WorldWideScience

Sample records for gene expression pathways

  1. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli...ng pathways mediating type I interferon gene expression. Authors Edwards MR, Slat

  2. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  3. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    by humanity in biopharmaceuticals or as industrial bioproducts. Yields and purity of diterpenoids purified from natural sources or made by chemical synthesis are generally insufficient for large-volume or high-end applications, thus alternative sources are needed. Synthetic biology, where heterologous pathways...... have been reconstructed in host production organisms is an attractive lternative, which holds the promise to enable a scalable, costeffective and table supply of natural products. Knowledge about the genes and mechanisms nvolved in the original pathway is a prerequisite for such heterologous production...... is compatible with native codon usage, and through the conserved mechanisms of protein targeting and posttranslational odifications, has the capacity to produce functional enzymes. To further explore plant based expression and characterization of diterpenoid pathway genes, two different plant expression hosts...

  4. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  7. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    Plants produce more than 10.000 diterpenoid compounds of which the large majority is involved in specialized metabolism, while a few are involved in general metabolism. Specialized metabolism diterpenoids have functions in interactions of plants with other organisms and selected ones are utilized...... and aracterization of diTPSs deriving from the plant kingdom, a plant expression host offers several advantages such as the presence of all relevant compartments (plastids and endoplasmic reticulum) and the universal C5 building blocks for isoprenoid biosynthesis. In addition, a plant based xpression host...... is compatible with native codon usage, and through the conserved mechanisms of protein targeting and posttranslational odifications, has the capacity to produce functional enzymes. To further explore plant based expression and characterization of diterpenoid pathway genes, two different plant expression hosts...

  8. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  9. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    Science.gov (United States)

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  10. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  11. Automation of gene assignments to metabolic pathways using high-throughput expression data

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2005-08-01

    Full Text Available Abstract Background Accurate assignment of genes to pathways is essential in order to understand the functional role of genes and to map the existing pathways in a given genome. Existing algorithms predict pathways by extrapolating experimental data in one organism to other organisms for which this data is not available. However, current systems classify all genes that belong to a specific EC family to all the pathways that contain the corresponding enzymatic reaction, and thus introduce ambiguity. Results Here we describe an algorithm for assignment of genes to cellular pathways that addresses this problem by selectively assigning specific genes to pathways. Our algorithm uses the set of experimentally elucidated metabolic pathways from MetaCyc, together with statistical models of enzyme families and expression data to assign genes to enzyme families and pathways by optimizing correlated co-expression, while minimizing conflicts due to shared assignments among pathways. Our algorithm also identifies alternative ("backup" genes and addresses the multi-domain nature of proteins. We apply our model to assign genes to pathways in the Yeast genome and compare the results for genes that were assigned experimentally. Our assignments are consistent with the experimentally verified assignments and reflect characteristic properties of cellular pathways. Conclusion We present an algorithm for automatic assignment of genes to metabolic pathways. The algorithm utilizes expression data and reduces the ambiguity that characterizes assignments that are based only on EC numbers.

  12. Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

    Directory of Open Access Journals (Sweden)

    Efstathiou Eleni

    2009-08-01

    Full Text Available Abstract Backgound The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis. Methods We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses. Results We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential. Conclusion The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell

  13. Co-expressed Pathways DataBase for Tomato: a database to predict pathways relevant to a query gene.

    Science.gov (United States)

    Narise, Takafumi; Sakurai, Nozomu; Obayashi, Takeshi; Ohta, Hiroyuki; Shibata, Daisuke

    2017-06-05

    Gene co-expression, the similarity of gene expression profiles under various experimental conditions, has been used as an indicator of functional relationships between genes, and many co-expression databases have been developed for predicting gene functions. These databases usually provide users with a co-expression network and a list of strongly co-expressed genes for a query gene. Several of these databases also provide functional information on a set of strongly co-expressed genes (i.e., provide biological processes and pathways that are enriched in these strongly co-expressed genes), which is generally analyzed via over-representation analysis (ORA). A limitation of this approach may be that users can predict gene functions only based on the strongly co-expressed genes. In this study, we developed a new co-expression database that enables users to predict the function of tomato genes from the results of functional enrichment analyses of co-expressed genes while considering the genes that are not strongly co-expressed. To achieve this, we used the ORA approach with several thresholds to select co-expressed genes, and performed gene set enrichment analysis (GSEA) applied to a ranked list of genes ordered by the co-expression degree. We found that internal correlation in pathways affected the significance levels of the enrichment analyses. Therefore, we introduced a new measure for evaluating the relationship between the gene and pathway, termed the percentile (p)-score, which enables users to predict functionally relevant pathways without being affected by the internal correlation in pathways. In addition, we evaluated our approaches using receiver operating characteristic curves, which concluded that the p-score could improve the performance of the ORA. We developed a new database, named Co-expressed Pathways DataBase for Tomato, which is available at http://cox-path-db.kazusa.or.jp/tomato . The database allows users to predict pathways that are relevant to a

  14. Signal transduction pathways that regulate CAB gene expression. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.

    1993-12-31

    We have completed the initial genetic and phenotypic characterization of several classes of new mutants that affect CAB gene expression. The doc mutants (for dark overexpression of cab) are characterized by elevated levels of CAB gene expression in the dark; however, unlike the previously isolated de-etiolated mutants (also isolated in my lab), the doc mutants still appear etiolated. The doc alleles define 3 loci, each of which maps to a separate chromosome. The details of the mutant isolation scheme and the genetic and phenotypic description of these new mutants are described. The second class of mutants, the gun mutants (for genomes uncoupled) show accumulation of CAB mRNA in the absence of chloroplast gene expression and development. Thus, the normally tightly coordinated expression between the chloroplast and nuclear genes that encode chloroplast-destined proteins has been uncoupled. We have shown that the Arabidopsis HY3 locus encodes the type B phytochrome apoprotein gene and have characterized the phenotypes of null hy3 alleles to ascertain a role for this phytochrome in Arabidopsis development. We have also isolated and characterized a number of alleles of the phytochrome A gene.

  15. Differential gene expression by fiber-optic beadarray and pathway in adrenocorticotrophin-secreting pituitary adenomas

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-quan; GUI Song-bo; ZHANG Ya-zhuo

    2010-01-01

    Background Adrenocorticotrophin (ACTH)-secreting pituitary adenomas account for approximately 7%-14% of all pituitary adenomas, but its pathogenesis is still enigmatic. This study aimed to explore mechanisms underlying the pathogenesis of ACTH-secreting pituitary adenomas.Methods We used fiber-optic beadarray to examine gene expression in three ACTH-secreting adenomas compared with three normal pituitaries. Four differentially expressed genes from the three ACTH-secreting adenomas and three normal pituitaries were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.Results Fiber-optic beadarray analysis showed that the expression of 28 genes and 8 expressed sequence tags (ESTs)were significantly increased and the expression of 412 genes and 31 ESTs were significantly decreased. Bioinformatic and pathway analysis showed that the genes HIGD1B, EPS8, HPGD, DAPK2, and IGFBP3 and the transforming growth factor (TGF)-β signaling pathway and extracellular matrix (ECM)-receptor interaction pathway may play important roles in tumorigenesis and progression of ACTH-secreting pituitary adenomas.Conclusions Our data suggest that numerous aberrantly expressed genes and several pathways are involved in the pathogenesis of ACTH-secreting pituitary adenomas. Fiber-optic beadarray combined with pathway analysis of differential gene expression appears to be a valid method of investigating tumour pathogenesis.

  16. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    Science.gov (United States)

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  17. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  18. Differentially expressed genes in adipocytokine signaling pathway of adipose tissue in pregnancy

    OpenAIRE

    Ogunyemi, Dotun; Xu, Jun; Mahesan, Arnold M.; Rad, Steve; Kim, Eric; Yano, Jacqueline; Alexander, Carolyn; Rotter, Jerome I.; Chen, Y.-D. Ida

    2013-01-01

    Objective To profile the differential gene expression of the KEGG Adipocytokine Signaling pathway in omental compared to subcutaneous tissue in normal pregnancy. Study Design Subjects included 14 nonobese, normal glucose tolerant, healthy pregnant women. Matched omental and subcutaneous tissue were obtained at elective cesarean delivery. Gene expression was evaluated using microarray and validated by RT-PCR. Differential gene expression was defined as ≥1.5 fold increase at p < 0.05. Results S...

  19. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  20. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  1. Gene expression, signal transduction pathways and functional networks associated with growth of sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Sass, Hjalte Christian Reeberg; Borup, Rehannah; Alanin, Mikkel

    2017-01-01

    The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined...... of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell...... differentiation and proliferation, among other functions. Fourteen pathways were associated with tumor growth. Five functional molecular networks were generated. This first study on global gene expression in relation to vestibular schwannoma growth rate identified several genes, signal transduction pathways...

  2. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    Science.gov (United States)

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  3. Antipsychotic pathway genes with expression altered in opposite direction by antipsychotics and amphetamine.

    Science.gov (United States)

    Ko, Françoise; Tallerico, Teresa; Seeman, Philip

    2006-08-01

    To develop a new strategy for identifying possible psychotic- or antipsychotic-related pathway genes, rats were treated with clinical doses of haloperidol and clozapine for 4 days, and the altered expression of genes was compared with the genes altered in expression after amphetamine sensitization. The objective was to identify genes with expression altered in the same direction by haloperidol and clozapine but in the opposite direction in the amphetamine-sensitized rat striatum. These criteria were met by 21 genes, consisting of 15 genes upregulated by amphetamine, and 6 genes downregulated by amphetamine. Of the 21 genes, 15 are not presently identified, and only 3 genes (cathepsin K, GRK6, and a gene with accession number AI177589) are located in chromosome regions known to be associated with schizophrenia.

  4. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    Science.gov (United States)

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2017-08-18

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  6. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  7. A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer’s Disease Diagnosis

    Science.gov (United States)

    Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard JB.

    2015-01-01

    Background: Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer’s disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. Objectives: This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Methods: Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Results: Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Conclusions: Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach. PMID:26484910

  8. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  9. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles.

    Science.gov (United States)

    Klein, Michael I; Stern, David F; Zhao, Hongyu

    2017-06-26

    Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that

  10. Pathways Leading from BarA/SirA to Motility and Virulence Gene Expression in Salmonella

    OpenAIRE

    Teplitski, Max; Goodier, Robert I.; Ahmer, Brian M. M.

    2003-01-01

    The barA and sirA genes of Salmonella enterica serovar Typhimurium encode a two-component sensor kinase and a response regulator, respectively. This system increases the expression of virulence genes and decreases the expression of motility genes. In this study, we examined the pathways by which SirA affects these genes. We found that the master regulator of flagellar genes, flhDC, had a positive regulatory effect on the primary regulator of intestinal virulence determinants, hilA, but that h...

  11. Recreational Music-Making alters gene expression pathways in patients with coronary heart disease.

    Science.gov (United States)

    Bittman, Barry; Croft, Daniel T; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N; Ellsworth, Darrell L

    2013-02-25

    Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (Pstress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration.

  12. Pathways enrichment analysis for differentially expressed genes in squamous lung cancer.

    Science.gov (United States)

    Qian, Liqiang; Luo, Qingquan; Zhao, Xiaojing; Huang, Jia

    2014-01-01

    Squamous lung cancer (SQLC) is a common type of lung cancer, but its oncogenesis mechanism is not so clear. The aim of this study was to screen the potential pathways changed in SQLC and elucidate the mechanism of it. Published microarray data of GSE3268 series was downloaded from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using software R, and differentially expressed genes (DEGs) were harvested. The functions and pathways of DEGs were mapped in Gene Otology and KEGG pathway database, respectively. A total of 2961 genes were filtered as DEGs between normal and SQLC cells. Cell cycle and metabolism were the mainly changed functions of SQLC cells. Meanwhile genes such as MCM, RFC, FEN1, and POLD may induce SQLC through DNA replication pathway, and genes such as PTTG1, CCNB1, CDC6, and PCNA may be involved in SQLC through cell cycle pathway. It is demonstrated that pathway analysis is useful in the identification of target genes in SQLC.

  13. Comparative analysis of gene expression profiles of OPN signalling pathway in four kinds of liver diseases

    Indian Academy of Sciences (India)

    GAIPING WANG; SHASHA CHEN; CONGCONG ZHAO; XIAOFANG LI; WEIMING ZHAO; JING YANG; CUIFANG CHANG; CUNSHUAN XU

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict thefunctions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD

  14. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    Science.gov (United States)

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  15. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major......ABSTRACT: BACKGROUND: Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent...

  16. Silent no more: Endogenous small RNA pathways promote gene expression.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.

  17. Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2006-01-01

    Full Text Available Background: Microarray technology has been previously used to identify genes that are differentially expressed between tumour and normal samples in a single study, as well as in syntheses involving multiple studies. When integrating results from several Affymetrix microarray datasets, previous studies summarized probeset-level data, which may potentially lead to a loss of information available at the probe-level. In this paper, we present an approach for integrating results across studies while taking probe-level data into account. Additionally, we follow a new direction in the analysis of microarray expression data, namely to focus on the variation of expression phenotypes in predefined gene sets, such as pathways. This targeted approach can be helpful for revealing information that is not easily visible from the changes in the individual genes. Results: We used a recently developed method to integrate Affymetrix expression data across studies. The idea is based on a probe-level based test statistic developed for testing for differentially expressed genes in individual studies. We incorporated this test statistic into a classic random-effects model for integrating data across studies. Subsequently, we used a gene set enrichment test to evaluate the significance of enriched biological pathways in the differentially expressed genes identified from the integrative analysis. We compared statistical and biological significance of the prognostic gene expression signatures and pathways identified in the probe-level model (PLM with those in the probeset-level model (PSLM. Our integrative analysis of Affymetrix microarray data from 110 prostate cancer samples obtained from three studies reveals thousands of genes significantly correlated with tumour cell differentiation. The bioinformatics analysis, mapping these genes to the publicly available KEGG database, reveals evidence that tumour cell differentiation is significantly associated with many

  18. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    Directory of Open Access Journals (Sweden)

    Reuben Thomas

    Full Text Available Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML. Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC, we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from 10 ppm compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  19. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-09-01

    Full Text Available The 2-C-methyl-d-erythritol 4-phosphate (MEP pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans. Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants.

  20. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  1. Use of gene expression and pathway signatures to characterize the complexity of human melanoma.

    Science.gov (United States)

    Freedman, Jennifer A; Tyler, Douglas S; Nevins, Joseph R; Augustine, Christina K

    2011-06-01

    A defining characteristic of most human cancers is heterogeneity, resulting from the somatic acquisition of a complex array of genetic and genomic alterations. Dissecting this heterogeneity is critical to developing an understanding of the underlying mechanisms of disease and to paving the way toward personalized treatments of the disease. We used gene expression data sets from the analysis of primary and metastatic melanomas to develop a molecular description of the heterogeneity that characterizes this disease. Unsupervised hierarchical clustering, gene set enrichment analyses, and pathway activity analyses were used to describe the genetic heterogeneity of melanomas. Patterns of gene expression that revealed two distinct classes of primary melanoma, two distinct classes of in-transit melanoma, and at least three subgroups of metastatic melanoma were identified. Expression signatures developed to predict the status of oncogenic signaling pathways were used to explore the biological basis underlying these differential patterns of expression. This analysis of activities revealed unique pathways that distinguished the primary and metastatic subgroups of melanoma. Distinct patterns of gene expression across primary, in-transit, and metastatic melanomas underline the genetic heterogeneity of this disease. This heterogeneity can be described in terms of deregulation of signaling pathways, thus increasing the knowledge of the biological features underlying individual melanomas and potentially directing therapeutic opportunities to individual patients with melanoma.

  2. The DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes.

    Directory of Open Access Journals (Sweden)

    William Hennah

    Full Text Available BACKGROUND: Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes. METHODOLOGY: Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis. CONCLUSIONS: Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways.

