability, mutations, loss of cell division and cellular responses to increased stress. Many studies have been performed in aged C57BL/6 mice; however, analyses of the age-related changes that occur at a gene expression level and transcriptional profile in vascular tissue have not been elucidated in depth. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of adult and old mice, in which age-related vascular dysfunction was confirmed by increased stiffness and associated systolic hypertension. Our results highlight differentially expressed genes overrepresented in Gene Ontology categories. Molecular interaction and reaction pathways involved in vascular functions and disease, within the transforming growth factor-beta (TGF-β) pathway, the renin-angiotensin system and the detoxification systems are displayed. Our results provide insight to an altered gene expression profile related to age, thus offering useful clues to counteract or prevent vascular aging and its detrimental consequences. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  6. Gene expression profiling of soft and firm Atlantic salmon fillet.

    Directory of Open Access Journals (Sweden)

    Thomas Larsson

    Full Text Available Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes and mitochondrial proteins (129 genes, proteins involved in stress responses (12 genes, and lipid metabolism (30 genes. Coefficients of determination (R(2 were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2 = 0.66 and myofiber proteins (42 genes, R(2 = 0.54. Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation, immune genes, and intracellular proteases (positive correlation. Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15 though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.

  7. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  8. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  9. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Science.gov (United States)

    Gobert, Geoffrey N; Moertel, Luke; Brindley, Paul J; McManus, Donald P

    2009-01-01

    Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae), juvenile (lung schistosomula and paired but pre-egg laying adults) and adult (paired, mature males and egg-producing females, both examined separately). Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis. PMID:19320991

  10. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  11. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  12. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  13. Gene expression profiles in liver cancer and normal liver tissues

    Institute of Scientific and Technical Information of China (English)

    Lian Xin Liu; Hong Chi Jiang; An Long Zhu; Jin Zhou; Xiu Qin Wang; Min Wu

    2000-01-01

    AIM To describe a liver cancer = specific gene expression profile and to identify genes that showed alteredexpression between liver cancer tissues and their adjacent nearly normal tissues.METHODS The cDNA probes which were labeled with a-32P dATP were synthesized from total RNA ofliver cancer and adjacent normal tissues and hybridized separately to two identical Atlas human cancer eDNAexpression array membranes containing 588 known genes.RESULTS Autoradiographic results were analyzed by specific Atlas ImageTM (version 1. 0) software.Among the 588 genes analyzed, 18 genes were found up-regulated in cancer, including TFDP2, Aktl, E2F-3etc, and 25 genes were down-regulated in cancer, including TDGF1, BAK, LAR, etc. Expression levels ofgenes that associated with the regulation of cell proliferation, apoptosis, differentiation, cell-cellinteraction, invasion regulators and eytokines altered mostly.CONCLUSION The result obtained from Atlas microarray provides a comprehensive liver cancer-specificexpression profile. The results can lead to the identification of liver cancer-specific biomarkers and may behelpful in early diagnosis and dentifiction of target genes for designing rational therapeutic strategies.

  14. Effect of surgical procedures on prostate tumor gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Zhi-Hong Zhang; Chang-Jun Yin; Christian Pavlovich; Jun Luo; Robert Getzenberg; Wei Zhang

    2012-01-01

    Current surgical treatment of prostate cancer is typically accomplished by either open radical prostatectomy (ORP) or robotic-assisted laparoscopic radical prostatectomy (RALRP).Intra-operative procedural differences between the two surgical approaches may alter the molecular composition of resected surgical specimens,which are indispensable for molecular analysis and biomarker evaluation.The objective of this study is to investigate the effect of different surgical procedures on RNA quality and genome-wide expression signature.RNA integrity number (RIN) values were compared between total RNA samples extracted from consecutive LRP (n=11 ) and ORP (n=24) prostate specimens.Expression profiling was performed using the Agilent human whole-genome expression microarrays.Expression differences by surgical type were analyzed by Volcano plot analysis and gene ontology analysis.Quantitative reverse transcription (RT)-PCR was used for expression validation in an independent set of LRP (n=8) and ORP (n=8) samples.The LRP procedure did not compromise RNA integrity.Differential gene expression by surgery types was limited to a small subset of genes,the number of which was smaller than that expected by chance.Unexpectedly,this small subset of differentially expressed genes was enriched for those encoding transcription factors,oxygen transporters and other previously reported surgery-induced stress-response genes,and demonstrated unidirectional reduction in LRP specimens in comparison to ORP specimens.The effect of the LRP procedure on RNA quality and genome-wide transcript levels is negligible,supporting the suitability of LRP surgical specimens for routine molecular analysis.Blunted in vivo stress response in LRP specimens,likely mediated by CO2 insufflation but not by longer ischemia time,is manifested in the reduced expression of stress-response genes in these specimens.

  15. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression

    Directory of Open Access Journals (Sweden)

    Handfield Martin

    2009-10-01

    Full Text Available Abstract Background Periodontitis is a chronic inflammatory disease caused by the microbiota of the periodontal pocket. We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4 from a maxillary posterior region. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each tissue sample. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total. Plaque samples were analyzed using checkerboard DNA-DNA hybridizations with respect to 11 bacterial species. Random effects linear regression models considered bacterial levels as exposure and expression profiles as outcome variables. Gene Ontology analyses summarized the expression patterns into biologically relevant categories. Results Wide inter-species variation was noted in the number of differentially expressed gingival tissue genes according to subgingival bacterial levels: Using a Bonferroni correction (p -7, 9,392 probe sets were differentially associated with levels of Tannerella forsythia, 8,537 with Porphyromonas gingivalis, 6,460 with Aggregatibacter actinomycetemcomitans, 506 with Eikenella corrodens and only 8 with Actinomyces naeslundii. Cluster analysis identified commonalities and differences among tissue gene expression patterns differentially regulated according to bacterial levels. Conclusion Our findings suggest that the microbial content of the periodontal pocket is a determinant of gene expression in the gingival tissues and provide new insights into the differential ability of periodontal species to elicit a local host response.

  16. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression.

    Science.gov (United States)

    Papapanou, Panos N; Behle, Jan H; Kebschull, Moritz; Celenti, Romanita; Wolf, Dana L; Handfield, Martin; Pavlidis, Paul; Demmer, Ryan T

    2009-10-18

    Periodontitis is a chronic inflammatory disease caused by the microbiota of the periodontal pocket. We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4) from a maxillary posterior region. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each tissue sample. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total). Plaque samples were analyzed using checkerboard DNA-DNA hybridizations with respect to 11 bacterial species. Random effects linear regression models considered bacterial levels as exposure and expression profiles as outcome variables. Gene Ontology analyses summarized the expression patterns into biologically relevant categories. Wide inter-species variation was noted in the number of differentially expressed gingival tissue genes according to subgingival bacterial levels: Using a Bonferroni correction (p < 9.15 x 10(-7)), 9,392 probe sets were differentially associated with levels of Tannerella forsythia, 8,537 with Porphyromonas gingivalis, 6,460 with Aggregatibacter actinomycetemcomitans, 506 with Eikenella corrodens and only 8 with Actinomyces naeslundii. Cluster analysis identified commonalities and differences among tissue gene expression patterns differentially regulated according to bacterial levels. Our findings suggest that the microbial content of the periodontal pocket is a determinant of gene expression in the gingival tissues and provide new insights into the differential ability of periodontal species to elicit a local host response.

  17. Expression Profiling Identifies Candidate Genes for Fiber Yield and Quality

    Institute of Scientific and Technical Information of China (English)

    LLEWELLYN D J; MACHADO A; AI-GHAZI Y; WU Y; DENNIS E S

    2008-01-01

    @@ Gene expression profiling at early stages (0~2 DPA) of fiber development in Gossypiurn hirsuturn identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls and which could play a role in controlling early fiber development.Chief among these was GhMYB25,a Mixta-like MYB gene.Transgenic GhMYB25-silenced cotton showeddramatic alterations in fiber initiation and the timing of rapid fiber elongation,reduction in trichomes on other parts of the plant,a delay in lateral root growth,and a reduction in seed production due toreduced fertilization efficiency.

  18. Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos.

    Science.gov (United States)

    Handley-Goldstone, Heather M; Grow, Matthew W; Stegeman, John J

    2005-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that causes altered heart morphology, circulatory impairment, edema, hemorrhage, and early life stage mortality in fish. TCDD toxicity is dependent, in large part, on the aryl hydrocarbon receptor (AHR), but understanding of the molecular mechanism of cardiovascular embryotoxicity remains incomplete. To identify genes potentially involved in cardiovascular effects, we constructed custom cDNA microarrays consisting of 4896 zebrafish adult heart cDNA clones and over 200 genes with known developmental, toxicological and housekeeping roles. Gene expression profiles were obtained for 3-day-old zebrafish after early embryonic exposure to either 0.5 or 5.0 nM TCDD. In all, 516 clones were significantly differentially expressed (p < 0.005) under at least one treatment condition; 123 high-priority clones were selected for further investigation. Cytochromes P450 1A and 1B1, and other members of the AHR gene battery, were strongly and dose-dependently induced by TCDD. Importantly, altered expression of cardiac sarcomere components, including cardiac troponin T2 and multiple myosin isoforms, was consistent with the hypothesis that TCDD causes dilated cardiomyopathy. Observed increases in expression levels of mitochondrial energy transfer genes also may be related to cardiomyopathy. Other TCDD-responsive genes included fatty acid and steroid metabolism enzymes, ribosomal and signal-transduction proteins, and 18 expressed sequence tags (ESTs) with no known protein homologs. As the first broad-scale study of TCDD-modulated gene expression in a non-mammalian system, this work provides an important perspective on mechanisms of TCDD toxicity.

  19. Global gene expression profile progression in Gaucher disease mouse models

    Directory of Open Access Journals (Sweden)

    Zhang Wujuan

    2011-01-01

    Full Text Available Abstract Background Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells in visceral organs and their abnormal functions are obscure. Results To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null. About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change, representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk of INFγ-regulated pro-inflammatory (13 and IL-4-regulated anti-inflammatory (11 cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation. Conclusions Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.

  20. Gene expression profiling of chicken primordial germ cell ESTs

    Directory of Open Access Journals (Sweden)

    Lim Dajeong

    2006-08-01

    Full Text Available Abstract Background Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. Results We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. Conclusion Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages.

  1. Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions

    Directory of Open Access Journals (Sweden)

    M. Dolcino

    2012-01-01

    Full Text Available Dermatitis herpetiformis (DH is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD. In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E. In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT with concomitant leukocyte recruitment (CCL5, ENPP2, endothelial cell activation, and neutrophil extravasation (SELL, SELE. DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19 and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1 that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B, increased apoptosis (FAS, TNFSF10, and BASP1, and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5. In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions.

  2. Gene Expression Profiling on Acute Rejected Transplant Kidneys with Microarray

    Institute of Scientific and Technical Information of China (English)

    Deping LI; Kang WANG; Yong DAI; Tianyu LV

    2008-01-01

    To investigate the gene expression profiles in acute allograft rejection of renal trans- plantation, and identify the markers for the early diagnosis of acute rejection, heterotopic kidney transplantation was performed by using F344 or Lewis donors and Lewis recipients. No immunosup- pressant was used. Renal grafts were harvested on days 3, 7, and 14. A commercial microarray was used to measure gene expression levels in day-7 grafts. The expression levels of 48 genes were up-regulated in the allograft in comparison with the isograft control, and interferon-y-induced GTPase gene was most significantly up-regulated in allografts. It is concluded that a variety of pathways are involved in organ transplant rejection which is dynamic and non-balanced. IFN-inducible genes, such as IGTP, may play an important role in the rejection. A lot of important factors involved in acute re- jection are unnecessary but sufficient conditions for the rejection. We are led to conclude that it is virtually impossible to make an early diagnosis based on a single gene marker, but it could he achieved on the basis of a set of markers.

  3. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  4. CHO gene expression profiling in biopharmaceutical process analysis and design.

    Science.gov (United States)

    Schaub, Jochen; Clemens, Christoph; Schorn, Peter; Hildebrandt, Tobias; Rust, Werner; Mennerich, Detlev; Kaufmann, Hitto; Schulz, Torsten W

    2010-02-01

    Increase in both productivity and product yields in biopharmaceutical process development with recombinant protein producing mammalian cells can be mainly attributed to the advancements in cell line development, media, and process optimization. Only recently, genome-scale technologies enable a system-level analysis to elucidate the complex biomolecular basis of protein production in mammalian cells promising an increased process understanding and the deduction of knowledge-based approaches for further process optimization. Here, the use of gene expression profiling for the analysis of a low titer (LT) and high titer (HT) fed batch process using the same IgG producing CHO cell line was investigated. We found that gene expression (i) significantly differed in HT versus LT process conditions due to differences in applied chemically defined, serum-free media, (ii) changed over the time course of the fed batch processes, and that (iii) both metabolic pathways and 14 biological functions such as cellular growth or cell death were affected. Furthermore, detailed analysis of metabolism in a standard process format revealed the potential use of transcriptomics for rational media design as is shown for the case of lipid metabolism where the product titer could be increased by about 20% based on a lipid modified basal medium. The results demonstrate that gene expression profiling can be an important tool for mammalian biopharmaceutical process analysis and optimization.

  5. Bitumen fume-induced gene expression profile in rat lung.

    Science.gov (United States)

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  6. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  7. Gene expression profiling of breast cancer in Lebanese women

    Science.gov (United States)

    Makoukji, Joelle; Makhoul, Nadine J.; Khalil, Maya; El-Sitt, Sally; Aldin, Ehab Saad; Jabbour, Mark; Boulos, Fouad; Gadaleta, Emanuela; Sangaralingam, Ajanthah; Chelala, Claude; Boustany, Rose-Mary; Tfayli, Arafat

    2016-01-01

    Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER®/Pathway Studio®. Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer. PMID:27857161

  8. Gene Expression Profiling of Benign and Malignant Pheochromocytoma

    Science.gov (United States)

    BROUWERS, FREDERIEKE M.; ELKAHLOUN, ABDEL G.; MUNSON, PETER J.; EISENHOFER, GRAEME; BARB, JENNIFER; LINEHAN, W. MARSTON; LENDERS, JACQUES W.M.; DE KRIJGER, RONALD; MANNELLI, MASSIMO; UDELSMAN, ROBERT; OCAL, IDRIS T.; SHULKIN, BARRY L.; BORNSTEIN, STEFAN R.; BREZA, JAN; KSINANTOVA, LUCIA; PACAK, KAREL

    2016-01-01

    There are currently no reliable diagnostic and prognostic markers or effective treatments for malignant pheochromocytoma. This study used oligonucleotide microarrays to examine gene expression profiles in pheochromocytomas from 90 patients, including 20 with malignant tumors, the latter including metastases and primary tumors from which metastases developed. Other subgroups of tumors included those defined by tissue norepinephrine compared to epinephrine contents (i.e., noradrenergic versus adrenergic phenotypes), adrenal versus extra-adrenal locations, and presence of germline mutations of genes pre-disposing to the tumor. Correcting for the confounding influence of nora-drenergic versus adrenergic catecholamine phenotype by the analysis of variance revealed a larger and more accurate number of genes that discriminated benign from malignant pheochromocytomas than when the confounding influence of catecholamine phenotype was not considered. Seventy percent of these genes were underexpressed in malignant compared to benign tumors. Similarly, 89% of genes were underexpressed in malignant primary tumors compared to benign tumors, suggesting that malignant potential is largely characterized by a less-differentiated pattern of gene expression. The present database of differentially expressed genes provides a unique resource for mapping the pathways leading to malignancy and for establishing new targets for treatment and diagnostic and prognostic markers of malignant disease. The database may also be useful for examining mechanisms of tumorigenesis and genotype–phenotype relationships. Further progress on the basis of this database can be made from follow-up confirmatory studies, application of bioinformatics approaches for data mining and pathway analyses, testing in pheochromocytoma cell culture and animal model systems, and retrospective and prospective studies of diagnostic markers. PMID:17102123

  9. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  10. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest.

    Science.gov (United States)

    Ruel, Marc; Bianchi, Cesario; Khan, Tanveer A; Xu, Shu; Liddicoat, John R; Voisine, Pierre; Araujo, Eugenio; Lyon, Helen; Kohane, Isaac S; Libermann, Towia A; Sellke, Frank W

    2003-11-01

    -related gene 2, protein phosphatase 1, regulatory subunit 3A, and growth differentiation factor-8 in skeletal muscle. By establishing a profile of the gene-expression responses to cardiopulmonary bypass and cardioplegia, this study allows a better understanding of their effects and provides a framework for the evaluation of new cardiac surgical modalities directly at the genome level.

  11. Gene expression profiling and endothelin in acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Helieh S Oz; Ying Lu; Louis P Vera-Portocarrero; Pei Ge; Ada Silos-Santiago; Karin N Westlund

    2012-01-01

    AIM:To analyze gene expression profiles in an experimental pancreatitis and provide functional reversal of hypersensitivity with candidate gene endothelin-1 antagonists.METHODS:Dibutyltin dichloride (DBTC) is a chemical used as a polyvinyl carbonate stabilizer/catalyzer,biocide in agriculture,antifouling agent in paint and fabric.DBTC induces an acute pancreatitis flare through generation of reactive oxygen species.Lewis-inbred rats received a single i.v.injection with either DBTC or vehicle.Spinal cord and dorsal root ganglia (DRG) were taken at the peak of inflammation and processed for transcriptional profiling with a cDNA microarray biased for rat brain-specific genes.In a second study,groups of animals with DBTC-induced pancreatitis were treated with endothelin (ET) receptor antagonists [ET-A (BQ123) and ET-B BQ788)].Spontaneous pain related mechanical and thermal hypersensitivity were measured.Immunohistochemical analysis was performed using anti-ET-A and ET-B antibodies on sections from pancreatic tissues and DRG of the T10-12 spinal segments.RESULTS:Animals developed acute pancreatic inflammation persisting 7-10 d as confirmed by pathological studies (edema in parenchyma,loss of pancreatic architecture and islets,infiltration of inflammatory cells,neutrophil and mononuclear cells,degeneration,vacuolization and necrosis of acinar cells) and the painrelated behaviors (cutaneous secondary mechanical and thermal hypersensitivity).Gene expression profile was different in the spinal cord from animals with pancreatitis compared to the vehicle control group.Over 260 up-regulated and 60 down-regulated unique genes could be classified into 8 functional gene families:circulatory/acute phase/immunomodulatory; extracellular matrix; structural; channel/receptor/transporter; signaling transduction; transcription/translation-related; antioxidants/chaperones/heat shock; pancreatic and other enzymes.ET-1 was among the 52 candidate genes upregulated greater than 2-fold in

  12. Difference of Gene Expression Profiles between Barrett's Esophagus and Cardia Intestinal Metaplasia by Gene Chip

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; LIU Bin

    2006-01-01

    The difference of gene expression profile changes in Barrettes esophagus (BE) and cardia intestinal metaplasia (CIM) epithelium was studied and the novel associated genes were screened in the early stage by cDNA microarray. The cDNA retro-transcribed from equal quantity mRNA from BE and CIM epithelial tissues were labeled with Cy3 and Cy5 fluorescence as probes. The mixed probe was hybridized with three pieces BiostarH-40s double dot human whole gene chip. The chips were scanned with a ScanArray 4000. The acquired images were analyzed using GenePix Pro 3.0 software. It was found a total of 141 genes were screened out that exhibited differentially expression more than 2 times in all three chips. It was identified that in gene expression profiles of BE, 74 genes were up-regulated and 67 down-regulated as compared with CIM. The comparison between the difference of gene expression profile changes in BE and CIM epithelia revealed that there existed the difference between BE and CIM at gene level. 141 genes with the expression more than two time were probably related to the occurrence and development of BE and the promotion or progress in adenocarcinoma.

  13. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  14. Gene expression profile in obesity and type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Rao Allam A

    2007-12-01

    Full Text Available Abstract Obesity is an important component of metabolic syndrome X and predisposes to the development of type 2 diabetes mellitus. The incidence of obesity, type 2 diabetes mellitus and metabolic syndrome X is increasing, and the cause(s for this increasing incidence is not clear. Although genetics could play an important role in the higher prevalence of these diseases, it is not clear how genetic factors interact with environmental and dietary factors to increase their incidence. We performed gene expression profile in subjects with obesity and type 2 diabetes mellitus with and without family history of these diseases. It was noted that genes involved in carbohydrate, lipid and amino acid metabolism pathways, glycan of biosynthesis, metabolism of cofactors and vitamin pathways, ubiquitin mediated proteolysis, signal transduction pathways, neuroactive ligand-receptor interaction, nervous system pathways, neurodegenerative disorders pathways are upregulated in obesity compared to healthy subjects. In contrast genes involved in cell adhesion molecules, cytokine-cytokine receptor interaction, insulin signaling and immune system pathways are downregulated in obese. Genes involved in signal transduction, regulation of actin cytoskeleton, antigen processing and presentation, complement and coagulation cascades, axon guidance and neurodegenerative disorders pathways are upregulated in subjects with type 2 diabetes with family history of diabetes compared to those who are diabetic but with no family history. Genes involved in oxidative phosphorylation, immune, nervous system, and metabolic disorders pathways are upregulated in those with diabetes with family history of diabetes compared to those with diabetes but with no family history. In contrast, genes involved in lipid and amino acid pathways, ubiquitin mediated proteolysis, signal transduction, insulin signaling and PPAR signaling pathways are downregulated in subjects with diabetes with family

  15. Gene expression profiling in glomeruli of diabetic nephropathy rat.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Sun, Xiaofang; Mao, Lili; Xiang, Hongding

    2012-08-01

    Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming

  16. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    Science.gov (United States)

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  17. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  18. Expression profiling of apoptosis-related genes in enterocytes isolated from patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2013-01-01

    in normal and inflamed colonic epithelial cells. An apoptosis-specific gene array expression profiling system of 96 genes was used to determine the expression profile of apoptosis-related genes. Epithelial cells isolated from three patients with active ulcerative colitis were pooled and compared to pooled...

  19. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  20. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  1. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  2. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  3. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  4. Adipose Gene Expression Profile Changes With Lung Allograft Reperfusion.

    Science.gov (United States)

    Diamond, Joshua M; Arcasoy, Selim; McDonnough, Jamiela A; Sonett, Joshua R; Bacchetta, Matthew; D'Ovidio, Frank; Cantu, Edward; Bermudez, Christian A; McBurnie, Amika; Rushefski, Melanie; Kalman, Laurel H; Oyster, Michelle; D'Errico, Carly; Suzuki, Yoshikazu; Giles, Jon T; Ferrante, Anthony; Lippel, Matthew; Singh, Gopal; Lederer, David J; Christie, Jason D

    2017-01-01

    Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.0 ST array. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enrichment for genes involved in complement and coagulation cascades and Jak-STAT signaling pathways. Overall, 72 genes were upregulated and 56 genes were downregulated in the postreperfusion time compared with baseline. Long pentraxin-3, a gene and plasma protein previously associated with PGD, was the most upregulated gene (19.5-fold increase, p = 0.04). Fibronectin leucine-rich transmembrane protein-3, a gene associated with cell adhesion and receptor signaling, was the most downregulated gene (4.3-fold decrease, p = 0.04). Ischemia-reperfusion has a demonstrable impact on gene expression in visceral adipose tissue in our pilot study of nonobese, non-PGD lung transplant recipients. Future evaluation will focus on differential adipose tissue gene expression and the development of PGD after transplant. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  6. Altered gene expression profiles in mouse tetraploid blastocysts.

    Science.gov (United States)

    Park, Mi-Ryung; Hwang, Kyu-Chan; Bui, Hong-Thuy; Cho, Ssang-Goo; Park, Chankyu; Song, Hyuk; Oh, Jae-Wook; Kim, Jin-Hoi

    2012-01-01

    In this study, it was demonstrated that tetraploid-derived blastocyst embryos had very few Oct4-positive cells at the mid-blastocyst stage and that the inner cell mass at biomarkers Oct4, Sox2 and Klf4 was expressed at less than 10% of the level observed in diploid blastocysts. In contrast, trophectoderm-related gene transcripts showed an approximately 10 to 40% increase. Of 32,996 individual mouse genes evaluated by microarray, 50 genes were differentially expressed between tetraploid or diploid and parthenote embryos at the blastocyst stage (Ptetraploid-derived blastocysts, whereas 22 were more highly downregulated. However, some genes involved in receptor activity, cell adhesion molecule, calcium ion binding, protein biosynthesis, redox processes, transport, and transcription showed a significant decrease or increase in gene expression in the tetraploid-derived blastocyst embryos. Thus, microarray analysis can be used as a tool to screen for underlying defects responsible for the development of tetraploid-derived embryos.

  7. Investigation of gene expression profiles in coronary heart disease and functional analysis of target gene

    Institute of Scientific and Technical Information of China (English)

    YIN HuiJun; MA Xiaoduan; JIANG YueRong; SHI DaZhuo; CHEN KeJi

    2009-01-01

    The research outlined here includes constitution of the differential gene expression profile by means of oligonucleotide gene microarray and functional analysis of the target gene for coronary heart disease (CHD). In a microarray screening experiment, the predominance of inflammation-and immune-related genes is presented in the expression profile of 107 differential genes based on the analysis of gene ontology and gene pathway. IL-8, an inflammatory factor, is identified as one of the genes that were markedly up-regulated in CHD. The plasma level of IL-8 is significantly raised in patients with CHD (n = 30) compared with healthy controls (n = 40), which underscores the clinical relevance of the in vitro finding. The further functional analysis shows that IL-8 affects platelet aggregation percentage, ex-pression of CD62p and platelet aggregation morphology in 12 healthy volunteers to some extent. These findings suggest the relevance of inflammation and immune responses to CHD at the DNA level. Moreover, IL-8 may be involved in the pathogenesis of CHD through the pathway of platelet activation.

  8. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine specif

  9. Gene expression profiles of single human mature oocytes in relation to age

    DEFF Research Database (Denmark)

    Grøndahl, M L; Andersen, Claus Yding; Bogstad, J

    2010-01-01

    The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes.......The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes....

  10. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling

    NARCIS (Netherlands)

    R.G.W. Verhaak (Roel); B.J. Wouters (Bas); C.A.J. Erpelinck (Claudia); S. Abbas (Saman); H.B. Beverloo (Berna); S. Lugthart (Sanne); B. Löwenberg (Bob); H.R. Delwel (Ruud); P.J.M. Valk (Peter)

    2009-01-01

    textabstractWe examined the gene expression profiles of two independent cohorts of patients with acute myeloid leukemia [n=247 and n=214 (younger than or equal to 60 years)] to study the applicability of gene expression profiling as a single assay in prediction of acute myeloid leukemia-specific mol

  11. Difference of gene expression profiles between esophageal carcinoma and its pericancerous epithelium by gene chip

    Institute of Scientific and Technical Information of China (English)

    Shen-Hua Xu; Li-Juan Qian; Han-Zhou Mou; Chi-Hong Zhu; Xing-Ming Zhou; Xiang-Lin Liu; Yong Chen; Wen-Yu Bao

    2003-01-01

    AIM: To study the difference of gene expression between esophageal carcinoma and its pericancerous epithelium and to screen novel associated genes in the early stage of esophageal carcinogenesis by cDNA microarray.METHODS: Total RNA was extracted with the original single step way from esophageal carcinoma, its pericancerous epithelial tissue and normal esophageal epithelium far from the tumor. The cDNA retro-transcribed from equal quantity of mRNA was labeled with Cy5 and Cy3 fluorescence functioning as probes. The mixed probes were hybridized with two pieces of BioDoor 4 096 double dot human whole gene chip. Fluorescence signals were scanned by ScanArray 3 000 laser scanner and farther analyzed by ImaGene 3.0software with the digital computer.RESULTS: (1) A total of 135 genes were screened out, in which 85 and 50 genes whose the gene expression levels (fluorescence intensity) in esophageal carcinoma were more than 2 times and less than 0.5 times respectively compared with the normal esophageal epithelium. (2) There were also total 31 genes, among then 27 and 4 whose expressions in pericancerous tissue were 2-fold up-regulated and 0.5-fold down-regulated respectively compared with normal esophageal epithelium. (3) There were 13 genes appeared simultaneously in both pericancerous epithelium and esophageal carcinoma, while another 18 genes existed in pericancerous epithelium only.CONCLUSION: With the parallel comparison among these three gene profiles, it was shown that (1). A total of 135genes, Whose expression difference manifested as fluorescence intensity were more than 2 times between esophageal carcinoma and normal esophageal epithelium,were probably related to the occurrence and development of the esophageal carcinoma. (2). The 31 genes showing expression difference more than 2 times between pericancerous and normal esophageal epithelium might be relate to the promotion of esophageal pericancerosis and its progress. The present study illustrated that by using

  12. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea "Oriental Beauty".

    Science.gov (United States)

    Cho, Jeong-Yong; Mizutani, Masaharu; Shimizu, Bun-ichi; Kinoshita, Tomomi; Ogura, Miharu; Tokoro, Kazuhiko; Lin, Mu-Lien; Sakata, Kanzo

    2007-06-01

    Oriental Beauty, which is made from tea leaves infested by the tea green leafhopper (Jacobiasca formosana) in Taiwan, has a unique aroma like ripe fruits and honey. To determine what occurs in the tea leaves during the oolong tea manufacturing process, the gene expression profiles and the chemical profiles were investigated. Tea samples were prepared from Camellia sinensis var. sinensis cv. Chin-shin Dah-pang while the tea leaves were attacked by the insect. The main volatile compounds, such as linalool-oxides, benzyl alcohol, 2-phenylethanol, and 2,6-dimethylocta-3,7-diene-2,6-diol, increased during manufacture. The gene expression profiles during manufacture were analyzed by differential screening between fresh leaves and tea leaves of the first turn over. Many up-regulated transcripts were found to encode various proteins homologous to stress response proteins. Accordingly, the endogenous contents of abscisic acid and raffinose increased during manufacture. Thus the traditional manufacturing method is a unique process that utilizes plant defense responses to elevate the production of volatile compounds and other metabolites.

  13. Analysis of Gene Expression Profile in Lung Adenosquamous Carcinoma Using cDNA Microarray

    Institute of Scientific and Technical Information of China (English)

    YANG Fei; YANG Jiong; JIANG Man; YE Bo; ZHANG Yu-xia; CHEN Hong-lei; XIA Dong; LIU Ming-qiu

    2004-01-01

    Gene expression profile of the lung adenosquamous carcinoma was characterized by using cDNA microarray chip containing 4 096 human genes. Among target genes, 508 differentially expressed genes were identified in adenosquamous carcinoma of the lung, 232 genes were overexpressed and 276 genes were underexpressed. Among them, 92 genes are cell signals transduction genes, 34 genes are proto-oncogenes and tumor suppressor genes or cell cycle related genes or cell apoptosis related genes, 29 genes are cell skeleton genes, 28 genes are DNA synthesis, repair and recombination genes, 12 genes are DNA binding and transcription genes. These genes may be associated with the occurence and development of adenosquamous carinome of the lung.

  14. Microarray Expression Profiles of 20.000 Genes across 23 Healthy Porcine Tissues

    DEFF Research Database (Denmark)

    Hornshøj, Henrik; Conley, Lene Nagstrup; Hedegaard, Jakob

    2007-01-01

    Gene expression microarrays have been intensively applied to screen for genes involved in specific biological processes of interest such as diseases or responses to environmental stimuli. For mammalian species, cataloging of the global gene expression profiles in large tissue collections under...

  15. Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles

    Science.gov (United States)

    Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.

    2003-01-01

    Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.

  16. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yulin Zhang

    2015-01-01

    Full Text Available Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function.