  3. Expression of insulin/insulin-like signalling and TOR pathway genes in honey bee caste determination.

    Science.gov (United States)

    Wheeler, D E; Buck, N A; Evans, J D

    2014-02-01

    The development of queen and worker castes in honey bees is induced by differential nutrition, with future queens and workers receiving diets that are qualitatively and quantitatively different. We monitored the gene expression of 14 genes for components of the insulin/insulin-like signalling and TOR pathways in honey bee larvae from 40-88 h after hatching. We compared normally fed queen and normally fed worker larvae and found that three genes showed expression differences in 40-h-old larvae. Genes that show such early differences in expression may be part of the mechanism that transduces nutrition level into a hormone signal. We then compared changes in expression after shifts in diet with those in normally developing queens and workers. Following a shift to the worker diet, the expression of 9/14 genes was upregulated in comparison with queens. Following a shift to the queen diet, expression of only one gene changed. The honey bee responses may function together as a homeostatic mechanism buffering larvae from caste-disrupting variation in nutrition. The different responses would be part of the canalization of both the queen and worker developmental pathways, and as such, a signature of advanced sociality.

  4. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    Science.gov (United States)

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  5. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain

    Directory of Open Access Journals (Sweden)

    Lumsden Andrew

    2009-09-01

    Full Text Available Abstract Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh signalling from the zona limitans intrathalamica (ZLI, a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.

  6. Alternations in genes expression of pathway signaling in esophageal tissue with atresia: results of expression microarray profiling.

    Science.gov (United States)

    Smigiel, R; Lebioda, A; Blaszczyński, M; Korecka, K; Czauderna, P; Korlacki, W; Jakubiak, A; Bednarczyk, D; Maciejewski, H; Wizinska, P; Sasiadek, M M; Patkowski, D

    2015-04-01

    Esophageal atresia (EA) is a congenital defect of the esophagus involving the interruption of the esophagus with or without connection to the trachea (tracheoesophageal fistula [TEF]). EA/TEF may occur as an isolated anomaly, may be part of a complex of congenital defects (syndromic), or may develop within the context of a known syndrome or association. The molecular mechanisms underlying the development of EA are poorly understood. It is supposed that a combination of multigenic factors and epigenetic modification of genes play a role in its etiology. The aim of our work was to assess the human gene expression microarray study in esophageal tissue samples. Total RNA was extracted from 26 lower pouches of esophageal tissue collected during thoracoscopic EA repair in neonates with the isolated (IEA) and the syndromic form (SEA). We identified 787 downregulated and 841 upregulated transcripts between SEA and controls, and about 817 downregulated and 765 upregulated probes between IEA and controls. Fifty percent of these genes showed differential expression specific for either IEA or SEA. Functional pathway analysis revealed substantial enrichment for Wnt and Sonic hedgehog, as well as cytokine and chemokine signaling pathways. Moreover, we performed reverse transcription polymerase chain reaction study in a group of SHH and Wnt pathways genes with differential expression in microarray profiling to confirm the microarray expression results. We verified the altered expression in SFRP2 gene from the Wnt pathway as well as SHH, GLI1, GLI2, and GLI3 from the Sonic hedgehog pathway. The results suggest an important role of these pathways and genes for EA/TEF etiology. © 2014 International Society for Diseases of the Esophagus.

  7. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression.

    Science.gov (United States)

    Dampney, R A L; Horiuchi, J

    2003-12-01

    Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.

  8. Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction.

    Science.gov (United States)

    Queiroz, Fábio Ribeiro; Silva, Luciana Maria; Jeremias, Wander de Jesus; Babá, Élio Hideo; Caldeira, Roberta Lima; Coelho, Paulo Marcos Zech; Gomes, Matheus de Souza

    2017-01-01

    The World Health Organization (WHO) estimates that approximately 240 million people in 78 countries require treatment for schistosomiasis, an endemic disease caused by trematodes of the genus Schistosoma. In Brazil, Schistosoma mansoni is the only species representative of the genus whose passage through an invertebrate host, snails of the genus Biomphalaria, is obligatory before infecting a mammalian host, including humans. The availability of the genome and transcriptome of B. glabrata makes studying the regulation of gene expression, particularly the regulation of miRNA and piRNA processing pathway genes, possible. This might assist in better understanding the biology of B. glabrata as well as its relationship to the parasite S. mansoni. Some aspects of this interaction are still poorly explored, including the participation of non-coding small RNAs, such as miRNAs and piRNAs, with lengths varying from 18 to 30 nucleotides in mature form, which are potent regulators of gene expression. Using bioinformatics tools and quantitative PCR, we characterized and validated the miRNA and piRNA processing pathway genes in B. glabrata. In silico analyses showed that genes involved in miRNA and piRNA pathways were highly conserved in protein domain distribution, catalytic site residue conservation and phylogenetic analysis. Our study showed differential expression of putative Argonaute, Drosha, Piwi, Exportin-5 and Tudor genes at different snail developmental stages and during infection with S. mansoni, suggesting that the machinery is required for miRNA and piRNA processing in B. glabrata at all stages. These data suggested that the silencing pathway mediated by miRNAs and piRNAs can interfere in snail biology throughout the life cycle of the snail, thereby influencing the B. glabrata/S. mansoni interaction. Further studies are needed to confirm the participation of the small RNA processing pathway proteins in the parasite/host relationship, mainly the effective

  9. Gene expression profiling and pathway analysis of hepatotoxicity induced by triptolide in Wistar rats.

    Science.gov (United States)

    Wang, Jiaying; Jiang, Zhenzhou; Ji, Jinzi; Wang, Xinzhi; Wang, Tao; Zhang, Yun; Tai, Ting; Chen, Mi; Sun, Lixin; Li, Xia; Zhang, Luyong

    2013-08-01

    Triptolide (TP), a major component of TWHF, is widely used to treat rheumatoid arthritis, systemic lupus erythematosus, nephritis and leprosy. However, its clinical use is limited by hepatotoxicity. To further elucidate the underlying mechanism of its hepatotoxic effects, hepatic gene expression profiles were analyzed. TP (1000 and 300 μg/kg) was orally administered to Wistar rats for 14 days. Current study indicated that female rats were more sensitive to TP-induced hepatotoxicity than males. Genome-wide microarray analyses identified 3329 differentially expressed genes in liver of female rats. Analyses of these genes identified over-represented functions associated with insulin signaling pathway, glucose metabolism, cell cycle, oxidative stress and apoptosis, which were consistent with the results of significant increase of Caspase-3 activity and reduction of serum glucose, GSH/GSSG ratio, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities, liver glycogen. In addition, it was observed for the first time that glucocorticoids and IGF1 might get involved in TP-induced hepatotoxicity. These data suggest that TP treatment could alter the hepatic redox status, reduce serum glucose and induce hepatocyte apoptosis, consistent with the differential expression of genes involved in insulin signaling pathway, glucose metabolism pathway and cell stress pathway, all of which might contribute to the overall TP-induced hepatotoxicity.

  10. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways.

    Science.gov (United States)

    Menges, Margit; Dóczi, Róbert; Okrész, László; Morandini, Piero; Mizzi, Luca; Soloviev, Mikhail; Murray, James A H; Bögre, László

    2008-01-01

    * Mitogen activated protein kinase (MAPK) pathways are signal transduction modules with layers of protein kinases having c. 120 genes in Arabidopsis, but only a few have been linked experimentally to functions. * We analysed microarray expression data for 114 MAPK signalling genes represented on the ATH1 Affymetrix arrays; determined their expression patterns during development, and in a wide range of time-course microarray experiments for their signal-dependent transcriptional regulation and their coregulation with other signalling components and transcription factors. * Global expression correlation of the MAPK genes with each of the represented 21 692 Arabidopsis genes was determined by calculating Pearson correlation coefficients. To group MAPK signalling genes based on similarities in global regulation, we performed hierarchical clustering on the pairwise correlation values. This should allow inferring functional information from well-studied MAPK components to functionally uncharacterized ones. Statistical overrepresentation of specific gene ontology (GO) categories in the gene lists showing high expression correlation values with each of the MAPK components predicted biological themes for the gene functions. * The combination of these methods provides functional information for many uncharacterized MAPK genes, and a framework for complementary future experimental dissection of the function of this complex family.

  11. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Ullrich congenital muscular dystrophy (UCMD, caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.

  12. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    Science.gov (United States)

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  13. Regulation of adipocyte differentiation and gene expression-crosstalk between TGFβ and wnt signaling pathways.

    Science.gov (United States)

    Lu, Hang; Ward, Meliza G; Adeola, Olayiwola; Ajuwon, Kolapo M

    2013-09-01

    Obesity results in reduced differentiation potential of adipocytes leading to adipose tissue insulin resistance. Elevated proinflammatory cytokines from adipose tissue in obesity, such as TNFα have been implicated in the reduced adipocyte differentiation. Other mediators of reduced adipocyte differentiation include TGFβ and wnt proteins. Although some overlap exists in the signaling cascades of the wnt and TGFβ pathways it is unknown if TGFβ or wnt proteins reciprocally induce the expression of each other to maximize their biological effects in adipocytes. Therefore, we investigated the possible involvement of TGFβ signaling in wnt induced gene expression and vice versa in 3T3-L1 adipocyte. Effect of TGFβ and Wnt pathways on differentiation was studied in preadipocytes induced to differentiate in the presence of Wnt3a or TGFβ1 and their inhibitors (FZ8-CRD and SB431542, respectively). Regulation of intracellular signaling and gene expression was also studied in mature adipocytes. Our results show that both TGFβ1 and Wnt3a lead to increased accumulation of β-catenin, phosphorylation of AKT and p44/42 MAPK. However, differences were found in the pattern of gene expression induced by the two proteins suggesting that distinct, but complex, signaling pathways are activated by TGFβ and wnt proteins to independently regulate adipocyte function.

  14. Effect of salt stress on expression of carotenoid pathway genes in tomato

    Directory of Open Access Journals (Sweden)

    Merlene Ann Babu

    2011-09-01

    Full Text Available Carotenoids, the naturally occurring isoprenoids form essential components of photosynthetic antenna and reaction centre complexes. Thus they play a significant role in absorption, dissipation and transfer of light energy for the process of photosynthesis. The effects of salt stress on carotenoid gene expression in tomato leaves were studied. For that tomato plants were subjected to different concentration of salt water. Morphological characters such as plant height, no. of fruits per plant, chlorophyll content and expression of four major carotenoid pathway genes such as phytoene synthase, phytoene desaturase, zeta carotene desaturase and lycopene beta cyclase were analysed. The quantitative expression analysis using real time PCR has shown a decrease in the expression of all the studied genes as the salt concentration increased. Among the different concentrations of NaCl used for the experiment, it was seen that 200 mM was most detrimental for the carotenoid gene expression. Lycopene beta cyclase, the enzyme that converts lycopene to beta carotene was seen to be highly affected compared to other genes studied showing a 1.87 fold inhibition in its expression at 200 mM NaCl.

  15. Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways.

    Science.gov (United States)

    Scheinman, Eyal J; Rostoker, Ran; Leroith, Derek

    2013-07-15

    Hyperlipidemia and hypercholesterolemia have been found to be important factors in cancer development and metastasis. However, the metabolic mechanism and downstream cellular processes following cholesterol stimulation are still unknown. Here we tested the effect of cholesterol on MC-38 colon cancer cells. Using Illumina gene array technology we found a number of genes that were differentially expressed following short term (20-40 min) and longer term (between 2 and 5h) cholesterol stimulation. Three genes were consistently increased at these time points; c-Jun, Jun-B and the chemokine CXCL-1. We have previously shown that cholesterol stimulation leads to PI3K/Akt phosphorylation, and now demonstrated that cholesterol inhibits ERK1/2 phosphorylation; both effects reversed when cholesterol is depleted from lipid rafts using methyl-β-cyclodextrin (MBCD). In addition, vanadate, an inhibitor of phosphatases, reversed the cholesterol inhibition of ERK1/2 phosphorylation. Specific inhibition of p-Akt by wortmannin did not affect cholesterol's stimulation of the expression of c-Jun and Jun-B, however the vanadate effect of increasing p-ERK1/2, inhibited c-Jun expression, specifically, and the MBCD effect of increasing p-ERK and inhibiting p-Akt reduced c-Jun expression. In contrast MBCD and vanadate both enhanced Jun-B gene expression in the presence of cholesterol and elevation of ERK phosphorylation. Thus there is apparently, a differential signaling pathway whereby cholesterol enhances gene expression of the Jun family members.

  16. Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella.

    Science.gov (United States)

    Teplitski, Max; Goodier, Robert I; Ahmer, Brian M M

    2003-12-01

    The barA and sirA genes of Salmonella enterica serovar Typhimurium encode a two-component sensor kinase and a response regulator, respectively. This system increases the expression of virulence genes and decreases the expression of motility genes. In this study, we examined the pathways by which SirA affects these genes. We found that the master regulator of flagellar genes, flhDC, had a positive regulatory effect on the primary regulator of intestinal virulence determinants, hilA, but that hilA had no effect on flhDC. SirA was able to repress flhDC in a hilA mutant and activate hilA in an flhDC mutant. Therefore, although the flhDC and hilA regulatory cascades interact, sirA affects each of them independently. A form of BarA lacking the two N-terminal membrane-spanning domains, BarA198, autophosphorylates in the presence of ATP and transfers the phosphate to purified SirA. Phosphorylated SirA was found to directly bind the hilA and hilC promoters in gel mobility shift assays but not the flhD, fliA, hilD, and invF promoters. Given that the CsrA/csrB system is known to directly affect flagellar gene expression, we tested the hypothesis that SirA affects flagellar gene expression indirectly by regulating csrA or csrB. The sirA gene did not regulate csrA but did activate csrB expression. Consistent with these results, phosphorylated SirA was found to directly bind the csrB promoter but not the csrA promoter. We propose a model in which SirA directly activates virulence expression via hilA and hilC while repressing the flagellar regulon indirectly via csrB.

  17. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    Science.gov (United States)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong; Kluz, Thomas; Freedman, Jonathan H.; Costa, Max

    2015-01-01

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the earth’s crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 hours; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, and cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 hours indicated a reduction in global levels of histone methylation and acetylation that persisted 72 hours post-treatment. PMID:26314618

  18. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics.

    Science.gov (United States)

    Chung, Hee-Joon; Kim, Mingoo; Park, Chan Hee; Kim, Jihoon; Kim, Ju Han

    2004-07-01

    Biological pathways can provide key information on the organization of biological systems. ArrayXPath (http://www.snubi.org/software/ArrayXPath/) is a web-based service for mapping and visualizing microarray gene-expression data for integrated biological pathway resources using Scalable Vector Graphics (SVG). By integrating major bio-databases and searching pathway resources, ArrayXPath automatically maps different types of identifiers from microarray probes and pathway elements. When one inputs gene-expression clusters, ArrayXPath produces a list of the best matching pathways for each cluster. We applied Fisher's exact test and the false discovery rate (FDR) to evaluate the statistical significance of the association between a cluster and a pathway while correcting the multiple-comparison problem. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of pathways integrated with gene-expression profiles.