  17. Influence of mRNA decay rates on the computational prediction of transcription rate profiles from gene expression profiles

    Indian Academy of Sciences (India)

    Chi-Fang Chin; Arthur Chun-Chieh Shih; Kuo-Chin Fan

    2007-12-01

    The abundance of an mRNA species depends not only on the transcription rate at which it is produced, but also on its decay rate, which determines how quickly it is degraded. Both transcription rate and decay rate are important factors in regulating gene expression. With the advance of the age of genomics, there are a considerable number of gene expression datasets, in which the expression profiles of tens of thousands of genes are often non-uniformly sampled. Recently, numerous studies have proposed to infer the regulatory networks from expression profiles. Nevertheless, how mRNA decay rates affect the computational prediction of transcription rate profiles from expression profiles has not been well studied. To understand the influences, we present a systematic method based on a gene dynamic regulation model by taking mRNA decay rates, expression profiles and transcription profiles into account. Generally speaking, an expression profile can be regarded as a representation of a biological condition. The rationale behind the concept is that the biological condition is reflected in the changing of gene expression profile. Basically, the biological condition is either associated to the cell cycle or associated to the environmental stresses. The expression profiles of genes that belong to the former, so-called cell cycle data, are characterized by periodicity, whereas the expression profiles of genes that belong to the latter, so-called condition-specific data, are characterized by a steep change after a specific time without periodicity. In this paper, we examine the systematic method on the simulated expression data as well as the real expression data including yeast cell cycle data and condition-specific data (glucose-limitation data). The results indicate that mRNA decay rates do not significantly influence the computational prediction of transcription-rate profiles for cell cycle data. On the contrary, the magnitudes and shapes of transcription-rate profiles for

  18. Expression profiling identifies genes expressed early during lint fibre initiation in cotton.

    Science.gov (United States)

    Wu, Yingru; Machado, Adriane C; White, Rosemary G; Llewellyn, Danny J; Dennis, Elizabeth S

    2006-01-01

    Cotton fibres are a subset of single epidermal cells that elongate from the seed coat to produce the long cellulose strands or lint used for spinning into yarn. To identify genes that might regulate lint fibre initiation, expression profiles of 0 days post-anthesis (dpa) whole ovules from six reduced fibre or fibreless mutants were compared with wild-type linted cotton using cDNA microarrays. Numerous clones were differentially expressed, but when only those genes that are normally expressed in the ovule outer integument (where fibres develop) were considered, just 13 different cDNA clones were down-regulated in some or all of the mutants. These included: a Myb transcription factor (GhMyb25) similar to the Antirrhinum Myb AmMIXTA, a putative homeodomain protein (related to Arabidopsis ATML1), a cyclin D gene, some previously identified fibre-expressed structural and metabolic genes, such as lipid transfer protein, alpha-expansin and sucrose synthase, as well as some unknown genes. Laser capture microdissection and reverse transcription-PCR were used to show that both the GhMyb25 and the homeodomain gene were predominantly ovule specific and were up-regulated on the day of anthesis in fibre initials relative to adjacent non-fibre ovule epidermal cells. Their spatial and temporal expression pattern therefore coincided with the time and location of fibre initiation. Constitutive overexpression of GhMyb25 in transgenic tobacco resulted in an increase in branched long-stalked leaf trichomes. The involvement of cell cycle genes prompted DNA content measurements that indicated that fibre initials, like leaf trichomes, undergo DNA endoreduplication. Cotton fibre initiation therefore has some parallels with leaf trichome development, although the detailed molecular mechanisms are clearly different.

  19. GENE EXPRESSION PROFILING OF GANGLIOGLIOMA MALIGNANT PROGRESSION BY cDNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-bin; HUANG Qiang; DONG Jun; WANG Ai-dong; SUN Ji-yong; LAN Qing; HU Geng-xi

    2005-01-01

    Objective: To establish gene expression profiles associated with malignant progression of ganglioglioma. Methods: The primary and two recurrent glioma specimens were collected intraoperatively from the same patient who experienced tumor transformation into anaplastic astrocytoma and glioblastoma multiform for the first and second recurrence respectively. Gene expression was assayed through cDNA array and bioinformatics analysis. Results: A total of 197 differentially expressed genes with differential ratio value more than 3 compared with normal brain tissue were obtained. Among 109 functionally denned genes, those associated with development ranked the first by frequency, followed by genes associated with metabolism, differentiation, signal transduction and so on. As a result of cluster analysis among 368 genes, eleven genes were up regulated with malignant progression, while six genes were down regulated. Conclusion: Gene expression profiles associated with malignant progression of glioma were successfully established, which provides a powerful tool for research on molecular mechanisms of malignant progression of gliomas.

  20. Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection

    Directory of Open Access Journals (Sweden)

    Wenzel Andreas

    2008-02-01

    Full Text Available Abstract Background Retinal degeneration is a main cause of blindness in humans. Neuroprotective therapies may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1α in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration. To address the molecular mechanisms of the protection, we analyzed the transcriptome of the hypoxic retina using microarrays and real-time PCR. Results Hypoxic exposure induced a marked alteration in the retinal transcriptome with significantly different expression levels of 431 genes immediately after hypoxic exposure. The normal expression profile was restored within 16 hours of reoxygenation. Among the differentially regulated genes, several candidates for neuroprotection were identified like metallothionein-1 and -2, the HIF-1 target gene adrenomedullin and the gene encoding the antioxidative and cytoprotective enzyme paraoxonase 1 which was previously not known to be a hypoxia responsive gene in the retina. The strongly upregulated cyclin dependent kinase inhibitor p21 was excluded from being essential for neuroprotection. Conclusion Our data suggest that neuroprotection after hypoxic preconditioning is the result of the differential expression of a multitude of genes which may act in concert to protect visual cells against a toxic insult.

  1. Thermal evolution of gene expression profiles in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Beltran Sergi

    2007-03-01

    Full Text Available Abstract Background Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays. Results A total of 306 (6.6% cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C, also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh. On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments. Conclusion Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to

  2. Cloning and Expression Profiles of Myf5 Gene of Yak

    Directory of Open Access Journals (Sweden)

    Yaqiu Lin

    2015-01-01

    Full Text Available To reveal the sequence characteristic and expression pattern of Myf5 gene in Jiulong yaks (Bos grunniens, a full-length cDNA of Myf5 was cloned from yak muscle tisssue by RT-PCR. The cDNA obtained was 821bp nucleotide (nt long with an ORF of 768 bp which encoding 255 amino acids. Compared with cattle, sheep, pig, horse, human, pygmy chimpanzee, mouse, rat and dog, the homology of amino acid sequences were higher (89-9%, but lower in Zebrafish (60%. SQ RT-PCR analysis showed that Myf5 gene expression was observed only in longissimus muscle, but not be detected in heart, liver, kidney, spleen and adipose tissues. The expression level of Myf5 gene in longissium muscle of 0.5 and over 9 years old yaks was significantly higher than those of 3.5-5.5 years old yaks (p<0.05. These results suggest that Myf5 may play an important role in the regulation of muscle growth and development of yak.

  3. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  4. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  5. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  6. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  7. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    Science.gov (United States)

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused genearray appears to be the most...

  8. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    Science.gov (United States)

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused genearray appears to be the most...

  9. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    Science.gov (United States)

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray TechnologyHongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  10. Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations

    NARCIS (Netherlands)

    Flück, Martin; Däpp, Christoph; Schmutz, Silvia; Wit, Ernst; Hoppeler, Hans

    2005-01-01

    Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. Howev

  11. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  12. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake.

    Science.gov (United States)

    Chen, Y; Gondro, C; Quinn, K; Herd, R M; Parnell, P F; Vanselow, B

    2011-10-01

    Feed efficiency is an economically important trait in beef production. It can be measured as residual feed intake. This is the difference between actual feed intake recorded over a test period and the expected feed intake of an animal based on its size and growth rate. DNA-based marker-assisted selection would help beef breeders to accelerate genetic improvement for feed efficiency by reducing the generation interval and would obviate the high cost of measuring residual feed intake. Although numbers of quantitative trait loci and candidate genes have been identified with the advance of molecular genetics, our understanding of the physiological mechanisms and the nature of genes underlying residual feed intake is limited. The aim of the study was to use global gene expression profiling by microarray to identify genes that are differentially expressed in cattle, using lines genetically selected for low and high residual feed intake, and to uncover candidate genes for residual feed intake. A long-oligo microarray with 24 000 probes was used to profile the liver transcriptome of 44 cattle selected for high or low residual feed intake. One hundred and sixty-one unique genes were identified as being differentially expressed between animals with high and low residual feed intake. These genes were involved in seven gene networks affecting cellular growth and proliferation, cellular assembly and organization, cell signalling, drug metabolism, protein synthesis, lipid metabolism, and carbohydrate metabolism. Analysis of functional data using a transcriptional approach allows a better understanding of the underlying biological processes involved in residual feed intake and also allows the identification of candidate genes for marker-assisted selection. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  13. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  14. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    Science.gov (United States)

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes.

  15. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino;

    2012-01-01

    were retrieved from the Gene Expression Omnibus (GEO) (n¿=¿111) in addition to a Danish data set (n¿=¿37). All patients had stages II and III colon cancers. A Prediction Analysis of Microarray classifier, based on the 128-gene signature and the original training set of stage I (n¿=¿65) and stage IV (n......¿=¿76) colon cancers, was reproduced. The stages II and III colon cancers were subsequently classified as either stage I-like (good prognosis) or stage IV-like (poor prognosis) and assessed by the 36 months cumulative incidence of relapse. RESULTS: In the GEO data set, results were reproducible in stage...... correctly predicted as stage IV-like, and the remaining patients were predicted as stage I-like and unclassifiable, respectively. Stage II patients could not be stratified. CONCLUSIONS: The 128-gene signature showed reproducibility in stage III colon cancer, but could not predict recurrence in stage II...

  16. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    Directory of Open Access Journals (Sweden)

    Hummel Michael

    2010-11-01

    Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic

  18. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

    Science.gov (United States)

    Hirose, Osamu; Yoshida, Ryo; Imoto, Seiya; Yamaguchi, Rui; Higuchi, Tomoyuki; Charnock-Jones, D Stephen; Print, Cristin; Miyano, Satoru

    2008-04-01

    Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising approach to overcome such a limitation is to infer gene networks by exploring the potential transcriptional modules which are sets of genes sharing a common function or involved in the same pathway. In this article, we present a novel approach based on the state space model to identify the transcriptional modules and module-based gene networks simultaneously. The state space model has the potential to infer large-scale gene networks, e.g. of order 10(3), from time-course gene expression profiles. Particularly, we succeeded in the identification of a cell cycle system by using the gene expression profiles of Saccharomyces cerevisiae in which the length of the time-course and number of genes were 24 and 4382, respectively. However, when analysing shorter time-course data, e.g. of length 10 or less, the parameter estimations of the state space model often fail due to overfitting. To extend the applicability of the state space model, we provide an approach to use the technical replicates of gene expression profiles, which are often measured in duplicate or triplicate. The use of technical replicates is important for achieving highly-efficient inferences of gene networks with short time-course data. The potential of the proposed method has been demonstrated through the time-course analysis of the gene expression profiles of human umbilical vein endothelial cells (HUVECs) undergoing growth factor deprivation-induced apoptosis. Supplementary Information and the software (TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/software/ssm/.

  19. Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs.

    Science.gov (United States)

    Kim, Mingoo; Seo, Heewon; Choi, Yohan; Yoo, Inkyu; Seo, Minseok; Lee, Chang-Kyu; Kim, Heebal; Ka, Hakhyun

    2015-01-01

    The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG) analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D) 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs.

  20. Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs.

    Directory of Open Access Journals (Sweden)

    Mingoo Kim

    Full Text Available The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs.

  1. Microarray-based analysis for hepatocellular carcinoma: From gene expression profiling to new challenges

    Institute of Scientific and Technical Information of China (English)

    Yutaka Midorikawa; Masatoshi Makuuchi; Wei Tang; Hiroyuki Aburatani

    2007-01-01

    Accumulation of mutations and alterations in the expression of various genes result in carcinogenesis, and the development of microarray technology has enabled us to identify the comprehensive gene expression alterations in oncogenesis. Many studies have applied this technology for hepatocellular carcinoma (HCC), and identified a number of candidate genes useful as biomarkers in cancer staging, prediction of recurrence and prognosis, and treatment selection. Some of these target molecules have been used to develop new serum diagnostic markers and therapeutic targets against HCC to benefit patients. Previously, we compared gene expression profiling data with classification based on clinicopathological features, such as hepatitis viral infection or liver cancer progression. The next era of gene expression analysis will require systematic integration of expression profiles with other types of biological information, such as genomic locus, gene function, and sequence information. We have reported integration between expression profiles and locus information, which is effective in detecting structural genomic abnormalities, such as chromosomal gains and losses, in which we showed that gene expression profiles are subject to chromosomal bias. Furthermore, array-based comparative genomic hybridization analysis and allelic dosage analysis using genotyping arrays for HCC were also reviewed, with comparison of conventional methods.

  2. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    Directory of Open Access Journals (Sweden)

    Yan-Fang Tao

    2012-09-01

    Full Text Available Abstract Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We

  3. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  4. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth Tuck

    2015-11-01

    Full Text Available Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures. A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource.

  5. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hao Song

    2016-07-01

    Full Text Available During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  6. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    Science.gov (United States)

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  7. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    Science.gov (United States)

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  8. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    Full Text Available Abstract Background The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides as well as in three major non-neural tissues (spleen, liver and kidney using the Applied Biosystems Rat Genome Survey Microarray. Results By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side. Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous

  9. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

    Indian Academy of Sciences (India)

    Prathima Arvind; Shanker Jayashree; Srikarthika Jambunathan; Jiny Nair; Vijay V. Kakkar

    2015-12-01

    Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case–control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regula- tion, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of 1/2/3, 8, 1, 2, 69, , , 4, 42, 58, and 42 genes were independently validated; 1/2/3 and 8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.

  10. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE)

    Science.gov (United States)

    Pérez-Plasencia, Carlos; Riggins, Gregory; Vázquez-Ortiz, Guelaguetza; Moreno, José; Arreola, Hugo; Hidalgo, Alfredo; Piña-Sanchez, Patricia; Salcedo, Mauricio

    2005-01-01

    Background Serial Analysis of Gene Expression (SAGE) is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE), useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV), where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC). Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma. PMID:16171524

  11. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Piña-Sanchez Patricia

    2005-09-01

    Full Text Available Abstract Background Serial Analysis of Gene Expression (SAGE is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE, useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV, where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC. Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.

  12. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes

    Directory of Open Access Journals (Sweden)

    Ueno Masami

    2011-05-01

    Full Text Available Abstract Background While an increase in bone marrow adiposity is associated with age-related bone disease, the function of bone marrow adipocytes has not been studied. The aim of this study was to characterize and compare the age-related gene expression profiles in bone marrow adipocytes and epididymal adipocytes. Results A total of 3918 (13.7% genes were differentially expressed in bone marrow adipocytes compared to epididymal adipocytes. Bone marrow adipocytes revealed a distinct gene profile with low expression of adipocyte-specific genes peroxisome proliferator-activated receptor gamma (PPARγ, fatty acid binding protein 4 (FABP4, perilipin (Plin1, adipsin (CFD and high expression of genes associated with early adipocyte differentiation (CCAAT/enhancer binding protein beta (C/EBPβ, regulator of G-protein signaling 2 (RGS2. In addition, a number of genes including secreted frizzled related protein 4 (SFRP4, tumor necrosis factor α (TNFα, transforming growth factor beta 1(TGFβ1, G-protein coupled receptor 109A (GPR109A and interleukin 6 (IL-6, that could affect adipose-derived signaling to bone are markedly increased in bone marrow adipocytes. Age had a substantial effect on genes associated with mitochondria function and inflammation in bone marrow adipocytes. Twenty seven genes were significantly changed with age in both adipocyte depots. Among these genes, IL6 and GPR109A were significantly reduced with age in both adipocyte depots. Conclusions Overall, gene profiling reveals a unique phenotype for primary bone marrow adipocytes characterized by low adipose-specific gene expression and high expression of inflammatory response genes. Bone marrow and epididymal adipocytes share a common pathway in response to aging in mice, but age has a greater impact on global gene expression in epididymal than in bone marrow adipocytes. Genes that are differentially expressed at greater levels in the bone marrow are highly regulated with age.

  13. Gene expression profiling and gene copy-number changes in malignant mesothelioma cell lines.

    Science.gov (United States)

    Zanazzi, Claudia; Hersmus, Remko; Veltman, Imke M; Gillis, Ad J M; van Drunen, Ellen; Beverloo, H Berna; Hegmans, Joost P J J; Verweij, Marielle; Lambrecht, Bart N; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2007-10-01

    Malignant mesothelioma (MM) is an asbestos-induced tumor that acquires aneuploid DNA content during the tumorigenic process. We used instable MM cell lines as an in vitro model to study the impact of DNA copy-number changes on gene expression profiling, in the course of their chromosomal redistribution process. Two MM cell lines, PMR-MM2 (early passages of in vitro culture) and PMR-MM7 (both early and late passages of in vitro culture), were cytogenetically characterized. Genomic gains and losses were precisely defined using microarray-based comparative genomic hybridization (array-CGH), and minimal overlapping analysis led to the identification of the common unbalanced genomic regions. Using the U133Plus 2.0 Affymetrix gene chip array, we analyzed PMR-MM7 early and late passages for genome-wide gene expression, and correlated the differentially expressed genes with copy-number changes. The presence of a high number of genetic imbalances occurring from early to late culture steps reflected the tendency of MM cells toward genomic instability. The selection of specific chromosomal abnormalities observed during subsequent cultures demonstrated the spontaneous evolution of the cancer cells in an in vitro environment. MM cell lines were characterized by copy-number changes associated with the TP53 apoptotic pathway already present at the first steps of in vitro culture. Prolonged culture led to acquisition of additional chromosomal copy-number changes associated with dysregulation of genes involved in cell adhesion, regulation of mitotic cell cycle, signal transduction, carbohydrate metabolism, motor activity, glycosaminoglycan biosynthesis, protein binding activity, lipid transport, ATP synthesis, and methyltransferase activity.

  14. Gene expression profiling of the response to thermal injury in human cells.

    Science.gov (United States)

    Dinh, H K; Zhao, B; Schuschereba, S T; Merrill, G; Bowman, P D

    2001-10-10

    The genetic response of human cells to sublethal thermal injury was assessed by gene expression profiling, using macroarrays containing 588 complementary known genes. At 1, 4, 8, and 24 h following thermal injury, RNA was isolated, and a cDNA copy was generated incorporating (33)P and hybridized to Atlas arrays. About one-fifth of the genes on the membrane exhibited a significant elevation or depression in expression (>/=2-fold) by 4 h posttreatment. Genes for heat shock proteins (HSPs) were upregulated as well as genes for transcription factors, growth regulation, and DNA repair. Cluster analysis was performed to assess temporal relationships between expression of genes. Translation of mRNA for some expressed genes, including HSP70 and HSP40, was corroborated by Western blotting. Gene expression profiling can be used to determine information about gene responses to thermal injury by retinal pigment epithelium cells following sublethal injury. The induction of gene expression following thermal injury involves a number of genes not previously identified as related to the stress response.

  15. Gene Expression Profile Differences in Gastric Cancer and Normal Gastric Mucosa by Oligonucleotide Microarrays

    Institute of Scientific and Technical Information of China (English)

    Chuanding Yu; Shenhua Xu; HangZhou Mou; Zhiming Jiang; Chihong Zhu; Xianglin Liu

    2006-01-01

    OBJECTIVE To study the difference of gene expression in gastric cancer (T) and normal tissue of gastric mucosa (C), and to screen for associated novel genes in gastric cancers by oligonucleotide microarrays.METHODS U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T and C. Bioinformatics was used to analyze the detected results.RESULTS When gastric cancers were compared with normal gastric mucosa, a total of 270 genes were found with a difference of more than 9times in expression levels. Of the 270 genes, 157 were up-regulated (Signal Log Ratio [SLR] ≥3), and 113 were down-regulated (SLR ≤-3).Using a classification of function, the highest number of gene expression differences related to enzymes and their regulatory genes (67, 24.8%),followed by signal-transduction genes (43,15.9%). The third were nucleic acid binding genes (17, 6.3%), fourth were transporter genes (15, 5.5%)and fifth were protein binding genes (12, 4.4%). In addition there were 50genes of unknown function, accounting for 18.5%. The five above mentioned groups made up 56.9% of the total gene number.CONCLUSION The 5 gene groups (enzymes and their regulatory proteins, signal transduction proteins, nucleic acid binding proteins, transporter and protein binding) were abnormally expressed and are important genes for further study in gastric cancers.

  16. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2007-01-01

    asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU...... strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down...... versions of 83972 and VR50; all mutants showed reduced biofilm formation in urine by 18 to 43% compared with the wild type (P profile of strain 83972 in the human urinary tract partially overlaps with the biofilm expression profile....

  17. Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decomposition

    Institute of Scientific and Technical Information of China (English)

    Ferran Reverter; Esteban Vegas; Pedro Sánchez

    2010-01-01

    The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes.Visualization tools are used to identify genes with similar profiles in microarray studies.Given the large number of genes recorded in microarray experiments,gene expression data are generally displayed on a low dimensional plot,based on linear methods.However,microarray data show nonlinearity,due to high-order terms of interaction between genes,so alternative approaches,such as kernel methods,may be more appropriate.We introduce a technique that combines kernel principal component analysis(KPCA)and Biplot to visualize gene expression profiles.Our approach relies on the singular value decomposition of the input matrix and incorporates an additional step that involves KPCA.The main properties of our method are the extraction of nonlinear features and the preservation of the input variables(genes)in the output display.We apply this algorithm to colon tumor,leukemia and lymphoma datasets.Our approach reveals the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene and sample association.

  18. Ageing Drosophila selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete

      We have investigated how the gene-expression profile of longevity selected lines of Drosophila melanogaster differed from control lines in young, middle-aged and old male flies. 530 genes were differentially expressed between selected and control flies at the same chronological age. We used...... these genes in an analysis of hierarchical clustering of lines and age groups. The results showed that longevity selected flies consistently clustered with control flies that were one age class younger. Most of the genes that were upregulated in old longevity selected flies compared to control flies of equal...... chronological age were downregulated with age in both control and longevity lines. This is in accordance with a younger gene expression profile of longevity selected lines. Similarly genes that were downregulated in old longevity flies compared to control flies were upregulated with older age in both control...

  19. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  20. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    David eSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  1. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose.

    Science.gov (United States)

    Zhang, Jie; Ma, Jideng; Long, Keren; Jin, Long; Liu, Yihui; Zhou, Chaowei; Tian, Shilin; Chen, Lei; Luo, Zonggang; Tang, Qianzi; Jiang, An'an; Wang, Xun; Wang, Dawei; Jiang, Zhi; Wang, Jinyong; Li, Xuewei; Li, Mingzhou

    2016-01-01

    A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.

  2. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  3. Endovascular biopsy: Strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels✩

    Science.gov (United States)

    Sun, Zhengda; Lawson, Devon A.; Sinclair, Elizabeth; Wang, Chih-Yang; Lai, Ming-Derg; Hetts, Steven W.; Higashida, Randall T.; Dowd, Christopher F.; Halbach, Van V.; Werb, Zena; Su, Hua; Cooke, Daniel L.

    2015-01-01

    Purpose To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs. Methods and results 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45+ leukocytes, the ECs expressed higher levels (p < 0.05) of EC surface markers used on FACS and other EC related genes. The gene expression profile showed that these isolated ECs fell into two clusters, A and B, that differentially expressed 19 genes related to angiogenesis, inflammation and extracellular matrix remodeling, with cluster B ECs have demonstrating similarities to senescent or aging ECs. Conclusion Combination of endovascular device sampling, FACS and single-cell quantitative RT-PCR is a feasible method for analyzing EC gene expression profile in vascular lesions. PMID:26989654

  4. Investigation of candidate genes for osteoarthritis based on gene expression profiles.

    Science.gov (United States)

    Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei

    2016-12-01

    To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor

  5. Gene expression profile changes in NB4 cells induced by realgar

    Institute of Scientific and Technical Information of China (English)

    王怀宇; 刘陕西; 吕晓虹; 赵晓艾; 陈思宇; 李信民

    2003-01-01

    Objectives To compare the gene expression profiles of acute promyelocytic leukemia cell line NB4 before and after 12 hours of realgar treatment using cDNA microarray.Methods Two cDNA probes were prepared through reverse transcription from mRNA of both untreated and realgar treated NB4 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes individually, hybridized with cDNA microarray representing 1003 different human genes, and scanned for fluorescent intensity. The genes were screened through the analysis of the difference in two gene expression profiles. Results The analysis of gene expression profiles indicates that 9 genes were up-regulated and 37 genes were down-regulated. Among the 9 up-regulated genes, 2 genes were involved in a proteasome degradation pathway. Some genes related to protein synthesis, signal transduction and cell receptors were down-regulated. Conclusion PSMC2 and PSMD1 genes may play an important role in the apoptosis and partial differentiation of NB4 cells.

  6. Towards a Holistic, Yet Gene-Centered Analysis of Gene Expression Profiles: A Case Study of Human Lung Cancers

    OpenAIRE

    Yuchun Guo; Eichler, Gabriel S.; Ying Feng; Ingber, Donald E.; Sui Huang

    2006-01-01

    Genome-wide gene expression profile studies encompass increasingly large number of samples, posing a challenge to their presentation and interpretation without losing the notion that each transcriptome constitutes a complex biological entity. Much like pathologists who visually analyze information-rich histological sections as a whole, we propose here an integrative approach. We use a self-organizing maps -based software, the gene expression dynamics inspector (GEDI) to analyze gene expressio...

  7. Gene Expression Profiling in Familial Adenomatous Polyposis Adenomas and Desmoid Disease

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2007-06-01

    Full Text Available Abstract Gene expression profiling is a powerful method by which alterations in gene expression can be interrogated in a single experiment. The disease familial adenomatous polyposis (FAP is associated with germline mutations in the APC gene, which result in aberrant β-catenin control. The molecular mechanisms underlying colorectal cancer development in FAP are being characterised but limited information is available about other symptoms that occur in this disorder. Although extremely rare in the general population, desmoid tumours in approximately 10% of FAP patients. The aim of this study was to determine the similarities and differences in gene expression profiles in adenomas and compare them to those observed in desmoid tumours. Illumina whole genome gene expression BeadChips were used to measure gene expression in FAP adenomas and desmoid tumours. Similarities between gene expression profiles and mechanisms important in regulating formation of FAP adenomas and desmoid tumours were identified. This study furthers our understanding of the mechanisms underlying FAP and desmoid tumour formation.

  8. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  9. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Science.gov (United States)

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  10. Fibroblast and lymphoblast gene expression profiles in schizophrenia: are non-neural cells informative?

    Directory of Open Access Journals (Sweden)

    Nicholas A Matigian

    Full Text Available Lymphoblastoid cell lines (LCLs and fibroblasts provide conveniently derived non-neuronal samples in which to investigate the aetiology of schizophrenia (SZ using gene expression profiling. This assumes that heritable mechanisms associated with risk of SZ have systemic effects and result in changes to gene expression in all tissues. The broad aim of this and other similar studies is that comparison of the transcriptomes of non-neuronal tissues from SZ patients and healthy controls may identify gene/pathway dysregulation underpinning the neurobiological defects associated with SZ. Using microarrays consisting of 18,664 probes we compared gene expression profiles of LCLs from SZ cases and healthy controls. To identify robust associations with SZ that were not patient or tissue specific, we also examined fibroblasts from an independent series of SZ cases and controls using the same microarrays. In both tissue types ANOVA analysis returned approximately the number of differentially expressed genes expected by chance. No genes were significantly differentially expressed in either tissue when corrected for multiple testing. Even using relaxed parameters (p or = 2-fold change between the groups of SZ cases and controls common to both LCLs and fibroblasts. We conclude that despite encouraging data from previous microarray studies assessing non-neural tissues, the lack of a convergent set of differentially expressed genes associated with SZ using fibroblasts and LCLs indicates the utility of non-neuronal tissues for detection of gene expression differences and/or pathways associated with SZ remains to be demonstrated.

  11. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds.

    Science.gov (United States)

    Sarma, Sailendra Nath; Kim, Youn-Jung; Ryu, Jae-Chun

    2010-05-27

    Benzene, toluene, o-xylene, ethylbenzene, trichloroethylene and dichloromethane are the most widely used volatile organic compounds (VOCs), and their toxic mechanisms are still undefined. This study analyzed the genome-wide expression profiles of human promyelocytic leukemia HL-60 cells exposed to VOCs using a 35-K whole human genome oligonucleotide microarray to ascertain potential biomarkers. Genes with a significantly increased expression levels (over 1.5-fold and p-values p53 signaling pathway, apoptosis, and natural killer cell-mediated cytotoxicity pathway. Functionally important immune response- and apoptosis-related genes were further validated by real-time RT-PCR. The results showed that IFIT1, IFIT2, IFIT3, USP18, INFGR2, PMAIP1, GADD45A, NFKBIA, TNFAIP3, and BIRC3 genes altered their expression profiles in a dose-dependent manner. Similar expressions profiles were also found in human erythromyeloblastoid leukemia K562 cells and in human leukemic monocyte lymphoma U937 cells. In conclusion, both gene expression profiles and gene ontology analysis have elucidated potential gene-based biomarkers and provided insights into the mechanism underlying the response of human leukemia cell lines to VOC exposure.

  12. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  13. Transcriptomic analysis of gene expression profiles of stomach carcinoma reveal abnormal expression of mitotic components.

    Science.gov (United States)

    Tong, Hongfei; Wang, Jisheng; Chen, Hui; Wang, Zhaohong; Fan, Henwei; Ni, Zhonglin

    2017-02-01

    In order to explore the etiology of gastric cancer on global gene expression level, we developed advanced bioinformatic analysis to investigate the variations of global gene expression and the interactions among them. We downloaded the dataset GSE63288 from Gene Expression Omnibus (GEO) database which included 22 human gastric cancer and 22 healthy control samples. We identified the differential expression genes, and explored the Gene ontology (GO) and pathways of the differentially expressed genes. Furthermore, integrative interaction network and co-expression network were employed to identify the key genes which may contribute to gastric cancer progression. The results indicated that 5 kinases including BUB1, TTK protein kinase, Citron Rho-interacting kinase (CIT), ZAK and NEK2 were upregulated in gastric cancer. Interestingly, BUB1, TTK, CIT and NEK2 have shown high expression similarities and bound with each other, and participated in multiple phases of mitosis. Moreover, a subnet of co-expression genes e.g. KIF14, PRC1, CENPF and CENPI was also involved in mitosis which was functionally coupled with the kinases above. By validation assays, the results indicated that CIT, PRC1, TTK and KIF14 were significantly upregulated in gastric cancer. These evidences have suggested that aberrant expression of these genes may drive gastric cancer including progression, invasion and metastasis. Although the causal relationships between gastric cancer and the genes are still lacking, it was reasonable to take them as biomarkers for diagnosis of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary Thromboembolism

    Science.gov (United States)

    Huang, Jianfei; Zhou, Xiaoyu; Xie, Hao; Zhu, Qilin; Huang, Minjie

    2016-01-01

    Acute pulmonary thromboembolism (PTE) refers to the obstruction of thrombus in pulmonary artery or its branches. Recent studies have suggested that PTE-induced endothelium injury is the major physiological consequence of PTE. And it is reasonal to use PTE-induced endothelium injury to stratify disease severity. According to the massive morphologic and histologic findings, rabbit models could be applied to closely mimic the human PE. Genomewide gene expression profiling has not been attempted in PTE. In this study, we determined the accuracy of rabbit autologous thrombus PTE model for human PTE disease, then we applied gene expression array to identify gene expression changes in pulmonary arteries under PTE to identify potential molecular biomarkers and signaling pathways for PTE. We detected 1343 genes were upregulated and 923 genes were downregulated in PTE rabbits. The expression of several genes (IL-8, TNF-α, and CXCL5) with functional importance were further confirmed in transcript and protein levels. The most significantly differentially regulated genes were related to inflammation, immune disease, pulmonary disease, and cardiovascular diseases. Totally 87 genes were up-regulated in the inflammatory genes. We conclude that gene expression profiling in rabbit PTE model could extend the understanding of PTE pathogenesis at the molecular level. Our study provides the fundamental framework for future clinical research on human PTE, including identification of potential biomarkers for prognosis or therapeutic targets for PTE. PMID:27798647

  16. Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary Thromboembolism.