  19. Regulation of hepatitis C virus replication and gene expression by the MAPK-ERK pathway.

    Science.gov (United States)

    Pei, Rongjuan; Zhang, Xiaoyong; Xu, Song; Meng, Zhongji; Roggendorf, Michael; Lu, Mengji; Chen, Xinwen

    2012-10-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  20. Regulation of Hepatitis C Virus Replication and Gene Expression by the MAPK-ERK Pathway

    Institute of Scientific and Technical Information of China (English)

    Rongjuan Pei; Xiaoyong Zhang; Song Xu; Zhongji Meng; Michael Roggendorf; Mengji Lu; Xinwen Chen

    2012-01-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle.In the present study using a Huh7 cell line Con1 with an HCV replicon,we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling.Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells.It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site.Consistently,a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays.Thus,the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication.In addition,cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine,an inhibitor of CDKs had a similar effect to that of U0126.Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels.Further,the replication of HCV replicon in Conl cells was inhibited by IFN-α.The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs.It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  1. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Rubbia-Brandt, Laura; Tauzin, Sébastien; Brezault, Catherine; Delucinge-Vivier, Céline; Descombes, Patrick; Dousset, Bertand; Majno, Pietro E; Mentha, Gilles; Terris, Benoit

    2011-04-01

    Sinusoidal obstruction syndrome (SOS; formerly veno-occlusive disease) is a well-established complication of hematopoietic stem cell transplantation, pyrrolizidine alkaloid intoxication, and widely used chemotherapeutic agents such as oxaliplatin. It is associated with substantial morbidity and mortality. Pathogenesis of SOS in humans is poorly understood. To explore its molecular mechanisms, we used Affymetrix U133 Plus 2.0 microarrays to investigate the gene expression profile of 11 human livers with oxaliplatin-related SOS and compared it to 12 matched controls. Hierarchical clustering analysis showed that profiles from SOS and controls formed distinct clusters. To identify functional networks and gene ontologies, data were analyzed by the Ingenuity Pathway Analysis Tool. A total of 913 genes were differentially expressed in SOS: 613 being upregulated and 300 downregulated. Reverse transcriptase-PCR results showed excellent concordance with microarray data. Pathway analysis showed major gene upregulation in six pathways in SOS compared with controls: acute phase response (notably interleukin 6), coagulation system (Serpine1, THBD, and VWF), hepatic fibrosis/hepatic stellate cell activation (COL3a1, COL3a2, PDGF-A, TIMP1, and MMP2), and oxidative stress. Angiogenic factors (VEGF-C) and hypoxic factors (HIF1A) were upregulated. The most significant increase was seen in CCL20 mRNA. In conclusion, oxaliplatin-related SOS can be readily distinguished according to morphologic characteristics but also by a molecular signature. Global gene analysis provides new insights into mechanisms underlying chemotherapy-related hepatotoxicity in humans and potential targets relating to its diagnosis, prevention, and treatment. Activation of VEGF and coagulation (vWF) pathways could partially explain at a molecular level the clinical observations that bevacizumab and aspirin have a preventive effect in SOS.

  2. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways.

    Science.gov (United States)

    Milenbachs Lukowiak, Andrea; Mueller, Kimberly J; Freitag, Nancy E; Youngman, Philip

    2004-02-01

    Expression of the major virulence cluster in Listeria monocytogenes is positively regulated by the transcription factor PrfA and is influenced by several environmental factors, including the presence of readily metabolized carbohydrates such as cellobiose and glucose. Although little is understood about the mechanisms through which environmental factors influence expression of the PrfA regulon, evidence for structural and functional similarities of PrfA to the CRP-FNR family of regulatory proteins suggests the possibility that PrfA activity could be modulated by a small molecule ligand. The identity of components of the PrfA-associated regulatory pathway was sought through the isolation of mutants that exhibit high levels of PrfA-controlled gene expression in the presence of cellobiose or glucose. Here are described the properties and preliminary genetic analysis in two different genetic loci, gcr and csr, both unlinked by general transduction to the major virulence cluster. A mutation in gcr deregulates the expression of PrfA-controlled genes in the presence of several repressing sugars and other environmental conditions, a phenotype similar to that of a G145S substitution in PrfA itself. A mutation in the csr locus, within csrA, results in a cellobiose-specific defect in virulence gene regulation. Gene products encoded by the csr locus share homology with proteins involved in the sensing and transport of beta-glucosides in other bacteria. Mutations in both gcr and csr are required for full relief of cellobiose-mediated repression of the PrfA regulon. These results suggest the existence of two semi-independent pathways for cellobiose-mediated repression and further reconcile conflicting reports in previous literature concerning the repressive effects of carbohydrates on virulence gene expression in L. monocytogenes.

  3. Integrated analysis of differentially expressed genes and pathways in triple-negative breast cancer

    Science.gov (United States)

    Peng, Cancan; Ma, Wenli; Xia, Wei; Zheng, Wenling

    2017-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by an aggressive phenotype and reduced survival. The aim of the present study was to investigate the molecular mechanisms involved in the carcinogenesis of TNBC and to identify novel target molecules for therapy. The differentially expressed genes (DEGs) in TNBC and normal adjacent tissue were assessed by analyzing the GSE41970 microarray data using Qlucore Omics Explorer, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes. Pathway enrichment analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery online resource. A protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes, and subnetworks were analyzed by ClusterONE. The PPI network and subnetworks were visualized using Cytoscape software. A total of 121 DEGs were obtained, of which 101 were upregulated and 20 were downregulated. The upregulated DEGs were significantly enriched in 14 pathways and 83 GO biological processes, while the downregulated DEGs were significantly enriched in 18 GO biological processes. The PPI network with 118 nodes and 1,264 edges was constructed and three subnetworks were extracted from the entire network. The significant hub DEGs with high degrees were identified, including TP53, glyceraldehyde-3-phosphate dehydrogenase, cyclin D1, HRAS and proliferating cell nuclear antigen, which were predominantly enriched in the cell cycle pathway and pathways in cancer. A number of critical genes and pathways were revealed to be associated with TNBC. The present study may provide an improved understanding of the pathogenesis of TNBC and contribute to the development of therapeutic targets for TNBC. PMID:28075450

  4. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    Science.gov (United States)

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  5. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle.

    Science.gov (United States)

    Wu, Xuxia; Wang, Jelai; Cui, Xiangqin; Maianu, Lidia; Rhees, Brian; Rosinski, James; So, W Venus; Willi, Steven M; Osier, Michael V; Hill, Helliner S; Page, Grier P; Allison, David B; Martin, Mitchell; Garvey, W Timothy

    2007-02-01

    To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.

  6. Gene expression profiling of U12-type spliceosome mutant Drosophila reveals widespread changes in metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Heli K J Pessa

    Full Text Available BACKGROUND: The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly. METHODOLOGY/PRINCIPAL FINDINGS: We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. CONCLUSIONS/SIGNIFICANCE: U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.

  7. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  8. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Santama Niovi

    2007-01-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. Results By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. Conclusion Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of

  9. Particle Radiation signals the Expression of Genes in stress-associated Pathways

    Science.gov (United States)

    Blakely, E.; Chang, P.; Bjornstad, K.; Dosanjh, M.; Cherbonnel, C.; Rosen, C.

    The explosive development of microarray screening methods has propelled genome research in a variety of biological systems allowing investigators to examine large-scale alterations in gene expression for research in toxicology pathology and therapy The radiation environment in space is complex and encompasses a variety of highly energetic and charged particles Estimation of biological responses after exposure to these types of radiation is important for NASA in their plans for long-term manned space missions Instead of using the 10 000 gene arrays that are in the marketplace we have chosen to examine particle radiation-induced changes in gene expression using a focused DNA microarray system to study the expression of about 100 genes specifically associated with both the upstream and downstream aspects of the TP53 stress-responsive pathway Genes that are regulated by TP53 include functional clusters that are implicated in cell cycle arrest apoptosis and DNA repair A cultured human lens epithelial cell model Blakely et al IOVS 41 3808 2000 was used for these studies Additional human normal and radiosensitive fibroblast cell lines have also been examined Lens cells were grown on matrix-coated substrate and exposed to 55 MeV u protons at the 88 cyclotron in LBNL or 1 GeV u Iron ions at the NASA Space Radiation Laboratory The other cells lines were grown on conventional tissue culture plasticware RNA and proteins were harvested at different times after irradiation RNA was isolated from sham-treated or select irradiated populations

  10. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program

    Directory of Open Access Journals (Sweden)

    Revel S M Drummond

    2012-01-01

    Full Text Available Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signalling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologues of the Arabidopsis MAX1 and MAX2 genes to characterise their role in petunia architecture. A single orthologue of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels increase as leaves age. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over the development series. Alterations to the expression of these genes over time, or in different regions of the plant, may influence the branching growth habit of the plant. Alterations to strigolactone production and/or sensitivity could allow both subtle and dramatic changes to branching within and between species.

  11. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    Science.gov (United States)

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit.

  12. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  13. Expression and clinical significance of the genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor of the jaw bones

    Institute of Scientific and Technical Information of China (English)

    Kong Li; Yuan Rong-tao; Jia Mu-yun; Wang Ke; Wang Bingchao; Yang Yinhui

    2015-01-01

    PURPOSE It was to study the role of genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor (KCOT)of the jaw bones.METHODS Fresh specimens of sporadic KCOT and the same patient 's normal oral mucosa were obtained.Then RNA was extracted.Gene chip was used to detect the genes of Hedgehog signaling pathway.RESULTS Com-pared to normal oral mucosa,there were five genes of Hedgehog signaling pathway in KCOT changed,including PRKX ,WNT5a,PTCH1 up -regulated.CONCLUSION There were abnormal ex-pressions of genes of Hedgehog pathway in sporadicKCOT.Genes of Hedgehog pathway played roles in sporadic KCOT.

  14. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    2013-08-01

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  15. A Novel Approach for Discovering Condition-Specific Correlations of Gene Expressions within Biological Pathways by Using Cloud Computing Technology

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    2014-01-01

    Full Text Available Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells, for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  16. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    Science.gov (United States)

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  17. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    Science.gov (United States)

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  18. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Chih [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Hsueh, Chi-Mei [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chen, Chiu-Yuan [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Chen, Tzu-Hsiu, E-mail: hsiu@mail.chna.edu.tw [Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Shih-Lan, E-mail: h2326@vghtc.gov.tw [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan (China)

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  19. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats.

    Science.gov (United States)

    Zhang, Yun; Jiang, Zhenzhou; Su, Yijing; Chen, Mi; Li, Fu; Liu, Li; Sun, Lixin; Wang, Yun; Zhang, Shuang; Zhang, Luyong

    2013-08-01

    Pyrazinamide (PZA) is an important sterilizing prodrug that shortens the duration of tuberculosis therapy. However, hepatotoxicity has been reported during clinical trials investigating PZA. To determine the hepatotoxic effects of PZA in vivo and to further investigate the underlying cellular mechanism, we profiled the gene expression patterns of PZA-treated rat livers by microarray analysis. Wistar rats of both sexes were orally administered PZA at doses of 0.5, 1.0 and 2.0 g kg(-1) for 28 days. Body weight, absolute and relative liver weight, biochemical analysis, histopathology, oxidative stress parameters in liver homogenates and changes in global transcriptomic expression were evaluated to study the hepatotoxic effects of PZA. Our results confirm the dose-dependent and sex-related hepatotoxicity of PZA. Female rats were more sensitive to PZA-induced hepatotoxicity than males. Furthermore, changes in the activity of major antioxidant enzymes and nonenzymatic antioxidants (superoxide dismutase, total antioxidant capacity, glutathione and malondialdehyde), indicating the development of oxidative stress, were more significant in the PZA-treated group. PZA-induced gene expression changes were related to pathways involved in drug metabolism, peroxisome proliferator-activated receptor (PPAR) signaling, oxidative stress and apoptosis. Real-time polymerase chain reaction confirmed the regulation of selected genes involved in PZA-hepatotoxicity (Ephx1, Cyp2b1, Gstm1, Gstp1, Fabp7, Acaa1, Cpt-1b, Cyp8b1, Hmox1 and Ntrk1). We observed for the first time that these genes have effects on PZA-induced hepatotoxicity. In addition, drug metabolism and PPAR signaling pathways may play an important role in PZA hepatotoxicity. Taken together, these findings will be useful for future PZA hepatotoxicity studies.

  20. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content

    Indian Academy of Sciences (India)

    Shilpa Pandurangaiah; Kundapura V Ravishankar; Kodthalu S Shivashankar; Avverahally T Sadashiva; Kavitha Pillakenchappa; Sunil Kumar Narayanan

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plants to study the carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes viz. IIHR-249-1and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1(19.45 mg/100g fresh weight) compared to IIHR-2866 ((1.88 mg/100g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene Synthase (PSY) increased by 36 fold and Phytoene desaturase (PDS) increased by 14fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3 and 1.8 fold decrease in gene expression for Chloroplast lycopene β cyclase ((LCY-B) and Chromoplast lycopene β cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analyzed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of Lycopene β -cyclases can be used in marker assisted breeding.

  1. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development.

    Science.gov (United States)

    Azevedo, Sergio Vicente; Caranton, Omar Arvey Martinez; de Oliveira, Tatiane Lippi; Hartfelder, Klaus

    2011-01-01

    Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.

  2. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    Science.gov (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    Science.gov (United States)

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  4. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  5. Analysis of Pathway Activity in Primary Tumors and NCI60 Cell Lines Using Gene Expression Profiling Data

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong Feng; Jude E. Onyia; Shu-Yu Li; Shu-Guang Huang; Jian-Yong Shou; Bi-Rong Liao; Jonathan M. Yingling; Xiang Ye; Xi Lin; Lawrence M. Gelbert; Eric W. Su

    2007-01-01

    To determine cancer pathway activities in nine types of primary tumors and NCI60 cell lines, we applied an in silico approach by examining gene signatures reflective of consequent pathway activation using gene expression data. Supervised learning approaches predicted that the Ras pathway is active in ~70% of lung adenocarcinomas but inactive in most squamous cell carcinomas, pulmonary carcinoids, and small cell lung carcinomas. In contrast, the TGF-β, TNF-α, Src, Myc, E2F3, and β-catenin pathways are inactive in lung adenocarcinomas. We predicted an active Ras, Myc, Src, and/or E2F3 pathway in significant percentages of breast cancer, colorectal carcinoma, and gliomas. Our results also suggest that Ras may be the most prevailing oncogenic pathway. Additionally, many NCI60 cell lines exhibited a gene signature indicative of an active Ras, Myc, and/or Src, but not E2F3, β-catenin, TNF-α, or TGF-β pathway. To our knowledge, this is the first comprehensive survey of cancer pathway activities in nine major tumor types and the most widely used NCI60 cell lines. The "gene expression pathway signatures" we have defined could facilitate the understanding of molecular mechanisms in cancer development and provide guidance to the selection of appropriate cell lines for cancer research and pharmaceutical compound screening.

  6. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    Science.gov (United States)

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  7. Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken.

    Science.gov (United States)

    Rengaraj, Deivendran; Truong, Anh Duc; Lee, Sung-Hyen; Lillehoj, Hyun S; Hong, Yeong Ho

    2016-02-01

    Necrotic enteritis (NE) is a serious problem to the poultry farms, which report NE outbreaks more than once per year, as a result of the inappropriate use of antibiotics in the feed. The NE affected bird die rapidly as a result of various pathophysiological complications in the intestine and immune system. Also, several studies have reported that the genes exclusively related to intestine and immune functions are significantly altered in response to NE. In this study, NE was induced in two genetically disparate chicken lines that are resistant (line 6.3) and sensitive (line 7.2) to avian leukosis and Marek's disease. The intestinal mucosal layer was collected from NE-induced and control chickens, and subjected to RNA-sequencing analysis. The involvement of differentially expressed genes in the intestinal mucosal layer of line 6.3 and 7.2 with the immune system-related pathways was investigated. Among the identified immune system-related pathways, a candidate pathway known as chicken cytosolic DNA-sensing pathway (CDS pathway) was selected for further investigation. RNA-sequencing and pathway analysis identified a total of 21 genes that were involved in CDS pathway and differentially expressed in the intestinal mucosal layer of lines 6.3 and 7.2. The expression of CDS pathway genes was further confirmed by real-time qPCR. In the results, a majority of the CDS pathway genes were significantly altered in the NE-induced intestinal mucosal layer from lines 6.3 and 7.2. In conclusion, our study indicate that NE seriously affects several genes involved in innate immune defense and foreign DNA sensing mechanisms in the chicken intestinal mucosal layer. Identifying the immune genes affected by NE could be an important evidence for the protective immune response to NE-causative pathogens.

  8. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  9. Effect of cold stress on expression of AMPKalpha-PPARalpha pathway and inflammation genes.

    Science.gov (United States)

    Zhang, Zi-wei; Bi, Ming-yu; Yao, Hai-dong; Fu, Jing; Li, Shu; Xu, Shi-wen

    2014-09-01

    Animals are exposed to various environmental stresses every day, including the stress associated with living in cold temperatures. The aim of this study was to investigate the possible mechanisms of interaction between lipid metabolism and inflammation induced by cold stress in the livers of chickens. Fifteen-day-old male chicks were randomly allocated into 12 groups (10 chickens per group). After exposure of the chickens to the cold stress, cholesterol fractionation was used to examine high-density lipoprotein (HDL) and low-density lipoprotein (LDL) concentrations. Aminotransferase activities were examined with the use of the aspartate transaminase (AST) and alanine transaminase (ALT) assay. The AMP-activated protein kinase alpha-proliferator-activated receptor alpha (AMPKalpha-PPARalpha) pathway genes (AMPKalpha1, AMPKalpha2, PPARalpha, carnitine palmitoyltransferaseI [CPTI], acetyl-CoA carboxylase [ACC]) and inflammatory cytokines (prostaglandin E synthase [PGEs], inducible nitric oxide synthase [iNOS], heme oxygenase-1 [HO-1], nuclear factor kappa-light-chain-enhancer of activated B cells [NF-kappaB], cyclooxygenase-2 [COX-2], and TNF-alpha-like factor [LITAF]) were also measured. The results showed that during the response to cold stress, serum LDL and HDL cholesterol concentrations increased. Histopathologic analyses provided evidence that liver tissues were seriously injured in the chickens exposed to the cold stress. Serum aminotransferase activities were also increased in the group of animals exposed to the cold stress. Additionally, the expressions of AMPKalpha-PPARalpha pathway genes and inflammatory cytokine genes were significantly increased in the animals exposed to cold temperatures. These results suggested that increased inflammation was a feature associated with a lipid-metabolism disorder in the livers of chickens exposed to cold stress.

  10. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  11. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    Directory of Open Access Journals (Sweden)

    Porth Ilga

    2011-12-01

    Full Text Available Abstract Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree, gene expression levels (for 428 phenylpropanoid-related genes and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca. Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs and expression QTL (eQTL hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the

  12. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition.

    Science.gov (United States)

    Huang, Feng; Hu, Xiaoxiao; Fang, Chunni; Liu, Hong; Lin, Chensheng; Zhang, Yanding; Hu, Xuefeng

    2015-11-01

    Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ.

  13. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Yu Tang

    2012-01-01

    Full Text Available We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs between systemic lupus erythematosus (SLE and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  14. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age

    OpenAIRE

    Brown, Andrew Anand; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to...

  15. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Directory of Open Access Journals (Sweden)

    Mohammad-Zaman Nouri

    2015-08-01

    Full Text Available Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4, type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  16. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  17. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    Science.gov (United States)

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  18. Differences in gene expression profiles and carcinogenesis pathways involved in cisplatin resistance of four types of cancer.

    Science.gov (United States)

    Yang, Yong; Li, Hui; Hou, Shengcai; Hu, Bin; Liu, Jie; Wang, Jun

    2013-08-01

    Cisplatin-based chemotherapy is the standard therapy used for the treatment of several types of cancer. However, its efficacy is largely limited by the acquired drug resistance. To date, little is known about the RNA expression changes in cisplatin-resistant cancers. Identification of the RNAs related to cisplatin resistance may provide specific insight into cancer therapy. In the present study, expression profiling of 7 cancer cell lines was performed using oligonucleotide microarray analysis data obtained from the GEO database. Bioinformatic analyses such as the Gene Ontology (GO) and KEGG pathway were used to identify genes and pathways specifically associated with cisplatin resistance. A signal transduction network was established to identify the core genes in regulating cancer cell cisplatin resistance. A number of genes were differentially expressed in 7 groups of cancer cell lines. They mainly participated in 85 GO terms and 11 pathways in common. All differential gene interactions in the Signal-Net were analyzed. CTNNB1, PLCG2 and SRC were the most significantly altered. With the use of bioinformatics, large amounts of data in microarrays were retrieved and analyzed by means of thorough experimental planning, scientific statistical analysis and collection of complete data on cancer cell cisplatin resistance. In the present study, a novel differential gene expression pattern was constructed and further study will provide new targets for the diagnosis and mechanisms of cancer cisplatin resistance.

  19. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.

    Science.gov (United States)

    Jónás, Ágota; Fekete, Erzsébet; Németh, Zoltán; Flipphi, Michel; Karaffa, Levente

    2016-09-01

    In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase. This is in contrast to the results from other fungi such as Aspergillus nidulans, Trichoderma reesei and A. niger, where the ortholog galactokinase and galactose-1-phosphate uridylyl transferase genes were constitutively expressed. As for the UDP-galactose-4-epimerase encoding gene, five candidates were identified. We could not detect Pc16g12790, Pc21g12170 and Pc20g06140 expression on any of the carbon sources tested, while for the other two loci (Pc21g10370 and Pc18g01080) transcripts were clearly observed under all tested conditions. Like the 4-epimerase specified at locus Pc21g10370, the other two structural Leloir pathway genes - UDP-glucose pyrophosphorylase (Pc21g12790) and phosphoglucomutase (Pc18g01390) - were expressed constitutively at high levels as can be expected from their indispensable function in fungal cell wall formation.

  20. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    Science.gov (United States)

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  1. Expression of Wnt pathway genes in polyps and medusa-like structures of Ectopleura larynx (Cnidaria: Hydrozoa).

    Science.gov (United States)

    Nawrocki, Annalise M; Cartwright, Paulyn

    2013-01-01

    The canonical Wnt signaling pathway is conserved in its role in axial patterning throughout Metazoa. In some hydrozoans (Phylum Cnidaria), Wnt signaling is implicated in oral-aboral patterning of the different life cycle stages-the planula, polyp and medusa. Unlike most hydrozoans, members of Aplanulata lack a planula larva and the polyp instead develops directly from a brooded or encysted embryo. The Aplanulata species Ectopleura larynx broods such embryos within gonophores. These gonophores are truncated medusae that remain attached to the polyps from which they bud, and retain evolutionary remnants of medusa structures. In E. larynx, gonophores differ between males and females in their degree of medusa truncation, making them an ideal system for examining truncated medusa development. Using next-generation sequencing, we isolated genes from Wnt signaling pathways and examined their expression in E. larynx. Our data are consistent with the Wnt pathway being involved in axial patterning of the polyp and truncated medusa. Changes in the spatial expression of Wnt pathway genes are correlated with the development of different oral structures in male and female gonophores. The absence of expression of components of the Wnt pathway and presence of a Wnt pathway antagonist SFRP in the developing anterior end of the gonophore suggest that downregulation of the Wnt pathway could play a role in medusa reduction in E. larynx. © 2013 Wiley Periodicals, Inc.

  2. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway

    OpenAIRE

    2016-01-01

    Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis ...

  3. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis.

    Science.gov (United States)

    Kao, Chi H J; Bishop, Karen S; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M; Marlow, Gareth J; Ferguson, Lynnette R

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.

  4. Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death

    Directory of Open Access Journals (Sweden)

    Kristiansen Mark

    2011-11-01

    Full Text Available Abstract Background Developing sympathetic neurons depend on nerve growth factor (NGF for survival and die by apoptosis after NGF withdrawal. This process requires de novo gene expression but only a small number of genes induced by NGF deprivation have been identified so far, either by a candidate gene approach or in mRNA differential display experiments. This is partly because it is difficult to obtain large numbers of sympathetic neurons for in vitro studies. Here, we describe for the first time, how advances in gene microarray technology have allowed us to investigate the expression of all known genes in sympathetic neurons cultured in the presence and absence of NGF. Results We have used Affymetrix Exon arrays to study the pattern of expression of all known genes in NGF-deprived sympathetic neurons. We identified 415 up- and 813 down-regulated genes, including most of the genes previously known to be regulated in this system. NGF withdrawal activates the mixed lineage kinase (MLK-c-Jun N-terminal kinase (JNK-c-Jun pathway which is required for NGF deprivation-induced death. By including a mixed lineage kinase (MLK inhibitor, CEP-11004, in our experimental design we identified which of the genes induced after NGF withdrawal are potential targets of the MLK-JNK-c-Jun pathway. A detailed Gene Ontology and functional enrichment analysis also identified genetic pathways that are highly enriched and overrepresented amongst the genes expressed after NGF withdrawal. Five genes not previously studied in sympathetic neurons - trib3, ddit3, txnip, ndrg1 and mxi1 - were validated by real time-PCR. The proteins encoded by these genes also increased in level after NGF withdrawal and this increase was prevented by CEP-11004, suggesting that these genes are potential targets of the MLK-JNK-c-Jun pathway. Conclusions The sympathetic neuron model is one of the best studied models of neuronal apoptosis. Overall, our microarray data gives a comprehensive

  5. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.

    Science.gov (United States)

    Pramparo, Tiziano; Libiger, Ondrej; Jain, Sonia; Li, Hong; Youn, Yong Ha; Hirotsune, Shinji; Schork, Nicholas J; Wynshaw-Boris, Anthony

    2011-03-01

    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define

  6. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma.

    Directory of Open Access Journals (Sweden)

    Armand Valsesia

    Full Text Available Cancer genomes frequently contain somatic copy number alterations (SCNA that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes' in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.

  7. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    Science.gov (United States)

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  8. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Lin, Shih-Hua; Ka, Shuk-Man; Chen, Ann; Shih, Meng-Fu; Hsu, Yu-Juei

    2014-12-01

    Gender is known to be associated with longevity and oestrogen administration induced longevity-associated gene expression is one of the potential mechanisms underlying the benefits of oestrogen on lifespan, whereas the role of testosterone in the regulation of longevity-associated gene expressions remains largely unclear. The klotho gene, predominantly expressed in the kidney, has recently been discovered to be an aging suppressor gene. In the present study, we investigated the regulatory effects of testosterone on renal klotho gene expression in vivo and in vitro. In testosterone-administered mouse kidney and NRK-52E cells, increased klotho expression was accompanied by the up-regulation of the nuclear androgen receptor (AR). Overexpression of AR enhanced the expression of klotho mRNA and protein. Conversely, testosterone-induced klotho expression was attenuated in the presence of flutamide, an AR antagonist. A reporter assay and a chromatin immunoprecipitation (ChIP) assay demonstrated that AR directly binds to the klotho promoter via androgen response elements (AREs) which reconfirmed its importance for AR binding via the element mutation. In summary, our study demonstrates that testosterone up-regulates anti-aging klotho together with AR expression in the kidney in vivo and in vitro by recruiting AR on to the AREs of the klotho promoter.

  9. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    Science.gov (United States)

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  10. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P.

    Science.gov (United States)

    Bruce, W; Folkerts, O; Garnaat, C; Crasta, O; Roth, B; Bowen, B

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER-C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways.

  11. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.

    Directory of Open Access Journals (Sweden)

    Martina Koeva

    Full Text Available The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.

  12. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    Science.gov (United States)

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  13. Gene expression profiling reveals biological pathways responsible for phenotypic heterogeneity between UK and Sri Lankan oral squamous cell carcinomas.

    Science.gov (United States)

    Saeed, Anas A; Sims, Andrew H; Prime, Stephen S; Paterson, Ian; Murray, Paul G; Lopes, Victor R

    2015-03-01

    It is well recognized that oral squamous cell carcinoma (OSCC) cases from Asia that are associated with betel quid chewing are phenotypically distinct to those from Western countries that are predominantly caused by smoking/drinking, but the molecular basis of these differences are largely unknown. The aim of this study is to examine gene expression, related carcinogenic pathways and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups. We have compared the gene expression profiles of OSCCs and normal oral mucosal tissues from both Sri Lankan and UK individuals using Affymetrix gene expression arrays. The generated data was interrogated using significance analysis of microarrays and Ingenuity Pathway Analysis (IPA). The gene expression profiles of UK and Sri Lankan OSCC are similar in many respects to other oral cancer expression profiles reported in the literature and were mainly similar to each other. However, genes involved in tumor invasion, metastasis and recurrence were more obviously associated with UK tumors as opposed to those from Sri Lanka. The development of OSCCs in both UK and Sri Lankan populations appears largely mediated by similar biological pathways despite the differences related to race, ethnicity, lifestyle, and/or exposure to environmental carcinogens. However, IPA revealed a highly activated "Cell-mediated Immune Response" in Sri Lankan normal and tumor samples relative to UK cohorts. It seems likely, therefore, that any future attempts to personalize treatment for OSCC patients will need to be different in Western and Asian countries to reflect differences in gene expression and the immune status of the patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    Science.gov (United States)

    Hu, Valerie W; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E; Sarachana, Tewarit; Scully, Michele A; Soldin, Steven J; Luu, Truong; Lee, Norman H

    2009-06-03

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  15. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Valerie W Hu

    Full Text Available Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  16. Analysis of functional and pathway association of differential co-expressed genes: a case study in drug addiction.

    Science.gov (United States)

    Li, Zi-hui; Liu, Yu-feng; Li, Ke-ning; Duanmu, Hui-zi; Chang, Zhi-qiang; Li, Zhen-qi; Zhang, Shan-zhen; Xu, Yan

    2012-02-01

    Drug addiction has been considered as a kind of chronic relapsing brain disease influenced by both genetic and environmental factors. At present, many causative genes and pathways related to diverse kinds of drug addiction have been discovered, while less attention has been paid to common mechanisms shared by different drugs underlying addiction. By applying a co-expression meta-analysis method to mRNA expression profiles of alcohol, cocaine, heroin addicted and normal samples, we identified significant gene co-expression pairs. As co-expression networks of drug group and control group constructed, associated function term pairs and pathway pairs reflected by co-expression pattern changes were discovered by integrating functional and pathway information respectively. The results indicated that respiratory electron transport chain, synaptic transmission, mitochondrial electron transport, signal transduction, locomotory behavior, response to amphetamine, negative regulation of cell migration, glucose regulation of insulin secretion, signaling by NGF, diabetes pathways, integration of energy metabolism, dopamine receptors may play an important role in drug addiction. In addition, the results can provide theory support for studies of addiction mechanisms.

  17. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens

    National Research Council Canada - National Science Library

    Cui, Huan-Xian; Liu, Ran-Ran; Zhao, Gui-Ping; Zheng, Mai-Qing; Chen, Ji-Lan; Wen, Jie

    2012-01-01

    .... In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY...

  18. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    Science.gov (United States)

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  19. Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans

    Science.gov (United States)

    Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M. A.; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases. PMID:24194869

  20. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans.

    Directory of Open Access Journals (Sweden)

    Vilma Aho

    Full Text Available Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9 was restricted to 4 h/night for five nights. The control subjects (N = 4 spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472. Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005. Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.

  1. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    Directory of Open Access Journals (Sweden)

    Kyle K. Biggar

    2015-04-01

    Full Text Available A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus. To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc, ferritin (fth1, and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.

  2. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    Institute of Scientific and Technical Information of China (English)

    Kyle K Biggar; Cheng-Wei Wu; Shannon N Tessier; Jing Zhang; Fabien Pifferi; Martine Perret; Kenneth B Storey

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been iden-tified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we ana-lyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney,skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.

  3. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.

  4. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.

    2014-01-01

    interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model...... in a porcine model. Methods We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes...... in humans and rodents, e.g. CSF1R and MARC2. Conclusions To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory...