    Science.gov (United States)

    Tang, Zhiyuan; Wang, Xudong; Huang, Jianfei; Zhou, Xiaoyu; Xie, Hao; Zhu, Qilin; Huang, Minjie; Ni, Songshi

    2016-01-01

    Acute pulmonary thromboembolism (PTE) refers to the obstruction of thrombus in pulmonary artery or its branches. Recent studies have suggested that PTE-induced endothelium injury is the major physiological consequence of PTE. And it is reasonal to use PTE-induced endothelium injury to stratify disease severity. According to the massive morphologic and histologic findings, rabbit models could be applied to closely mimic the human PE. Genomewide gene expression profiling has not been attempted in PTE. In this study, we determined the accuracy of rabbit autologous thrombus PTE model for human PTE disease, then we applied gene expression array to identify gene expression changes in pulmonary arteries under PTE to identify potential molecular biomarkers and signaling pathways for PTE. We detected 1343 genes were upregulated and 923 genes were downregulated in PTE rabbits. The expression of several genes (IL-8, TNF-α, and CXCL5) with functional importance were further confirmed in transcript and protein levels. The most significantly differentially regulated genes were related to inflammation, immune disease, pulmonary disease, and cardiovascular diseases. Totally 87 genes were up-regulated in the inflammatory genes. We conclude that gene expression profiling in rabbit PTE model could extend the understanding of PTE pathogenesis at the molecular level. Our study provides the fundamental framework for future clinical research on human PTE, including identification of potential biomarkers for prognosis or therapeutic targets for PTE.

  17. Profiling gene expression patterns of nasopharyngeal carcinoma and normal nasopharynx tissues with cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    5 μg of total RNAs from normal nasopharynx and nasopharyngeal carcinoma tissue have been labeled with α-32P-dCTP during reverse transcription. The synthesized cDNA probes have been hybridized to high-density cDNA microarray containing 5184 genes or expression sequence tags (ESTs). Then image analysis software has been applied to comparing their expression profiles. Results show that 187 ESTs were of density value above 200 in nasopharyngeal carcinoma tissue while there were 307 such ESTs in normal nasopharynx tissue; 38 ESTs were strongly expressed in nasopharynx, but weakly expressed in nasopharyngeal carcinoma; 48 ESTs were strongly expressed in nasopharyngeal carcinoma, but weakly expressed in normal nasopharynx. These results suggest that there may exist some new differentially expressed genes involved in nasopharyngeal carcinoma development. Furthermore, the results strongly indicate that high-density cDNA microarray is a powerful and efficient tool for large-scale screening differentially expressed genes.

  18. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys

    OpenAIRE

    Brant, Jason Orr; Lopez, Maria-Cecilia; Baker, Henry V.; Barbazuk, W. Brad; Maden, Malcolm

    2015-01-01

    The African spiny mouse (Acomys spp.) can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and ...

  19. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker

    OpenAIRE

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to norma...

  20. GENE EXPRESSION PROFILING OF HUMAN PROMYELOCYTIC LEUKEMIA HL-60 CELL TREATED BY AJOENE

    Institute of Scientific and Technical Information of China (English)

    方志俊; 黄文秀; 黄明辉; 梁润松; 崔景荣; 王夔; 杨梦苏

    2002-01-01

    Objective: Ajoene, a major compound extracted from crashed garlic, has been shown to have antitumor, antimycotic, antimicrobial, antimutagenic functions in vivo or in vitro and treated as a potential antitumor drug. However, the molecular mechanisms underlying the tumor cytotoxicity of ajoene and even garlic substances are poorly defined. In the present study, we aimed to generate gene expression profiles of HL-60 cell treated by ajoene. Methods: A cDNA microarray presenting 2400 of genes amplified from human leukocyte cDNA library was constructed and the gene expression profiles of HL-60 cell induced by ajoene were generated. Results: After data analysis, 28 differentially expressed genes were identified and sequenced. These genes include 21 known genes and 7 ESTs. Most of the known genes are related to cell apoptosis, such as secretory granule (PRG1), beta-2 microglobulin (B2M), 16S ribosomal RNA gene and ribosomal protein S12. Several genes are related to cell differentiation, including the genes similar to H3 histone and ribosomal protein L31. Northern blot analysis was used to verify and quantify the expression of selected genes. Conclusion: Ajoene can induce HL-60 cell apoptosis significantly and may play a role in differentiation. cDNA microarray technology can be a valuable tool to gain insight into molecular events of pharmacological mechanism of herbal medicine.

  1. Comparative analysis of gene expression profiles of papillary thyroid microcarcinoma and papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Kim Hoon

    2010-01-01

    Full Text Available Purpose: Papillary thyroid carcinomas (PTCs measuring 1.0 cm or less were separately defined as papillary thyroid microcarcinomas (PTMs by the World Health Organization, emphasizing on their benign behavior. However, some reported that PTMs may have aggressive behavior, can cause regional, or even distant metastases. But till now, the characteristics of PTMs were only reviewed and described by the clinicopathological parameters, and no analysis of PTM by the gene level is available. We report on the gene expression profiles of PTMs by the oligonucleotide microarrays and the results of comparative analysis with those of PTCs. Materials and Methods: The gene expression profiles of 25 pairs of PTMs and their normal thyroid tissue counterparts, and 11 pairs of PTCs and their normal counterparts, were analyzed by Affymetrix Human Genome U133A. Data were analyzed by the SAM and the DAVID 2008 program to detect differentially expressed genes in supervised sample classification. Results: Two-hundred thirteen statistically significant up-regulated genes and -183 significant down-regulated genes of PTMs compared with their normal counterpart thyroid tissues, which were mainly cell adhesion-related genes and immune response genes, were detected. Two-hundred sixty-one up-regulated and -157 down-regulated genes of PTCs were also detected. In the comparative analyses of gene expression profiles of PTMs and PTCs, no significant difference was found. Conclusion: PTM should not be considered as the simple occult indolent thyroid cancer, but as the earlier stage of disease which eventually evolves into PTC, because the gene expression profiles of PTMs were not different from those of PTCs.

  2. Gene expression profiles at different stages of human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jin Zhou; Li-Qun Zhao; Mo-Miao Xiong; Xiu-Qin Wang; Guan-Rui Yang; Zong-Liang Qiu; Min Wu; Zhi-Hua Liu

    2003-01-01

    AIM: To characterize the gene expression profiles in differentstages of carcinogenesis of esophageal epithelium.METHODS: A microarray containing 588 cancer relatedgenes was employed to study the gene expression profileat different stages of esophageal squamous cell carcinomaincluding basal cell hyperplasia, high-grade dysplasia,carcinoma in situ, early and late cancer. Principle componentanalysis was performed to search the genes which wereimportant in carcinogenesis.RESULTS: More than 100 genes were up or down regulatedin esophageal epithelial cells during the stages of basal cellhyperplasia, high-grade dysplasia, carcinoma in situ, earlyand late cancer. Principle component analysis identified aset of genes which may play important roles in the tumordevelopment. Comparison of expression profiles betweenthese stages showed that some genes, such as P160ROCK,JNK2, were activated and may play an important role inearly stages of carcinogenesis. CONCLUSION: These findings provided an esophagealcancer-specific and stage-specific expression profiles,showing that complex alterations of gene expression underliethe development of malignant phenotype of esophagealcancer cells.

  3. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja;

    2007-01-01

    -six tumors from low-risk patients and 34 low-malignant T2 tumors from patients with slightly higher risk have been examined by genome-wide gene expression analysis. Nine prognostic gene sets were tested in this data set. RESULTS: A 32-gene profile (HUMAC32) that accurately predicts metastasis has previously...... sets, mainly developed in high-risk cancers, predict metastasis from low-malignant cancer....

  4. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  5. Gene Expression Profile of Persistent Postoperative Hypertension Patients with Aldosterone-producing Adenomas

    Institute of Scientific and Technical Information of China (English)

    Li-Fang Xie; Jin-Zhi Ouyang; An-Ping Wang; Wen-Bo Wang; Xin-Tao Li; Bao-Jun Wang; Yi-Ming Mu

    2015-01-01

    Background:Hypertension often persists after adrenalectomy for primary aldosteronism (PA).Many studies have analyzed the outcomes of adrenalectomy for aldosterone-producing adenomas (APA) to identify predictive factors for persistent hypertension.However,differentially expressed genes in persistent postoperative hypertension remain unknown.Our aim was to describe gene expression profile of persistent postoperative hypertension patients with APA.Methods:In this study,we described and compared gene expression profiles in persistent postoperative hypertension and postoperative normotension in Chinese patients with APA using microarray analysis.Confirmation was performed with quantitative real time-polymerase chain reaction analysis.Bioinformatic analysis (gene ontology analysis,pathway analysis and network analysis) was used for further research.Results:Microarray analysis identified a total of 99 differentially expressed genes,including 18 up-regulated and 81 down-regulated genes.Among the dysregulated genes were fat atypical cadherin 1 as well as fatty acid binding protein 4 and other genes that have not been previously studied in persistent postoperative hypertension with APA.Bioinformatics analysis indicated that differentially expressed genes were associated with lipid metabolic process,metal ion binding,and cell differentiation.Pathway analysis determined that five pathways corresponded to the dysregulated transcripts.The mRNAs-ncRNAs co-expression network was composed of 49 network nodes and 72 connections between 18 coding genes and 31 noncoding genes.Conclusions:This study revealed differentially expressed genes in persistent postoperative hypertension with APA and provided a resource of candidate genes for exploration of possible drug targets and prognostic markers.

  6. Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration.

    Directory of Open Access Journals (Sweden)

    Joel K Wise

    Full Text Available Enhanced understanding of differential gene expression and biological pathways associated with distinct phases of intramembranous bone regeneration following femoral marrow ablation surgery will improve future advancements regarding osseointegration of joint replacement implants, biomaterials design, and bone tissue engineering. A rat femoral marrow ablation model was performed and genome-wide microarray data were obtained from samples at 1, 3, 5, 7, 10, 14, 28, and 56 days post-ablation, with intact bones serving as controls at Day 0. Bayesian model-based clustering produced eight distinct groups amongst 9,062 significant gene probe sets based on similar temporal expression profiles, which were further categorized into three major temporal classes of increased, variable, and decreased expression. Osteoblastic- and osteoclastic-associated genes were found to be significantly expressed within the increased expression groups. Chondrogenesis was not detected histologically. Adipogenic marker genes were found within variable/decreased expression groups, emphasizing that adipogenesis was inhibited during osteogenesis. Differential biological processes and pathways associated with each major temporal group were identified, and significantly expressed genes involved were visually represented by heat maps. It was determined that the increased expression group exclusively contains genes involved in pathways for matrix metalloproteinases (MMPs, Wnt signaling, TGF-β signaling, and inflammatory pathways. Only the variable expression group contains genes associated with glycolysis and gluconeogenesis, the notch signaling pathway, natural killer cell mediated cytotoxicity, and the B cell receptor signaling pathway. The decreased group exclusively consists of genes involved in heme biosynthesis, the p53 signaling pathway, and the hematopoietic cell lineage. Significant biological pathways and transcription factors expressed at each time point post

  7. Gene Expression Profiling Analysis Reveals Fur Development in Rex Rabbits (Oryctolagus cuniculus).

    Science.gov (United States)

    Zhao, Bohao; Chen, Yang; Yan, Xiaorong; Hao, Ye; Zhu, Jie; Weng, Qiiaoqing; Wu, Xinsheng

    2017-08-29

    Fur is an important economic trait in rabbits. The identification of genes that influence fur development and knowledge regarding the actions of these genes provides useful tools for improving fur quality. However, the mechanism of fur development is unclear. To obtain candidate genes related to fur development, the transcriptomes of tissues from backs and bellies of Chinchilla rex rabbits were compared. Of the genes analyzed, 336 showed altered expression in the two groups (285 upregulated and 51 downregulated), P≤0.05, fold-change≥2 or ≤0.5). Using GO and KEGG to obtain gene classes that were differentially enriched, we found several genes to be involved in many important biological processes. In addition, we identified several signaling pathways involved in fur development, including the Wnt and MAPK signaling pathways, revealing mechanisms of skin and hair follicle development, and epidermal cell and keratinocytes differentiation. The obtained rabbit transcriptome and differentially expressed gene profiling data provided comprehensive gene expression information for SFRP2, FRZB, CACNG1, SLC25A4 and SLC16A3. To validate the RNA-seq data, the expression levels of eight differentially expressed genes involved in fur development were confirmed by qRT-PCR. The results of rabbit transcriptomic profiling provide a basis for understanding the molecular mechanisms of fur development.

  8. Gene expression profiles of auxin metabolism in maturing apple fruit

    Science.gov (United States)

    Variation exists among apple genotypes in fruit maturation and ripening patterns that influences at-harvest fruit firmness and postharvest storability. Based on the results from our previous large-scale transcriptome profiling on apple fruit maturation and well-documented auxin-ethylene crosstalk, t...

  9. Recrudescence mechanisms and gene expression profile of the reproductive tracts from chickens during the molting period.

    Directory of Open Access Journals (Sweden)

    Wooyoung Jeong

    Full Text Available The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels.

  10. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  11. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles

    Directory of Open Access Journals (Sweden)

    Tchou Julia

    2012-09-01

    Full Text Available Abstract Background Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2 of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. Methods To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC and six Her2+. Results We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. Conclusions These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.

  12. An interactive tool for visualization of relationships between gene expression profiles

    OpenAIRE

    Jones Steven JM; Ruzanov Peter

    2006-01-01

    Abstract Background Application of phenetic methods to gene expression analysis proved to be a successful approach. Visualizing the results in a 3-dimentional space may further enhance these techniques. Results We designed and built TreeBuilder3D, an interactive viewer for visualizing the hierarchical relationships between expression profiles such as SAGE libraries or microarrays. The program allows loading expression data as plain text files and visualizing the relative differences of the an...

  13. Gene Expression Profile Related to the Progression of Preneoplastic Nodules toward Hepatocellular Carcinoma in Rats

    Directory of Open Access Journals (Sweden)

    Julio Isael Pérez-Carréon

    2006-05-01

    Full Text Available In this study, we investigated the time course gene expression profile of preneoplastic nodules and hepatocellular carcinomas (HCC to define the genes implicated in cancer progression in a resistant hepatocyte model. Tissues that included early nodules (1 month, ENT-1, persistent nodules (5 months, ENT-5, dissected HCC (12 months, and normal livers (NIL from adult rats were analyzed by cDNA arrays including 1185 rat genes. Differential genes were derived in each type of sample (n = 3 by statistical analysis. The relationship between samples was described in a Venn diagram for 290 genes. From these, 72 genes were shared between tissues with nodules and HCC. In addition, 35 genes with statistical significance only in HCC and with extreme ratios were identified. Differential expression of 11 genes was confirmed by comparative reverse transcription-polymerase chain reaction, whereas that of 2 genes was confirmed by immunohistochemistry. Members involved in cytochrome P450 and second-phase metabolism were downregulated, whereas genes involved in glutathione metabolism were upregulated, implicating a possible role of glutathione and oxidative regulation. We provide a gene expression profile related to the progression of nodules into HCC, which contributes to the understanding of liver cancer development and offers the prospect for chemoprevention strategies or early treatment of HCC.

  14. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture.

    Science.gov (United States)

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Renninger, Markus; Skutella, Thomas

    2014-01-01

    This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  15. Association of aging with gene expression profiling in mouse submandibular glands

    Directory of Open Access Journals (Sweden)

    Yoshiro Saito

    2015-09-01

    Full Text Available Aging, also called senescence, is thought to be a physiological phenomenon that commonly occurs in various organs and tissues (Enoki et al., 2007 [1]. Many older adults experience dysfunction in their salivary glands, for example xerostomia, which is defined as dry mouth resulting from reduced or absent saliva flow (Nagler et al., 2004 [2]. In the present study, we investigated gene expression in submandibular glands of young (8 weeks old and adult (50 weeks old mice to analyze association of aging with gene expression profiling in mouse submandibular glands. Whole-genome gene expression profiles were analyzed using an Illumina Sentrix system with Mouse-WG-6 v.2 Expression BeadChips (Illumina. Of the genes screened, 284 showed detection values at a significance level of P < 0.01. Among those, the expression of 94 genes (33% showed a greater decrease in adult mice as compared to young mice. On the other hand, that of 190 genes (77% was increased in the adults more than in young mice. The data obtained in this study are publicly available in the Gene Expression Omnibus (GEO database (accession number GSE66857.

  16. The diagnosis of inherited metabolic diseases by microarray gene expression profiling

    Directory of Open Access Journals (Sweden)

    Taanman Jan-Willem

    2010-12-01

    Full Text Available Abstract Background Inherited metabolic diseases (IMDs comprise a diverse group of generally progressive genetic metabolic disorders of variable clinical presentations and severity. We have undertaken a study using microarray gene expression profiling of cultured fibroblasts to investigate 68 patients with a broad range of suspected metabolic disorders, including defects of lysosomal, mitochondrial, peroxisomal, fatty acid, carbohydrate, amino acid, molybdenum cofactor, and purine and pyrimidine metabolism. We aimed to define gene expression signatures characteristic of defective metabolic pathways. Methods Total mRNA extracted from cultured fibroblast cell lines was hybridized to Affymetrix U133 Plus 2.0 arrays. Expression data was analyzed for the presence of a gene expression signature characteristic of an inherited metabolic disorder and for genes expressing significantly decreased levels of mRNA. Results No characteristic signatures were found. However, in 16% of cases, disease-associated nonsense and frameshift mutations generating premature termination codons resulted in significantly decreased mRNA expression of the defective gene. The microarray assay detected these changes with high sensitivity and specificity. Conclusion In patients with a suspected familial metabolic disorder where initial screening tests have proven uninformative, microarray gene expression profiling may contribute significantly to the identification of the genetic defect, shortcutting the diagnostic cascade.

  17. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species.

    Science.gov (United States)

    Patel, Rohan V; Nahal, Hardeep K; Breit, Robert; Provart, Nicholas J

    2012-09-01

    Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species - Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice - were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the 'expressolog'. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.

  18. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  19. Gene expression profile of the regeneration epithelium during axolotl limb regeneration.

    Science.gov (United States)

    Campbell, Leah J; Suárez-Castillo, Edna C; Ortiz-Zuazaga, Humberto; Knapp, Dunja; Tanaka, Elly M; Crews, Craig M

    2011-07-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate missing limbs. The process of limb regeneration requires several key tissues including a regeneration-competent wound epidermis called the regeneration epithelium (RE). We used microarray analysis to profile gene expression of the RE in the axolotl, a Mexican salamander. A list of 125 genes and expressed sequence tags (ESTs) showed a ≥1.5-fold expression in the RE than in a wound epidermis covering a lateral cuff wound. A subset of the RE ESTs and genes were further characterized for expression level changes over the time-course of regeneration. This study provides the first large scale identification of specific gene expression in the RE.

  20. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster.

    Science.gov (United States)

    Guan, Delong; Mo, Fei; Han, Yan; Gu, Wei; Zhang, Min

    2015-01-01

    Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.

  1. Investigation of variation in gene expression profiling of human blood by extended principle component analysis.

    Directory of Open Access Journals (Sweden)

    Qinghua Xu

    Full Text Available BACKGROUND: Human peripheral blood is a promising material for biomedical research. However, various kinds of biological and technological factors result in a large degree of variation in blood gene expression profiles. METHODOLOGY/PRINCIPAL FINDINGS: Human peripheral blood samples were drawn from healthy volunteers and analysed using the Human Genome U133Plus2 Microarray. We applied a novel approach using the Principle Component Analysis and Eigen-R(2 methods to dissect the overall variation of blood gene expression profiles with respect to the interested biological and technological factors. The results indicated that the predominating sources of the variation could be traced to the individual heterogeneity of the relative proportions of different blood cell types (leukocyte subsets and erythrocytes. The physiological factors like age, gender and BMI were demonstrated to be associated with 5.3% to 9.2% of the total variation in the blood gene expression profiles. We investigated the gene expression profiles of samples from the same donors but with different levels of RNA quality. Although the proportion of variation associated to the RNA Integrity Number was mild (2.1%, the significant impact of RNA quality on the expression of individual genes was observed. CONCLUSIONS: By characterizing the major sources of variation in blood gene expression profiles, such variability can be minimized by modifications to study designs. Increasing sample size, balancing confounding factors between study groups, using rigorous selection criteria for sample quality, and well controlled experimental processes will significantly improve the accuracy and reproducibility of blood transcriptome study.

  2. Associations between Serum Sex Hormone Concentrations and Whole Blood Gene Expression Profiles in the General Population.

    Directory of Open Access Journals (Sweden)

    Robin Haring

    Full Text Available Despite observational evidence from epidemiological and clinical studies associating sex hormones with various cardiometabolic risk factors or diseases, pathophysiological explanations are sparse to date. To reveal putative functional insights, we analyzed associations between sex hormone levels and whole blood gene expression profiles.We used data of 991 individuals from the population-based Study of Health in Pomerania (SHIP-TREND with whole blood gene expression levels determined by array-based transcriptional profiling and serum concentrations of total testosterone (TT, sex hormone-binding globulin (SHBG, free testosterone (free T, dehydroepiandrosterone sulfate (DHEAS, androstenedione (AD, estradiol (E2, and estrone (E1 measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS and immunoassay. Associations between sex hormone concentrations and gene expression profiles were analyzed using sex-specific regression models adjusted for age, body mass index, and technical covariables.In men, positive correlations were detected between AD and DDIT4 mRNA levels, as well as between SHBG and the mRNA levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B. No additional significant associations were observed.Besides the associations between AD and DDIT4 expression and SHBG and the transcript levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B, the present study did not indicate any association between sex hormone concentrations and whole blood gene expression profiles in men and women from the general population.

  3. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling.

    Science.gov (United States)

    Verhaak, Roel G W; Wouters, Bas J; Erpelinck, Claudia A J; Abbas, Saman; Beverloo, H Berna; Lugthart, Sanne; Löwenberg, Bob; Delwel, Ruud; Valk, Peter J M

    2009-01-01

    We examined the gene expression profiles of two independent cohorts of patients with acute myeloid leukemia [n=247 and n=214 (younger than or equal to 60 years)] to study the applicability of gene expression profiling as a single assay in prediction of acute myeloid leukemia-specific molecular subtypes. The favorable cytogenetic acute myeloid leukemia subtypes, i.e., acute myeloid leukemia with t(8;21), t(15;17) or inv(16), were predicted with maximum accuracy (positive and negative predictive value: 100%). Mutations in NPM1 and CEBPA were predicted less accurately (positive predictive value: 66% and 100%, and negative predictive value: 99% and 97% respectively). Various other characteristic molecular acute myeloid leukemia subtypes, i.e., mutant FLT3 and RAS, abnormalities involving 11q23, -5/5q-, -7/7q-, abnormalities involving 3q (abn3q) and t(9;22), could not be correctly predicted using gene expression profiling. In conclusion, gene expression profiling allows accurate prediction of certain acute myeloid leukemia subtypes, e.g. those characterized by expression of chimeric transcription factors. However, detection of mutations affecting signaling molecules and numerical abnormalities still requires alternative molecular methods.

  4. Molecular mechanisms in muscular dystrophy: a gene expression profiling study.

    OpenAIRE

    2006-01-01

    The muscular dystrophies are a group of neuromuscular disorders characterized by progres¬sive muscle weakness and wasting. Although the underlying genetic defects of a large number of muscular dystrophies are now know, the molecular mechanisms resulting in the devastating effects of the disease are not yet clear. Furthermore, the muscular dystrophies differ in clinical presentation and severity. The processes responsible for this di¬vergence are largely unknown as well. In this thesis, gene e...

  5. Gene Expression Profiles as Prognostic Marker in Women with Ovarian Cancer

    DEFF Research Database (Denmark)

    Jochumsen, Kirsten Marie; Tan, Qihua; Høgdall, EV;

    2009-01-01

    toward investigations for more individualized therapies and the use of gene expression profiles in the clinical practice. RNA from tumor tissue from 43 Danish patients with serous epithelial ovarian carcinoma (11 International Federation of Gynecology and Obstetrics [FIGO] stage I/II, 32 FIGO stage III......-term survivors (median overall survival of 32 months) from long-term survivors (median overall survival not yet reached after a median follow-up of 76 months) with a P value of 3.4 x 10 was found. The prognostic gene set was also able to distinguish short-term from long-term survival in patients with advanced......The purpose was to find a gene expression profile that could distinguish short-term from long-term survivors in our collection of serous epithelial ovarian carcinomas. Furthermore, it should be able to stratify in an external validation set. Such a classifier profile will take us a step forward...

  6. Gene expression profiling of acute type A aortic dissection combined with in vitroassessment†.

    Science.gov (United States)

    Kimura, Naoyuki; Futamura, Kyoko; Arakawa, Mamoru; Okada, Naoko; Emrich, Fabian; Okamura, Homare; Sato, Tetsuya; Shudo, Yasuhiro; Koyano, Tiffany K; Yamaguchi, Atsushi; Adachi, Hideo; Matsuda, Akio; Kawahito, Koji; Matsumoto, Kenji; Fischbein, Michael P

    2017-04-11

    The mechanisms underlying aortic dissection remain to be fully elucidated. We aimed to identify key molecules driving dissection through gene expression profiling achieved by microarray analysis and subsequent in vitro experiments using human aortic endothelial cells (HAECs) and aortic vascular smooth muscle cells (AoSMCs). Total RNA, including microRNA (miRNA), was isolated from the intima-media layer of dissected ascending aorta obtained intraoperatively from acute type A aortic dissection (ATAAD) patients without familial thoracic aortic disease ( n  = 8) and that of non-dissected ascending aorta obtained from transplant donors ( n  = 9). Gene expression profiling was performed with mRNA and miRNA microarrays, and results were confirmed by quantitative polymerase chain reaction (qPCR). Target genes and miRNA were identified by gene ontology analysis and a literature search. To reproduce the in silico results, HAECs and AoSMCs were stimulated in vitro by upstream cytokines, and expression of target genes was assessed by qPCR. Microarray analysis revealed 1536 genes (3.6%, 1536/42 545 probes) and 41 miRNAs (3.0%, 41/1368 probes) that were differentially expressed in the ATAAD group (versus donor group). The top 15 related pathways included regulation of inflammatory response, growth factor activity and extracellular matrix. Gene ontology analysis identified JAK2 (regulation of inflammatory response), PDGFA, TGFB1, VEGFA (growth factor activity) and TIMP3 , TIMP4, SERPINE1 (extracellular matrix) as the target genes and miR-21-5p, a TIMP3 repressor, as target miRNA that interacts with the target genes. Validation qPCR confirmed the altered expression of all 7 target genes and miR-21-5p in dissected aorta specimens (all genes, P  < 0.05). Ingenuity pathway analysis showed TNF-α and TGF-β to be upstream cytokines for the target genes. In vitro experiments showed these cytokines inhibit TIMP3 expression ( P  < 0.05) and enhance VEGFA expression ( P

  7. Gene expression profiling of melanocytes following Q-Switched Ruby laser irradiation.

    Science.gov (United States)

    Hafner, Christian; Stempfl, Thomas; Bäumler, Wolfgang; Hohenleutner, Ulrich; Landthaler, Michael; Vogt, Thomas

    2008-01-01

    The Q-switched Ruby laser (QSRL) is used for the treatment of pigmented lesions. The influence of QSRL treatment on gene expression of nontransformed primary melanocytes has not been addressed in vitro. We investigated the gene expression profile of melanocytes following QSRL irradiation. Primary melanocytes were irradiated with the QSRL (694 nm). Early and late transcriptional effects were analyzed using the Affymetrix gene array platform. Laser irradiation of melanocytes had minor effects on mRNA expression. We found only 31 out of 14,500 genes which were at least twofold up- or downregulated. The differential expression of heme oxygenase 1 and galanin in QSRL-treated melanocytes was additionally confirmed by real-time RT-PCR. Analysis of a selection of 36 genes which are known to be associated with malignant melanoma development and progression revealed no significantly aberrant expression in the QSRL-treated melanocytes. Our study shows that QSRL treatment of primary melanocytes in vitro does not cause major alterations of global gene expression and particularly of genes associated with malignant melanoma. However, since QSRL treatment may have different effects on gene expression of melanocytic cells in vivo, further studies are required to evaluate QSRL treatment of (nevo-) melanocytic lesions. (c) 2008 S. Karger AG, Basel.

  8. Direct Cell Lysis for Single-Cell Gene Expression Profiling

    OpenAIRE

    David eSvec; Daniel eAndersson; Milos ePekny; Robert eSjöback; Mikael eKubista; Anders eStåhlberg

    2013-01-01

    The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously express...

  9. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  10. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  11. Gene expression profiling in porcine mammary gland during lactation and identification of breed- and developmental-stage-specific genes

    Institute of Scientific and Technical Information of China (English)

    SU; Zhixi; DONG; Xinjiao; ZHANG; Bing; ZENG; Yanwu; FU; Yan; YU; Jun; HU; Songnian

    2006-01-01

    A total of 28941 ESTs were sequenced from five 5(-directed non-normalized cDNA libraries, which were assembled into 2212 contigs and 5642 singlets using CAP3. These sequences were annotated and clustered into 6857 unique genes, 2072 of which having no functional annotations were considered as novel genes. These genes were further classified into Gene Ontology categories. By comparing the expression profiles, we identified some breed- and developmental-stage-specific gene groups. These genes may be relative to reproductive performance or play important roles in milk synthesis, secretion and mammary involution. The unknown EST sequences and expression profiles at different developmental stages and breeds are very important resources for further research.

  12. Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection.

    Science.gov (United States)

    Li, Shiying; Liu, Qianqian; Wang, Yongjun; Gu, Yun; Liu, Dong; Wang, Chunming; Ding, Guohui; Chen, Jianping; Liu, Jie; Gu, Xiaosong

    2013-01-01

    After traumatic injury, peripheral nerves can spontaneously regenerate through highly sophisticated and dynamic processes that are regulated by multiple cellular elements and molecular factors. Despite evidence of morphological changes and of expression changes of a few regulatory genes, global knowledge of gene expression changes and related biological processes during peripheral nerve injury and regeneration is still lacking. Here we aimed to profile global mRNA expression changes in proximal nerve segments of adult rats after sciatic nerve transection. According to DNA microarray analysis, the huge number of genes was differentially expressed at different time points (0.5 h-14 d) post nerve transection, exhibiting multiple distinct temporal expression patterns. The expression changes of several genes were further validated by quantitative real-time RT-PCR analysis. The gene ontology enrichment analysis was performed to decipher the biological processes involving the differentially expressed genes. Collectively, our results highlighted the dynamic change of the important biological processes and the time-dependent expression of key regulatory genes after peripheral nerve injury. Interestingly, we, for the first time, reported the presence of olfactory receptors in sciatic nerves. Hopefully, this study may provide a useful platform for deeply studying peripheral nerve injury and regeneration from a molecular-level perspective.

  13. Radiation-associated breast tumors display a distinct gene expression profile

    DEFF Research Database (Denmark)

    Broeks, Annegien; Braaf, Linde M; Wessels, Lodewyk F A

    2010-01-01

    radiation-associated cause underlies the carcinogenic process. METHODS AND MATERIALS: In this study we used gene expression profiling technology to assess gene expression changes in radiation-associated breast tumors compared with a set of control breast tumors of women unexposed to radiation, diagnosed...... at the same age. RNA was obtained from fresh frozen tissue samples from 22 patients who developed breast cancer after Hodgkin's lymphoma (BfHL) and from 20 control breast tumors. RESULTS: Unsupervised hierarchical clustering of the profile data resulted in a clustering of the radiation-associated tumors...... separate from the control tumors (p tumors were often of the intrinsic basal breast tumor subtype, and they showed a chromosomal instability profile and a higher expression...