  5. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    Science.gov (United States)

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  6. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  7. Gene Expression Meta-Analysis identifies Cytokine Pathways and 5q Aberrations involved in Metastasis of ERBB2 Amplified and Basal Breast Cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Burton, Mark

    2013-01-01

    Background: Breast tumors have been described by molecular subtypes characterized by pervasively different gene expression profiles. The subtypes are associated with different clinical parameters and origin of precursor cells. However, the biological pathways and chromosomal aberrations that differ...... the subgroups impact metastasis. Results: We have scrutinized publicly available gene expression datasets and identified molecular subtypes in 1,394 breast tumors with outcome data. By analysis of chromosomal regions and pathways using “Gene set enrichment analysis” followed by a meta-analysis, we identified...... show that high expression of 5q14 genes and low levels of TNFR2 pathway genes were associated with poor survival in basal-like cancers. Furthermore, low expression of 5q33 genes and interleukin-12 pathway genes were associated with poor outcome exclusively in ERBB2-like tumors. Conclusion...

  8. Inhibin alpha gene expression in human trophoblasts is regulated by interactions between TFAP2 and cAMP signaling pathways.

    Science.gov (United States)

    Depoix, Christophe L; Debiève, Frédéric; Hubinont, Corinne

    2014-11-01

    Inhibin α (Inha) gene expression is regulated, in rat granulosa cells, via a cyclic 3',5'-adenosine monophosphate (AMP)-response element (CRE) found in a region of the promoter that is homologous to the human INHA promoter. We previously found that during in vitro cytotrophoblast differentiation, human INHA gene expression was regulated by TFAP2A via association with an AP-2 site located upstream of this CRE. The aim of this study was to evaluate if the human INHA gene was also regulated by cAMP in trophoblasts, and to investigate the possible crosstalk between TFAP2 and cAMP signaling pathways in the regulation of INHA gene expression. Treatment with cAMP or forskolin increased INHA mRNA expression by 7- and 2-fold in primary cytotrophoblasts and choriocarcinoma-derived BeWo cells, respectively. Treatment with the protein kinase A inhibitor H-89 reduced forskolin-induced luciferase activity by ∼40% in BeWo cells transfected with an INHA promoter-driven luciferase reporter vector. TFAP2 overexpression increased basal luciferase activity, whereas the dominant repressor KCREB abolished it. Surprisingly, mutation of the CRE also eliminated the TFAP2-induced transcription, although TFAP2 overexpression was still able to increase forskolin-induced luciferase activity when the AP-2 binding site, but not the CRE site, was mutated. Thus, INHA gene expression is upregulated by cAMP via CRE in human trophoblasts, and TFAP2 regulates this expression by interacting with CRE.

  9. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes.

    Science.gov (United States)

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-11-23

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.

  10. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    Science.gov (United States)

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  11. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product

    Institute of Scientific and Technical Information of China (English)

    Chanitra Thuwajit; Peti Thuwajit; Kazuhiko Uchida; Daoyot Daorueang; Sasithorn Kaewkes; Sopit Wongkham; Masanao Miwa

    2006-01-01

    AIM: To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product.METHODS: NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semiquantitative SYBR-based real-time RT-PCR.RESULTS: Among a total of 15 000 genes/ESTs, 239genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serinethreonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfrα, jak 1, eps 8, tgfβ 1/4,strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfβ 1/4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-β (TGF-β) showed statistical significance (P < 0.05). CONCLUSION: O. viverrini ES product stimulates the significant changes of gene expression in several

  12. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Kathleen C. Light

    2012-01-01

    Full Text Available In complex multisymptom disorders like fibromyalgia syndrome (FMS and chronic fatigue syndrome (CFS that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2, and the purinergic 2X4 (P2X4 ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

  13. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway.

    Science.gov (United States)

    Cagliari, Alexandro; Margis-Pinheiro, Márcia; Loss, Guilherme; Mastroberti, Alexandra Antunes; de Araujo Mariath, Jorge Ernesto; Margis, Rogério

    2010-11-01

    Castor bean (Ricinus communis) oil contains ricinoleic acid-rich triacylglycerols (TAGs). As a result of its physical and chemical properties, castor oil and its derivatives are used for numerous bio-based products. In this study, we survey the Castor Bean Genome Database to report the identification of TAG biosynthesis genes. A set of 26 genes encoding six distinct classes of enzymes involved in TAGs biosynthesis were identified. In silico characterization and sequence analysis allowed the identification of plastidic isoforms of glycerol-3-phosphate acyltransferase and lysophosphatidate acyltransferase enzyme families, involved in the prokaryotic lipid biosynthesis pathway, that form a cluster apart from the cytoplasmic isoforms, involved in the eukaryotic pathway. In addition, two distinct membrane bound diacylglycerol acyltransferase enzymes were identified. Quantitative expression pattern analyses demonstrated variations in gene expressions during castor seed development. A tendency of maximum expression level at the middle of seed development was observed. Our results represent snapshots of global transcriptional activities of genes encompassing six enzyme families involved in castor bean TAG biosynthesis that are present during seed development. These genes represent potential targets for biotechnological approaches to produce nutritionally and industrially desirable oils.

  14. Mitochondrial gene expression profiles and metabolic pathways in the amygdala associated with exaggerated fear in an animal model of PTSD

    Directory of Open Access Journals (Sweden)

    He eLi

    2014-09-01

    Full Text Available The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 nonstressed control rats and10 stressed rats, 14 days post stress treatment.. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p< 0.01. Ingenuity Pathway Analysis (IPA revealed up or down regulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  15. Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell.

    Science.gov (United States)

    Walsh, James; Andrews, Peter W

    2003-01-01

    Embryonal carcinoma (EC) cells, the pluripotent stem cells of teratocarcinomas, show many similar-ities to embryonic stem (ES) cells. Since EC cells are malignant but their terminally differentiated derivatives are not, understanding the molecular mechanisms that regulate their differentiation maybe of value for diagnostic and therapeutic purposes. We have examined the expression of multiple components of two developmentally important cell-cell signalling pathways, Wnt and Notch, in the pluripotent human EC cell line, NTERA2, and the human ES cell line, H7. Both pathways have well-documented roles in controlling neurogenesis, a process that occurs largely in response to retinoicacid (RA) treatment of NTERA2 cultures and spontaneously in H7 cultures. In NTERA2, many ofthe genes tested showed altered transcriptional regulation following treatment with RA. These include members of the frizzled gene family (FZDI, FZD3, FZD4, FZD5, FZD6), encoding receptors forWnt proteins, the Frizzled Related Protein family (SFRPI, SFRP2, FRZB, SFRP4), encoding solubleWnt antagonists and also ligands and receptors of the Notch pathway (Dlkl, Jaggedl; Notchl, Notch2, Notch3). Few differences were found in the repertoire of Wnt and Notch pathway genes expressed by NTERA2 EC cells and H7 ES cells. We present a model in which interactions between and regulation of Wnt and Notch signalling are important in maintaining EC/ES stem cells and also controlling their differentiation.

  16. The nutritional induction of COUP-TFII gene expression in ventromedial hypothalamic neurons is mediated by the melanocortin pathway.

    Directory of Open Access Journals (Sweden)

    Lina Sabra-Makke

    Full Text Available BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation.

  17. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  18. Expression of Genes Related to Anti-Inflammatory Pathways Are Modified Among Farmers’ Children

    Science.gov (United States)

    Bieli, Christian; Loeliger, Susanne; Waser, Marco; Scheynius, Annika; van Hage, Marianne; Pershagen, Göran; Doekes, Gert; Riedler, Josef; von Mutius, Erika; Sennhauser, Felix; Akdis, Cezmi A.; Braun-Fahrländer, Charlotte; Lauener, Roger P.

    2014-01-01

    Background The hygiene hypothesis states that children exposed to higher loads of microbes such as farmers’ children suffer less from allergies later in life. Several immunological mechanisms underpinning the hygiene hypothesis have been proposed such as a shift in T helper cell balance, T regulatory cell activity, or immune regulatory mechanisms induced by the innate immunity. Objective To investigate whether the proposed immunological mechanisms for the hygiene hypotheses are found in farmers’ children. Methods We assessed gene expression levels of 64 essential markers of the innate and adaptive immunity by quantitative real-time PCR in white blood cells in 316 Swiss children of the PARSIFAL study to compare farmers’ to non-farmers’ expressions and to associate them to the prevalence of asthma and rhinoconjunctivitis, total and allergen-specific IgE in serum, and expression of Cε germ-line transcripts. Results We found enhanced expression of genes of the innate immunity such as IRAK-4 and RIPK1 and enhanced expression of regulatory molecules such as IL-10, TGF-β, SOCS4, and IRAK-2 in farmers’ children. Furthermore, farmers’ children expressed less of the TH1 associated cytokine IFN-γ while TH2 associated transcription factor GATA3 was enhanced. No significant associations between the assessed immunological markers and allergic diseases or sensitization to allergens were observed. Conclusion Farmers’ children express multiple increased innate immune response and immune regulatory molecules, which may contribute to the mechanisms of action of the hygiene hypothesis. PMID:24603716

  19. Identification of novel GH-regulated pathway of lipid metabolism in adipose tissue: a gene expression study in hypopituitary men.

    Science.gov (United States)

    Zhao, Jing Ting; Cowley, Mark J; Lee, Paul; Birzniece, Vita; Kaplan, Warren; Ho, Ken K Y

    2011-07-01

    Adipose tissue is a major target of GH action. GH stimulates lipolysis and reduces fat mass. The molecular mechanism underlying cellular and metabolic effects of GH in adipose tissue is not well understood. The aim of this study is to identify GH-responsive genes that regulate lipid metabolism in adipose tissue. Eight men with GH deficiency underwent measurement of plasma free fatty acid (FFA), whole-body lipid oxidation, and fat biopsies before and after 1 month of GH treatment (0.5 mg/d). Gene expression profiling was performed using Agilent 44K G4112F arrays using a two-color design. Differentially expressed genes were identified using an empirical Bayes, moderated t test, with a false discovery rate under 5%. Target genes were validated by quantitative RT-PCR. GH increased circulating IGF-I and FFA and stimulated fat oxidation. A total of 246 genes were differentially expressed, of which 135 were up-regulated and 111 down-regulated. GH enhanced adipose tissue expression of IGF-I and SOCS3. GH increased expression of patatin-like phospholipase domain containing 3 (PNPLA3), a novel triglyceride (TG) hydrolase, but not hormone-sensitive lipase (HSL), a classical TG hydrolase. GH repressed cell death-inducing DFFA-like effector A (CIDEA), a novel lipid droplets-associated protein, promoting TG storage. GH differentially regulated genes promoting diacylglycerol synthesis. GH suppressed hydroxysteroid (11β) dehydrogenase 1, which activates local cortisol production and genes encoding components of extracellular matrix and TGF-β signaling pathway. GH stimulates the TG/FFA cycle by regulating the expression of novel genes that enhance TG hydrolysis, reduce TG storage, and promote diacylglycerol synthesis. GH represses adipocyte growth, differentiation and inflammation.

  20. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Science.gov (United States)

    Zheng, Shanqing; Liao, Sentai; Zou, Yuxiao; Qu, Zhi; Liu, Fan

    2014-01-01

    DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  1. Gene expression changes in chicken NLRC5 signal pathway associated with in vitro avian leukosis virus subgroup J infection.

    Science.gov (United States)

    Qiu, L L; Xu, L; Guo, X M; Li, Z T; Wan, F; Liu, X P; Chen, G H; Chang, G B

    2016-03-18

    Nucleotide-binding oligomerization domain-like receptors (NLRs) play a key role in the innate immune response as pattern-recognition receptors. However, the role of NLRC5, which is a member of the NLR family, in NF-κB activation and MHC-I expression remains debatable. Infection with the J group avian leukosis virus (ALV-J) can result in immunosuppression and a subsequent increase in susceptibility to secondary infection. This results in huge economic losses to the poultry industry worldwide. Using quantitative real-time polymerase chain reaction (qRT-PCR), we investigated the mRNA expression levels of NLRC5 signal pathway-related genes in secondary chicken embryo fibroblasts 7 days after infection with ALV-J. The results indicated that, compared with the control groups, the expression levels of TLR7, MHC-I, and IL-18 increased significantly in the infected groups at 7 days post-infection (d.p.i.). The expression levels of NLRC5 and IL-6 were conspicuously downregulated at 7 d.p.i., but the expression levels of NF-κB, STAT1, and STAT3 were not significantly altered. These results suggest that NLRC5 and some genes involved in the NLRC5 pathway play a key role in antiviral immunity, typically the response to ALV-J infection. Moreover, MHC-I expression levels vary between different cell types.

  2. The coordination of gene expression within photosynthesis pathway for acclimation of C4 energy crop Miscanthus lutarioriparius

    Directory of Open Access Journals (Sweden)

    Shilai eXing

    2016-02-01

    Full Text Available As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8 % of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI and ATPase and CO2-concentrating mechanism (C4 cycle could account for photosynthesis plasticity on M. lutarioriparius acclimation potential.

  3. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin

    Directory of Open Access Journals (Sweden)

    Sherman-Baust Cheryl A

    2011-12-01

    Full Text Available Abstract Background Resistance to current chemotherapeutic agents is a major cause of therapy failure in ovarian cancer patients, but the exact mechanisms leading to the development of drug resistance remain unclear. Methods To better understand mechanisms of drug resistance, and possibly identify novel targets for therapy, we generated a series of drug resistant ovarian cancer cell lines through repeated exposure to three chemotherapeutic drugs (cisplatin, doxorubicin, or paclitaxel, and identified changes in gene expression patterns using Illumina whole-genome expression microarrays. Validation of selected genes was performed by RT-PCR and immunoblotting. Pathway enrichment analysis using the KEGG, GO, and Reactome databases was performed to identify pathways that may be important in each drug resistance phenotype. Results A total of 845 genes (p Conclusions Ovarian cancer cells develop drug resistance through different pathways depending on the drug used in the generation of chemoresistance. A better understanding of these mechanisms may lead to the development of novel strategies to circumvent the problem of drug resistance.

  4. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells

    Science.gov (United States)

    ZHOU, RI; YUAN, ZHI; LIU, JIERONG; LIU, JIAN

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  5. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans

    OpenAIRE

    Rubbia-Brandt, Laura; Tauzin, Sébastien; Brezault, Catherine; Delucinge-Vivier, Céline; Descombes, Patrick; Dousset, Bertand; Majno, Pietro; Mentha, Gilles; Terris, Benoit

    2011-01-01

    Sinusoidal obstruction syndrome (SOS; formerly veno-occlusive disease) is a well-established complication of hematopoietic stem cell transplantation, pyrrolizidine alkaloid intoxication, and widely used chemotherapeutic agents such as oxaliplatin. It is associated with substantial morbidity and mortality. Pathogenesis of SOS in humans is poorly understood. To explore its molecular mechanisms, we used Affymetrix U133 Plus 2.0 microarrays to investigate the gene expression profile of 11 human l...

  6. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  7. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    0126 attenuated the VIP mRNA expression by 93%. 58%, 58% and 40%, respectively. PACAP modulated the phosphorylation of ERK1/2 (pERK1/2) and CREB/ATF-1 (pCREB/ATF-1) concomitant with a translocation of PKA to the nucleus. Inhibition of conventional PKC isoforms and MEK1/2 completely abolished pERK1....../2 without affecting PACAP induced pCREB/ATF-1. In contrast, inhibiting PKA attenuated PACAP induced pCREB/ATF-1. PACAP also enhanced the FOS gene expression and individual presence of H-89, BIS, Go6976 and U0126 partially attenuated the PACAP induced FOS mRNA expression. Combining the kinase inhibitors...

  8. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Georg, Birgitte; Fahrenkrug, Jan

    2009-01-01

    0126 attenuated the VIP mRNA expression by 93%, 58%, 58% and 40%, respectively. PACAP modulated the phosphorylation of ERK1/2 (pERK1/2) and CREB/ATF-1 (pCREB/ATF-1) concomitant with a translocation of PKA to the nucleus. Inhibition of conventional PKC isoforms and MEK1/2 completely abolished pERK1....../2 without affecting PACAP induced pCREB/ATF-1. In contrast, inhibiting PKA attenuated PACAP induced pCREB/ATF-1. PACAP also enhanced the FOS gene expression and individual presence of H-89, BIS, Gö6976 and U0126 partially attenuated the PACAP induced FOS mRNA expression. Combining the kinase inhibitors...