  14. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    2016-01-01

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.

  15. The global gene expression profile of the secondary transition during pancreatic development.

    Science.gov (United States)

    Willmann, Stefanie J; Mueller, Nikola S; Engert, Silvia; Sterr, Michael; Burtscher, Ingo; Raducanu, Aurelia; Irmler, Martin; Beckers, Johannes; Sass, Steffen; Theis, Fabian J; Lickert, Heiko

    2016-02-01

    Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation.

  16. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade

    2015-01-01

    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  17. Bioinformatics analysis of the gene expression profile of hepatocellular carcinoma: preliminary results

    Science.gov (United States)

    Li, Jia

    2016-01-01

    Aim of the study To analyse the expression profile of hepatocellular carcinoma compared with normal liver by using bioinformatics methods. Material and methods In this study, we analysed the microarray expression data of HCC and adjacent normal liver samples from the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes. Then, functional analyses were performed using GenCLiP analysis, Gene Ontology categories, and aberrant pathway identification. In addition, we used the CMap database to identify small molecules that can induce HCC. Results Overall, 2721 differentially expressed genes (DEGs) were identified. We found 180 metastasis-related genes and constructed co-occurrence networks. Several significant pathways, including the transforming growth factor β (TGF-β) signalling pathway, were identified as closely related to these DEGs. Some candidate small molecules (such as betahistine) were identified that might provide a basis for developing HCC treatments in the future. Conclusions Although we functionally analysed the differences in the gene expression profiles of HCC and normal liver tissues, our study is essentially preliminary, and it may be premature to apply our results to clinical trials. Further research and experimental testing are required in future studies. PMID:27095935

  18. Hepatic temporal gene expression profiling in Helicobacter hepaticus-infected A/JCr mice.

    Science.gov (United States)

    Boutin, Samuel R; Rogers, Arlin B; Shen, Zeli; Fry, Rebecca C; Love, Jennifer A; Nambiar, Prashant R; Suerbaum, Sebastian; Fox, James G

    2004-01-01

    Helicobacter hepaticus infection of A/JCr mice is a model of infectious liver cancer. We monitored hepatic global gene expression profiles in H. hepaticus infected and control male A/JCr mice at 3 months, 6 months, and 1 year of age using an Affymetrix-based oligonucleotide microarray platform on the premise that a specific genetic expression signature at isolated time points would be indicative of disease status. Model based expression index comparisons generated by dChip yielded consistent profiles of differential gene expression for H. hepaticus infected male mice with progressive liver disease versus uninfected control mice within each age group. Linear discriminant analysis and principal component analysis allowed segregation of mice based on combined age and lesion status, or age alone. Up-regulation of putative tumor markers correlated with advancing hepatocellular dysplasia. Transcriptionally down-regulated genes in mice with liver lesions included those related to peroxisome proliferator, fatty acid, and steroid metabolism pathways. In conclusion, transcriptional profiling of hepatic genes documented gene expression signatures in the livers of H. hepaticus infected male A/JCr mice with chronic progressive hepatitis and preneoplastic liver lesions, complemented the histopathological diagnosis, and suggested molecular targets for the monitoring and intervention of disease progression prior to the onset of hepatocellular neoplasia.

  19. Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines.

    Directory of Open Access Journals (Sweden)

    Xiangqiang Kong

    Full Text Available Leaf senescence varies greatly among genotypes of cotton (Gossypium hirsutium L, possibly due to the different expression of senescence-related genes. To determine genes involved in leaf senescence, we performed genome-wide transcriptional profiling of the main-stem leaves of an early- (K1 and a late-senescence (K2 cotton line at 110 day after planting (DAP using the Solexa technology. The profiling analysis indicated that 1132 genes were up-regulated and 455 genes down-regulated in K1 compared with K2 at 110 DAP. The Solexa data were highly consistent with, and thus were validated by those from real-time quantitative PCR (RT-PCR. Most of the genes related to photosynthesis, anabolism of carbohydrates and other biomolecules were down-regulated, but those for catabolism of proteins, nucleic acids, lipids and nutrient recycling were mostly up-regulated in K1 compared with K2. Fifty-one differently expressed hormone-related genes were identified, of which 5 ethylene, 3 brassinosteroid (BR, 5 JA, 18 auxin, 8 GA and 1 ABA related genes were up-regulated in K1 compared with K2, indicating that these hormone-related genes might play crucial roles in early senescence of K1 leaves. Many differently expressed transcription factor (TF genes were identified and 11 NAC and 8 WRKY TF genes were up-regulated in K1 compared with K2, suggesting that TF genes, especially NAC and WRKY genes were involved in early senescence of K1 leaves. Genotypic variation in leaf senescence was attributed to differently expressed genes, particularly hormone-related and TF genes.

  20. Analysis of gene expression profile of aspermia using cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    杨波; 高晓康; 王禾; 刘贺亮; 陈宝琦; 秦荣良; 康福霞; 邵国兴; 邵晨

    2003-01-01

    Objective: To identify the differential gene expression profiles between the normal and aspermia human testes utilizing cDNA microarray. Methods: cDNA probes were prepared by labeling mRNA of aspermia testes tissues with Cy5-dUTP and mRNA of normal testes tissues with Cy3-dUTP respectively through reverse transcription. The mixed cDNA probes were then hybridized with 4096 cDNA arrays (4096 unique human cDNA sequences), and the fluorescent signals were scanned by ScanArray 3000 scanner (General Scanning, Inc.). The values of Cy5-dUTP and Cy3-dUTP on each spot were analyzed and calculated by ImaGene 3.0 software (BioDiscovery, Inc.). Differentially expressed genes were screened according to the criterion that the absolute value of natural logarithm of the ratio of Cy5-dUTP to Cy3-dUTP was greater-than 2.0 or less-than 0.5. A randomly chosen gene RAP1A was studied by in situ hybridization to evaluate the accuracy of the results. Results: 623 differential expressed genes related to aspermia were found. There were 303 up-expressed genes and 320 down-expressed genes. A distinct up-expressed gene RAP1A was confirmed by in situ hybridization. Conclusions: Screening the differential gene expression profiles between the normal and aspermia human testis by cDNA microarray can be used in the study of aspermia-related genes and the further research due to its properties, RAP1A may play some roles in the development and progression of aspermia.

  1. Personalized chemotherapy selection for breast cancer using gene expression profiles

    Science.gov (United States)

    Yu, Kaixian; Sang, Qing-Xiang Amy; Lung, Pei-Yau; Tan, Winston; Lively, Ty; Sheffield, Cedric; Bou-Dargham, Mayassa J.; Liu, Jun S.; Zhang, Jinfeng

    2017-01-01

    Choosing the optimal chemotherapy regimen is still an unmet medical need for breast cancer patients. In this study, we reanalyzed data from seven independent data sets with totally 1079 breast cancer patients. The patients were treated with three different types of commonly used neoadjuvant chemotherapies: anthracycline alone, anthracycline plus paclitaxel, and anthracycline plus docetaxel. We developed random forest models with variable selection using both genetic and clinical variables to predict the response of a patient using pCR (pathological complete response) as the measure of response. The models were then used to reassign an optimal regimen to each patient to maximize the chance of pCR. An independent validation was performed where each independent study was left out during model building and later used for validation. The expected pCR rates of our method are significantly higher than the rates of the best treatments for all the seven independent studies. A validation study on 21 breast cancer cell lines showed that our prediction agrees with their drug-sensitivity profiles. In conclusion, the new strategy, called PRES (Personalized REgimen Selection), may significantly increase response rates for breast cancer patients, especially those with HER2 and ER negative tumors, who will receive one of the widely-accepted chemotherapy regimens. PMID:28256629

  2. Gene expression following induction of regeneration in Drosophila wing imaginal discs. Expression profile of regenerating wing discs

    Directory of Open Access Journals (Sweden)

    Blanco Enrique

    2010-09-01

    Full Text Available Abstract Background Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1 genes with differential expression within the first 24 hours; 2 genes with differential expression between 24 and 72 hours; 3 genes that changed significantly in expression levels between the two time periods; 4 genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.

  3. Prediction of metastasis from low-malignant breast cancer by gene expression profiling

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja;

    2007-01-01

    Promising results for prediction of outcome in breast cancer have been obtained by genome wide gene expression profiling. Some studies have suggested that an extensive overtreatment of breast cancer patients might be reduced by risk assessment with gene expression profiling. A patient group hardly...... examined in these studies is the low-risk patients for whom outcome is very difficult to predict with currently used methods. These patients do not receive adjuvant treatment according to the guidelines of the Danish Breast Cancer Cooperative Group (DBCG). In this study, 26 tumors from low-risk patients...... demonstrated high cross-platform consistency of the classifiers. Higher performance of HUMAC32 was demonstrated among the low-malignant cancers compared with the 70-gene classifier. This suggests that although the metastatic potential to some extend is determined by the same genes in groups of tumors...

  4. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder.

    Science.gov (United States)

    Kang, Hyo Jung; Adams, David H; Simen, Arthur; Simen, Birgitte B; Rajkowska, Grazyna; Stockmeier, Craig A; Overholser, James C; Meltzer, Herbert Y; Jurjus, George J; Konick, Lisa C; Newton, Samuel S; Duman, Ronald S

    2007-11-28

    Investigations of the molecular mechanisms underlying major depressive disorder (MDD) have been hampered by the complexity of brain tissue and sensitivity of gene expression profiling approaches. To address these issues, we used discrete microdissections of postmortem dorsolateral prefrontal cortex (DLPFC) (area 9) and an oligonucleotide (60mer) microarray hybridization procedure that increases sensitivity without RNA amplification. Mixed-effects statistical methods were used to rigorously control for medication usage in the subset of medicated depressed subjects. These analyses yielded a rich profile of dysregulated genes. Two of the most highly dysregulated genes of interest were stresscopin, a neuropeptide involved in stress responses, and Forkhead box D3 (FOXD3), a transcription factor. Secondary cell-based analysis demonstrated that stresscopin and FoxD3 are increased in neurons of DLPFC gray matter of MDD subjects. These findings identify abnormal gene expression in a discrete region of MDD subjects and contribute to further elucidation of the molecular alterations of this complex mood disorder.

  5. Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy

    OpenAIRE

    Vitucci, M; Hayes, D N; Miller, C R

    2010-01-01

    The development of DNA microarray technologies over the past decade has revolutionised translational cancer research. These technologies were originally hailed as more objective, comprehensive replacements for traditional histopathological cancer classification systems, based on microscopic morphology. Although DNA microarray-based gene expression profiling (GEP) remains unlikely in the near term to completely replace morphological classification of primary brain tumours, specifically the dif...

  6. Gene expression profiling of a temperature-sensitive strain of Neospora caninum

    Science.gov (United States)

    To understand the genetic basis of virulence, gene expression profiles of a temperature-sensitive clone (NCts-8, relatively avirulent) and its wild type (NC-1) of Neospora caninum were characterized and compared using a high-density microarray with approximately 63,000 distinct oligonucleotides. Thi...

  7. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Science.gov (United States)

    2010-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Tumor... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer...

  8. Gene expression profiles as prognostic markers in women with ovarian cancer

    DEFF Research Database (Denmark)

    Jochumsen, Kirsten M; Tan, Qihua; Høgdall, Estrid V

    2009-01-01

    toward investigations for more individualized therapies and the use of gene expression profiles in the clinical practice. RNA from tumor tissue from 43 Danish patients with serous epithelial ovarian carcinoma (11 International Federation of Gynecology and Obstetrics [FIGO] stage I/II, 32 FIGO stage III...

  9. Stimulated Gene Expression Profiles as a Blood Marker of Major Depressive Disorder

    NARCIS (Netherlands)

    Spijker, Sabine; Van Zanten, Jeroen S.; De Jong, Simone; Penninx, Brenda; van Dyck, Richard; Zitman, Frans G.; Smit, Jan H.; Ylstra, Bauke; Smit, August B.; Hoogendijk, Witte J. G.

    2010-01-01

    Background: Major depressive disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of unmedicated subje

  10. Gene Expression Profiling in Abdominal Aortic Aneurysms After Finite Element Rupture Risk Assessment.

    Science.gov (United States)

    Erhart, Philipp; Schiele, Sandra; Ginsbach, Philip; Grond-Ginsbach, Caspar; Hakimi, Maani; Böckler, Dittmar; Lorenzo-Bermejo, Justo; Dihlmann, Susanne

    2017-08-01

    To investigate the association between local biomechanical rupture risk calculations from finite element analysis (FEA) and whole-genome profiling of the abdominal aortic aneurysm (AAA) wall to determine if AAA wall regions with highest and lowest estimated rupture risk show different gene expression patterns. Six patients (mean age 74 years; all men) scheduled for open surgery to treat asymptomatic AAAs (mean diameter 55.2±3.5 mm) were recruited for the study. Rupture risk profiles were estimated by FEA from preoperative computed tomography angiography data. During surgery, AAA wall samples of ~10 mm(2) were extracted from the lowest and highest rupture risk locations identified by the FEA. Twelve samples were processed for RNA extraction and subsequent whole genome expression profiling. Expression of single genes and of predefined gene groups were compared between vessel wall areas with highest and lowest predicted rupture risk. Normalized datasets comprised 15,079 gene transcripts with expression above background. In biopsies with high rupture risk, upregulation of 18 and downregulation of 18 genes was detected when compared to the low-risk counterpart. Global analysis of predefined gene groups revealed expression differences in genes associated with extracellular matrix (ECM) degradation (p<0.001), matrix metalloproteinase activity (p<0.001), and chemokine signaling (p<0.001). Increased expression of genes involved in degrading ECM components was present in AAA wall regions with highest biomechanical stress, supporting the thesis of mechanotransduction. More experimental studies with cooperation of multicenter vascular biobanks are necessary to understand AAA etiologies and identify further parameters of FEA model complementation.

  11. Comparison of gene expression profiles of T cells in porcine colostrum and peripheral blood.

    Science.gov (United States)

    Ogawa, Shohei; Okutani, Mie; Tsukahara, Takamitsu; Nakanishi, Nobuo; Kato, Yoshihiro; Fukuta, Kikuto; Romero-Pérez, Gustavo A; Ushida, Kazunari; Inoue, Ryo

    2016-09-01

    OBJECTIVE To compare gene expression patterns of T cells in porcine colostrum and peripheral blood. ANIMALS 10 multiparous sows. PROCEDURES Cytotoxic and CD4-CD8 double-positive T cells were separated from porcine colostrum and peripheral blood. Total RNA was extracted. The cDNA prepared from RNA was amplified, labeled, fragmented, and competitively hybridized to DNA microarray slides. The DNA microarray data were validated by use of a real-time reverse-transcription PCR assay, and expression of the genes FOS, NFKBI, IFNG, CXCR6, CCR5, ITGB2, CCR7, and SELL was assessed. Finally, DNA microarray data were validated at the protein level by use of flow cytometry via expression of c-Fos and integrin β-2. RESULTS Evaluation of gene expression profiles indicated that in contrast to results for peripheral blood, numerous cell-signaling pathways might be activated in colostrum. Profile analysis also revealed that FOS and NFKBI (genes of transcription factors) were involved in most cell-signaling pathways and that expression of these genes was significantly higher in colostral T cells than in peripheral blood T cells. Furthermore, CCR7 and SELL (genes of T-cell differentiation markers) in colostral T cells had expression patterns extremely similar to those found in effector or effector memory T cells. CONCLUSIONS AND CLINICAL RELEVANCE All or most of the T cells in colostrum had an effector-like phenotype and thus were more activated than those in peripheral blood. This gene expression profile would enable T cells to migrate to mammary glands, be secreted in colostrum, and likely contribute to passive immunity provided by sows to newborn pigs.

  12. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench.

    Science.gov (United States)

    Gupta, Shubhra; Arya, Gulab C; Malviya, Neha; Bisht, Naveen C; Yadav, Dinesh

    2016-08-01

    DNA binding with one finger (Dof) proteins represent a family of plant specific transcription factors associated with diverse biological processes, such as seed maturation and germination, phytohormone and light mediated regulation, and plant responses to biotic and abiotic stresses. In present study, a total of 21 Dof genes from Sorghum bicolor were cloned, sequenced and in silico characterized for homology search, revealing their identity to Dof like proteins. The expression profiling of SbDof genes using quantitative RT-PCR in different tissue types and also under drought and salt stresses was attempted. The SbDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth condition. Two of the SbDof genes namely SbDof8 and SbDof12 showed comparatively high level of transcript abundance in all the tissue types tested; whereas some of the SbDof genes showed a distinct tissue specific expression pattern. Further a total of 13 SbDof genes showed differential expression when subjected to either of the abiotic stress i.e. drought or salinity. Three of the SbDof genes namely SbDof12, SbDof19 and SbDof24 were found to be up-regulated in response to drought and salt stress. Comparative analysis of SbDof genes expression revealed existence of a complex transcriptional and functional diversity across plant growth and developmental stages.

  13. Exploring hepatic hormone actions using a compilation of gene expression profiles

    Directory of Open Access Journals (Sweden)

    Engström Pär

    2005-06-01

    Full Text Available Abstract Background Microarray analysis is attractive within the field of endocrine research because regulation of gene expression is a key mechanism whereby hormones exert their actions. Knowledge discovery and testing of hypothesis based on information-rich expression profiles promise to accelerate discovery of physiologically relevant hormonal mechanisms of action. However, most studies so-far concentrate on the analysis of actions of single hormones and few examples exist that attempt to use compilation of different hormone-regulated expression profiles to gain insight into how hormone act to regulate tissue physiology. This report illustrates how a meta-analysis of multiple transcript profiles obtained from a single tissue, the liver, can be used to evaluate relevant hypothesis and discover novel mechanisms of hormonal action. We have evaluated the differential effects of Growth Hormone (GH and estrogen in the regulation of hepatic gender differentiated gene expression as well as the involvement of sterol regulatory element-binding proteins (SREBPs in the hepatic actions of GH and thyroid hormone. Results Little similarity exists between liver transcript profiles regulated by 17-α-ethinylestradiol and those induced by the continuos infusion of bGH. On the other hand, strong correlations were found between both profiles and the female enriched transcript profile. Therefore, estrogens have feminizing effects in male rat liver which are different from those induced by GH. The similarity between bGH and T3 were limited to a small group of genes, most of which are involved in lipogenesis. An in silico promoter analysis of genes rapidly regulated by thyroid hormone predicted the activation of SREBPs by short-term treatment in vivo. It was further demonstrated that proteolytic processing of SREBP1 in the endoplasmic reticulum might contribute to the rapid actions of T3 on these genes. Conclusion This report illustrates how a meta-analysis of

  14. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen.

    Science.gov (United States)

    Kok, Marleen; Linn, Sabine C; Van Laar, Ryan K; Jansen, Maurice P H M; van den Berg, Teun M; Delahaye, Leonie J M J; Glas, Annuska M; Peterse, Johannes L; Hauptmann, Michael; Foekens, John A; Klijn, Jan G M; Wessels, Lodewyk F A; Van't Veer, Laura J; Berns, Els M J J

    2009-01-01

    Molecular signatures that predict outcome in tamoxifen treated breast cancer patients have been identified. For the first time, we compared these response profiles in an independent cohort of (neo)adjuvant systemic treatment naïve breast cancer patients treated with first-line tamoxifen for metastatic disease. From a consecutive series of 246 estrogen receptor (ER) positive primary tumors, gene expression profiling was performed on available frozen tumors using 44K oligoarrays (n = 69). A 78-gene tamoxifen response profile (formerly consisting of 81 cDNA-clones), a 21-gene set (microarray-based Recurrence Score), as well as the HOXB13-IL17BR ratio (Two-Gene-Index, RT-PCR) were analyzed. Performance of signatures in relation to time to progression (TTP) was compared with standard immunohistochemical (IHC) markers: ER, progesterone receptor (PgR) and HER2. In univariate analyses, the 78-gene tamoxifen response profile, 21-gene set and HOXB13-IL17BR ratio were all significantly associated with TTP with hazard ratios of 2.2 (95% CI 1.3-3.7, P = 0.005), 2.3 (95% CI 1.3-4.0, P = 0.003) and 4.2 (95% CI 1.4-12.3, P = 0.009), respectively. The concordance among the three classifiers was relatively low, they classified only 45-61% of patients in the same category. In multivariate analyses, the association remained significant for the 78-gene profile and the 21-gene set after adjusting for ER and PgR. The 78-gene tamoxifen response profile, the 21-gene set and the HOXB13-IL17BR ratio were all significantly associated with TTP in an independent patient series treated with tamoxifen. The addition of multigene assays to ER (IHC) improves the prediction of outcome in tamoxifen treated patients and deserves incorporation in future clinical studies.

  16. Comparative analysis of gene expression profiles of OPN signalling pathway in four kinds of liver diseases

    Indian Academy of Sciences (India)

    GAIPING WANG; SHASHA CHEN; CONGCONG ZHAO; XIAOFANG LI; WEIMING ZHAO; JING YANG; CUIFANG CHANG; CUNSHUAN XU

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict thefunctions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD

  17. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    Science.gov (United States)

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  18. Effect of chronic valproic Acid treatment on hepatic gene expression profile in wfs1 knockout mouse.

    Science.gov (United States)

    Punapart, Marite; Eltermaa, Mall; Oflijan, Julia; Sütt, Silva; Must, Anne; Kõks, Sulev; Schalkwyk, Leonard C; Fernandes, Catherine; Vasar, Eero; Soomets, Ursel; Terasmaa, Anton

    2014-01-01

    Valproic acid (VPA) is a widely used anticonvulsant and mood-stabilizing drug whose use is often associated with drug-induced weight gain. Treatment with VPA has been shown to upregulate Wfs1 expression in vitro. Aim of the present study was to compare the effect of chronic VPA treatment in wild type (WT) and Wfs1 knockout (KO) mice on hepatic gene expression profile. Wild type, Wfs1 heterozygous, and homozygous mice were treated with VPA for three months (300 mg/kg i.p. daily) and gene expression profiles in liver were evaluated using Affymetrix Mouse GeneChip 1.0 ST array. We identified 42 genes affected by Wfs1 genotype, 10 genes regulated by VPA treatment, and 9 genes whose regulation by VPA was dependent on genotype. Among the genes that were regulated differentially by VPA depending on genotype was peroxisome proliferator-activated receptor delta (Ppard), whose expression was upregulated in response to VPA treatment in WT, but not in Wfs1 KO mice. Thus, regulation of Ppard by VPA is dependent on Wfs1 genotype.

  19. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  20. Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    GUO ChunYu; YIN HuiJun; JIANG YueRong; XUE Mei; SHI DaZhuo

    2008-01-01

    To determine the differential genes in ischemic myocardium of Wistar rats with acute myocardial in-farction (AMI),we constructed two differential gone expression profiles.AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats.Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point at the 8th day after the operation.Dif-ferential gone expression profiles of the two samples were constructed by using long serial analysis of gone expression (LongSAGE).Real time fluorescence quantitative PCR (Q-PCR) was used to confirm the expression changes of partial target genes.The main results were as follows:a total of 15966 tags were screened from the normal and the ischemic LongSAGE maps,and 9646 tags in the normal tissue and 9563 tags in the ischemic tissue were obtained.Among them,7665 novel tags were identified by NCBI BLAST search.In the ischemic tissue,142 genes significantly changed compared to those in the normal tissue (P<0.05).These differentially expressed genes may play important roles in the pathways of oxidation and phosphoryiation,ATP synthesis and glycolysis and so on.Partial genes identified by the LongSAGE were confirmed by Q-PCR.The results show that AMI causes a series of gone expres-sion changes in the regulation of the pathways related to energy metabolism.

  1. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction.

    Science.gov (United States)

    Byrne, K A; Wang, Y H; Lehnert, S A; Harper, G S; McWilliam, S M; Bruce, H L; Reverter, A

    2005-01-01

    Expression profiling using microarrays allows for the detailed characterization of the gene networks that regulate an animal's response to environmental stresses. During nutritional restriction, processes such as protein turnover, connective tissue remodeling, and muscle atrophy take place in the skeletal muscle of the animal. These processes and their regulation are of interest in the context of managing livestock for optimal production efficiency and product quality. Here we expand on recent research applying complementary DNA (cDNA) microarray technology to the study of the effect of nutritional restriction on bovine skeletal muscle. Using a custom cDNA microarray of 9,274 probes from cattle muscle and s.c. fat libraries, we examined the differential gene expression profile of the LM from 10 Brahman steers under three different dietary treatments. The statistical approach was based on mixed-model ANOVA and model-based clustering of the BLUP solutions for the gene x diet interaction effect. From the results, we defined a transcript profile of 156 differentially expressed array elements between the weight loss and weight gain diet substrates. After sequence and annotation analyses, the 57 upregulated elements represented 29 unique genes, and the 99 downregulated elements represented 28 unique genes. Most of these co-regulated genes cluster into groups with distinct biological function related to protein turnover and cytoskeletal metabolism and contribute to our mechanistic understanding of the processes associated with remodeling of muscle tissue in response to nutritional stress.

  2. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  3. Global Gene Expression Profile of the Hippocampus in a Rat Model of Vascular Dementia.

    Science.gov (United States)

    Wu, Lin; Feng, Xiao-Tao; Hu, Yue-Qiang; Tang, Nong; Zhao, Qing-Shan; Li, Tian-Wei; Li, Hai-Yuan; Wang, Qing-Bi; Bi, Xin-Ya; Cai, Xin-Kun

    2015-09-01

    Vascular dementia (VD) has been one of the most serious public health problems worldwide. It is well known that cerebral hypoperfusion is the key pathophysiological basis of VD, but it remains unclear how global genes in hippocampus respond to cerebral ischemia-reperfusion. In this study, we aimed to reveal the global gene expression profile in the hippocampus of VD using a rat model. VD was induced by repeated occlusion of common carotid arteries followed by reperfusion. The rats with VD were characterized by deficit of memory and cognitive function and by the histopathological changes in the hippocampus, such as a reduction in the number and the size of neurons accompanied by an increase in intercellular space. Microarray analysis of global genes displayed up-regulation of 7 probesets with genes with fold change more than 1.5 (P Ontology (GO) and pathway analysis showed that the up-regulated genes are mainly involved in oxygen binding and transport, autoimmune response and inflammation, and that the down-regulated genes are related to glucose metabolism, autoimmune response and inflammation, and other biological process, related to memory and cognitive function. Thus, the abnormally expressed genes are closely related to oxygen transport, glucose metabolism, and autoimmune response. The current findings display global gene expression profile of the hippocampus in a rat model of VD, providing new insights into the molecular pathogenesis of VD.

  4. The expression profile of genes in rice roots under low phosphorus stress

    Institute of Scientific and Technical Information of China (English)

    LI LiHua; QIU XuHua; LI XiangHua; WANG ShiPing; LIAN XingMing

    2009-01-01

    Phosphorus (P)is one of the most essential macronutrients required for plant growth.Although it is abundant in soil,P is often the limiting nutrient for crop yield potential because of the low concentration of soluble P that plants can absorb directly.The gene expression profile was Investigated in rice roots at 6,24 and 72 h under low P stress and compared with a control (normal P)profile,using a DNA chip of 60000 oligos (70 mer)that represented all putative genes of the rice genome.A total of 795 differentially expressed genes were identified in response to phosphate (Pi)starvation in at least one of the treatments.Based on the analysis,we found that:(i)The genes coding for the Pi transporter,acid phosphatase and RNase were up-regulated in rice roots;(ii)the genes involved in glycolysis were first up-regulated and then down-regulated;(iii)several genes involved in N metabolism and lipid metabolism changed their expression patterns;(iv)some genes involved in cell senescence and DNA or protein degradation were up-regulated;and (v)some transmembrane transporter genes were up-regulated.The results may provide useful information in the molecular process associated with Pi deficiency and thus facilitate research in improving Pi utilization in crop species.

  5. The expression profile of genes in rice roots under low phosphorus stress

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Phosphorus (P) is one of the most essential macronutrients required for plant growth. Although it is abundant in soil, P is often the limiting nutrient for crop yield potential because of the low concentration of soluble P that plants can absorb directly. The gene expression profile was investigated in rice roots at 6, 24 and 72 h under low P stress and compared with a control (normal P) profile, using a DNA chip of 60000 oligos (70 mer) that represented all putative genes of the rice genome. A total of 795 differentially expressed genes were identified in response to phosphate (Pi) starvation in at least one of the treatments. Based on the analysis, we found that: (i) The genes coding for the Pi transporter, acid phosphatase and RNase were up-regulated in rice roots; (ii) the genes involved in glycolysis were first up-regulated and then down-regulated; (iii) several genes involved in N metabolism and lipid metabolism changed their expression patterns; (iv) some genes involved in cell senescence and DNA or protein degradation were up-regulated; and (v) some transmembrane transporter genes were up-regulated. The results may provide useful information in the molecular process associated with Pi deficiency and thus facilitate research in improving Pi utilization in crop species.

  6. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.)

    Indian Academy of Sciences (India)

    Fupeng Li; Chaoyun Hao; Lin Yan; Baoduo Wu; Xiaowei Qin; Jianxiong Lai; Yinghui Song

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  7. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  8. Variability of DNA Microarray Gene Expression Profiles in Cultured Rat Primary Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jun Xu

    2007-01-01

    Full Text Available DNA microarray is a powerful tool in biomedical research. However, transcriptomic profiling using DNA microarray is subject to many variations including biological variability. To evaluate the different sources of variation in mRNA gene expression profiles, gene expression profiles were monitored using the Affymetrix RatTox U34 arrays in cultured primary hepatocytes derived from six rats over a 26 hour period at 6 time points (0h, 2h, 5h, 8h, 14h and 26h with two replicate arrays at each time point for each animal. In addition, the impact of sample size on the variability of differentially expressed gene lists and the consistency of biological responses were also investigated. Excellent intra-animal reproducibility was obtained at all time points with 0 out of 370 present probe sets across all time points showing significant difference between the 2 replicate arrays (3-way ANOVA, p 0.0001. However, large inter-animal biological variation in mRNA expression profi les was observed with 337 out of 370 present probe sets showing significant differences among 6 animals (3-way ANOVA, p 0.05. Principal Component Analysis (PCA revealed that time effect (PC1 in this data set accounted for 47.4% of total variance indicating the dynamics of transcriptomics. The second and third largest effects came from animal difference, which accounted for 16.9% (PC2 and PC3 of the total variance. The reproducibility of gene lists and their functional classification was declined considerably when the sample size was decreased. Overall, our results strongly support that there is significant inter-animal variability in the time-course gene expression profi les, which is a confounding factor that must be carefully evaluated to correctly interpret microarray gene expression studies. The consistency of the gene lists and their biological functional classification are also sensitive to sample size with the reproducibility decreasing considerably under small sample size.

  9. Identification and expression profiling of 10 novel spermatid expressed CYPT genes

    DEFF Research Database (Denmark)

    Hansen, Martin Asser; Nielsen, John E; Tanaka, Masami

    2006-01-01

    To identify candidate genes for poor sperm morphology, we have screened for genes expressed during spermiogenesis. We identified 10 new members of the cysteine-rich perinuclear theca (CYPT) family showing that this family contains at least 15 members, which also includes the casein kinase II targ...

  10. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    Science.gov (United States)

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.

  11. Gene expression profiling of genetically determined growth variation in bivalve larvae (Crassostrea gigas).

    Science.gov (United States)

    Meyer, E; Manahan, D T

    2010-03-01

    Growth rates in animals are governed by a wide range of biological factors, many of which remain poorly understood. To identify the genes that establish growth differences in bivalve larvae, we compared expression patterns in contrasting phenotypes (slow- and fast-growth) that were experimentally produced by genetic crosses of the Pacific oyster Crassostrea gigas. Based on transcriptomic profiling of 4.5 million cDNA sequence tags, we sequenced and annotated 181 cDNA clones identified by statistical analysis as candidates for differential growth. Significant matches were found in GenBank for 43% of clones (N=78), including 34 known genes. These sequences included genes involved in protein metabolism, energy metabolism and regulation of feeding activity. Ribosomal protein genes were predominant, comprising half of the 34 genes identified. Expression of ribosomal protein genes showed non-additive inheritance - i.e. expression in fast-growing hybrid larvae was different from average levels in inbred larvae from these parental families. The expression profiles of four ribosomal protein genes (RPL18, RPL31, RPL352 and RPS3) were validated by RNA blots using additional, independent crosses from the same families. Expression of RPL35 was monitored throughout early larval development, revealing that these expression patterns were established early in development (in 2-day-old larvae). Our findings (i) provide new insights into the mechanistic bases of growth and highlight genes not previously considered in growth regulation, (ii) support the general conclusion that genes involved in protein metabolism and feeding regulation are key regulators of growth, and (iii) provide a set of candidate biomarkers for predicting differential growth rates during animal development.

  12. Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles.

    Directory of Open Access Journals (Sweden)

    Raquel Pinho

    Full Text Available The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson's disease (PD progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression

  13. Genome-wide identification, characterization and expression profiling of LIM family genes in Solanum lycopersicum L.

    Science.gov (United States)

    Khatun, Khadiza; Robin, Arif Hasan Khan; Park, Jong-In; Ahmed, Nasar Uddin; Kim, Chang Kil; Lim, Ki-Byung; Kim, Min-Bae; Lee, Do-Jin; Nou, Ill Sup; Chung, Mi-Young

    2016-11-01

    LIM domain proteins, some of which have been shown to be actin binding proteins, are involved in various developmental activities and cellular processes in plants. To date, the molecular defense-related functions of LIM family genes have not been investigated in any solanaceous vegetable crop species. In this study, we identified 15 LIM family genes in tomato (Solanum lycopersicum L.) through genome-wide analysis and performed expression profiling in different organs of tomato, including fruits at six different developmental stages. We also performed expression profiling of selected tomato LIM genes in plants under ABA, drought, cold, NaCl and heat stress treatment. The encoded proteins of the 15 tomato LIM genes were classified into two main groups, i.e., proteins similar to cysteine-rich proteins and plant-specific DAR proteins, based on differences in functional domains and variability in their C-terminal regions. The DAR proteins contain a so far poorly characterized zinc-finger-like motif that we propose to call DAR-ZF. Six of the 15 LIM genes were expressed only in flowers, indicating that they play flower-specific roles in plants. The other nine genes were expressed in all organs and at various stages of fruit development. SlβLIM1b was expressed relatively highly at the later stage of fruit development, but three other genes, SlWLIM2a, SlDAR2 and SlDAR4, were expressed at the early stage of fruit development. Seven genes were induced by ABA, five by cold, seven by drought, eight by NaCl and seven by heat treatment respectively, indicating their possible roles in abiotic stress tolerance. Our results will be useful for functional analysis of LIM genes during fruit development in tomato plants under different abiotic stresses. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Hengxi Wei

    2015-01-01

    Full Text Available The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated and 84 (downregulated genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates.

  15. A novel multiplex polymerase chain reaction assay for profile analyses of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Jia Xingwang

    2012-07-01

    Full Text Available Abstract Background Studies have demonstrated that inflammation has a key role in the pathogenesis of atherosclerosis due to the abnormal gene expressions of multiple cytokines. We established an accurate and precise method to observe gene expression in whole blood that might provide specific diagnostic information for coronary artery disease (CAD and other related diseases. Methods The fifteen selected CAD-related genes (IL1B, IL6, IL8, IFNG, MCP-1, VWF, MTHFR, SELL, TNFalpha, ubiquitin, MCSF, ICAM1, ID2, HMOX1 and LDLR and two housekeeping genes (ACTB and GK as internal references have been measured simultaneously with a newly developed multiplex polymerase chain reaction (multi-PCR method. Moreover, the precision was evaluated, and a procedure for distinguishing patients from the normal population has been developed based upon analyses of peripheral blood. A total of 148 subjects were divided into group A (control group without plaques, group B (calcified plaques and group C (non-calcified plaques, and combination group according dual-source CT criteria. Gene expression in blood was analyzed by multi-PCR, and levels of glucose and lipids measured in 50 subjects to explore the relationship among them. Results The precision results of the multi-PCR system revealed within-run and between-run CV values of 3.695–12.537% and 4.405–13.405%, respectively. The profiles of cytokine gene expression in peripheral blood were set: a positive correlation between glucose and MCSF, HMOX1 or TNFalpha were found. We also found that triglyceride levels were negatively correlated with SELL gene expression in 50 subjects. Compared with controls, gene expression levels of IL1B, IL6, IL8 and MCP-1 increased significantly in group C. Conclusions A new multiple gene expression analysis system has been developed. The primary data suggested that gene expression was related to CAD. This system might be used for risk assessment of CVDs and other related diseases.

  16. Gene expression profile is associated with chemoradiation resistance in rectal cancer.

    Science.gov (United States)

    Gantt, G A; Chen, Y; Dejulius, K; Mace, A G; Barnholtz-Sloan, J; Kalady, M F

    2014-01-01

    Patients with rectal cancer who achieve a complete pathological response after preoperative chemoradiation (CRT) have an improved oncological outcome. Identifying factors associated with a lack of response could help our understanding of the underlying biology of treatment resistance. This study aimed to develop a gene expression signature for CRT-resistant rectal cancer using high-throughput nucleotide microarrays. Pretreatment biopsies of rectal adenocarcinomas were prospectively collected and freshly frozen according to an institutional review board-approved protocol. Total tumour mRNA was extracted and gene expression levels were measured using microarrays. Patients underwent proctectomy after completing standard long-course CRT and the resected specimens were graded for treatment response. Gene expression profiles for nonresponders were compared with those of responders. Differentially expressed genes were analyzed for functional significance using the Ingenuity Pathway Analysis (IPA) software. Thirty-three patients treated between 2006 and 2009 were included. We derived 812-gene and 183-gene signatures separating nonresponders from responders. The classifiers were able to identify nonresponders with a sensitivity and specificity of 100% using the 812-gene signature, and sensitivity and specificity of 33% and 100% using the 183-gene signature. IPA canonical pathway analysis revealed a significant ratio of differentially expressed genes in the 'DNA double-strand break repair by homologous recombination' pathway. Certain rectal cancer gene profiles are associated with poor response to CRT. Alterations in the DNA double-strand break repair pathway could contribute to treatment resistance and provides an opportunity for further studies. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  17. Oligonucleotide microarray analysis of dietary-induced hyperlipidemia gene expression profiles in miniature pigs.

    Directory of Open Access Journals (Sweden)

    Junko Takahashi

    Full Text Available BACKGROUND: Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. METHODOLOGY: Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD. Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. PRINCIPAL FINDINGS: Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. CONCLUSIONS: No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in

  18. Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury

    Institute of Scientific and Technical Information of China (English)

    Dengbing Yao; Meiyuan Li; Dingding Shen; Fei Ding; Shibi Lu; Qin Zhao; Xiaosong Gu

    2012-01-01

    Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1, 6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto Encyclopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns of gene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-β, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral IAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in early Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration.

  19. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys.

    Directory of Open Access Journals (Sweden)

    Jason Orr Brant

    Full Text Available The African spiny mouse (Acomys spp. can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and Mus to characterize differences in wound healing, and identify mechanisms involved in scar-free healing. We also identify similarities with scar-free healing observed in fetal wounds. While wounding in Mus elicits a strong inflammatory response, wounding in Acomys produces a moderated immune response and little to no increase in expression for most cytokines and chemokines assayed. We also identified differences in the ECM profiles of the Acomys wounds, which appear to have a collagen profile more similar to fetal wounds, with larger increases in expression of collagen types III and V. In contrast, Mus wounds have very high levels of collagen XII. This data suggests that an overall lack of induction of cytokines and chemokines, coupled with an ECM profile more similar to fetal wounds, may underlie scar-free wound healing in Acomys skin. These data identify candidate genes for further testing in order to elucidate the causal mechanisms of scar-free healing.

  20. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys.

    Science.gov (United States)

    Brant, Jason Orr; Lopez, Maria-Cecilia; Baker, Henry V; Barbazuk, W Brad; Maden, Malcolm

    2015-01-01

    The African spiny mouse (Acomys spp.) can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and Mus to characterize differences in wound healing, and identify mechanisms involved in scar-free healing. We also identify similarities with scar-free healing observed in fetal wounds. While wounding in Mus elicits a strong inflammatory response, wounding in Acomys produces a moderated immune response and little to no increase in expression for most cytokines and chemokines assayed. We also identified differences in the ECM profiles of the Acomys wounds, which appear to have a collagen profile more similar to fetal wounds, with larger increases in expression of collagen types III and V. In contrast, Mus wounds have very high levels of collagen XII. This data suggests that an overall lack of induction of cytokines and chemokines, coupled with an ECM profile more similar to fetal wounds, may underlie scar-free wound healing in Acomys skin. These data identify candidate genes for further testing in order to elucidate the causal mechanisms of scar-free healing.

  1. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  2. Gene expression profiles in peripheral blood mononuclear cells of SARS patients

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Yu; Yun-Wen Hu; Xiao-Ying Liu; Wei Xiong; Zhi-Tong Zhou; Zheng-Hong Yuan

    2005-01-01

    AIM: To investigate the role of inflammatory and anti-viral genes in the pathogenesis of SARS.METHODS: cDNA microarrays were used to screen the gene expression profiles of peripheral blood mononuclear cells (PBMCs) in two SARS patients (one in the acute severe phase and the other in the convalescent phase)and a healthy donor. In addition, real-time qualitative PCR was also performed to verify the reproducibility of the microarray results. The data were further analyzed.RESULTS: Many inflammatory and anti-viral genes were differentially expressed in SARS patients. Compared to the healthy control or the convalescent case, plenty of pro-inflammatory cytokines such as IL-1, TNF-α, IL-8, and MAPK signaling pathway were significantly upregulated in the acute severe case. However, anti-inflammatory agents such as IL-4 receptor, IL-13 receptor, IL-1Ra,and TNF-α-induced proteins 3 and 6 also increased dramatically in the acute severe case. On the contrary, a lot of IFN-stimulated genes like PKR, GBP-1 and 2, CXCL-10and 11, and JAK/STAT signal pathway were downregulated in the acute severe case compared to the convalescent case.CONCLUSION: Gene expression in SARS patients mirrors a host state of inflammation and anti-viral immunity at the transcription level, and understanding of gene expression profiles may make contribution to further studies of the SARS pathogenesis.

  3. Gene expression profiling of normal thyroid tissue from patients with thyroid carcinoma.

    Science.gov (United States)

    Ria, Roberto; Simeon, Vittorio; Melaccio, Assunta; Di Meo, Giovanna; Trino, Stefania; Mazzoccoli, Carmela; Saltarella, Ilaria; Lamanuzzi, Aurelia; Morano, Annalisa; Gurrado, Angela; Pasculli, Alessandro; Lastilla, Gaetano; Musto, Pellegrino; Reale, Antonia; Dammacco, Franco; Vacca, Angelo; Testini, Mario

    2016-05-17

    Gene expression profiling (GEP) of normal thyroid tissue from 43 patients with thyroid carcinoma, 6 with thyroid adenoma, 42 with multinodular goiter, and 6 with Graves-Basedow disease was carried out with the aim of achieving a better understanding of the genetic mechanisms underlying the role of normal cells surrounding the tumor in the thyroid cancer progression. Unsupervised and supervised analyses were performed to compare samples from neoplastic and non-neoplastic diseases. GEP and subsequent RT-PCR analysis identified 28 differentially expressed genes. Functional assessment revealed that they are involved in tumorigenesis and cancer progression. The distinct GEP is likely to reflect the onset and/or progression of thyroid cancer, its molecular classification, and the identification of new potential prognostic factors, thus allowing to pinpoint selective gene targets with the aim of realizing more precise preoperative diagnostic procedures and novel therapeutic approaches.This study is focused on the gene expression profiling analysis followed by RT-PCR of normal thyroid tissues from patients with neoplastic and non-neoplastic thyroid diseases. Twenty-eight genes were found to be differentially expressed in normal cells surrounding the tumor in the thyroid cancer. The genes dysregulated in normal tissue samples from patients with thyroid tumors may represent new molecular markers, useful for their diagnostic, prognostic and possibly therapeutic implications.

  4. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  5. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available POU transcription factor Pou5f1 (Oct3/4 is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks.

  6. Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling

    Science.gov (United States)

    Matoba, Ryo; Niwa, Hitoshi; Masui, Shinji; Ohtsuka, Satoshi; Carter, Mark G.; Sharov, Alexei A.; Ko, Minoru S.H.

    2006-01-01

    POU transcription factor Pou5f1 (Oct3/4) is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP) assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks. PMID:17183653

  7. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles.

    Science.gov (United States)

    Klein, Michael I; Stern, David F; Zhao, Hongyu

    2017-06-26

    Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that

  8. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses

    Directory of Open Access Journals (Sweden)

    Myklebost Ola

    2007-01-01

    Full Text Available Abstract Background Despite the fact that metastases are the leading cause of colorectal cancer deaths, little is known about the underlying molecular changes in these advanced disease stages. Few have studied the overall gene expression levels in metastases from colorectal carcinomas, and so far, none has investigated the peritoneal carcinomatoses by use of DNA microarrays. Therefore, the aim of the present study is to investigate and compare the gene expression patterns of primary carcinomas (n = 18, liver metastases (n = 4, and carcinomatoses (n = 4, relative to normal samples from the large bowel. Results Transcriptome profiles of colorectal cancer metastases independent of tumor site, as well as separate profiles associated with primary carcinomas, liver metastases, or peritoneal carcinomatoses, were assessed by use of Bayesian statistics. Gains of chromosome arm 5p are common in peritoneal carcinomatoses and several candidate genes (including PTGER4, SKP2, and ZNF622 mapping to this region were overexpressed in the tumors. Expression signatures stratified on TP53 mutation status were identified across all tumors regardless of stage. Furthermore, the gene expression levels for the in vivo tumors were compared with an in vitro model consisting of cell lines representing all three tumor stages established from one patient. Conclusion By statistical analysis of gene expression data from primary colorectal carcinomas, liver metastases, and carcinomatoses, we are able to identify genetic patterns associated with the different stages of tumorigenesis.

  9. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals.

    Science.gov (United States)

    Bourdon-Lacombe, Julie A; Moffat, Ivy D; Deveau, Michelle; Husain, Mainul; Auerbach, Scott; Krewski, Daniel; Thomas, Russell S; Bushel, Pierre R; Williams, Andrew; Yauk, Carole L

    2015-07-01

    Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  10. cDNA macroarray for analysis of gene expression profiles in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Early diagnosis and timely treatment are important for improving therapeutic efficiency of prostate cancer. DNA array is a new bio-technology for disease diagnosis. This study was conducted to diagnose prostate cancer with cDNA macroarray and analysis gene expression profiles of some selective genes in prostate cancer.Methods Total RNA was isolated from patients with prostate cancer and from normal people, and poly(A) RNA was further purified. Then it was analyzed for differentially expressed genes in prostate cancer and normal prostate by cDNA macroarray system.Results There were different expressions in the nine prostate-associated specific genes in prostate cancer as compared with normal prostate, in which, 7 were significantly upregulated and 2 were down-regulated.Conclusion As a diagnostic approach at molecular level, the cDNA macroarray is an effectively diagnostic method for prostate cancer.

  11. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  12. Endovascular biopsy: Strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels(✩).

    Science.gov (United States)

    Sun, Zhengda; Lawson, Devon A; Sinclair, Elizabeth; Wang, Chih-Yang; Lai, Ming-Derg; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V; Werb, Zena; Su, Hua; Cooke, Daniel L

    2015-09-01

    To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs. 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45(+) leukocytes, the ECs expressed higher levels (p < 0.05) of EC surface markers used on FACS and other EC related genes. The gene expression profile showed that these isolated ECs fell into two clusters, A and B, that differentially expressed 19 genes related to angiogenesis, inflammation and extracellular matrix remodeling, with cluster B ECs have demonstrating similarities to senescent or aging ECs. Combination of endovascular device sampling, FACS and single-cell quantitative RT-PCR is a feasible method for analyzing EC gene expression profile in vascular lesions.

  13. Infectomic Analysis of Gene Expression Profiles of Human Brain Microvascular Endothelial Cells Infected with Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Ambrose Jong

    2008-01-01

    Full Text Available In order to dissect the pathogenesis of Cryptococcus neoformans meningoencephalitis, a genomic survey of the changes in gene expression of human brain microvascular endothelial cells infected by C. neoformans was carried out in a time-course study. Principal component analysis (PCA revealed sigificant fluctuations in the expression levels of different groups of genes during the pathogen-host interaction. Self-organizing map (SOM analysis revealed that most genes were up- or downregulated 2 folds or more at least at one time point during the pathogen-host engagement. The microarray data were validated by Western blot analysis of a group of genes, including β-actin, Bcl-x, CD47, Bax, Bad, and Bcl-2. Hierarchical cluster profile showed that 61 out of 66 listed interferon genes were changed at least at one time point. Similarly, the active responses in expression of MHC genes were detected at all stages of the interaction. Taken together, our infectomic approaches suggest that the host cells significantly change the gene profiles and also actively participate in immunoregulations of the central nervous system (CNS during C. neoformans infection.

  14. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    Directory of Open Access Journals (Sweden)

    Yunqing Cheng

    Full Text Available A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed.In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000. The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing ovule and one for an empty (abortive ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes.The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  15. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  16. Host gene expression profiling of cervical smear is eligible for cancer risk evaluation.

    Science.gov (United States)

    Bourmenskaya, Olga; Shubina, Ekaterina; Trofimov, Dmitry; Rebrikov, Denis; Sabdulaeva, Elina; Nepsha, Oksana; Bozhenko, Vladimir; Rogovskaya, Svetlana; Sukhikh, Gennady

    2013-04-01

    Uterine cervical carcinoma (CC) is known to be a delayed consequence of human papillomavirus (HPV) infection. Considering the reported influence of HPV on host genome activity, we conceived an approach to capture human gene expression profiles corresponding to increased risks of carcinogenesis. A sample set of 143 female participants included a 'control' group of 23, a 'pathology' group of 83 (cervical abnormalities of varied grade including 10 cases of CC), and a 'HPV carrier' group of 37 (infected but manifesting normal cytology). HPV detection, viral load measurements and gene expression profiling were performed by real-time PCR assays. Gradual increase in expression of proliferation markers and a decrease in expression of proapoptotic genes, some receptors, PTEN and PTGS2 were demonstrated for progressive grades of cervical intraepithelial neoplasia leading to cancer. All reported trends were statistically significant, for instance, correlation of gene expression values for MKI67, CCNB1 and BIRC5. A model was proposed that employed mRNA concentrations for genes MKI67, CDKN2A, PGR and BAX. Prompt distinction between the norm and the cancer, provided by initial calculation, suggested that positive values of the function could indicate the higher individual risks. Indeed, all patients assigned to high risk by calculation were HPV infected and showed elevated viral E6, E7 mRNA concentration known to be associated with CC onset. The research was concentrated on dynamical gene expression profiling upon pathological changes ultimately leading to CC. Differences of normalised mRNA concentrations were used for quantitative model design and its primary approbation.

  17. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    Science.gov (United States)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  18. Isolation, sequence identification and tissue expression profiles of 3 novel porcine genes: ASPA, NAGA, and HEXA.

    Science.gov (United States)

    Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa

    2008-01-01

    The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes.

  19. Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker.

    Directory of Open Access Journals (Sweden)

    Aileen Marshall

    Full Text Available BACKGROUND: Liver cirrhosis is the most important risk factor for hepatocellular carcinoma (HCC but the role of liver disease aetiology in cancer development remains under-explored. We investigated global gene expression profiles from HCC arising in different liver diseases to test whether HCC development is driven by expression of common or different genes, which could provide new diagnostic markers or therapeutic targets. METHODOLOGY AND PRINCIPAL FINDINGS: Global gene expression profiling was performed for 4 normal (control livers as well as 8 background liver and 7 HCC from 3 patients with hereditary haemochromatosis (HH undergoing surgery. In order to investigate different disease phenotypes causing HCC, the data were compared with public microarray repositories for gene expression in normal liver, hepatitis C virus (HCV cirrhosis, HCV-related HCC (HCV-HCC, hepatitis B virus (HBV cirrhosis and HBV-related HCC (HBV-HCC. Principal component analysis and differential gene expression analysis were carried out using R Bioconductor. Liver disease-specific and shared gene lists were created and genes identified as highly expressed in hereditary haemochromatosis HCC (HH-HCC were validated using quantitative RT-PCR. Selected genes were investigated further using immunohistochemistry in 86 HCC arising in liver disorders with varied aetiology. Using a 2-fold cut-off, 9 genes were highly expressed in all HCC, 11 in HH-HCC, 270 in HBV-HCC and 9 in HCV-HCC. Six genes identified by microarray as highly expressed in HH-HCC were confirmed by RT qPCR. Serine peptidase inhibitor, Kazal type 1 (SPINK1 mRNA was very highly expressed in HH-HCC (median fold change 2291, p = 0.0072 and was detected by immunohistochemistry in 91% of HH-HCC, 0% of HH-related cirrhotic or dysplastic nodules and 79% of mixed-aetiology HCC. CONCLUSION: HCC, arising from diverse backgrounds, uniformly over-express a small set of genes. SPINK1, a secretory trypsin inhibitor

  20. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  1. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    DEFF Research Database (Denmark)

    Jiang, Li; Sørensen, Peter; Røntved, Christine;

    2008-01-01

    also seemed to participate in APR. CONCLUSIONS: Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when......-dependent expression profile and consisted of genes involved in different biological processes. Our findings suggest that APR in the liver is triggered by the activation of signaling pathways that are involved with common and hepatic-specific transcription factors and pro-inflammatory cytokines. These mediators...

  2. Gene expression profiling in chemoresistant variants of three cell lines of different origin

    DEFF Research Database (Denmark)

    Johnsson, Anders; Vallon-Christensson, Johan; Strand, Carina

    2005-01-01

    BACKGROUND: Drug resistance is a major problem in clinical cancer chemotherapy. Several mechanisms of resistance have been identified, but the underlying genomic changes are still poorly understood. MATERIALS AND METHODS: Gene expression profiling, using cDNA microarray, was performed in eight cell....... Several genes encoding ABC transporters were highly up-regulated, most notably ABCB1 (MDR1) and ABCB4 in several cell lines and ABCG2 (MXR) specifically in MX-resistant cell lines. A pronounced down-regulation of several histones was noted in the MCF-7-derived resistant sublines. Altered expression...

  3. Citrus plastid-related gene profiling based on expressed sequence tag analyses

    Directory of Open Access Journals (Sweden)

    Tercilio Calsa Jr.

    2007-01-01

    Full Text Available Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark or in reproductive organs (flowers and fruits. Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC.

  4. Study of the Gene Expression Profile of Human Ovarian Carcinoma by a Gene Chip

    Institute of Scientific and Technical Information of China (English)

    Shenhua Xu; Hanzhou Mou; Chihong Zhu; Lijuan Qian; Zhengyan Yang; Ye Ying; Xianglin Liu

    2005-01-01

    OBJECTIVE To study the difference in gene expression between human ovarian carcinoma and normal ovarian tissues, and screen the novel associated genes by cDNA microarrays.METHODS Total RNA from 10 cases of ovarian cancer and from normal ovarian tissues were extracted by a single step method. The cDNA was retro-transcribed from an equal quantity of mRNA derived from the 10 cases of ovarian carcinoma and normal ovarian tissues, followed by labeling the cDNA strands with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BiostarH 8464 dot human somatic cell genes.Fluorescence signals were assessed by a ScanArray 4000 laser scanner and the images analyzed by Gene Pix Pro 3.0 software with a digital computer.RESULTS By applying the cDNA microarray we found a total of 185 genes for which expression levels differed more than 5 times comparing human ovarian carcinoma with normal ovarian epithelium. Among these genes 86 were up-regulated >5 times and 99 were down regulated <0.2.CONCLUSION The cDNA microarray technique is effective in screening the differential gene expression between human ovarian cancers and normal ovarian epithelium. It is suggested that these genes identified are related to the genesis and development of ovarian carcinoma.

  5. Comparison of the expression profile of apoptosis-associated genes in rheumatoid arthritis and osteoarthritis.

    Science.gov (United States)

    Qingchun, Huang; Runyue, Huang; LiGang, Jie; Yongliang, Chu; Song, Wei; Shujing, Zhao

    2008-05-01

    The purpose of this study was to employ microarray analysis to evaluate differential gene expression in synovial tissue samples obtained from patients with rheumatoid arthritis (RA) or osteoarthritis (OA) to study the expression profile of apoptosis-associated genes in these tissues. Four samples were obtained from RA-affected patients and three from osteoarthritis patients. After total RNA was extracted from synovial tissue, the RNA was processed using two-cycle target labeling, followed by hybridization and scanning procedure. The GeneChip Human Genome U133 Plus 2.0 containing 900471 gene loci was used and eight genes associated with apoptosis were identified with a selected p value<0.05 and a twofold change in expression in rheumatoid samples compared to osteoarthritis tissues. Anti-apoptotic genes were generally upregulated whereas apoptotic genes were downregulated suggesting that these genes may play a role in the pathogenesis of RA. Furthermore, these genes may serve as novel therapeutic targets for the treatment of RA.

  6. Gene Expression Profile of Multiple Myeloma Cell Line Treated by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    WANG Mengchang; LIU Shaanxi; LIU Pengbo

    2007-01-01

    cDNA microarray was used to compare the gone expression profiles of multiple myeloma cell line RPMI8226 24 h before and after treatment with arsenic trioxide. Two eDNA probes were prepared by mRNA reverse transcription of both arsenic trioxide-treated and untreated RPMI8226 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes separately, hybridized with cDNA microarray representing 4096 different human genes, and scanned for fluorescence intensity. The differences in gene expression were calculated on the basis of the ratios of signal intensity of treated and untreated samples. The up- and down-regulated genes were screened through the analysis of gene expression ratios. The results showed that 273 genes were differentially altered at mRNA level, 121 genes were up-regulated and 152 were down-regulated. It is concluded that the treatment with arsenic trioxide can induce a variety of gene changes in RPMI8226 cell line. Many genes may be involved in the pathogenesis of multiple myeloma. ALK-1 and TXNIP genes may play an impor- tant role in the apoptosis and partial differentiation of RPMI8226 cells.

  7. Characteristic gene expression profiles of benign prostatic hypertrophy and prostate cancer.

    Science.gov (United States)

    Endo, Takumi; Uzawa, Katsuhiro; Suzuki, Hiroyoshi; Tanzawa, Hideki; Ichikawa, Tomohiko

    2009-09-01

    The molecular mechanism playing a role in the development of benign prostate hypertrophy (BPH) and prostate cancer (PC) is not well defined. We performed microarray analysis to assess the gene expression change in BPH and PC, and performed network analysis. Normal prostate, BPH and PC tissues were obtained from patients who underwent an operation at Chiba University Hospital. Using Affymetrix Human Genome U133 Plus2.0 Array, we identified genes differentially expressed. The identified genes were analyzed using the Ingenuity Pathway Analysis (IPA) to investigate the functional network and gene ontology. The microarray analysis identified 402 genes in BPH and 141 genes in PC, which were up- or down-regulated at least 5.0-fold change in PC at all dose points. Analysis using IPA software revealed eight networks in BPH and five networks in PC. We narrowed these down to the top five genes, which were up- or down-regulated on the networks in their characteristic manner. From this new perspective, comparing BPH and PC in microarray studies, our data showing gene expression profiles provide candidate genes for better understanding of disease and new therapeutic targets.

  8. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    Science.gov (United States)

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Expression profile of hepatic genes in cynomolgus macaques bred in Cambodia, China, and Indonesia: implications for cytochrome P450 genes.

    Science.gov (United States)

    Ise, Ryota; Nakanishi, Yasuharu; Kohara, Sakae; Yamashita, Hiroyuki; Yoshikawa, Tsuyoshi; Iwasaki, Kazuhide; Nagata, Ryoichi; Fukuzaki, Koichiro; Utoh, Masahiro; Nakamura, Chika; Yamazaki, Hiroshi; Uno, Yasuhiro

    2012-01-01

    Cynomolgus macaques, frequently used in drug metabolism studies, are bred mainly in the countries of Asia; however, comparative studies of drug metabolism between cynomolgus macaques bred in these countries have not been conducted. In this study, hepatic gene expression profiles of cynomolgus macaques bred in Cambodia (mfCAM), China (mfCHN), and Indonesia (mfIDN) were analyzed. Microarray analysis revealed that expression of most hepatic genes, including drug-metabolizing enzyme genes, was not substantially different between mfCAM, mfCHN, and mfIDN; only 1.1% and 3.0% of all the gene probes detected differential expression (>2.5-fold) in mfCAM compared with mfCHN and mfIDN, respectively. Quantitative polymerase chain reaction showed that the expression levels of 14 cytochromes P450 (P450s) important for drug metabolism did not differ (>2.5-fold) in mfCAM, mfCHN, and mfIDN, validating the microarray data. In contrast, expression of CYP2B6 and CYP3A4 differed (>2.5-fold, p profiles, including drug-metabolizing enzyme genes such as P450 genes, are similar in mfCAM, mfCHN, and mfIDN.

  10. Differential Gene Expression Profiling of Enriched Human Spermatogonia after Short- and Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Sabine Conrad

    2014-01-01

    Full Text Available This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks and long-term culture (up to more than 14 months in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+ matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the “spermatogonial” gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  11. Identification of gene expression profiling associated with erlotinib-related skin toxicity in pancreatic adenocarcinoma patients.

    Science.gov (United States)

    Caba, Octavio; Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Ortuño, Francisco M; Gallego, Javier; Rojas, Ignacio; Guillen-Ponce, Carmen; Torres, Carolina; Aranda, Enrique; Prados, Jose

    2016-11-15

    Erlotinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that showed activity against pancreatic ductal adenocarcinoma (PDAC). The drug's most frequently reported side effect as a result of EGFR inhibition is skin rash (SR), a symptom which has been associated with a better therapeutic response to the drug. Gene expression profiling can be used as a tool to predict which patients will develop this important cutaneous manifestation. The aim of the present study was to identify which genes may influence the appearance of SR in PDAC patients. The study included 34 PDAC patients treated with erlotinib: 21 patients developed any grade of SR, while 13 patients did not (controls). Before administering any chemotherapy regimen and the development of SR, we collected RNA from peripheral blood samples of all patients and studied the differential gene expression pattern using the Illumina microarray platform HumanHT-12 v4 Expression BeadChip. Seven genes (FAM46C, IFITM3, GMPR, DENND6B, SELENBP1, NOL10, and SIAH2), involved in different pathways including regulatory, migratory, and signalling processes, were downregulated in PDAC patients with SR. Our results suggest the existence of a gene expression profiling significantly correlated with erlotinib-induced SR in PDAC that could be used as prognostic indicator in this patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gene expression profile of Jurkat cells exposed to high power terahertz radiation

    Science.gov (United States)

    Grundt, Jessica E.; Roth, Caleb C.; Rivest, Benjamin D.; Doroski, Michael L.; Payne, Jason; Ibey, Bennett L.; Wilmink, Gerald J.

    2011-03-01

    Terahertz (THz) radiation sources are now being used in a host of military, defense, and medical applications. Widespread employment of these applications has prompted concerns regarding the health effects associated with THz radiation. In this study, we examined the gene expression profile of mammalian cells exposed to THz radiation. We hypothesized that if THz radiation couples directly to cellular constituents, then exposed cells may express a specific gene expression profile indicative of ensuing damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 minutes). Viability was assessed 24 h post-exposure using MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays. Comparable analyses were also performed for hyperthermic positive controls (44°C for 40 minutes). We found that cellular temperatures increased by ~6 °C during THz exposures. We also found that cell death increased with exposure duration, and the median lethal dose (LD50) was calculated to be ~44 minutes. The microarray data showed that THz radiation induced the transcriptional activation of genes associated with cellular proliferation, differentiation, transcriptional activation, chaperone protein stabilization, and apoptosis. For most genes, we found that the magnitude of differential expression was comparable for both the THz and thermal exposure groups; however, several genes were specifically activated by the THz exposure. These results suggest that THz radiation may elicit effects that are not exclusively due to the temperature rise created during THz exposures (i.e. thermal effects). In future work, we plan to verify the results of our microarray experiments using qPCR techniques.