  9. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum.

    Science.gov (United States)

    Qiu, Lingling; Ma, Teng; Chang, Guobin; Liu, Xiangping; Guo, Xiaomin; Xu, Lu; Zhang, Yang; Zhao, Wenming; Xu, Qi; Chen, Guohong

    2017-01-15

    NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.

  10. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression.

    Science.gov (United States)

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Liu, Bo-Du; Huang, Xian-De; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-09-01

    The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK-NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK-NF-κB signaling pathway to facilitate viral gene expression.

  11. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP or an adequate protein diet (AP, 12% CP throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc and postnatal stages (1, 28, 188 dpn. Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.

  12. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  13. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer.

    Science.gov (United States)

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

  14. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer

    Science.gov (United States)

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC. PMID:25186767

  15. Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells.

    Science.gov (United States)

    Xu, Qianqian; Fu, Rong; Yin, Guoxiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-03-10

    We previously reported that regenerating islet-derived protein 3 alpha (REG3A) exacerbates pancreatic malignancies. The mechanism of this effect has not been clearly elucidated. Here we first identified key differentially expressed genes (DEGs) and signal pathways in the pancreatic cancer cell line SW1990, compared to two control cell lines, by microarray analysis. We then identified key genes and pathways regulated by REG3A or the cytokine IL6 in SW1990 cells. Afterwards, these DEGs induced by REG3A or IL6 were subjected to KEGG pathway enrichment analysis and GO function analysis by the DAVID online tool. Ultimately, we constructed protein-protein interaction networks among the DEGs by Cytoscape. Among the three pancreatic cell lines, SW1990 exhibited highly deterioration with the activation of genes and pathways related to proliferation, survival, angiogenesis, and invasion. As a result, 50 DEGs enriched in 11 pathways were identified in REG3A-treated SW1990 cells, and 28 DEGs enriched in 9 pathways were detected in IL6-treated cells. Overall, results of microarray analysis followed by qRT-PCR and Western blotting suggest that REG3A regulates pancreatic cell growth by increasing the expression of at least 8 genes: JAK1, STAT3, IL10, FOXM1, KRAS, MYC, CyclinD1, and c-fos; and activation of at least 4 signal pathways: TGFβ, PDGF, angiogenesis and RAS. Similar results were obtained with IL6 treatment. Regulation network analysis confirmed the cell growth related DEGs, and further uncovered three transcription factor families with immune functions regulated by REG3A.

  16. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  17. Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice.

    Directory of Open Access Journals (Sweden)

    Ashok Sharma

    Full Text Available BACKGROUND: Leptin, a cytokine-like protein, plays an important role in the regulation of body weight through inhibition of food intake and stimulation of energy expenditure. Leptin circulates in blood and acts on the brain, which sends downstream signals to regulate body weight. Leptin therapy has been successful in treating leptin deficient obese patients. However, high levels of leptin have been observed in more common forms of obesity indicating a state of leptin resistance which limits the application of leptin in the treatment of obesity. If the central effect of leptin could be by-passed and genes which respond to leptin treatment could be regulated directly, new therapeutic targets for the treatment of obesity may be possible. The purpose of this study was to identify genes and subsequent pathways correlated with leptin-mediated weight loss. METHODOLOGY/PRINCIPAL FINDINGS: WE UTILIZED MICROARRAY TECHNOLOGY TO COMPARE HEPATIC GENE EXPRESSION CHANGES AFTER TWO TYPES OF LEPTIN ADMINISTRATION: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV. We identified 214 genes that correlate with leptin mediated weight loss. Several biological processes such as mitochondrial metabolic pathways, lipid metabolic and catabolic processes, lipid biosynthetic processes, carboxylic acid metabolic processes, iron ion binding and glutathione S-transferases were downregulated after leptin administration. In contrast, genes involved in the immune system inflammatory response and lysosomal activity were found to be upregulated. Among the cellular compartments mitochondrion (32 genes, endoplasmic reticulum (22 genes and vacuole (8 genes were significantly over represented. CONCLUSIONS/SIGNIFICANCE: In this study we have identified key molecular pathways and downstream

  18. Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice.

    Science.gov (United States)

    Sharma, Ashok; Bartell, Shoshana M; Baile, Clifton A; Chen, Bo; Podolsky, Robert H; McIndoe, Richard A; She, Jin-Xiong

    2010-08-16

    Leptin, a cytokine-like protein, plays an important role in the regulation of body weight through inhibition of food intake and stimulation of energy expenditure. Leptin circulates in blood and acts on the brain, which sends downstream signals to regulate body weight. Leptin therapy has been successful in treating leptin deficient obese patients. However, high levels of leptin have been observed in more common forms of obesity indicating a state of leptin resistance which limits the application of leptin in the treatment of obesity. If the central effect of leptin could be by-passed and genes which respond to leptin treatment could be regulated directly, new therapeutic targets for the treatment of obesity may be possible. The purpose of this study was to identify genes and subsequent pathways correlated with leptin-mediated weight loss. WE UTILIZED MICROARRAY TECHNOLOGY TO COMPARE HEPATIC GENE EXPRESSION CHANGES AFTER TWO TYPES OF LEPTIN ADMINISTRATION: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ) and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV). We identified 214 genes that correlate with leptin mediated weight loss. Several biological processes such as mitochondrial metabolic pathways, lipid metabolic and catabolic processes, lipid biosynthetic processes, carboxylic acid metabolic processes, iron ion binding and glutathione S-transferases were downregulated after leptin administration. In contrast, genes involved in the immune system inflammatory response and lysosomal activity were found to be upregulated. Among the cellular compartments mitochondrion (32 genes), endoplasmic reticulum (22 genes) and vacuole (8 genes) were significantly over represented. In this study we have identified key molecular pathways and downstream genes which respond to leptin treatment and are involved in leptin-mediated weight

  19. The zero-sum game of pathway optimization: emerging paradigms for tuning gene expression.

    Science.gov (United States)

    Solomon, Kevin V; Prather, Kristala L J

    2011-09-01

    With increasing price volatility and growing awareness of the lack of sustainability of traditional chemical synthesis, microbial chemical production has been tapped as a promising renewable alternative for the generation of diverse, stereospecific compounds. Nonetheless, many attempts to generate them are not yet economically viable. Due to the zero-sum nature of microbial resources, traditional strategies of pathway optimization are attaining minimal returns. This result is in part a consequence of the gross changes in host physiology resulting from such efforts and underscores the need for more precise and subtle forms of gene modulation. In this review, we describe alternative strategies and emerging paradigms to address this problem and highlight potential solutions from the emerging field of synthetic biology.

  20. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Science.gov (United States)

    2014-01-01

    Background Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and

  1. Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens

    Directory of Open Access Journals (Sweden)

    Yaqiong Ye

    2014-01-01

    Full Text Available Intramuscular fat (IMF plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3 participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway.

  2. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice.

    Directory of Open Access Journals (Sweden)

    Patric J D Delhanty

    Full Text Available BACKGROUND: There is increasing evidence that unacylated ghrelin (UAG improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. CONCLUSIONS/SIGNIFICANCE: Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSR-independent, action of UAG to improve insulin sensitivity and metabolic profile.

  3. Gene expression changes in immune response pathways following oral administration of tetrabromobisphenol A (TBBPA) in female Wistar Han rats.

    Science.gov (United States)

    Hall, Samantha M; Coulter, Sherry J; Knudsen, Gabriel A; Sanders, J Michael; Birnbaum, Linda S

    2017-04-15

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant used globally at high volumes, primarily in the epoxy resin of circuit boards. It has been detected in the environment and in humans. The National Toxicology Program found that chronic oral TBBPA treatment of 250mg/kg and higher caused an increased incidence of uterine lesions in female Wistar Han rats. The present laboratory has previously reported changes in gene expression associated with estrogen homeostasis in liver and uterine tissue of adult female Wistar Han rats after five days of gavage with 250mg/kg of TBBPA. Microarray analysis of tissue from these same TBBPA-treated rats was performed to detect additional pathways perturbed by TBBPA. Microarray analysis of uterine tissue detected downregulation of genes in pathways of the immune response following TBBPA treatment. These results, along with validation of associated gene expression changes using droplet digital PCR, are reported here. Our findings suggest mechanisms that may be related to estrogen-mediated immunosuppression. Published by Elsevier B.V.

  4. Cloning of three genes involved in the flavonoid metabolic pathway and their expression during insect resistance in Pinus massoniana Lamb.

    Science.gov (United States)

    Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H

    2016-12-23

    Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.

  5. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-12-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Internal Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Tao-Yuan, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, TaiwanBackground: Abnormal activation of the Sonic Hedgehog (SHH signaling pathway contributing to carcinogenesis of some organs has been reported in the literature. We hypothesize that activation of the SHH pathway contributes to the recurrence of breast carcinoma.Methods: Fifty consecutive patients with invasive breast carcinoma following curative resection were enrolled in this prospective study. The ratios of messenger RNA (mRNA expression for Sonic Hedgehog (SHH, patched homolog-1 (PTCH-1, glioma-associated oncogene-1 (GLI-1, and smoothened (SMOH were measured between breast carcinoma tissue and paired noncancerous breast tissue. These ratios were compared with their clinicopathologic characteristics. These factors and the mRNA ratios were compared between patients with recurrence and those without recurrence.Results: The size of the invasive cancer correlated significantly with the ratio of SHH mRNA (P=0.001, that of PTCH-1 mRNA (P=0.005, and that of SMOH mRNA (P=0.021. Lymph node involvement correlated significantly with the ratio of SMOH mRNA (P=0.041. The correlation between Her-2 neu and the ratio of GLI-1 mRNA was statistically significant (P=0.012. Each ratio of mRNA of SHH, PTCH-1, GLI-1, and SMOH correlated significantly with cancer recurrence (P<0.001 for each.Conclusion: We suggest that high expression of SHH mRNA, PTCH-1 mRNA, GLI-1 mRNA, and SMOH mRNA in breast cancer tissue correlates with invasiveness and is a potential biomarker to predict postoperative recurrence.Keywords: SHH pathway, breast carcinoma, prediction, recurrence

  6. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    Science.gov (United States)

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G; Daiber, Andreas

    2015-08-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  7. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    Directory of Open Access Journals (Sweden)

    Yuliya Mikhed

    2015-08-01

    Full Text Available Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α and mRNA binding proteins (e.g. GAPDH, HuR is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications. By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  8. Gene expression profiles of vascular smooth muscle show differential expression of mitogen-activated protein kinase pathways during captopril therapy of heart failure.

    Science.gov (United States)

    Chen, Frank C; Brozovich, Frank V

    2008-01-01

    Congestive heart failure (CHF) is characterized by increased vascular tone and an impairment in nitric-oxide-mediated vasodilatation. We have demonstrated that the blunted response to nitric oxide is due, in part, to a reduction in the leucine-zipper-positive isoform of the myosin-targeting subunit (MYPT1) of myosin light-chain phosphatase. Additionally, we have shown that angiotensin-converting enzyme inhibition, but not afterload reduction with prazosin, preserves leucine-zipper-positive MYPT1 isoform expression in vascular smooth muscle cells and normalizes the sensitivity to cGMP-mediated vasodilatation. We therefore hypothesized that in CHF, growth regulators and cytokines downstream of the angiotensin II receptor are involved in modulating gene expression in vascular tissue. Rats were divided into control and captopril-treated groups following left coronary artery ligation. Gene expression profiles in the aorta and portal vein at baseline and 2 and 4 weeks after myocardial infarction (MI) were analyzed using microarray technology and quantitative real-time PCR. After MI, microarray analysis revealed differential mRNA expression of 21 genes in the aorta of captopril-treated rats 2 and 4 weeks after surgery when compared to gene expression profiles at baseline and without captopril therapy. Real-time PCR demonstrated that captopril suppressed the expression of protein kinases in the angiotensin-II-mediated mitogen-activated protein kinase signaling pathway, including Taok1 and Raf1. These data suggest that in CHF, captopril therapy modulates gene expression in vascular smooth muscle, and some of the beneficial effects of ACE inhibition may be due to differential gene expression in the vasculature.

  9. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model.

    Science.gov (United States)

    Kogelman, Lisette J A; Cirera, Susanna; Zhernakova, Daria V; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2014-09-30

    Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be

  10. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform

    DEFF Research Database (Denmark)

    Mikkelsen, Michael Dalgaard; Buron, Line Due; Salomonsen, Bo;

    2012-01-01

    Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ∼30 glucosinolates that are typically present as natural...... products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways...... in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting...

  11. Pathway Detection from Protein Interaction Networks and Gene Expression Data Using Color-Coding Methods and A* Search Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2012-01-01

    Full Text Available With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73GHz and 1GB main memory running under windows operating system.

  12. Expression of. Arabidopsis tryptophan biosynthetic pathway genes: effect of the 5’ coding region of phosphoribosylanthranilate isomerase gene

    Institute of Scientific and Technical Information of China (English)

    何奕昆; 刘新仿; 李家洋

    1999-01-01

    There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5’ region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5’ coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5’ coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5’ region. However, the effect of 5’ coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t

  13. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    Science.gov (United States)

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  14. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia

    Science.gov (United States)

    Saraiya, Ashesh A.; Li, Wei; Wang, Ching C.

    2011-01-01

    We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3′ UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2′ O–methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)–mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3′ UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia. PMID:22033329

  15. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks

    Science.gov (United States)

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G.; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H.; Sareen, Dhruv

    2016-01-01

    Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology. PMID:27428653

  16. PPARα signal pathway gene expression is associated with fatty acid content in yak and cattle longissimus dorsi muscle.

    Science.gov (United States)

    Qin, W; Liang, C N; Guo, X; Chu, M; Pei, J; Bao, P J; Wu, X Y; Li, T K; Yan, P

    2015-11-19

    Intramuscular fatty acid (FA) is related to meat qualities such as juiciness, tenderness, palatability, and shear force. PPARα plays an important role in lipid metabolism in the liver and skeletal muscle. This study investigated FA composition in yaks and cattle, in order to ascertain whether a correlation between PPARα signal pathway genes as candidate genes and meat FA composition in yaks and cattle exists. Statistical analyses revealed that levels of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) in yaks were significantly higher than those in cattle (P cattle (P cattle. However, LPL expression in yaks was significantly higher than that in cattle (P cattle, the mRNA level of PLTP was positively correlated with SFA (P meat quality.

  17. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells.

    Science.gov (United States)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.

  18. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    John Karijolich

    Full Text Available Short interspersed nuclear elements (SINEs are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68 infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.

  19. Subpathway-CorSP: Identification of metabolic subpathways via integrating expression correlations and topological features between metabolites and genes of interest within pathways.

    Science.gov (United States)

    Feng, Chenchen; Zhang, Jian; Li, Xuecang; Ai, Bo; Han, Junwei; Wang, Qiuyu; Wei, Taiming; Xu, Yong; Li, Meng; Li, Shang; Song, Chao; Li, Chunquan

    2016-09-14

    Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and genes of interest associated with specific diseases. However, the traditional pathway identification methods do not accurately consider the combined effect of these interesting molecules and neglects expression correlations or topological features embedded in the pathways. In this study, we propose a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method improved on original pathway identification methods by using a subpathway identification strategy and emphasizing expression correlations between metabolites and genes of interest based on topological features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose entire corresponding pathways were not detected by traditional pathway identification methods. Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably recalling cancer-related subpathways and locating novel subpathways by the combined effect of metabolites and genes. This was a novel subpathway strategy based on systematically considering expression correlations and topological features between metabolites and genes of interest within given pathways.

  20. Inhibition of TGF-β and EGF pathway gene expression and migration of oral carcinoma cells by mucosa-associated lymphoid tissue 1

    OpenAIRE

    Ohyama, Y.; Kawamoto, Y.; Chiba, T.; Maeda, G.; Sakashita, H; Imai, K.