  13. Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci.

    Science.gov (United States)

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.

  14. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  15. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Three microarray platforms: an analysis of their concordance in profiling gene expression

    Directory of Open Access Journals (Sweden)

    Petersen David

    2005-05-01

    Full Text Available Abstract Background Microarrays for the analysis of gene expression are of three different types: short oligonucleotide (25–30 base, long oligonucleotide (50–80 base, and cDNA (highly variable in length. The short oligonucleotide and cDNA arrays have been the mainstay of expression analysis to date, but long oligonucleotide platforms are gaining in popularity and will probably replace cDNA arrays. As part of a validation study for the long oligonucleotide arrays, we compared and contrasted expression profiles from the three formats, testing RNA from six different cell lines against a universal reference standard. Results The three platforms had 6430 genes in common. In general, correlation of gene expression levels across the platforms was good when defined by concordance in the direction of expression difference (upregulation or downregulation, scatter plot analysis, principal component analysis, cell line correlation or quantitative RT-PCR. The overall correlations (r values between platforms were in the range 0.7 to 0.8, as determined by analysis of scatter plots. When concordance was measured for expression ratios significant at p-values of Conclusion Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties. All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change.

  17. Gene expression profile differences in high and low metastatic human ovarian cancer cell lines by gene chip

    Institute of Scientific and Technical Information of China (English)

    许沈华; 牟瀚舟; 吕桂泉; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 程勇; 杨文

    2002-01-01

    Objectives To study the difference between gene expressions of high (H0-8910PM) and low (HO-8910) metastatic human ovarian carcinoma cell lines and screen novel associated genes by cDNA microarray. Methods cDNA retro-transcribed from equal quantities of mRNA derived from high and low metastatic tumor cells or normal ovarian tissues were labeled with Cy5 and Cy3 fluorescein as probes. The mixed probe was hybridized with two pieces of BioDoor 4096 double dot human whole gene chip and scanned with a ScanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results A total of 355 genes with expression levels more than 3 times larger were found by comparing the HO-8910 cell with normal ovarian epithelial cells. A total of 323 genes with expression levels more than 3 times larger in HO-8910PM cells compared to normal ovarian epithelium cells were also detected. A total of 165 genes whose expression levels were more than two times those of HO-8910PM cells compared to their mother cell line (HO-8910) were detected. Twenty-one genes with expression levels >3 times were found from comparison of these two tumor cell lines.Conclusions cDNA microarray techniques are effective in screening differential gene expression between two human ovarian cancer cell lines (H0-8910PM; HO-8910) and normal ovarian epithelial cells. These genes may be related to the genesis and development of ovarian carcinoma. Analysis of the human ovarian cancer gene expression profile with cDNA microarray may help in gene diagnosis, treatment and prevention.

  18. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  19. Gene expression profiling reveals sequential changes in gastric tubular adenoma and carcinoma in situ

    Institute of Scientific and Technical Information of China (English)

    Chang-Hee Lee; Seung-Hyun Bang; Seung-Koo Lee; Kyu-Young Song; In-Chul Lee

    2005-01-01

    AIM: To analyze the expression profiles of premalignant and/or preclinical lesions of gastric cancers.METHODS: We analyzed the expression profiles of normal gastric pit, tubular adenoma and carcinoma in situ using microdissected cells from routine gastric biopsies. For the DNA microarray analysis of formalin-fixed samples,we developed a simple and reproducible RNA extraction and linear amplification procedure applying two polymerasebinding sites. The amplification procedure took only 8 h and yielded comparable DNA microarray data between formalin-fixed tissues and unfixed controls.RESULTS: In comparison with normal pit, adenoma/carcinoma showed 504 up-regulated and 29 down-regulated genes at the expected false significance rate 0.15%. The differential expression between adenoma and carcinoma in situ was subtle: 50 and 22 genes were up-, and down-regulated in carcinomas at the expected false significance rate of 0.61%, respectively. Differentially expressed genes were grouped according to patterns of the sequential changes for the 'tendency analysis' in the gastric mucosaadenoma-carcinoma sequence.CONCLUSION: Groups of genes are shown to reflect the sequential expression changes in the early carcinogenic steps of stomach cancer. It is suggested that molecular carcinogenic pathways could be analyzed using routinely processed biopsies.

  20. Gene Expression Profiling in Hereditary, BRCA1-linked Breast Cancer: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Dudaladava Volha

    2006-01-01

    Full Text Available Abstract Global analysis of gene expression by DNA microarrays is nowadays a widely used tool, especially relevant for cancer research. It helps the understanding of complex biology of cancer tissue, allows identification of novel molecular markers, reveals previously unknown molecular subtypes of cancer that differ by clinical features like drug susceptibility or general prognosis. Our aim was to compare gene expression profiles in breast cancer that develop against a background of inherited predisposing mutations versus sporadic breast cancer. In this preliminary study we analysed seven hereditary, BRCA1 mutation-linked breast cancer tissues and seven sporadic cases that were carefully matched by histopathology and ER status. Additionally, we analysed 6 samples of normal breast tissue. We found that while the difference in gene expression profiles between tumour tissue and normal breast can be easily recognized by unsupervised algorithms, the difference between those two types of tumours is more discrete. However, by supervised methods of data analysis, we were able to select a set of genes that may differentiate between hereditary and sporadic tumours. The most significant difference concerns genes that code for proteins engaged in regulation of transcription, cellular metabolism, signalling, proliferation and cell death. Microarray results for chosen genes (TOB1, SEPHS2 were validated by real-time RT-PCR.

  1. Gene expression profiles of human liver cells mediated by hepatitis B virus X protein

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Fu-qing XU; Chang-liang SHAN; Rong XIANG; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To demonstrate the gene expression profiles mediated by hepatitis B virus X protein (HBx), we characterized the molecular features of pathogenesis associated with HBx in a human liver cell model.Methods: We examined gene expression profiles in L-O2-X cells, an engineered L-O2 cell line that constitutively expresses HBx, relative to L-O2 cells using an Agilent 22 K human 70-mer oligonucleotide microarray representing more than 21,329 unique, well-characterized Homo sapiens genes, Western blot analysis and RNA interference (RNAi) targeting HBx mRNA validated the overexpression of proliferating cell nuclear antigen (PCNA) and Bcl-2 in L-O2-X cells. Meanwhile, the BrdU incorporation assay was used to test cell proliferation mediated by upregulated cyclooxygenase-2 (COX-2).Results: The microarray showed that the expression levels of 152 genes were remarkably altered; 82 of the genes were upregulated and 70 genes were downregulated in L-O2-X cells. The altered genes were associated with signal transduction pathways, cell cycle, metastasis, transcriptional regulation, immune response, metabolism, and other processes. PCNA and Bcl-2 were upregulated in L-O2-X cells. Furthermore, we found that COX-2 upregulation in L-O2-X cells enhanced proliferation using the BrdU incorporation assay, whereas indomethacin (an inhibitor of COX-2) abolished the promotion.Conclusion: Our findings provide new evidence that HBx is able to regulate many genes that may be involved in the car-cinogenesis. These regulated genes mediated by HBx may serve as molecular targets for the prevention and treatment of hepatocellular carcinoma.

  2. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  3. Microarray analysis of adipose tissue gene expression profiles between two chicken breeds

    Indian Academy of Sciences (India)

    Hongbao Wang; Hui Li; Qigui Wang; Yuxiang Wang; Huabin Han; Hui Shi

    2006-12-01

    The chicken is an important model organism that bridges the evolutionary gap between mammals and other vertebrates and provides a major protein source from meat and eggs throughout the world. Excessive accumulation of lipids in the adipose tissue is one of the main problems faced by the broiler industry nowadays. In order to visualize the mechanisms involved in the gene expression and regulation of lipid metabolism in adipose tissue, cDNA microarray containing 9 024 cDNA was used to construct gene expression profile and screen differentially expressed genes in adipose tissue between broilers and layers of 10 wk of age. Sixty-seven differentially expressed sequences were screened out, and 42 genes were found when blasted with the GenBank database. These genes are mainly related to lipid metabolism, energy metabolism, transcription and splicing factor, protein synthesis and degradation. The remained 25 sequences had no annotation available in the GenBank database. Furthermore, Northern blot and semi-quantitative RT-PCR were developed to confirm 4 differentially expressed genes screened by cDNA microarray, and it showed great consistency between the microarray data and Northern blot results or semi-quantitative RT-PCR results. The present study will be helpful for clarifying the molecular mechanism of obesity in chickens.

  4. A score system for quality evaluation of RNA sequence tags: an improvement for gene expression profiling

    Directory of Open Access Journals (Sweden)

    Pinheiro Daniel G

    2009-06-01

    Full Text Available Abstract Background High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE, Massively Parallel Signature Sequencing (MPSS or Sequencing-by-Synthesis (SBS represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/. S3T source code and datasets can also be downloaded from the aforementioned website.

  5. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  6. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray.

    Science.gov (United States)

    Han, G-M; Chen, S-L; Shen, N; Ye, S; Bao, C-D; Gu, Y-Y

    2003-04-01

    Epidemiologic studies suggest a strong genetic component for susceptibility to systemic lupus erythematosus (SLE). To investigate the genetic mechanism of pathogenesis of SLE, we studied the difference in gene expression of peripheral blood cells between 10 SLE patients and 18 healthy controls using oligonucleotide microarray. When gene expression for patients was compared to the mean of normal controls, among the 3002 target genes, 61 genes were identified with greater than a two-fold change difference in expression level. Of these genes, 24 were upregulated and 37 downregulated in at least half of the patients. By the Welch's ANOVA/Welch's t-test, all these 61 genes were significantly different (PTSA-1/Sca-2) may play an important role in the mechanism of SLE pathogenesis. TSA-1 antigens may represent an important alternative pathway for T-cell activation that may be involved in IFN-mediated immunomodulation. Hierarchical clustering showed that patient samples were clearly separated from controls based on their gene expression profile. These results demonstrate that high-density oligonucleotide microarray has the potential to explore the mechanism of pathogenesis of systemic lupus erythematosus.

  7. Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.

  8. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  9. Expression of human skin-specific genes defined by transcriptomics and antibody-based profiling.

    Science.gov (United States)

    Edqvist, Per-Henrik D; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Edlund, Karolina; Uhlén, Mathias; Pontén, Fredrik

    2015-02-01

    To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases.

  10. Gene expression profiling during intensive cardiovascular lifestyle modification: Relationships with vascular function and weight loss

    Directory of Open Access Journals (Sweden)

    Heather L. Blackburn

    2015-06-01

    Full Text Available Heart disease and related sequelae are a leading cause of death and healthcare expenditure throughout the world. Although many patients opt for surgical interventions, lifestyle modification programs focusing on nutrition and exercise have shown substantial health benefits and are becoming increasing popular. We conducted a year-long lifestyle modification program to mediate cardiovascular risk through traditional risk factors and to investigate how molecular changes, if present, may contribute to long-term risk reduction. Here we describe the lifestyle intervention, including clinical and molecular data collected, and provide details of the experimental methods and quality control parameters for the gene expression data generated from participants and non-intervention controls. Our findings suggest successful and sustained modulation of gene expression through healthy lifestyle changes may have beneficial effects on vascular health that cannot be discerned from traditional risk factor profiles. The data are deposited in the Gene Expression Omnibus, series GSE46097 and GSE66175.

  11. Global correlation analysis for microRNA and gene expression profiles in human obesity.

    Science.gov (United States)

    Li, Jiayu; Zhou, Changyu; Li, Jiarui; Su, Ziyuan; Sang, Haiyan; Jia, Erna; Si, Daoyuan

    2015-05-01

    Obesity is an increasing health problem associated with major adverse consequences for human health. MicroRNAs (miRNAs), small endogenous non-coding RNAs, regulate the expression of genes that play roles in human body via posttranscriptional inhibition. To identify the miRNAs and their target genes involved in obesity, we downloaded the miRNA and gene expression profiles from gene expression omnibus (GEO) database and analyzed the differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in adipose tissues from obese subjects compared to those from non-obese subjects. Then, we constructed the miRNA-target interaction network and conducted functional enrichment analysis of DEGs, and the targets negatively correlated with DEMs. We identified a total of 16 miRNAs and 192 genes that showed a significantly different expression and 3002 miRNA-target interaction pairs, including 182 regulatory pairs in obesity. Target genes of DEMs were found mainly enriched in several functions, such as collagen fibril organization, extracellular matrix part, and extracellular matrix structural constituent. Moreover, hsa-miR-425 and hsa-miR-126 had a significant number of target genes and hsa-miR-16/COL12A1 and hsa-miR-634/SLC4A4 interaction pairs are significantly co-expressed, suggesting that they might play important roles in the pathogenesis of obesity. Our study provides a bioinformatic basis for further research of molecular mechanism in obesity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation.

    Directory of Open Access Journals (Sweden)

    Oliver Couture

    Full Text Available The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53's transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.

  13. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    Full Text Available BACKGROUND: Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma. OBJECTIVE: To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition. METHODS: Eleven adult horses (6 heaves-affected and 5 controls were studied while horses with heaves were in clinical remission (Pasture, and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge. Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH, lung cDNAs of controls (Pasture and Challenge and asymptomatic heaves-affected horses (Pasture were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge. The differential expression of selected genes of interest was confirmed using quantitative PCR assay. RESULTS: Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways. CONCLUSIONS: Pathways representing new possible targets for anti-inflammatory and anti

  14. Gene expression profile in rat small intestinal allografts after cold preservation/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Shu-Feng Wang; Qi Liang; Guo-Wei Li; Kun Gao

    2005-01-01

    AIM: To determine the changes of gene expression profile in small intestinal allografts in rats after cold preservation/reperfusion, and to identify the genes relevant to cold preservation/reperfusion injury.METHODS: Heterotopic segmental small bowel transplantation was performed in six rats with a sham operation and they were used as controls. Total RNA was extracted from the allografts (experimental group) and normal intestines (control group) 1 h after cold preservation/reperfusion, and then purified to mRNA, which was then reversely transcribed to cDNA, and labeled with fluorescent Cy5-dUTP and Cy3-dUTP to prepare hybridization probes.The mixed probes were hybridized to the cDNA microarray.After high-stringent washing, the fluorescent signals on cDNA microarray chip werescanned and analyzed.RESULTS: Among the 4 096 target genes, 82 differentially expressed genes were identified between the two groups.There were 18 novel genes, 33 expression sequence tags,and 31 previously reported genes. The selected genes may be divided into four classes: genes modulating cellular adhesion, genes regulating cellular energy, glucose and protein metabolism, early response genes and other genes.CONCLUSION: A total of 82 genes that may be relevant to cold preservation/reperfusion injury in small intestinal allografts are identified. Abnormal adhesion between polymorphonuclears and endothelia and failure in energy,glucose and protein metabolism of the grafts may contribute to preservation/reperfusion injury. The functions of the novel genes identified in our study need to be darified further.

  15. Differential gene expression profiles of hepatocellular carcinomas associated or not with viral infection

    Directory of Open Access Journals (Sweden)

    M. Bellodi-Privato

    2009-12-01

    Full Text Available Chronic hepatitis B (HBV and C (HCV virus infections are the most important factors associated with hepatocellular carcinoma (HCC, but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1 were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.

  16. Alterations of gene expression profiles induced by sulfur dioxide in rat lungs

    Institute of Scientific and Technical Information of China (English)

    MENG Ziqiang; QIN Guohua; BAI Juli; ZHANG Jianbiao; ZHANG Xin; YANG Zhenghua

    2007-01-01

    Sulfur dioxide (SO2) is a ubiquitous air pollutant presents in low concentrations in urban air and in higher concentrations in working environment.Few data are avail-able on the effects of being exposed to this pollutant on the molecular mechanism,although some biochemical changes in lipid metabolism,intermediary metabolism and oxidative stress have been detected.The present investigation aimed at analyzing the gene expression profiles of the lungs of Wistar rats short-term (20 ppm,6 h/day,for seven days) and long.term (5 ppm,1 h/day,for 30 days) exposed to SO2 by Affymetrix GeneChip (RAE230A) analysis.It was found that 31 genes,containing 18 known genes and 13 novel genes were up-regulated,and 31 genes,containing 20 known genes and 11 novel genes,were down-regulated in rats short-term exposed to SO2 compared with control rats.While there were 176 genes,containing 82 known genes and 94 novel genes were up-regulated,and 85 genes,containing 46 known genes and 39 novel genes,were down-regulated in rats long-term exposed to SO2 compared with control rats.It is suggested that:(1) SO2 exerts its effects by different mechanisms in vivo at high-dose short-term inhalation and at low-dose long-term inhalation;(2) a notable feature of the gene expression profile was the decreased expression of genes related to oxidative phosphorylation in lungs of rats short-term exposed to SO2,which shows high-dose short-term exposed to SO2 may cause the deterioration of mitochondrial functions;(3)discriminating genes in lungs of rats long-term exposed to SO2 included those involved in fatty acid metabolism,immune,inflammatory,oxidative stress,oncogene,tumor suppresser and extracellular matrix.The mechanism of low-dose long-term exposed to SO2 is more complex.

  17. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  18. An interactive tool for visualization of relationships between gene expression profiles

    Directory of Open Access Journals (Sweden)

    Jones Steven JM

    2006-04-01

    Full Text Available Abstract Background Application of phenetic methods to gene expression analysis proved to be a successful approach. Visualizing the results in a 3-dimentional space may further enhance these techniques. Results We designed and built TreeBuilder3D, an interactive viewer for visualizing the hierarchical relationships between expression profiles such as SAGE libraries or microarrays. The program allows loading expression data as plain text files and visualizing the relative differences of the analyzed datasets in 3-dimensional space using various distance metrics. Conclusion TreeBuilder3D provides a simple interface and has a small size. Written in Java, TreeBuilder3D is a platform-independent, open source application, which may be useful in analysis of large-scale gene expression data.

  19. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    Science.gov (United States)

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rategenes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  20. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Yaojing Yue

    Full Text Available Wool fiber diameter (WFD is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3] were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05. The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P < 0.05. The results indicated that expression of NATs and gene transcripts were correlated, suggesting a role in gene regulation. The discovery of these DEGs and NATs could facilitate enhanced selection for super-fine wool sheep through gene-assisted selection or targeted gene manipulation in the future.

  1. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy.

    LENUS (Irish Health Repository)

    Martin, Cara M

    2012-02-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus is the single most important etiological agent in cervical cancer. HPV contributes to neoplastic progression through the action of two viral oncoproteins E6 and E7, which interfere with critical cell cycle pathways, p53, and retinoblastoma. However, evidence suggests that HPV infection alone is insufficient to induce malignant changes and other host genetic variations are important in the development of cervical cancer. Advances in molecular biology and high throughput gene expression profiling technologies have heralded a new era in biomarker discovery and identification of molecular targets related to carcinogenesis. These advancements have improved our understanding of carcinogenesis and will facilitate screening, early detection, management, and personalised targeted therapy. In this chapter, we have described the use of high density microarrays to assess gene expression profiles in cervical cancer. Using this approach we have identified a number of novel genes which are differentially expressed in cervical cancer, including several genes involved in cell cycle regulation. These include p16ink4a, MCM 3 and 5, CDC6, Geminin, Cyclins A-D, TOPO2A, CDCA1, and BIRC5. We have validated expression of mRNA using real-time PCR and protein by immunohistochemistry.

  2. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. A stochastic model for optimizing composite predictors based on gene expression profiles.

    Science.gov (United States)

    Ramanathan, Murali

    2003-07-01

    This project was done to develop a mathematical model for optimizing composite predictors based on gene expression profiles from DNA arrays and proteomics. The problem was amenable to a formulation and solution analogous to the portfolio optimization problem in mathematical finance: it requires the optimization of a quadratic function subject to linear constraints. The performance of the approach was compared to that of neighborhood analysis using a data set containing cDNA array-derived gene expression profiles from 14 multiple sclerosis patients receiving intramuscular inteferon-beta1a. The Markowitz portfolio model predicts that the covariance between genes can be exploited to construct an efficient composite. The model predicts that a composite is not needed for maximizing the mean value of a treatment effect: only a single gene is needed, but the usefulness of the effect measure may be compromised by high variability. The model optimized the composite to yield the highest mean for a given level of variability or the least variability for a given mean level. The choices that meet this optimization criteria lie on a curve of composite mean vs. composite variability plot referred to as the "efficient frontier." When a composite is constructed using the model, it outperforms the composite constructed using the neighborhood analysis method. The Markowitz portfolio model may find potential applications in constructing composite biomarkers and in the pharmacogenomic modeling of treatment effects derived from gene expression endpoints.

  4. A highly sensitive and specific system for large-scale gene expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Hui-Yun

    2008-01-01

    Full Text Available Abstract Background Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed. Results By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (n = 100 or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100 and a large number (10,000 of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material. Conclusion Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.

  5. Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures.

    Science.gov (United States)

    Wong, Kayleigh; Sun, Fangui; Trudel, Guy; Sebastiani, Paola; Laneuville, Odette

    2015-05-26

    Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints. Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry. Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three

  6. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... from all fourteen RA patients and healthy controls identified a subset of discriminative genes. These results were validated by real time reverse transcription polymerase chain reaction (RT-PCR) on another group of RA patients and healthy controls. This confirmed that the following genes had...

  7. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms.

    Science.gov (United States)

    Marchese, Enrico; Vignati, A; Albanese, A; Nucci, C G; Sabatino, G; Tirpakova, B; Lofrese, G; Zelano, G; Maira, G

    2010-01-01

    aneurysms, a different expression was also detected regarding gene coding the tissue inhibitor of matrix metalloproteinases 3 (TIMP-3), which appeared markedly downregulated in unruptured aneurysms, where its expression in unruptured aneurysms was similar to that observed in controls. Another gene differently expressed is nitric oxide synthase (iNOS), which appeared overexpressed in ruptured aneurysms when compared to unruptured aneurysms. Our study is the first, to our knowledge, that compares gene expression profiles (genoma-wide) in intracranial aneurysms. The results of our study suggest that the inhibitor of the metalloproteinase, the pathway of nitric oxide and the apoptotic process play a key-role in reducing the resistance of the arterial wall, that can result in formation and rupture of the intracranial aneurysms.

  8. Classification of genes and putative biomarker identification using distribution metrics on expression profiles.

    Directory of Open Access Journals (Sweden)

    Hung-Chung Huang

    Full Text Available BACKGROUND: Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic, and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as 'brain group' and 'non-brain group'; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. CONCLUSIONS/SIGNIFICANCE: The methodology employed here may be used to facilitate disease-specific biomarker discovery.

  9. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  10. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans

    OpenAIRE

    Rubbia-Brandt, Laura; Tauzin, Sébastien; Brezault, Catherine; Delucinge-Vivier, Céline; Descombes, Patrick; Dousset, Bertand; Majno, Pietro; Mentha, Gilles; Terris, Benoit

    2011-01-01

    Sinusoidal obstruction syndrome (SOS; formerly veno-occlusive disease) is a well-established complication of hematopoietic stem cell transplantation, pyrrolizidine alkaloid intoxication, and widely used chemotherapeutic agents such as oxaliplatin. It is associated with substantial morbidity and mortality. Pathogenesis of SOS in humans is poorly understood. To explore its molecular mechanisms, we used Affymetrix U133 Plus 2.0 microarrays to investigate the gene expression profile of 11 human l...

  11. Gene Expression Profile of Human Cytokines in Response to B.pseudomallei Infection

    Science.gov (United States)

    2017-04-19

    the gene expression of 84 important cytokines by real time quantitative 32 polymerase chain reaction (RT qPCR) was used. We analyzed 26 melioidosis...The PCR reaction and thermal profile recommended by the 168 manufacturer were followed. 26 melioidosis cases (identified as confirmed or 169...by PCR . All samples for the study were collected 116 between September 2014 and April 2016. 117 Patients who were culture positive for B

  12. Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2005-12-01

    Full Text Available Abstract We have recently developed a candidate HIV-1 vaccine model based on HIV-1 Pr55gag Virus-Like Particles (HIV-VLPs, produced in a baculovirus expression system and presenting a gp120 molecule from an Ugandan HIV-1 isolate of the clade A (HIV-VLPAs. The HIV-VLPAs induce in Balb/c mice systemic and mucosal neutralizing Antibodies as well as cytotoxic T lymphocytes, by intra-peritoneal as well as intra-nasal administration. Moreover, we have recently shown that the baculovirus-expressed HIV-VLPs induce maturation and activation of monocyte-derived dendritic cells (MDDCs which, in turn, produce Th1- and Th2-specific cytokines and stimulate in vitro a primary and secondary response in autologous CD4+ T cells. In the present manuscript, the effects of the baculovirus-expressed HIV-VLPAs on the genomic transcriptional profile of MDDCs obtained from normal healthy donors have been evaluated. The HIV-VLPA stimulation, compared to both PBS and LPS treatment, modulate the expression of genes involved in the morphological and functional changes characterizing the MDDCs activation and maturation. The results of gene profiling analysis here presented are highly informative on the global pattern of gene expression alteration underlying the activation of MDDCs by HIV-VLPAs at the early stages of the immune response and may be extremely helpful for the identification of exclusive activation markers.

  13. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures

    Science.gov (United States)

    Juric, Dejan; Sale, Sanja; Hromas, Robert A.; Yu, Ron; Wang, Yan; Duran, George E.; Tibshirani, Robert; Einhorn, Lawrence H.; Sikic, Branimir I.

    2005-01-01

    Germ cell tumors (GCTs) of the testis are the predominant cancer among young men. We analyzed gene expression profiles of 50 GCTs of various subtypes, and we compared them with 443 other common malignant tumors of epithelial, mesenchymal, and lymphoid origins. Significant differences in gene expression were found among major histological subtypes of GCTs, and between them and other malignancies. We identified 511 genes, belonging to several critical functional groups such as cell cycle progression, cell proliferation, and apoptosis, to be significantly differentially expressed in GCTs compared with other tumor types. Sixty-five genes were sufficient for the construction of a GCT class predictor of high predictive accuracy (100% training set, 96% test set), which might be useful in the diagnosis of tumors of unknown primary origin. Previously described diagnostic and prognostic markers were found to be expressed by the appropriate GCT subtype (AFP, POU5F1, POV1, CCND2, and KIT). Several additional differentially expressed genes were identified in teratomas (EGR1 and MMP7), yolk sac tumors (PTPN13 and FN1), and seminomas (NR6A1, DPPA4, and IRX1). Dynamic computation of interaction networks and mapping to existing pathways knowledge databases revealed a potential role of EGR1 in p21-induced cell cycle arrest and intrinsic chemotherapy resistance of mature teratomas. PMID:16306258

  14. Interaction of rearing environment and reproductive tactic on gene expression profiles in Atlantic salmon

    Science.gov (United States)

    Aubin-Horth, N.; Letcher, B.H.; Hofmann, H.A.

    2005-01-01

    Organisms that share the same genotype can develop into divergent phenotypes, depending on environmental conditions. In Atlantic salmon, young males of the same age can be found either as sneakers or immature males that are future anadromous fish. Just as the organism-level phenotype varies between divergent male developmental trajectories, brain gene expression is expected to vary as well. We hypothesized that rearing environment can also have an important effect on gene expression in the brain and possibly interact with the reproductive tactic adopted. We tested this hypothesis by comparing brain gene expression profiles of the two male tactics in fish from the same population that were reared in either a natural stream or under laboratory conditions. We found that expression of certain genes was affected by rearing environment only, while others varied between male reproductive tactics independent of rearing environment. Finally, more than half of all genes that showed variable expression varied between the two male tactics only in one environment. Thus, in these fish, very different molecular pathways can give rise to similar macro-phenotypes depending on rearing environment. This result gives important insights into the molecular underpinnings of developmental plasticity in relationship to the environment. ?? 2005 The American Genetic Association.

  15. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation.

    Science.gov (United States)

    Obayashi, Shinya; Tabunoki, Hiroko; Kim, Seung U; Satoh, Jun-ichi

    2009-05-01

    Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.

  16. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    Science.gov (United States)

    Guo, Hui; Xian, Jian-An; Wang, An-Li

    2016-09-01

    Accumulation of nitrite in water is highly toxic to aquatic animals. To understand immune responses in shrimp under such environmental stress, a digital gene expression (DGE) technology was applied to detect the gene expression profile of the Litopenaeus vannamei hemocytes in response to nitrite for 48 h. A total of 1922 differently expressed unigenes were generated. Of these transcripts, 1269 and 653 genes were up- or down-regulated respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune defense, xenobiotics biodegradation and metabolism, amino acid and nucleobase metabolic process, apoptosis were the differentially regulated processes occurring during nitrite stress. We selected 19 differential expression transcripts (DETs) to validate the sequencing results by real time quantitative PCR (qPCR). The Pearson's correlation coefficient (R) of the 19 DETs was 0.843, which confirmed the consistency and accuracy between these two approaches. Subsequently, we screened 10 genes to examine the changes in the time course of gene expression in more detail. The results indicated that expressions of ATP-binding cassette transporter (ABC transporter), caspase10, QM protein, C type lectin 4 (CTL4), protein disulfide isomerase (PDI), serine protease inhibitor 8 (SPI8), transglutaminase (TGase), chitinase1, inhibitors of apoptosis proteins (IAP) and cytochrome P450 enzyme (CYP450) were induced to participate in the anti-stress defense against nitrite. These results will provide a reference for follow-up study of molecular toxicology and valuable gene information for better understanding of immune response in L. vannamei under environmental stress.

  17. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture.

    Science.gov (United States)

    Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R

    2008-03-01

    Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.

  18. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  19. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  20. Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba.

    Science.gov (United States)

    Gao, Ming; Lin, Liyuan; Chen, Yicun; Wang, Yangdong

    2016-09-20

    Mountain pepper (Litseacubeba (Lour.) Pers.) (Lauraceae) is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs) involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE) using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF) served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR) results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.

  1. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    Science.gov (United States)

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  2. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    GAO Lei; LI Xia; GUO Zheng; ZHU MingZhu; LI YanHui; RAO ShaoQi

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to "biology process" by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  3. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  4. Gene Expression Profile in the Liver of BALB/c Mice Infected with Fasciola hepatica.