    2013-01-01

    Background: Expression of mucosa-associated lymphoid tissue 1 (MALT1) is inactivated in oral carcinoma patients with worse prognosis. However, the role in carcinoma progression is unknown. Unveiling genes under the control of MALT1 is necessary to understand the pathology of carcinomas. Methods: Gene data set differentially transcribed in MALT1-stably expressing and -marginally expressing oral carcinoma cells was profiled by the microarray analysis and subjected to the pathway analysis. Migra...

  1. Gene Expression Analysis of Toll-like Receptor Pathways in Heterophils from Genetic Chicken Lines That Differ In Their Susceptibility to Salmonella enteritidis

    Directory of Open Access Journals (Sweden)

    Michael eKogut

    2012-07-01

    Full Text Available Previously conducted studies using two chicken lines (A and B show that line A birds have increased resistance to a number of bacterial and protozoan challenges and that heterophils isolated from line A birds are functionally more responsive. Furthermore, when stimulated with toll-like receptor (TLR agonists, heterophils from line A expressed a totally different cytokine and chemokine mRNA expression pattern than heterophils from line B. A large-scale gene expression profile using an Agilent 44K microarray on heterophils isolated from line A and line B also revealed significantly differential expression in many immune-related genes following Salmonella enteritidis (SE stimulation, which included genes involved in the TLR pathway. Therefore, we hypothesize the differences between the lines result from distinctive TLR pathway signaling cascades that mediate heterophil function and, thus, innate immune responsiveness to SE. Using quantitative RT-PCR on mRNA from heterophils isolated from control and SE-stimulated heterophils of each line, we profiled the expression of all chicken homologous genes identified in a reference TLR pathway. Several differentially expressed genes found were involved in the TLR-induced My88-dependent pathway, showing higher gene expression in line A than line B heterophils following SE stimulation. These genes included the toll-like receptor genes TLR4, TLR15, TLR21, MD2, the adaptor proteins toll-interleukin 1 receptor domain containing adaptor protein (TIRAP, Tumor necrosis factor-receptor associated factor 3 (TRAF3, the IκB kinases TGF-β-activating kinase 1 (TAK1, IKKε and IKKα, the transcription factors NFkB2 and interferon regulatory factor 7 (IRF7, phosphoinositol-3 kinase (PI-3K, and the mitogen-activated protein kinase (MAPK p38. These results indicate that higher expression of TLR signaling activation of both MyD88-dependent and TRIF-dependent pathways are more beneficial to avian heterophil-mediated innate

  2. Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2007-05-01

    Full Text Available Abstract Background Biochemical investigations over the last decades have elucidated an increasingly complete image of the cellular metabolism. To derive a systems view for the regulation of the metabolism when cells adapt to environmental changes, whole genome gene expression profiles can be analysed. Moreover, utilising a network topology based on gene relationships may facilitate interpreting this vast amount of information, and extracting significant patterns within the networks. Results Interpreting expression levels as pixels with grey value intensities and network topology as relationships between pixels, allows for an image-like representation of cellular metabolism. While the topology of a regular image is a lattice grid, biological networks demonstrate scale-free architecture and thus advanced image processing methods such as wavelet transforms cannot directly be applied. In the study reported here, one-dimensional enzyme-enzyme pairs were tracked to reveal sub-graphs of a biological interaction network which showed significant adaptations to a changing environment. As a case study, the response of the hetero-fermentative bacterium E. coli to oxygen deprivation was investigated. With our novel method, we detected, as expected, an up-regulation in the pathways of hexose nutrients up-take and metabolism and formate fermentation. Furthermore, our approach revealed a down-regulation in iron processing as well as the up-regulation of the histidine biosynthesis pathway. The latter may reflect an adaptive response of E. coli against an increasingly acidic environment due to the excretion of acidic products during anaerobic growth in a batch culture. Conclusion Based on microarray expression profiling data of prokaryotic cells exposed to fundamental treatment changes, our novel technique proved to extract system changes for a rather broad spectrum of the biochemical network.

  3. [Regulations of berberine on gene expression of BMP4 transcriptional pathways to improve visceral white adipose tissues insulin resistance in type 2 diabetic hamsters].

    Science.gov (United States)

    Li, Guo-Sheng; Liu, Xu-Han; Li, Xin-Yu; Gao, Zheng-Nan; Huang, Lan; Liu, Ya-Li

    2016-02-01

    To study the effects of berberine on the gene mRNA expressions of BMP4 transcriptional pathways and brown/white adipose tissue conversion transcriptional pathways in visceral white adipose tissues(VWAT) in type 2 diabetic hamsters and explore the relevant mechanisms. The obese insulin-resistant hamster model were induced by using high-fat diet, and then the type 2 diabetic hamster model was created through injection with low-dose streptozotocin in the obese insulin-resistant hamster model. After the modeling, the hamsters were randomly divided into normal control, obese insulin-resistant, type 2 diabetic and berberine-treated diabetic groups. After the nine-week treatment, real-time quantitative PCR was used to measure the changes in gene mRNA expressions of VWAT BMP4 transcriptional pathways, brown/white adipose tissue conversion transcriptional pathways and their target genes in different groups. The results showed that the gene mRNA expressions of BMP4, BMPRⅡ, BMPRlA, Smad1, Smad5, Smad8, p38/MAPK, ATF2, PRDM16, C/EBPβ, PGC1α, PPARγ and brown adipose tissue-specific genes was decreased and that of Smad6, Smurf1 and white adipose tissue-specific genes was increased in VWAT of model hamsters. Treatment with berberine regulated BMP4 transcriptional pathways and brown adipose tissue transcriptional pathways and induced the gene mRNA expression of brown adipose tissue-specific genes in VWAT to develop browning gene phenotype of white adipose tissues, and then improved fat-induced insulin resistance. These findings indicated that BMP4 transcriptional pathways involved in the formation of fat-induced visceral white adipose tissues insulin resistance (FIVWATIR) and the browning molecular mechanism of white adipose tissues induced by berberine. Copyright© by the Chinese Pharmaceutical Association.

  4. Pathways analysis of differential gene expression induced by engrafting doses of total body irradiation for allogeneic bone marrow transplantation in mice.

    Science.gov (United States)

    Chen, Xinjian; Wang, Yuanyuan; Li, Qiuxia; Tsai, Schickwann; Thomas, Alun; Shizuru, Judith A; Cao, Thai M

    2013-08-01

    A major challenge in allogeneic bone marrow (BM) transplantation is overcoming engraftment resistance to avoid the clinical problem of graft rejection. Identifying gene pathways that regulate BM engraftment may reveal molecular targets for overcoming engraftment barriers. Previously, we developed a mouse model of BM transplantation that utilizes recipient conditioning with non-myeloablative total body irradiation (TBI). We defined TBI doses that lead to graft rejection, that conversely are permissive for engraftment, and mouse strain variation with regards to the permissive TBI dose. We now report gene expression analysis, using Agilent Mouse 8x60K microarrays, in spleens of mice conditioned with varied TBI doses for correlation to the expected engraftment phenotype. The spleens of mice given engrafting doses of TBI, compared with non-engrafting TBI doses, demonstrated substantially broader gene expression changes, significant at the multiple testing-corrected P change ≥2. Functional analysis revealed significant enrichment for a down-regulated canonical pathway involving B-cell development. Genes enriched in this pathway suggest that suppressing donor antigen processing and presentation may be pivotal effects conferred by TBI to enable engraftment. Regardless of TBI dose and recipient mouse strain, pervasive genomic changes related to inflammation was observed and reflected by significant enrichment for canonical pathways and association with upstream regulators. These gene expression changes suggest that macrophage and complement pathways may be targeted to overcome engraftment barriers. These exploratory results highlight gene pathways that may be important in mediating BM engraftment resistance.

  5. NF-κB and ERK-signaling pathways contribute to the gene expression induced by cag PAI-positive- Helicobacter pylori infection

    Institute of Scientific and Technical Information of China (English)

    Wataru Shibata; Yuzo Mitsuno; Naohiko Seki; Takao Kawabe; Masao Omata; Yoshihiro Hirata; Haruhiko Yoshida; Motoyuki Otsuka; Yujin Hoshida; Keiji Ogura; Shin Maeda; Tomoya Ohmae; Ayako Yanai

    2005-01-01

    AIM: To elucidate the sequential gene expression profile in AGS cells co-cultured with wild-type Helicobacter pylori(H pylori) as a model of H pylori-infected gastric epithelium,and to further examine the contribution of cag-pathogenicity islands (cagPAI)-coding type Ⅳ secretion system and the two pathways, nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinases (ERK) on wild-type H pylori-induced gene expression.METHODS: Gene expression profiles induced by H pylori were evaluated in AGS gastric epithelial cells using cDNA microarray, which were present in the 4 600 independent clones picked up from the human gastric tissue. We also analyzed the contribution of NF-κB and ERK signaling on H pylori-induced gene expression by using inhibitors of specific signal pathways. The isogenic mutant with disrupted cagE (△cagE) was used to elucidate the role of cagPAI-encoding type Ⅳ secretion system in the gene expression profile.RESULTS: According to the expression profile, the genes were classified into four clusters. Among them, the clusters characterized by continuous upregulation were most conspicuous, and it contained many signal transducer activity-associated genes. The role of cagPAI on cultured cells was also investigated using isogenic mutant cagE,which carries non-functional cagPAI. Then the upregulation of more than 80% of the induced genes (476/566) was found to depend on cagPAI. Signal transducer pathway through NF-κB or ERK are the major pathways which are known to be activated by cagPAI-positive H pylori. The role of these pathways in the whole signal activation by cagPAIpositive H pylori was analyzed. The specific inhibitors against NF-κB or ERK pathway blocked the activation of gene expression in 65% (367/566) or 76% (429/566) of the genes whose activation appealed to depend on cagPAI.CONCLUSION: These results suggest that more than half of the genes induced by cagPAI-positive H pylori depend on NF-κB and ERK signaling activation

  6. Differentially expressed genes and signalling pathways are involved in mouse osteoblast-like MC3T3-E1 cells exposed to 17-b estradiol

    Institute of Scientific and Technical Information of China (English)

    Zhen-Zhen Shang; Xin Li; Hui-Qiang Sun; Guo-Ning Xiao; Cun-Wei Wang; Qi Gong

    2014-01-01

    Oestrogen is essential for maintaining bone mass, and it has been demonstrated to induce osteoblast proliferation and bone formation. In this study, complementary DNA (cDNA) microarrays were used to identify and study the expression of novel genes that may be involved in MC3T3-E1 cells’ response to 17-b estradiol. MC3T3-E1 cells were inoculated in minimum essential media alpha (a-MEM) cell culture supplemented with 17-b estradiol at different concentrations and for different time periods. MC3T3-E1 cells treated with 1028 mol?L21 17-b estradiol for 5 days exhibited the highest proliferation and alkaline phosphatase (ALP) activity;thus, this group was chosen for microarray analysis. The harvested RNA was used for microarray hybridisation and subsequent real-time reverse transcription polymerase chain reaction (RT-PCR) to validate the expression levels for selected genes. The microarray results were analysed using both functional and pathway analysis. In this study, microarray analysis detected 5 403 differentially expressed genes, of which 1 996 genes were upregulated and 3 407 genes were downregulated, 1 553 different functional classifications were identified by gene ontology (GO) analysis and 53 different pathways were involved based on pathway analysis. Among the differentially expressed genes, a portion not previously reported to be associated with the osteoblast response to oestrogen was identified. These findings clearly demonstrate that the expression of genes related to osteoblast proliferation, cell differentiation, collagens and transforming growth factor beta (TGF-b)-related cytokines increases, while the expression of genes related to apoptosis and osteoclast differentiation decreases, following the exposure of MC3T3-E1 cells to a-MEM supplemented with 17-b estradiol. Microarray analysis with functional gene classification is critical for a complete understanding of complementary intracellular processes. This microarray analysis provides large

  7. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    Science.gov (United States)

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  8. A replication study for genome-wide gene expression levels in two layer lines elucidates differentially expressed genes of pathways involved in bone remodeling and immune responsiveness.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The current replication study confirmed significant differences in gene expression profiles of the cerebrum among the two commercial layer lines Lohmann Selected Leghorn (LSL and Lohmann Brown (LB. Microarray analyses were performed for 30 LSL and another 30 LB laying hens kept in the small group housing system Eurovent German. A total of 14,103 microarray probe sets using customized Affymetrix ChiGene-1_0-st Arrays with 20,399 probe sets were differentially expressed among the two layer lines LSL and LB (FDR adjusted P-value <0.05. An at least 2-fold change in expression levels could be observed for 388 of these probe sets. In LSL, 214 of the 388 probe sets were down- and 174 were up-regulated and vice versa for the LB layer line. Among the 174 up-regulated probe sets in LSL, we identified 51 significantly enriched Gene ontology (GO terms of the biological process category. A total of 63 enriched GO-terms could be identified for the 214 down-regulated probe sets of the layer line LSL. We identified nine genes significantly differentially expressed between the two layer lines in both microarray experiments. These genes play a crucial role in protection of neuronal cells from oxidative stress, bone mineral density and immune response among the two layer lines LSL and LB. Thus, the different regulation of these genes may significantly contribute to phenotypic trait differences among these layer lines. In conclusion, these novel findings provide a basis for further research to improve animal welfare in laying hens and these layer lines may be of general interest as an animal model.

  9. The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2013-06-01

    The Hippo pathway has a central role in coordinating tissue growth and apoptosis. Mutations that compromise Hippo pathway activity cause tissue overgrowth and have been causally linked to cancer. In Drosophila, the transcriptional coactivator Yorkie mediates Hippo pathway activity to control the expression of cyclin E and Myc to promote cell proliferation, as well as the expression of bantam miRNA and DIAP1 to inhibit cell death. Here we present evidence that the Hippo pathway acts via Yorkie and p53 to control the expression of the proapoptotic gene reaper. Yorkie further mediates reaper levels post-transcriptionally through regulation of members of the miR-2 microRNA family to prevent apoptosis. These findings provide evidence that the Hippo pathway acts via several distinct routes to limit proliferation-induced apoptosis.

  10. Transcriptome profiling of gene expression during immunisation trial against Fasciola hepatica: identification of genes and pathways involved in conferring immunoprotection in a murine model.

    Science.gov (United States)

    Rojas-Caraballo, Jose; López-Abán, Julio; Moreno-Pérez, Darwin Andrés; Vicente, Belén; Fernández-Soto, Pedro; Del Olmo, Esther; Patarroyo, Manuel Alfonso; Muro, Antonio

    2017-01-23

    Fasciolosis remains a significant food-borne trematode disease causing high morbidity around the world and affecting grazing animals and humans. A deeper understanding concerning the molecular mechanisms by which Fasciola hepatica infection occurs, as well as the molecular basis involved in acquiring protection is extremely important when designing and selecting new vaccine candidates. The present study provides a first report of microarray-based technology for describing changes in the splenic gene expression profile for mice immunised with a highly effective, protection-inducing, multi-epitope, subunit-based, chemically-synthesised vaccine candidate against F. hepatica. The mice were immunised with synthetic peptides containing B- and T-cell epitopes, which are derived from F. hepatica cathepsin B and amoebapore proteins, as novel vaccine candidates against F. hepatica formulated in an adjuvant adaptation vaccination system; they were experimentally challenged with F. hepatica metacercariae. Spleen RNA from mice immunised with the highest protection-inducing synthetic peptides was isolated, amplified and labelled using Affymetrix standardised protocols. Data was then background corrected, normalised and the expression signal was calculated. The Ingenuity Pathway Analysis tool was then used for analysing differentially expressed gene identifiers for annotating bio-functions and constructing and visualising molecular interaction networks. Mice immunised with a combination of three peptides containing T-cell epitopes induced high protection against experimental challenge according to survival rates and hepatic damage scores. It also induced differential expression of 820 genes, 168 genes being up-regulated and 652 genes being down-regulated, p value hepatica in a murine model, which could be useful for evaluating future vaccine candidates.