    Science.gov (United States)

    Rojas-Caraballo, Jose; López-Abán, Julio; Fernández-Soto, Pedro; Vicente, Belén; Collía, Francisco; Muro, Antonio

    2015-01-01

    Fasciola hepatica infection still remains one of the helminthic neglected tropical diseases (NTDs). It has a huge worldwide distribution, affecting mainly cattle and, sometimes, human beings. In addition to data reported about the immunological response induced by helminthic infections and that induced by Fasciola hepatica, little is known about the gene expression profile in its organ target, the liver, which is where adult worms are established and live for long periods of time, causing its characteristic pathology. In the present work, we study both the early and late gene expression profiles in the livers of mice infected with F. hepatica metacercariae using a microarray-based methodology. A total of 9 female-6-week-old BALB/c mice (Charles River Laboratories, Barcelona, Spain) weighing 20 to 35 g were used for the experiments. Two groups of BALB/c mice were orally infected with seven F. hepatica metacercariae, and the other group remained untreated and served as a control. Mice were humanely euthanized and necropsied for liver recovery, histological assessment of hepatic damage, RNA isolation, microarray design and gene expression analysis on the day of infection (t0), seven days post-infection (t7) and twenty-one days post-infection (t21). We found that F. hepatica infection induces the differential expression of 128 genes in the liver in the early stage of infection and 308 genes in the late stage, and most of them are up-regulated. The Ingenuity Pathway Analysis revealed significant changes in the pathways related to metabolism, biosynthesis and signaling as well as genes implicated in inducing liver-toxicity, injury and death. The present study provides us insights at the molecular level about the underlying mechanisms used by F. hepatica, leading to liver damage and its subsequent pathophysiology. The expression pattern obtained here could also be used to explain the lack of association between infection with F. hepatica and cholangiocarcinoma. However

  5. Gene expression profile in osteoclasts from patients with Paget's disease of bone.

    Science.gov (United States)

    Michou, Laetitia; Chamoux, Estelle; Couture, Julie; Morissette, Jean; Brown, Jacques P; Roux, Sophie

    2010-03-01

    Paget's disease of bone (PDB) is a common metabolic bone disorder with a significant genetic component. To date, only one gene associated with PDB has been identified, the p62-Sequestosome1 gene (SQSTM1), and more than 20 mutations of this gene have been reported in PDB, the most common being the P392L substitution. In order to search for differentially expressed genes in PDB, we investigated the relative gene expression profile of candidate genes in osteoclast (OCL) cultures from 12 PDB patients and six unmatched healthy controls with known genetic status regarding p62, including healthy carriers of the P392L mutation. We selected 48 OCL-expressed candidate genes that may be involved in relevant pathways of PDB pathogenesis, such as OCL signaling, survival, bone resorption activity, or adhesion. In OCL cultures derived from peripheral blood mononuclear cells, total RNA extraction was performed, followed by real-time PCR experiments. Relative quantification analysis utilized the qBase method where relative expression levels were normalized with respect to a set of reference primer pairs for three housekeeping genes. When compared to non-mutated healthy controls, OCL cultures from PDB patients displayed a significant down-regulation in genes involved in apoptosis (CASP3 and TNFRSF10A), in cell signaling (TNFRSF11A), in the OCL bone resorbing function (ACP5 and CTSK) and in the gene coding for Tau protein (MAPT) (all comparisons, pOCL, and highlight the role of altered apoptosis pathways in these cells. They also suggest that the SQSTM1 P392L mutation plays a role in PDB pathogenesis, even at early preclinical stages in healthy carriers of the P392L mutation.

  6. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...

  7. Blood cell gene expression profiling in rheumatoid arthritis - Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, L.F.; Rieneck, K.; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...

  8. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile.

    Science.gov (United States)

    Oberstaller, Jenna; Joseph, Sandeep J; Kissinger, Jessica C

    2013-07-29

    There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5'-TGGCGCCA-3'); G-box (5'-G.GGGG-3'); a well-documented ApiAP2 binding motif (5'-TGCAT-3'), and an unknown motif (5'-[A/C] AACTA-3'). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.

  9. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity

    DEFF Research Database (Denmark)

    Hansen, Jeanette; Conley, Lene; Hedegaard, Jakob

    2012-01-01

    of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins...... of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery...

  10. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  11. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  12. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  13. Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz.

    Science.gov (United States)

    Gomez-Sucerquia, Leysa J; Blas-Garcia, Ana; Marti-Cabrera, Miguel; Esplugues, Juan V; Apostolova, Nadezda

    2012-06-01

    Hepatic toxicity and metabolic disorders are major adverse effects elicited during the pharmacological treatment of the human immunodeficiency virus (HIV) infection. Efavirenz (EFV), the most widely used non-nucleoside reverse transcriptase inhibitor (NNRTI), has been associated with these events, with recent studies implicating it in stress responses involving mitochondrial dysfunction and oxidative stress in human hepatic cells. To expand these findings, we analyzed the influence of EFV on the expression profile of selected stress and toxicity genes in these cells. Significant up-regulation was observed with Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), which indicated metabolic stress. Several genes directly related to oxidative stress and damage exhibited increased expression, including Methalothionein 2A (MT2A), Heat shock 70kDa protein 6 (HSPA6), Growth differentiation factor 15 (GDF15) and DNA-damage-inducible transcript 3 (DDIT3). In addition, Early growth response protein 1 (EGR1) was enhanced, whereas mRNA levels of the inflammatory genes Chemokine (C-X-C motif) ligand 10 (CXCL10) and Serpin peptidase inhibitor (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1) decreased and increased, respectively. This profile of gene expression supports previous data demonstrating altered mitochondrial function and presence of oxidative stress/damage in EFV-treated hepatic cells, and may be of relevance in the search for molecular targets with therapeutic potential to be employed in the prevention, diagnosis and treatment of the hepatic toxicity associated with HIV therapy.

  14. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Science.gov (United States)

    Dong, Hui; Sun, Hao

    2016-01-01

    Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine) with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231) are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclin-dependent kinase inhibitor 1A (CDKN1A), and aurora kinase A (AURKA) genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation. PMID:27649175

  15. Gene expression profiling of three different stressors in the water flea Daphnia magna.

    Science.gov (United States)

    Jansen, Mieke; Vergauwen, Lucia; Vandenbrouck, Tine; Knapen, Dries; Dom, Nathalie; Spanier, Katina I; Cielen, Anke; De Meester, Luc

    2013-07-01

    Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene

  16. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Vels Lotte

    2008-09-01

    Full Text Available Abstract Background Liver plays a profound role in the acute phase response (APR observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli. To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM exposure to E. coli lipopolysaccharide (LPS treatment. Results Approximately 20% target transcripts were differentially expressed and eight co-expression clusters were identified. Each cluster had a unique time-dependent expression profile and consisted of genes involved in different biological processes. Our findings suggest that APR in the liver is triggered by the activation of signaling pathways that are involved with common and hepatic-specific transcription factors and pro-inflammatory cytokines. These mediators in turn stimulated or repressed the expression of genes encoding acute phase proteins (APP, collectins, complement components, chemokines, cell adhesion molecules and key metabolic enzymes during the APR. Hormones, anti-inflammatory and other hypothalamus-pituitary-adrenal axis (HPAA linked mediators also seemed to participate in APR. Conclusion Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when they are challenged with LPS. Our work presents the first insight into the dynamic changes in gene expression in the liver that influences the induction, kinetics and clinical outcome of the APR in dairy cows.

  17. Expression Profile of Developmentally Important Genes in preand peri-Implantation Goat Embryos Produced In Vitro

    Science.gov (United States)

    Tahmoorespur, Mojtaba; Hosseini, Sayyed Morteza; Ostadhosseini, Somayyeh; Nasiri, Mohammad Reza; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Background: Little is understood about the regulation of gene expression during early goat embryo development. This study investigated the expression profile of 19 genes, known to be critical for early embryo development in mouse and human, at five different stages of goat in vitro embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst, and day 14 blastocyst). Materials and Methods: In this experimental study, stage-specific profiling using real time-quantitative polymerase chain reaction (RT-qPCR) revealed robust and dynamic patterns of stage-specific gene activity that fall into four major clusters depending on their respective mRNA profiles. Results: The gradual pattern of reduction in the maternally stored transcripts without renewal thereafter (cluster-1: Lifr1, Bmpr1, Alk4, Id3, Ctnnb, Akt, Oct4, Rex1, Erk1, Smad1 and 5) implies that their protein products are essential during early cleavages when the goat embryo is silent and reliant to the maternal legacy of mRNA. The potential importance of transcription augment at day-3 (cluster-2: Fzd, c-Myc, Cdc25a, Sox2) or day- 14 (cluster-3: Fgfr4, Nanog) suggests that they are nascent embryonic mRNAs which intimately involved in the overriding of MET or regulation of blastocyst formation, respectively. The observation of two expression peaks at both day-3 and day-14 (cluster-4: Gata4, Cdx2) would imply their potential importance during these two critical stages of preand periimplantation development. Conclusion: Evolutionary comparison revealed that the selected subset of genes has been rewired in goat and human/goat similarity is greater than the mouse/goat or bovine/goat similarities. The developed profiles provide a resource for comprehensive understanding of goat preimplantation development and pluripotent stem cell engineering as well. PMID:27695614

  18. Hepatic gene expression profile in mice perorally infected with Echinococcus multilocularis eggs.

    Directory of Open Access Journals (Sweden)

    Bruno Gottstein

    Full Text Available BACKGROUND: Alveolar echinococcosis (AE is a severe chronic hepatic parasitic disease currently emerging in central and eastern Europe. Untreated AE presents a high mortality (>90% due to a severe hepatic destruction as a result of parasitic metacestode proliferation which behaves like a malignant tumor. Despite this severe course and outcome of disease, the genetic program that regulates the host response leading to organ damage as a consequence of hepatic alveolar echinococcosis is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used a mouse model of AE to assess gene expression profiles in the liver after establishment of a chronic disease status as a result of a primary peroral infection with eggs of the fox tapeworm Echinococcus multilocularis. Among 38 genes differentially regulated (false discovery rate adjusted p, while 3 associated with the functional group . Upregulated genes associated with could be clustered into functional subgroups including , , , and . Two downregulated genes related to and , respectively. The genes either associated with an or an pathway. From the overexpressed genes, 18 genes were subsequently processed with a Custom Array microfluidic card system in order to assess respective expression status at the mRNA level relative to 5 reference genes (Gapdh, Est1, Rlp3, Mdh-1, Rpl37 selected upon a constitutive and stable expression level. The results generated by the two independent tools used for the assessment of gene expression, i.e., microarray and microfluidic card system, exhibited a high level of congruency (Spearman correlation rho = 0.81, p = 7.87e-5 and thus validated the applied methods. CONCLUSIONS/SIGNIFICANCE: Based on this set of biomarkers, new diagnostic targets have been made available to predict disease status and progression. These biomarkers may also offer new targets for immuno-therapeutic intervention.

  19. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber.

    Science.gov (United States)

    Li, Jian-Wu; Liu, Jun; Zhang, He; Xie, Cong-Hua

    2011-03-01

    To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT-PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.

  20. Use of self-quenched, fluorogenic LUX primers for gene expression profiling.

    Science.gov (United States)

    Kusser, Wolfgang

    2006-01-01

    Application of a real-time detection system based on a novel primer design in gene expression profiling is described. In this system, called LUX (Light Upon eXtension), the generation of signal is based on a single fluorescent dye molecule that is attached to an oligonucleotide close to the 3'-end. A primer design software is available that identifies LUX primer pairs based on a set of rules for optimum signal development. The use of LUX fluorogenic primers to determine the expression patterns of various transcripts during differentiation in the P-19 mouse neuronal model is described.

  1. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.

    Science.gov (United States)

    Fu, YuHong; Sengul, Gulgun; Paxinos, George; Watson, Charles

    2012-06-19

    We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6-8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them.

  2. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L. seeds.

    Directory of Open Access Journals (Sweden)

    Huawu Jiang

    Full Text Available BACKGROUND: Physic nut (Jatropha curcas L. is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP. The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE: The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  3. Expression profiling of rectal tumors defines response to neoadjuvant treatment related genes.

    Directory of Open Access Journals (Sweden)

    Pablo Palma

    Full Text Available To date, no effective method exists that predicts the response to preoperative chemoradiation (CRT in locally advanced rectal cancer (LARC. Nevertheless, identification of patients who have a higher likelihood of responding to preoperative CRT could be crucial in decreasing treatment morbidity and avoiding expensive and time-consuming treatments. The aim of this study was to identify signatures or molecular markers related to response to pre-operative CRT in LARC. We analyzed the gene expression profiles of 26 pre-treatment biopsies of LARC (10 responders and 16 non-responders without metastasis using Human WG CodeLink microarray platform. Two hundred and fifty seven genes were differentially over-expressed in the responder patient subgroup. Ingenuity Pathway Analysis revealed a significant ratio of differentially expressed genes related to cancer, cellular growth and proliferation pathways, and c-Myc network. We demonstrated that high Gng4, c-Myc, Pola1, and Rrm1 mRNA expression levels was a significant prognostic factor for response to treatment in LARC patients (p<0.05. Using this gene set, we were able to establish a new model for predicting the response to CRT in rectal cancer with a sensitivity of 60% and 100% specificity. Our results reflect the value of gene expression profiling to gain insight about the molecular pathways involved in the response to treatment of LARC patients. These findings could be clinically relevant and support the use of mRNA levels when aiming to identify patients who respond to CRT therapy.

  4. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-01-01

    Full Text Available Abstract Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17 and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between

  5. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  6. Gene expression profiling and non-small-cell lung cancer: where are we now?

    Science.gov (United States)

    Santos, Edgardo S; Blaya, Marcelo; Raez, Luis E

    2009-05-01

    Despite new developments in molecular techniques and better knowledge on lung cancer tumor biology, many genetic alterations associated with the development and progression of lung carcinogenesis still remain unclear. Although the development of targeted agents has improved response rates and survival, lung cancer has a very high mortality rate, even for early stages. Thus, there is a greater need for other mechanisms or technologies that may help us diagnose, predict, and treat patients with lung cancer in a more effective way. One of these technologies has been the use of genomics. Some of the available genomic technologies include single-nucleotide polymorphism analysis, high-throughput capillary sequencing, serial analysis of gene expression, and gene expression arrays. DNA microarray analysis is capable of discovering changes in DNA expression within the neoplastic tumor. Thus, gene expression array could help us to decipher the complexity and interaction of different oncogenic pathways and, hence, could contribute to the selection of better targeted agents on an individual basis rather than a general and nonspecific approach as it has been done for many decades. Several studies initiated a few years ago have started to produce fruitful results. Herein, we review the role of gene expression profiling in lung cancer as a diagnostic tool, predictive and prognostic biomarker, and its potential use for a "personalized" medicine in the years to come.

  7. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  8. The Longissimus and Semimembranosus muscles display marked differences in their gene expression profiles in pig.

    Directory of Open Access Journals (Sweden)

    Frederic Herault

    Full Text Available BACKGROUND: Meat quality depends on skeletal muscle structure and metabolic properties. While most studies carried on pigs focus on the Longissimus muscle (LM for fresh meat consumption, Semimembranosus (SM is also of interest because of its importance for cooked ham production. Even if both muscles are classified as glycolytic muscles, they exhibit dissimilar myofiber composition and metabolic characteristics. The comparison of LM and SM transcriptome profiles undertaken in this study may thus clarify the biological events underlying their phenotypic differences which might influence several meat quality traits. METHODOLOGY/PRINCIPAL FINDINGS: Muscular transcriptome analyses were performed using a custom pig muscle microarray: the 15 K Genmascqchip. A total of 3823 genes were differentially expressed between the two muscles (Benjamini-Hochberg adjusted P value ≤0.05, out of which 1690 and 2133 were overrepresented in LM and SM respectively. The microarray data were validated using the expression level of seven differentially expressed genes quantified by real-time RT-PCR. A set of 1047 differentially expressed genes with a muscle fold change ratio above 1.5 was used for functional characterization. Functional annotation emphasized five main clusters associated to transcriptome muscle differences. These five clusters were related to energy metabolism, cell cycle, gene expression, anatomical structure development and signal transduction/immune response. CONCLUSIONS/SIGNIFICANCE: This study revealed strong transcriptome differences between LM and SM. These results suggest that skeletal muscle discrepancies might arise essentially from different post-natal myogenic activities.

  9. Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays.

    Science.gov (United States)

    Ichiba, Tamotsu; Teshima, Takanori; Kuick, Rork; Misek, David E; Liu, Chen; Takada, Yuichiro; Maeda, Yoshinobu; Reddy, Pavan; Williams, Debra L; Hanash, Samir M; Ferrara, James L M

    2003-07-15

    The liver, skin, and gastrointestinal tract are major target organs of acute graft-versus-host disease (GVHD), the major complication of allogeneic bone marrow transplantation (BMT). In order to gain a better understanding of acute GVHD in the liver, we compared the gene expression profiles of livers after experimental allogeneic and syngeneic BMT using oligonucleotide microarray. At 35 days after allogeneic BMT when hepatic GVHD was histologically evident, genes related to cellular effectors and acute-phase proteins were up-regulated, whereas genes largely related to metabolism and endocrine function were down-regulated. At day 7 after BMT before the development of histologic changes in the liver, interferon gamma (IFN-gamma)-inducible genes, major histocompatibility (MHC) class II molecules, and genes related to leukocyte trafficking had been up-regulated. Immunohistochemistry demonstrated that expression of IFN-gamma protein itself was increased in the spleen but not in hepatic tissue. These results suggest that the increased expression of genes associated with the attraction and activation of donor T cells induced by IFN-gamma early after BMT is important in the initiation of hepatic GVHD in this model and provide new potential molecular targets for early detection and intervention of acute GVHD.

  10. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed.

    Directory of Open Access Journals (Sweden)

    Beth A Tamburini

    Full Text Available The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma. Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds. Vascular Endothelial Growth Factor Receptor 1 (VEGFR1 was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors.

  11. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  12. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  13. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  14. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling.

    Science.gov (United States)

    Jansen, Maurice P H M; Foekens, John A; van Staveren, Iris L; Dirkzwager-Kiel, Maaike M; Ritstier, Kirsten; Look, Maxime P; Meijer-van Gelder, Marion E; Sieuwerts, Anieta M; Portengen, Henk; Dorssers, Lambert C J; Klijn, Jan G M; Berns, Els M J J

    2005-02-01

    To discover a set of markers predictive for the type of response to endocrine therapy with the antiestrogen tamoxifen using gene expression profiling. The study was performed on 112 estrogen receptor-positive primary breast carcinomas from patients with advanced disease and clearly defined types of response (ie, 52 patients with objective response v 60 patients with progressive disease) from start of first-line treatment with tamoxifen. Main clinical end points are the effects of therapy on tumor size and time until tumor progression (progression-free survival [PFS]). RNA isolated from tumor samples was amplified and hybridized to 18,000 human cDNA microarrays. Using a training set of 46 breast tumors, 81 genes were found to be differentially expressed (P tamoxifen-responsive and -resistant tumors. These genes were involved in estrogen action, apoptosis, extracellular matrix formation, and immune response. From the 81 genes, a predictive signature of 44 genes was extracted and validated on an independent set of 66 tumors. This 44-gene signature is significantly superior (odds ratio, 3.16; 95% CI, 1.10 to 9.11; P = .03) to traditional predictive factors in univariate analysis and also significantly related with a longer PFS in univariate (hazard ratio, 0.54; 95% CI, 0.31 to 0.94; P = .03) as well as in multivariate analyses (P = .03). Our data show that gene expression profiling can be used to discriminate between breast cancer patients with progressive disease and objective response to tamoxifen. Additional studies are needed to confirm if the predictive signature might allow identification of individual patients who could benefit from other (adjuvant) endocrine therapies.

  15. Gene expression profile of esophageal cancer in North East India by cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    Indranil Chattopadhyay; Sujala Kapur; Joydeep Purkayastha; Rupkumar Phukan; Amal Kataki; Jagadish Mahanta; Sunita Saxena

    2007-01-01

    AIM: To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts.METHODS: Total RNA was isolated from tumor and matched normal tissue of 16 patients with esophageal squamous cell carcinoma. Pooled tumor tissue RNA was labeled with Cy3-dUTP and pooled normal tissue RNA was labeled with Cy5-dUTP by direct labeling method.The labeled probes were hybridized with human 10K cDNA chip and expression profiles were analyzed by Genespring GX V 7.3 (Silicon Genetics).RESULTS: Nine hundred twenty three genes were differentially expressed. Of these, 611 genes were upregulated and 312 genes were downregulated. Using stringent criteria (P ≤ 0.05 and ≥ 1.5 fold change),127 differentially expressed genes (87 upregulated and 40 downregulated) were identified in tumor tissue. On the basis of Gene Ontology, four different molecular functional pathways (MAPK pathway,G-protein coupled receptor family, ion transport activity,and serine or threonine kinase activity) were most significantly upregulated and six different molecular functional pathways (structural constituent of ribosome,endopeptidase inhibitor activity, structural constituent of cytoskeleton, antioxidant activity, acyl group transferase activity, eukaryotic translation elongation factor activity)were most significantly downregulated.CONCLUSION: Several genes that showed alterations in our study have also been reported from a high incidence area of esophageal cancer in China. This indicates that molecular profiles of esophageal cancer in these two different geographic locations are highly consistent.

  16. Acute ozone-induced differential gene expression profiles in rat lung.

    Science.gov (United States)

    Nadadur, Srikanth S; Costa, Daniel L; Slade, Ralph; Silbjoris, Robert; Hatch, Gary E

    2005-12-01

    Ozone is an oxidant gas that can directly induce lung injury. Knowledge of the initial molecular events of the acute O3 response would be useful in developing biomarkers of exposure or response. Toward this goal, we exposed rats to toxic concentrations of O3 (2 and 5 ppm) for 2 hr and the molecular changes were assessed in lung tissue 2 hr postexposure using a rat cDNA expression array containing 588 characterized genes. Gene array analysis indicated differential expression in almost equal numbers of genes for the two exposure groups: 62 at 2 ppm and 57 at 5 ppm. Most of these genes were common to both exposure groups, suggesting common roles in the initial toxicity response. However, we also identified the induction of nine genes specific to 2-ppm (thyroid hormone-beta receptor c-erb-A-beta; and glutathione reductase) or 5-ppm exposure groups (c-jun, induced nitric oxide synthase, macrophage inflammatory protein-2, and heat shock protein 27). Injury markers in bronchoalveolar lavage fluid (BALF) were used to assess immediate toxicity and inflammation in rats similarly exposed. At 2 ppm, injury was marked by significant increases in BALF total protein, N-acetylglucosaminidase, and lavageable ciliated cells. Because infiltration of neutrophils was observed only at the higher 5 ppm concentration, the distinctive genes suggested a potential amplification role for inflammation in the gene profile. Although the specific gene interactions remain unclear, this is the first report indicating a dose-dependent direct and immediate induction of gene expression that may be separate from those genes involved in inflammation after acute O3 exposure.

  17. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    Full Text Available In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI. However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100% compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%, suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

  18. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection

    Directory of Open Access Journals (Sweden)

    Demant Peter

    2007-10-01

    Full Text Available Abstract Background Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1 on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. Results Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh. Conclusion Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh

  19. Analysis of gene expression profile of pancreatic carcinoma using CDNA microarray

    Institute of Scientific and Technical Information of China (English)

    ZhiJun Tan; Xian-Gui Hu; Gui-Song Cao; Yan Tang

    2003-01-01

    AIM: To identify new diagnostic markers and drug targets,the gene expression profiles of pancreatic cancer were compared with that of adjacent normal tissues utilizing cDNA microarray analysis.METHODS: cDNA probes were prepared by labeling mRNA from samples of six pancreatic carcinoma tissues with Cy5dUTP and mRNA from adjacent normal tissues with Cy3dUTP respectively through reverse transcription. The mixed probes of each sample were then hybridized with 12 800cDNA arrays (12 648 unique human cDNA sequences), and the fluorescent signals were scanned by ScanArray 3 000scanner (General Scanning, Inc.). The values of CyS-dUTP and Cy3-dUTP on each spot were analyzed and calculated by ImaGene 3.0 software (BioDiscovery, Inc.). Differentially expressed genes were screened according to the criterion that the absolute value of natural logarithm of the ratio of Cy5-dUTP to Cy3-dUTP was greater-than 0.69.RESETS: Among 6 samples investigated, 301 genes, which accounted for 2.38% of genes on the microarry slides,exhibited differentially expression at least in 5. There were 166 over-expressed genes including 136 having been registered in Genebank, and 135 under-expressed genes including 79 in Genebank in cancerous tissues.CONCLUSION: Microarray analysis may provide invaluable information on disease pathology, progression, resistance to treatment, and response to cellular microenvironments of pancreatic carcinoma and ultimately may lead to improving early diagnosis and discovering innovative therapeutic approaches for cancer.

  20. Identification and expression profiling of Ceratitis capitata genes coding for β-hexosaminidases.

    Science.gov (United States)

    Pasini, Maria E; Intra, Jari; Gomulski, Ludvik M; Calvenzani, Valentina; Petroni, Katia; Briani, Federica; Perotti, Maria Elisa

    2011-02-15

    The goal of this study was to identify the genes coding for β-N-acetylhexosaminidases in the Mediterranean fruit fly (medfly) Ceratitis capitata, one of the most destructive agricultural pests, belonging to the Tephritidae family, order Diptera. Two dimeric β-N-acetylhexosaminidases, HEXA and HEXB, have been recently identified on Drosophila sperm. These enzymes are involved in egg binding through interactions with complementary carbohydrates on the surface of the egg shell. Three genes, Hexosaminidase 1 (Hexo1), Hexosaminidase 2 (Hexo2) and fused lobes (fdl), encode for HEXA and HEXB subunits. The availability of C. capitata EST libraries derived from embryos and adult heads allowed us to identify three sequences homologous to the D. melanogaster Hexo1, Hexo2 and fdl genes. Here, we report the expression profile analysis of CcHexo1, CcHexo2 and Ccfdld in several tissues, organs and stages. Ccfdl expression was highest in heads of both sexes and in whole adult females. In the testis and ovary the three genes showed distinct spatial and temporal expression patterns. All the mRNAs were detectable in early stages of spermatogenesis; CcHexo2 and Ccfdl were also expressed in early elongating spermatid cysts. All three genes are expressed in the ovarian nurse cells. CcHexo1 and Ccfdl are stage specific, since they have been observed in stages 12 and 13 during oocyte growth, when programmed cell death occurs in nurse cells. The expression pattern of the three genes in medfly gonads suggests that, as their Drosophila counterparts, they may encode for proteins involved in gametogenesis and fertilization. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Rapid response to lipids profile and leukocyte gene expression after rosuvastatin administration in Chinese healthy volunteers

    Institute of Scientific and Technical Information of China (English)

    HUA Cong-xiao; LI Yi-shi; LIU Yu-qing; LIU Hong; LI Na; WU Ying; XU Li; HUANG Yi-ling

    2008-01-01

    Background Statins are potent lipid-lowering agents widely used in medicaI practice.There has been growing evidence suggesting the pleiotropic effects of statins In addition to the lipid-lowering effect.However,it is still unclear how rapidly the beneficial effects of statins occur.The transcriptome of peripheral blood cells can be used as a sensor to drug therapy.The purpose of the study was to investigate the acute effects of rosuvastatin both on lipids profile and gene expression of peripheral leukocytes following therapy with a single dose of rosuvastatin.Methods Thirty healthy Chinese male volunteers were enrolled.The serum lipids,high-sensitivity C-reactive protein,and plasma fibrinogen were determined before and 72 hours after administration of 20 mg of rosuvastatin.The differentially expressed genes of peripheral leukocytes after administration of rosuvastatin were screened using human oligonucleotide microarray gene expression chips.Then four of the differentially expressed genes including ATM,CASP8,IL8RB and S100B were verified by real-time polymerase chain reaction(PCR).Results Rosuvastatin decreased both serum total cholesterol and low-density lipoprotein cholesterol significantly 72 hours after administration of a single dose of 20 mg rosuvastatin.However,no significant changes occurred in blood high-density lipoprotein cholesterol,triglycerides,C-reactive protein and fibrinogen after the treatment.A total of 24 genes were differentially expressed after the treatment.They were involved in important cell biological processes such as cytokine-cytokine receptor interaction,apoptosis signaling,etc.Conclusions Rosuvastatin rapidly modulates the serum lipids and affects the gene expression of peripheral leukocytes in healthy volunteers.This finding provides some new clues for further studies on its potential pleiotropic effects.

  2. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Science.gov (United States)

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  3. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  4. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    Science.gov (United States)

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  5. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    Directory of Open Access Journals (Sweden)

    Wei Dou

    Full Text Available BACKGROUND: Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina. In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr protein database, gene ontology (GO, cluster of orthologous groups of proteins (COG, and KEGG orthology (KO. The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin exposure using the tag-based digital gene expression (DGE method. CONCLUSION: The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  6. Use of serial analysis of gene expression to reveal the specific regulation of gene expression profile in asthmatic rats treated by acupuncture

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2009-05-01

    Full Text Available Abstract Background Asthma has become an important public health issue and approximately 300 million people have suffered from the disease worldwide. Nowadays, the use of acupuncture in asthma is increasing. This study intended to systematically analyze and compare the gene expression profiles between the asthmatic and acupuncture-treated asthmatic rat lung, and tried to gain insight into the molecular mechanism underlying the early airway response (EAR phase of asthma treated by acupuncture. Methods Four tag libraries of serial analysis of gene expression (SAGE were established from lung tissues of control rats (CK, asthmatic rats (AS, asthmatic rats treated by acupuncture (ASAC, and control rats treated by acupuncture (CKAC. Bioinformatic analyses were carried out by using the methods including unsupervised hierarchical clustering, functional annotation tool of the database for annotation, visualization, and integrated discovery (DAVID, gene ontology (GO tree machine, and Kyoto encyclopedia of genes and genomes (KEGG pathway analysis. Results There were totally 186 differentially expressed tags (P CK/AS between the libraries of CK and AS, 130 differentially expressed tags between libraries of AS/ASAC (P AS/ASAC, and 144 differentially expressed tags between libraries of CK/CKAC (P CK/CKAC. The gene expression profiles of AS and ASAC were more similar than other libraries via unsupervised SAGE clustering. By comparison of PCK/AS and PAS/ASAC, the DAVID genes functional classification was found to be changed from "immune response" to "response to steroid hormone stimulus", and the GO term "antigen processing and presentation of peptide antigen" disappeared in PAS/ASAC. Totally 3 same KEGG pathways were found among the three groups. Moreover, 21 specific tags of the acupuncture in treating asthma were detected using Venn diagrams. Conclusion Our SAGE research indicates that the gene expression profile of the EAR phase of asthma could be

  7. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries) Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Science.gov (United States)

    Yue, Yaojing; Guo, Tingting; Liu, Jianbin; Guo, Jian; Yuan, Chao; Feng, Ruilin; Niu, Chune; Sun, Xiaoping; Yang, Bohui

    2015-01-01

    Wool fiber diameter (WFD) is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3]) were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs) were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs) showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR) had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05). The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P sheep through gene-assisted selection or targeted gene manipulation in the future.

  8. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.

    Science.gov (United States)

    Guo, Shaogui; Liu, Jingan; Zheng, Yi; Huang, Mingyun; Zhang, Haiying; Gong, Guoyi; He, Hongju; Ren, Yi; Zhong, Silin; Fei, Zhangjun; Xu, Yong

    2011-09-21

    Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression

  9. Biologically relevant effects of mRNA amplification on gene expression profiles

    Directory of Open Access Journals (Sweden)

    Smits Jos FM

    2006-04-01

    Full Text Available Abstract Background Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Results Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P Conclusion This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left

  10. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Wei-Yi Ong

    Full Text Available Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin, P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein; and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of 'common genes' (21 and 7% between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.

  11. Gene expression profiling in uveal melanoma: technical reliability and correlation of molecular class with pathologic characteristics.

    Science.gov (United States)

    Plasseraud, Kristen M; Wilkinson, Jeff K; Oelschlager, Kristen M; Poteet, Trisha M; Cook, Robert W; Stone, John F; Monzon, Federico A

    2017-08-04

    A 15-gene expression profile test has been clinically validated and is widely utilized in newly diagnosed uveal melanoma (UM) patients to assess metastatic potential of the tumor. As most patients are treated with eye-sparing radiotherapy, there is limited tumor tissue available for testing, and technical reliability and success of prognostic testing are critical. This study assessed the analytical performance of the 15-gene expression test for UM and the correlation of molecular class with pathologic characteristics. Inter-assay, intra-assay, inter-instrument/operator, and inter-site experiments were conducted, and concordance of the 15-gene expression profile test results and associated discriminant scores for matched tumor samples were evaluated. Technical success was determined from de-identified clinical reports from January 2010 - May 2016. Pathologic characteristics of enucleated tumors were correlated with molecular class results. Inter-assay concordance on 16 samples run on 3 consecutive days was 100%, and matched discriminant scores were strongly correlated (R(2) = 0.9944). Inter-assay concordance of 46 samples assayed within a one year period was 100%, with an R(2) value of 0.9747 for the discriminant scores. Intra-assay concordance of 12 samples run concurrently in duplicates was 100%; discriminant score correlation yielded an R(2) of 0.9934. Concordance between two sites assessing the same tumors was 100% with an R(2) of 0.9818 between discriminant scores. Inter-operator/instrument concordance was 96% for Class 1/2 calls and 90% for Class 1A/1B calls, and the discriminant scores had a correlation R(2) of 0.9636. Technical success was 96.3% on 5516 samples tested since 2010. Increased largest basal diameter and thickness were significantly associated with Class 1B and Class 2 vs. Class 1A signatures. These results show that the 15-gene expression profile test for UM has robust, reproducible performance characteristics. The technical success rate

  12. Mammary fat of breast cancer: gene expression profiling and functional characterization.

    Science.gov (United States)

    Wang, Fengliang; Gao, Sheng; Chen, Fei; Fu, Ziyi; Yin, Hong; Lu, Xun; Yu, Jing; Lu, Cheng

    2014-01-01

    Mammary fat is the main composition of breast, and is the most probable candidate to affect tumor behavior because the fat produces hormones, growth factors and adipokines, a heterogeneous group of signaling molecules. Gene expression profiling and functional characterization of mammary fat in Chinese women has not been reported. Thus, we collected the mammary fat tissues adjacent to breast tumors from 60 subjects, among which 30 subjects had breast cancer and 30 had benign lesions. We isolated and cultured the stromal vascular cell fraction from mammary fat. The expression of genes related to adipose function (including adipogenesis and secretion) was detected at both the tissue and the cellular level. We also studied mammary fat browning. The results indicated that fat tissue close to malignant and benign lesions exhibited distinctive gene expression profiles and functional characteristics. Although the mammary fat of breast tumors atrophied, it secreted tumor growth stimulatory factors. Browning of mammary fat was observed and browning activity of fat close to malignant breast tumors was greater than that close to benign lesions. Understanding the diversity between these two fat depots may possibly help us improve our understanding of breast cancer pathogenesis and find the key to unlock new anticancer therapies.

  13. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  14. Mammary fat of breast cancer: gene expression profiling and functional characterization.

    Directory of Open Access Journals (Sweden)

    Fengliang Wang

    Full Text Available Mammary fat is the main composition of breast, and is the most probable candidate to affect tumor behavior because the fat produces hormones, growth factors and adipokines, a heterogeneous group of signaling molecules. Gene expression profiling and functional characterization of mammary fat in Chinese women has not been reported. Thus, we collected the mammary fat tissues adjacent to breast tumors from 60 subjects, among which 30 subjects had breast cancer and 30 had benign lesions. We isolated and cultured the stromal vascular cell fraction from mammary fat. The expression of genes related to adipose function (including adipogenesis and secretion was detected at both the tissue and the cellular level. We also studied mammary fat browning. The results indicated that fat tissue close to malignant and benign lesions exhibited distinctive gene expression profiles and functional characteristics. Although the mammary fat of breast tumors atrophied, it secreted tumor growth stimulatory factors. Browning of mammary fat was observed and browning activity of fat close to malignant breast tumors was greater than that close to benign lesions. Understanding the diversity between these two fat depots may possibly help us improve our understanding of breast cancer pathogenesis and find the key to unlock new anticancer therapies.

  15. Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats.

    Science.gov (United States)

    Zhao, Liting; Wu, Jianquan; Yang, Jijun; Wei, Jingyu; Gao, Weina; Guo, Changjiang

    2011-06-01

    The aim of this study was to determine the effect of quercetin on hepatic gene expression profile in rats. Twenty male Wistar rats were divided into the control group and the quercetin-treated group, in which a diet containing 0.5% quercetin was provided. After two weeks of feeding, serum and liver samples were collected. Biomarkers of oxidative stress, including serum ferric reducing antioxidant power (FRAP) values and levels of ascorbic acid, vitamin E (VE), glutathione (GSH) and malondialdehyde (MDA) were measured. The hepatic gene expression profile was examined using a microarray technique. The results showed that serum FRAP value, levels of ascorbic acid and VE were increased significantly, whereas serum levels of GSH and MDA were not changed significantly after quercetin supplementation. The microarray analysis revealed that some hepatic genes involved in phase 2 reaction, metabolism of cholesterol and homocysteine, and energy production were expressed differentially in response to quercetin administration. These findings provide a molecular basis for the elucidation of the actions played by quercetin in vivo.

  16. Gene expression profiling of gastric cancer by microarray combined with laser capture microdissection

    Institute of Scientific and Technical Information of China (English)

    Ming-Shiang Wu; Yi-Shing Lin; Yu-Ting Chang; Chia-Tung Shun; Ming-Tsan Lin; Jaw-Town Lin

    2005-01-01

    AIM: To examine the gene expression profile of gastric cancer (GC) by combination of laser capture microdissection (LCM) and microarray and to correlate the profiling with histological subtypes. METHODS: Using LCM, pure cancer cells were procured from 45 cancerous tissues. After procurement of about 5 000 cells, total RNA was extracted and the quality of RNA was determined before further amplification and hybridization. One microgram of amplified RNA was converted to cDNA and hybridized to cDNA microarray. RESULTS: Among 45 cases, only 21 were qualified for their RNAs. A total of 62 arrays were performed. These included 42 arrays for cancer (21 cases with dyeswab duplication) and 20 arrays for non-tumorous cells (10 cases with dye-swab duplication) with universal reference. Analyzed data showed 504 genes were differentially expressed and could distinguish cancerous and non-cancerous groups with more than 99% accuracy. Of the 504 genes, trefoil factors 1, 2, and 3 were in the list and their expression patterns were consistent with previous reports. Immunohistochemical staining of trefoil factor 1 was also consistent with the array data. Analyses of the tumor group with these 504 genes showed that there were 3 subgroups of GC that did not correspond to any current classification system, including Lauren's classification. CONCLUSION: By using LCM, linear amplification of RNA, and cDNA microarray, we have identified a panel of genes that have the power to discriminate between GC and non-cancer groups. The new molecular classification and the identified novel genes in gastric carcinogenesis deserve further investigations to elucidate their dinicopathological significance.

  17. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Directory of Open Access Journals (Sweden)

    Herlânder Azevedo

    2016-03-01

    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors.

  18. Gene expression profile of oral squamous cell carcinomas from Sri Lankan betel quid users.

    Science.gov (United States)

    Suhr, Mai Lill; Dysvik, Bjarte; Bruland, Ove; Warnakulasuriya, Saman; Amaratunga, Asoka N; Jonassen, Inge; Vasstrand, Endre N; Ibrahim, Salah O

    2007-11-01

    Oral squamous cell carcinoma (OSCC) is one of the major health problems in Sri Lanka and the disease is associated with the habit of Betel Quid (BQ) chewing. Using 35k oligo microarrays, we analyzed the gene expression profile of 15 Sri Lankan patients diagnosed with OSCCs and pair-wised normal controls and correlated the findings with the clinicopathological data. Following the recording of the scanned array images and data analysis, results for selected candidate genes were verified using QRT-PCR. Upon analysis, a total of 263 genes [71 (27%) of unknown functions previously not reported in OSCCs and 192 (73%) of known functions] were found as differentially expressed between tumors and controls. For the genes with known functions, 66 (34%; such as COL4A1, MMP1, MMP3, PLAU, SPARC and KRT19) were previously reported in OSCC and for the remaining 126 (66%; such as CD47, APOL3, RRAGC, BPIL1 and AZGP1) this is the first report in OSCCs. Hierarchical clustering of the differentially expressed 263 genes grouped the samples into several clusters with the larger one being dominated by tumors of stage 3 and 4. Two cases (a verrucous SCC and an advanced SCC), did not cluster with any of the other samples. We found two main biological pathways (cell communication and integrin-mediated cell adhesion) and 5 gene ontology categories (transcription regulator activity, structural molecule activity, intracellular signaling, cytoskeleton and signal transduction) of relevance to the OSCCs examined. Results from the QRT-PCR verified the results from the microarray experiment. This study provides valuable information on gene expression profile of OSCCs of habitual users of BQ from Sri Lanka. Of particular interest were the list of genes of known and unknown functions and the two biological pathways that we suggest as candidate genes in oral cancers associated with BQ chewing in Southeast Asia, in particular Sri Lanka. The suggested candidate genes might be used as molecular biomarkers

  19. Goat's αS1-casein polymorphism affects gene expression profile of lactating mammary gland.

    Science.gov (United States)

    Ollier, S; Chauvet, S; Martin, P; Chilliard, Y; Leroux, C

    2008-04-01

    Goat's αS1-casein (CSN1S1) polymorphism has a significant effect on milk protein and lipid composition, which affects the nutritional quality and technological properties of milk. Moreover, this polymorphism has a large impact on the morphology of mammary epithelial cells. To explore the metabolic pathways modulated in relation to this polymorphism, we compared the mammary gene expression profiles of two groups of lactating goats carrying either two reference or two defective alleles, using a bovine oligonucleotide microarray representing 8379 genes. We identified 41 differentially expressed genes between the two genotype groups. In particular, we showed a downregulation of two key lipogenic genes encoding fatty acid synthase and glycerol-3-phosphate acyltransferase in agreement with the low fat concentration associated with CSN1S1 deficiency. In addition, this study highlights changes in the expression level of several genes known to influence membrane fluidity, cell-cell interaction or chromatin organization. Our results open up new fields of investigation on structural modifications associated with CSN1S1 deficiency that could affect mammary gland function.

  20. Gene expression profiling reveals large regulatory switches between succeeding stipe stages in Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Yongxin Tao

    Full Text Available The edible mushroom Volvariella volvacea is an important crop in Southeast Asia and is predominantly harvested in the egg stage. One of the main factors that negatively affect its yield and value is the rapid transition from the egg to the elongation stage, which has a decreased commodity value and shelf life. To improve our understanding of the changes during stipe development and the transition from egg to elongation stage in particular, we analyzed gene transcription in stipe tissue of V. volvacea using 3'-tag based digital expression profiling. Stipe development turned out to be fairly complex with high numbers of expressed genes, and regulation of stage differences is mediated mainly by changes in expression levels of genes, rather than on/off modulation. Most explicit is the strong up-regulation of cell division from button to egg, and the very strong down-regulation hereof from egg to elongation, that continues in the maturation stage. Button and egg share cell division as means of growth, followed by a major developmental shift towards rapid stipe elongation based on cell extension as demonstrated by inactivation of cell division throughout elongation and maturation. Examination of regulatory genes up-regulated from egg to elongation identified three potential high upstream regulators for this switch. The new insights in stipe dynamics, together with a series of new target genes, will provide a sound base for further studies on the developmental mechanisms of mushroom stipes and the switch from egg to elongation in V. volvacea in particular.

  1. Identification of novel predictor classifiers for inflammatory bowel disease by gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Trinidad Montero-Meléndez

    Full Text Available BACKGROUND: Improvement of patient quality of life is the ultimate goal of biomedical research, particularly when dealing with complex, chronic and debilitating conditions such as inflammatory bowel disease (IBD. This is largely dependent on receiving an accurate and rapid diagnose, an effective treatment and in the prediction and prevention of side effects and complications. The low sensitivity and specificity of current markers burden their general use in the clinical practice. New biomarkers with accurate predictive ability are needed to achieve a personalized approach that take the inter-individual differences into consideration. METHODS: We performed a high throughput approach using microarray gene expression profiling of colon pinch biopsies from IBD patients to identify predictive transcriptional signatures associated with intestinal inflammation, differential diagnosis (Crohn's disease or ulcerative colitis, response to glucocorticoids (resistance and dependence or prognosis (need for surgery. Class prediction was performed with self-validating Prophet software package. RESULTS: Transcriptional profiling divided patients in two subgroups that associated with degree of inflammation. Class predictors were identified with predictive accuracy ranging from 67 to 100%. The expression accuracy was confirmed by real time-PCR quantification. Functional analysis of the predictor genes showed that they play a role in immune responses to bacteria (PTN, OLFM4 and LILRA2, autophagy and endocytocis processes (ATG16L1, DNAJC6, VPS26B, RABGEF1, ITSN1 and TMEM127 and glucocorticoid receptor degradation (STS and MMD2. CONCLUSIONS: We conclude that using analytical algorithms for class prediction discovery can be useful to uncover gene expression profiles and identify classifier genes with potential stratification utility of IBD patients, a major step towards personalized therapy.

  2. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  3. Expression profiling of sucrose metabolizing genes in Saccharum, Sorghum and their hybrids.

    Science.gov (United States)

    Ramalashmi, K; Prathima, P T; Mohanraj, K; Nair, N V

    2014-10-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14), sucrose synthase (SuSy; EC 2.4.1.13) and soluble acid invertase (SAI; EC 3.2.1.26) are key enzymes that regulate sucrose fluxes in sink tissues for sucrose accumulation in sugarcane and sorghum. In this study, the expression profiling of sucrose-related genes, i.e. SPS, SuSy and SAI in two sets of hybrids viz., one from a Sorghum × Saccharum cross and the other from a Saccharum × Sorghum cross, high- and low-sucrose varieties, sweet and grain sorghum lines was carried out using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) at monthly intervals. The results indicated differential expression of the three genes in high- and low-sucrose forms. Expression of SPS and SuSy genes was high in high-sucrose varieties, Saccharum × Sorghum hybrids and sweet sorghum and lower in low-sucrose varieties, Sorghum × Saccharum hybrids and grain sorghum. SAI showed a lower expression in high-sucrose varieties, Saccharum × Sorghum hybrids and sweet sorghum and higher expression in low-sucrose varieties, Sorghum × Saccharum hybrids and the grain sorghum. This study describes the positive association of SPS and SuSy and negative association of SAI on sucrose accumulation. This is the first report of differential expression profiling of SPS, SuSy and SAI in intergeneric hybrids involving sugarcane and sorghum, which opens the possibility for production of novel hybrids with improved sucrose content and with early maturity.

  4. Integrated Analysis of Expression Profile Based on Differentially Expressed Genes in Middle Cerebral Artery Occlusion Animal Models

    Directory of Open Access Journals (Sweden)

    Huaqiang Zhou

    2016-05-01

    Full Text Available Stroke is one of the most common causes of death, only second to heart disease. Molecular investigations about stroke are in acute shortage nowadays. This study is intended to explore a gene expression profile after brain ischemia reperfusion. Meta-analysis, differential expression analysis, and integrated analysis were employed on an eight microarray series. We explored the functions and pathways of target genes in gene ontology (GO enrichment analysis and constructed a protein-protein interaction network. Meta-analysis identified 360 differentially expressed genes (DEGs for Mus musculus and 255 for Rattus norvegicus. Differential expression analysis identified 44 DEGs for Mus musculus and 21 for Rattus norvegicus. Timp1 and Lcn2 were overexpressed in both species. The cytokine-cytokine receptor interaction and chemokine signaling pathway were highly enriched for the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway. We have exhibited a global view of the potential molecular differences between middle cerebral artery occlusion (MCAO animal model and sham for Mus musculus or Rattus norvegicus, including the biological process and enriched pathways in DEGs. This research helps contribute to a clearer understanding of the inflammation process and accurate identification of ischemic infarction stages, which might be transformed into a therapeutic approach.

  5. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  6. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    Science.gov (United States)

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  7. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Xerxa, Elena; Barbisin, Maura; Chieppa, Maria Novella; Krmac, Helena; Vallino Costassa, Elena; Vatta, Paolo; Simmons, Marion; Caramelli, Maria; Casalone, Cristina; Corona, Cristiano

    2016-01-01

    Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions. PMID

  8. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy.

    Science.gov (United States)

    Xerxa, Elena; Barbisin, Maura; Chieppa, Maria Novella; Krmac, Helena; Vallino Costassa, Elena; Vatta, Paolo; Simmons, Marion; Caramelli, Maria; Casalone, Cristina; Corona, Cristiano; Legname, Giuseppe

    2016-01-01

    Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions.

  9. Comprehensive Gene Expression Profiling Reveals Synergistic Functional Networks in Cerebral Vessels after Hypertension or Hypercholesterolemia

    Science.gov (United States)

    Ong, Wei-Yi; Ng, Mary Pei-Ern; Loke, Sau-Yeen; Jin, Shalai; Wu, Ya-Jun; Tanaka, Kazuhiro; Wong, Peter Tsun-Hon

    2013-01-01

    Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD) is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA) of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin), P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein); and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of ‘common genes’ (21 and 7%) between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A) and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD. PMID:23874591

  10. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma.

    Science.gov (United States)

    Lim, Kue Peng; Cirillo, Nicola; Hassona, Yazan; Wei, Wenbin; Thurlow, Johanna K; Cheong, Sok Ching; Pitiyage, Gayani; Parkinson, E Ken; Prime, Stephen S

    2011-03-01

    Oral cancer is a highly aggressive malignancy with poor prognosis. This study examined the behaviour of fibroblast strains from normal oral mucosa, dysplastic epithelial tissue, and genetically stable (minimal copy number alterations-CNA; minimal loss of heterozygosity-LOH; wild-type p53; wild-type p16INK4A) and unstable (extensive CNA and LOH; inactivation of p53 and p16INK4A) oral squamous cell carcinoma (OSCC). Fibroblasts from genetically unstable OSCC relative to the other fibroblast subtypes grew more slowly and stimulated the invasion of a non-tumourigenic keratinocyte cell line into fibroblast-rich collagen gels. To understand these findings, genome-wide transcriptional profiles were generated using the GeneChip(®) cDNA whole transcript microarray platform. Principal component analysis showed that the fibroblasts could be distinguished according to the stage of tumour development. Tumour progression was associated with down-regulation of cell cycle- and cytokinesis-related genes and up-regulation of genes encoding transmembrane proteins including cell adhesion molecules. Gene expression was validated in independent fibroblast strains using qRT-PCR. Gene connectivity and interactome-transcriptome associations were determined using a systems biology approach to interrogate the gene expression data. Clusters of gene signatures were identified that characterized genetically unstable and stable OSCCs relative to each other and to fibroblasts from normal oral mucosa. The expression of highly connected genes associated with unstable OSCCs, including those that encode α-SMA and the integrin α6, correlated with poor patient prognosis in an independent dataset of head and neck cancer. The results of this study demonstrate that fibroblasts from unstable OSCCs represent a phenotypically distinguishable subset that plays a major role in oral cancer biology. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Gene Expression Profile in the Liver of Sheep Infected with Cystic Echinococcosis

    Science.gov (United States)

    Hui, Wenqiao; Jiang, Song; Liu, Xianxia; Ban, Qian; Chen, Sheng; Jia, Bin

    2016-01-01

    Background Cystic Echinococcosis (CE), caused by infection with the Echinococcus granulosus (E. granulosus), represents considerable health problems in both humans and livestock. Nevertheless, the genetic program that regulates the host response to E. granulosus infection is largely unknown. Previously, using microarray analysis, we found that the innate immunity played a vital role in the E. granulosus defense of the intestine tissue where E. granulosus first invaded. Subsequently, we turned our attention to investigating the molecular immune mechanism in its organ target, the liver, which is where the E. granulosus metacestodes are established and live for very long periods. In this work, the microarray-based methodology was used to study gene expression profiles in the liver of sheep infected with E. granulosus at 8 weeks post infection, corresponding to the early cystic established phase. Methods A total of 6 female-1-year-old healthy Kazakh sheep were used for the experiments. Three Kazakh sheep were orally infected with E. granulosus eggs, and the others remained untreated and served as controls. Sheep were humanely euthanized and necropsized at 8 weeks post-infection (the early stage of cyst established). The microarray was used to detect differential hepatic gene expression between CE infection sheep and healthy controls at this time point. Real-time PCR was used to validate the microarray data. Results We found that E. granulosus infection induces 153 differentially expressed genes in the livers of infected sheep compared with healthy controls. Among them, 87 genes were up-regulated, and 66 genes were notably down-regulated. Functional analysis showed that these genes were associated with three major functional categories: (a) metabolism, (b) the immune system and (c) signaling and transport. Deeper analysis indicated that complement together with other genes associated with metabolism, played important roles in the defense of E. granulosus infection

  12. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    Science.gov (United States)

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  13. Gene Expression Profiles in Living Donors Immediately After Partial Hepatectomy—The Initial Response of Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Cheng-Maw Ho

    2007-01-01

    Conclusion: Gene expression profiles immediately after partial hepatectomy were reported first in humans with the techniques of oligo DNA microarray, which were compatible with the initial gene expression patterns of liver regeneration in rats. [J Formos Med Assoc 2007;106(4:288-294

  14. The role of fluorescence in situ hybridization and gene expression profiling in myeloma risk stratification.

    Science.gov (United States)

    Hose, Dirk; Seckinger, Anja; Jauch, Anna; Rème, Thierry; Moreaux, Jérôme; Bertsch, Uta; Neben, Kai; Klein, Bernard; Goldschmidt, Hartmut

    2011-12-01

    Multiple myeloma patients' survival under treatment varies from a few months to more than 15 years. Clinical prognostic factors, especially beta2-microglobulin (B2M) and the international staging system (ISS), allow risk assessment to a certain extent, but do not identify patients at very high risk. As malignant plasma cells are characterized by a variety of chromosomal aberrations and changes in gene expression, a molecular characterization ofCD138-purified myeloma cells by interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP) can be used for improved risk assessment, iFISH allows a risk stratification with presence of a translocation t(4;14) and/or deletion of 17p13 being the best documented adverse prognostic factors. A deletion of 13q14 is no longer considered to define adverse risk. Patients harbouring a t(4;14) seems to benefit from a bortezomib- or lenalidomide containing regimen, whereas patients with deletion 17p13 seem only to benefit from a high dose therapy approach using long term bortezomib (in induction and maintenance) and autologous tandem-transplantation as used in the GMMG-HD4 trial, or the total therapy 3 concept. Gene expression profiling allows the assessment of high risk scores (IFM, UAMS), remaining prognostic despite treatment with novel agents, and prognostic surrogates of biological factors (e.g. proliferation) and (prognostic) target gene expression (e.g. Aurora-kinase A). Thus, assessment of B2M and ISS-stage, iFISH, and GEP is considered extended routine diagnostics in therapy requiring multiple myeloma patients for risk assessment and, even now, to a certain extent selection of treatment.

  15. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  16. Effects of Nonylphenol on Brain Gene Expression Profiles in F1 Generation Rats

    Institute of Scientific and Technical Information of China (English)

    YIN-YIN XIA; PING ZHANG; YANG WANG

    2008-01-01

    Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique.Methods mRNA was extracted from the brain of 2-day old F1 generation male rats Whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure,and then it was reversely transcribed to cDNA hbeled with cy5 and cy3 fluorescence.Subsequently,cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated.Conclusion Nonylphenol may disturb the neurcendocrine function of male rats when administered perinatally.

  17. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  18. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  19. Gene expression profile analysis of genes in rat hippocampus from antidepressant treated rats using DNA microarray

    Directory of Open Access Journals (Sweden)

    Shin Minkyu

    2010-11-01

    Full Text Available Abstract Background The molecular and biological mechanisms by which many antidepressants function are based on the monoamine depletion hypothesis. However, the entire cascade of mechanisms responsible for the therapeutic effect of antidepressants has not yet been elucidated. Results We used a genome-wide microarray system containing 30,000 clones to evaluate total RNA that had been isolated from the brains of treated rats to identify the genes involved in the therapeutic mechanisms of various antidepressants, a tricyclic antidepressant (imipramine. a selective serotonin reuptake inhibitor (fluoxetine, a monoamine oxidase inhibitor (phenelzine and psychoactive herbal extracts of Nelumbinis Semen (NS. To confirm the differential expression of the identified genes, we analyzed the amount of mRNA that was isolated from the hippocampus of rats that had been treated with antidepressants by real-time RT-PCR using primers specific for selected genes of interest. These data demonstrate that antidepressants interfere with the expression of a large array of genes involved in signaling, survival and protein metabolism, suggesting that the therapeutic effect of these antidepressants is very complex. Surprisingly, unlike other antidepressants, we found that the standardized herbal medicine, Nelumbinis Semen, is free of factors that can induce neurodegenerative diseases such as caspase 8, α-synuclein, and amyloid precursor protein. In addition, the production of the inflammatory cytokine, IFNγ, was significantly decreased in rat hippocampus in response to treatment with antidepressants, while the inhibitory cytokine, TGFβ, was significantly enhanced. Conclusions These results suggest that antidepressants function by regulating neurotransmission as well as suppressing immunoreactivity in the central nervous system.

  20. Gene expression profiling and pathway analysis of hepatotoxicity induced by triptolide in Wistar rats.

    Science.gov (United States)

    Wang, Jiaying; Jiang, Zhenzhou; Ji, Jinzi; Wang, Xinzhi; Wang, Tao; Zhang, Yun; Tai, Ting; Chen, Mi; Sun, Lixin; Li, Xia; Zhang, Luyong

    2013-08-01

    Triptolide (TP), a major component of TWHF, is widely used to treat rheumatoid arthritis, systemic lupus erythematosus, nephritis and leprosy. However, its clinical use is limited by hepatotoxicity. To further elucidate the underlying mechanism of its hepatotoxic effects, hepatic gene expression profiles were analyzed. TP (1000 and 300 μg/kg) was orally administered to Wistar rats for 14 days. Current study indicated that female rats were more sensitive to TP-induced hepatotoxicity than males. Genome-wide microarray analyses identified 3329 differentially expressed genes in liver of female rats. Analyses of these genes identified over-represented functions associated with insulin signaling pathway, glucose metabolism, cell cycle, oxidative stress and apoptosis, which were consistent with the results of significant increase of Caspase-3 activity and reduction of serum glucose, GSH/GSSG ratio, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities, liver glycogen. In addition, it was observed for the first time that glucocorticoids and IGF1 might get involved in TP-induced hepatotoxicity. These data suggest that TP treatment could alter the hepatic redox status, reduce serum glucose and induce hepatocyte apoptosis, consistent with the differential expression of genes involved in insulin signaling pathway, glucose metabolism pathway and cell stress pathway, all of which might contribute to the overall TP-induced hepatotoxicity.

  1. A genome-wide survey of maize lipid-related genes: candidate genes mining,digital gene expression profiling and colocation with QTL for maize kernel oil

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Lipids play an important role in plants due to their abundance and their extensive participation in many metabolic processes.Genes involved in lipid metabolism have been extensively studied in Arabidopsis and other plant species.In this study,a total of 1003 maize lipid-related genes were cloned and annotated,including 42 genes with experimental validation,732 genes with full-length cDNA and protein sequences in public databases and 229 newly cloned genes.Ninety-seven maize lipid-related genes with tissue-preferential expression were discovered by in silico gene expression profiling based on 1984483 maize Expressed Sequence Tags collected from 182 cDNA libraries.Meanwhile,70 QTL clusters for maize kernel oil were identified,covering 34.5% of the maize genome.Fifty-nine (84%) QTL clusters co-located with at least one lipid-related gene,and the total number of these genes amounted to 147.Interestingly,thirteen genes with kernel-preferential expression profiles fell within QTL clusters for maize kernel oil content.All the maize lipid-related genes identified here may provide good targets for maize kernel oil QTL cloning and thus help us to better understand the molecular mechanism of maize kernel oil accumulation.

  2. Gene expression profiles of human glioblastomas are associated with both tumor cytogenetics and histopathology.

    Science.gov (United States)

    Vital, Ana Luísa; Tabernero, Maria Dolores; Castrillo, Abel; Rebelo, Olinda; Tão, Hermínio; Gomes, Fernando; Nieto, Ana Belen; Resende Oliveira, Catarina; Lopes, Maria Celeste; Orfao, Alberto

    2010-09-01

    Despite the increasing knowledge about the genetic alterations and molecular pathways involved in gliomas, few studies have investigated the association between the gene expression profiles (GEP) and both cytogenetics and histopathology of gliomas. Here, we analyzed the GEP (U133Plus2.0 chip) of 40 gliomas (35 astrocytic tumors, 3 oligodendrogliomas, and 2 mixed tumors) and their association with tumor cytogenetics and histopathology. Unsupervised and supervised analyses showed significantly different GEP in low- vs high-grade gliomas, the most discriminating genes including genes involved in the regulation of cell proliferation, apoptosis, DNA repair, and signal transduction. In turn, among glioblastoma multiforme (GBM), 3 subgroups of tumors were identified according to their GEP, which were closely associated with the cytogenetic profile of their ancestral tumor cell clones: (i) EGFR amplification, (ii) isolated trisomy 7, and (iii) more complex karyotypes. In summary, our results show a clear association between the GEP of gliomas and tumor histopathology; additionally, among grade IV astrocytoma, GEP are significantly associated with the cytogenetic profile of the ancestral tumor cell clone. Further studies in larger series of patients are necessary to confirm our observations.

  3. Progesterone Receptor Subcellular Localization and Gene Expression Profile in Human Astrocytoma Cells Are Modified by Progesterone

    Directory of Open Access Journals (Sweden)

    Aliesha González-Arenas

    2014-11-01

    Full Text Available Intracellular progesterone receptor (PR has been identified in human astrocytomas, the most common and aggressive primary brain tumors in humans. It has been reported that PR cell distribution affects their transcriptional activity and turnover. In this work we studied by immunofluorescence the effects of estradiol and progesterone on the subcellular localization of PR in a grade III human astrocytoma derived cell line (U373. We observed that total PR was mainly distributed in the cytoplasm without hormonal treatment. Estradiol (10 nM increased PR presence in the cytoplasm of U373 cells, whereas progesterone (10 nM and RU486 (PR antagonist, 1 μM blocked this effect. To investigate the role of PR activity in the regulation of gene expression pattern of U373 cells, we evaluated by microarray analysis the profile of genes regulated by progesterone, RU486, or both steroids. We found different genes regulated by steroid treatments that encode for proteins involved in metabolism, transport, cell cycle, proliferation, metastasis, apoptosis, processing of nucleic acids and proteins, adhesion, pathogenesis, immune response, cytoskeleton, and membrane receptors. We determined that 30 genes were regulated by progesterone, 41 genes by RU486 alone, and 13 genes by the cotreatment of progesterone+RU486, suggesting that there are many genes regulated by intracellular PR or through other signaling pathways modulated by progesterone. All these data suggest that PR distribution and activity should modify astrocytomas growth.

  4. Real-Time Gene Expression Profiling of Live Shewanella Oneidensis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoliang Sunney Xie

    2009-03-30

    steady-state distribution of protein concentration in live cells, considering that protein production occurs in random bursts with an exponentially distributed number of molecules. This model allows for the extraction of kinetic parameters of gene expression from steady-state distributions of protein concentration in a cell population, which are available from single cell data obtained by fluorescence microscopy. [Phys. Rev. Lett. 97, 168302 (2006)]. A major objective in the Genome to Life (GtL) program is to monitor and understand the gene expression profile of a complete bacterial genome. We developed genetic and imaging methods for sensitive protein expression profiling in individual S. oneidensis cell. We have made good progress in constructing YFP-library with several hundred chromosomal fusion proteins and studied protein expression profiling in living Shewanella oneidensis cells. Fluorescence microscopy revealed the average abundance of specific proteins, as well as their noise in gene expression level across a population. We also explored ways to adapt our fluorescence measurement for other growth conditions, such as anaerobic growth.

  5. Development and Validation of Predictive Indices for a Continuous Outcome Using Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yingdong Zhao

    2010-05-01

    Full Text Available There have been relatively few publications using linear regression models to predict a continuous response based on microarray expression profiles. Standard linear regression methods are problematic when the number of predictor variables exceeds the number of cases. We have evaluated three linear regression algorithms that can be used for the prediction of a continuous response based on high dimensional gene expression data. The three algorithms are the least angle regression (LAR, the least absolute shrinkage and selection operator (LASSO, and the averaged linear regression method (ALM. All methods are tested using simulations based on a real gene expression dataset and analyses of two sets of real gene expression data and using an unbiased complete cross validation approach. Our results show that the LASSO algorithm often provides a model with somewhat lower prediction error than the LAR method, but both of them perform more efficiently than the ALM predictor. We have developed a plug-in for BRB-ArrayTools that implements the LAR and the LASSO algorithms with complete cross-validation.

  6. Expression profiling identifie