  11. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  12. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    Directory of Open Access Journals (Sweden)

    Wang-Jin Lu

    2012-11-01

    Full Text Available Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA, Gretchen Hagen3 (GH3 and small auxin upregulated (SAUR and auxin response factors (ARF, which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1, one GH3 (LcGH3.1, one SAUR (LcSAUR1 and two ARFs (LcARF1 and LcARF2, were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.

  13. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. The regulation of the expression of ABCG2 gene through mitogen-activated protein kinase pathways in canine lymphoid tumor cell lines.

    Science.gov (United States)

    Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2014-03-01

    Treatments for canine lymphoma often fail, because tumor cells acquire multidrug resistance (MDR). MDR can develop through several mechanisms, among which the overexpression of drug transporters in tumor cells is a well-studied mechanism. ATP-binding cassette sub-family G member 2 (ABCG2) belongs to the ABC-transporters, that are representative drug efflux pumps associated with MDR in human tumor cells. However, the regulation of ABCG2 gene expression in canine tumors is not well understood. The purpose of the present study was to reveal the regulatory mechanism of ABCG2 gene expression in 4 canine lymphoid tumor cell lines, GL-1, CLBL-1, UL-1 and Ema. Treatment with phorbol 12-myristate 13-acetate (PMA), the protein kinase C (PKC) activator, stimulated MAPK/ERK pathway in GL-1, UL-1 and Ema cells and JNK pathway in UL-1 and Ema cells. When GL-1 and UL-1 cells were treated with PMA and the MAPK/ERK kinase inhibitor U0126, ABCG2 gene expression levels were elevated above those in untreated cells. Similarly, ABCG2 gene expression increased above control levels in UL-1 and Ema cells treated with PMA and the JNK inhibitor SP600125. However, ABCG2 gene expression was unaffected by U0126 exposure in CLBL-1 cells, in which activation of MAPK/ERK pathway was observed in non-treated cells. These results suggested that MAPK/ERK and JNK pathways downregulate ABCG2 gene expression, which is upregulated by unidentified but possibly PKC-dependent pathways, in several types of canine lymphoid tumor cells.

  15. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors

    Science.gov (United States)

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed

  16. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors.

    Directory of Open Access Journals (Sweden)

    Fangjun Zhu

    Full Text Available The all-female Amazon molly (Poecilia formosa originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana and sailfin molly (Poecilia latipinna. As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars and other pathway-related genes, i.e., the estrogen receptors (ers and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as, in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish-two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a/cyp19a2 (also referred to as cyp19a1b, respectively. Non-synonymous single nucleotide polymorphisms (SNPs among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the

  17. Leber Hereditary Optic Neuropathy: Do Folate Pathway Gene Alterations Influence the Expression of Mitochondrial DNA Mutation?

    Directory of Open Access Journals (Sweden)

    A Aleyasin

    2010-09-01

    Full Text Available "nBackground: Leber hereditary optic neuropathy (LHON is an inherited form of bilateral optic atrophy leading to the loss of central vision.  The primary cause of vision loss is mutation in the mitochondrial DNA (mtDNA, however, unknown secon­dary genetic and/or epigenetic risk factors are suggested to influence its neuropathology.  In this study folate gene polymor­phisms were examined as a possible LHON secondary genetic risk factor in Iranian patients."nMethods: Common polymorphisms in the MTHFR (C677T and A1298C and MTRR (A66G genes were tested in 21 LHON patients and 150 normal controls."nResults:  Strong associations were observed between the LHON syndrome and C677T (P= 0.00 and A66G (P= 0.00 polymor­phisms.  However, no significant association was found between A1298C (P =0.69 and the LHON syndrome."nConclusion: This is the first study that shows MTHFR C677T and MTRR A66G polymorphisms play a role in the etiology of the LHON syndrome.  This finding may help in the better understanding of mechanisms involved in neural degeneration and vision loss by LHON and hence the better treatment of patients.

  18. Expression of selected pathway-marker genes in human urothelial cells exposed chronically to a non-cytotoxic concentration of monomethylarsonous acid

    Directory of Open Access Journals (Sweden)

    Matthew Medeiros

    2014-01-01

    Full Text Available Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa at concentrations 20-fold less than arsenite. MMA(III was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at 1 and 2 months of chronic exposure to MMA(III, contrasting with substantial changes observed at 3 months of exposure. To address the lack of information between 2 and 3 months of exposure (the critical period of transformation, the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as 1–2 months of chronic MMA(III exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.

  19. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  20. Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork.

    Directory of Open Access Journals (Sweden)

    Janice A Vranka

    Full Text Available Elevated intraocular pressure (IOP is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm localized throughout the TM layers and Schlemm's canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2 and MMPs (1, 2, 3 were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in

  1. Gene expression during the generation and activation of mouse neutrophils: implication of novel functional and regulatory pathways.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Ericson

    Full Text Available As part of the Immunological Genome Project (ImmGen, gene expression was determined in unstimulated (circulating mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes, thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the

  2. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    DEFF Research Database (Denmark)

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B

    2013-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D(3). Recent in vitro studies suggested that curcumin and polyunsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin...... cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter...... construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do...

  3. Whole genome gene expression analysis reveals casiopeina-induced apoptosis pathways.

    Directory of Open Access Journals (Sweden)

    Alejandra Idan Valencia-Cruz

    Full Text Available Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis-in a process mediated by reactive oxygen species-for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line and assessed by means of data mining studies.

  4. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    Science.gov (United States)

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

  5. Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation.

    Directory of Open Access Journals (Sweden)

    Mark Jesus M Magbanua

    Full Text Available BACKGROUND: Studies suggest that micronutrients may modify the risk or delay progression of prostate cancer; however, the molecular mechanisms involved are poorly understood. We examined the effects of lycopene and fish oil on prostate gene expression in a double-blind placebo-controlled randomized clinical trial. METHODS: Eighty-four men with low risk prostate cancer were stratified based on self-reported dietary consumption of fish and tomatoes and then randomly assigned to a 3-month intervention of lycopene (n = 29 or fish oil (n = 27 supplementation or placebo (n = 28. Gene expression in morphologically normal prostate tissue was studied at baseline and at 3 months via cDNA microarray analysis. Differential gene expression and pathway analyses were performed to identify genes and pathways modulated by these micronutrients. RESULTS: Global gene expression analysis revealed no significant individual genes that were associated with high intake of fish or tomato at baseline or after 3 months of supplementation with lycopene or fish oil. However, exploratory pathway analyses of rank-ordered genes (based on p-values not corrected for multiple comparisons revealed the modulation of androgen and estrogen metabolism in men who routinely consumed more fish (p = 0.029 and tomato (p = 0.008 compared to men who ate less. In addition, modulation of arachidonic acid metabolism (p = 0.01 was observed after 3 months of fish oil supplementation compared with the placebo group; and modulation of nuclear factor (erythroid derived-2 factor 2 or Nrf2-mediated oxidative stress response for either supplement versus placebo (fish oil: p = 0.01, lycopene: p = 0.001. CONCLUSIONS: We did not detect significant individual genes associated with dietary intake and supplementation of lycopene and fish oil. However, exploratory analyses revealed candidate in vivo pathways that may be modulated by these micronutrients. TRIAL REGISTRATION

  6. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens

    OpenAIRE

    Cui Huan-Xian; Liu Ran-Ran; Zhao Gui-Ping; Zheng Mai-Qing; Chen Ji-Lan; Wen Jie

    2012-01-01

    Abstract Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbo...

  7. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways

    Directory of Open Access Journals (Sweden)

    Schmitz Alexander

    2007-07-01

    Full Text Available Abstract Background Human natural killer (NK cells are the key contributors of innate immune response and the effector functions of these cells are enhanced by cytokines such as interleukine 2 (IL2. We utilized genome-wide transcriptional profiling to identify gene expression signatures and pathways in resting and IL2 activated NK cell isolated from peripheral blood of healthy donors. Results Gene expression profiling of resting NK cells showed high expression of a number of cytotoxic factors, cytokines, chemokines and inhibitory and activating surface NK receptors. Resting NK cells expressed many genes associated with cellular quiescence and also appeared to have an active TGFβ (TGFB1 signaling pathway. IL2 stimulation induced rapid downregulation of quiescence associated genes and upregulation of genes associated with cell cycle progression and proliferation. Numerous genes that may enhance immune function and responsiveness including activating receptors (DNAM1, KLRC1 and KLRC3, death receptor ligand (TNFSF6 (FASL and TRAIL, chemokine receptors (CX3CR1, CCR5 and CCR7, interleukin receptors (IL2RG, IL18RAB and IL27RA and members of secretory pathways (DEGS1, FKBP11, SSR3, SEC61G and SLC3A2 were upregulated. The expression profile suggested PI3K/AKT activation and NF-κB activation through multiple pathways (TLR/IL1R, TNF receptor induced and TCR-like possibly involving BCL10. Activation of NFAT signaling was supported by increased expression of many pathway members and downstream target genes. The transcription factor GATA3 was expressed in resting cells while T-BET was upregulated on activation concurrent with the change in cytokine expression profile. The importance of NK cells in innate immune response was also reflected by late increased expression of inflammatory chemotactic factors and receptors and molecules involved in adhesion and lymphocyte trafficking or migration. Conclusion This analysis allowed us to identify genes implicated in

  8. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV suggest preventive drug candidates.

    Directory of Open Access Journals (Sweden)

    Paloma Encinas

    Full Text Available Spring viremia carp virus (SVCV is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections. We have used newly designed pathway-targeted microarrays 3-4-fold enriched for immune/infection functional-relevant probes by using zebrafish orthologous to human genes from selected pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG. The comparative analysis of differential expression of genes through 20 pathways in 2-day exposed or 30-day survivors of SVCV infection allowed the identification of 16 multipath genes common to more than 6 pathways. In addition, receptors (Toll-like, B-cell, T-cell, RIG1-like as well as viral RNA infection pathways were identified as the most important human-like pathways targeted by SVCV infection. Furthermore, by using bioinformatic tools to compare the promoter sequences corresponding to up and downregulated multipath gene groups, we identified putative common transcription factors which might be controlling such responses in a coordinated manner. Possible drug candidates to be tested in fish, can be identified now through search of data bases among those associated with the human orthologous to the zebrafish multipath genes. With the use of pathway-targeted microarrays, we identified some of the most important genes and transcription factors which might be implicated in viral shutoff and/or host survival responses after SVCV infection. These results could contribute to develop novel drug-based prevention methods and consolidate the zebrafish/SVCV as a

  9. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates.

    Science.gov (United States)

    Encinas, Paloma; Garcia-Valtanen, Pablo; Chinchilla, Blanca; Gomez-Casado, Eduardo; Estepa, Amparo; Coll, Julio

    2013-01-01

    Spring viremia carp virus (SVCV) is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio) is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections. We have used newly designed pathway-targeted microarrays 3-4-fold enriched for immune/infection functional-relevant probes by using zebrafish orthologous to human genes from selected pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG). The comparative analysis of differential expression of genes through 20 pathways in 2-day exposed or 30-day survivors of SVCV infection allowed the identification of 16 multipath genes common to more than 6 pathways. In addition, receptors (Toll-like, B-cell, T-cell, RIG1-like) as well as viral RNA infection pathways were identified as the most important human-like pathways targeted by SVCV infection. Furthermore, by using bioinformatic tools to compare the promoter sequences corresponding to up and downregulated multipath gene groups, we identified putative common transcription factors which might be controlling such responses in a coordinated manner. Possible drug candidates to be tested in fish, can be identified now through search of data bases among those associated with the human orthologous to the zebrafish multipath genes. With the use of pathway-targeted microarrays, we identified some of the most important genes and transcription factors which might be implicated in viral shutoff and/or host survival responses after SVCV infection. These results could contribute to develop novel drug-based prevention methods and consolidate the zebrafish/SVCV as a model for

  10. Expression of conserved signalling pathway genes during spontaneous vascular differentiation of R1 embryonic stem cells and in Py-4-1 endothelial cells

    Indian Academy of Sciences (India)

    Kavitha Siva; K Gokul; Maneesha S Inamdar

    2007-12-01

    Embryonic stem (ES) cells are an invaluable model for identifying subtle phenotypes as well as severe outcomes of perturbing gene function that may otherwise result in lethality. However, though ES cells of different origins are regarded as equally pluripotent, their in vitro differentiation potential varies, suggesting that their response to developmental signals is different. The R1 cell line is widely used for gene manipulation due to its good growth characteristics and highly efficient germline transmission. Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently used theme, resulting in context-dependent outcomes during development. Perturbing these pathways can result in severe and possibly lethal developmental phenotypes often due to primary cardiovascular defects. We report that during early spontaneous differentiation of R1 cells, Notch-1 and the Wnt target Brachyury are active whereas the Shh receptor is not detected. This expression pattern is similar to that seen in a mouse endothelial cell line. This temporal study of expression of genes representative of all three pathways in ES cell differentiation will aid in further analysis of cell signalling during vascular development.

  11. Inhibition of TGF-β and EGF pathway gene expression and migration of oral carcinoma cells by mucosa-associated lymphoid tissue 1.

    Science.gov (United States)

    Ohyama, Y; Kawamoto, Y; Chiba, T; Maeda, G; Sakashita, H; Imai, K

    2013-07-09

    Expression of mucosa-associated lymphoid tissue 1 (MALT1) is inactivated in oral carcinoma patients with worse prognosis. However, the role in carcinoma progression is unknown. Unveiling genes under the control of MALT1 is necessary to understand the pathology of carcinomas. Gene data set differentially transcribed in MALT1-stably expressing and -marginally expressing oral carcinoma cells was profiled by the microarray analysis and subjected to the pathway analysis. Migratory abilities of cells in response to MALT1 were determined by wound-healing assay and time-lapse analysis. Totally, 2933 genes upregulated or downregulated in MALT1-expressing cells were identified. The subsequent pathway analysis implicated the inhibition of epidermal growth factor and transforming growth factor-β signalling gene expression, and highlighted the involvement in the cellular movement. Wound closure was suppressed by wild-type MALT1 (66.4%) and accelerated by dominant-negative MALT1 (218.6%), and the velocities of cell migration were increased 0.2-fold and 3.0-fold by wild-type and dominant-negative MALT1, respectively. These observations demonstrate that MALT1 represses genes activating the aggressive phenotype of carcinoma cells, and suggest that MALT1 acts as a tumour suppressor and that the loss of expression stimulates oral carcinoma progression.

  12. Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2014-08-25

    Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.

  13. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Alexandra; Chervona, Yana [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States); Hall, Megan [Department of Epidemiology, Mailman School of Public Health, Columbia University, New York (United States); Kluz, Thomas [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States); Gamble, Mary V., E-mail: mvg7@columbia.edu [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States)

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common

  14. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    Science.gov (United States)

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  15. Adaptive Regulation of Testis Gene Expression and Control of Male Fertility by the Drosophila Harpin RNA Pathway

    Science.gov (United States)

    Wen, Jiayu; Duan, Hong; Bejarano, Fernando; Okamura, Katsutomo; Fabian, Lacramioara; Brill, Julie A.; Bortolamiol-Becet, Diane; Martin, Raquel; Ruby, J. Graham; Lai, Eric C.

    2014-01-01

    SUMMARY Although endogenous siRNAs (endo-siRNAs) have been described in many species, still little is known about their endogenous utility. Here, we show that Drosophila hairpin RNAs (hpRNAs) generate an endo-siRNA class with predominant expression in testes. Although hpRNAs are universally recently evolved, we identify highly complementary protein-coding targets for all hpRNAs. Importantly, we find broad evidence for evolutionary divergences that preferentially maintain compensatory pairing between hpRNAs and targets, serving as first evidence for adaptive selection for siRNA-mediated target regulation in metazoans. We demonstrate organismal impact of hpRNA activity, since knockout of hpRNA1 derepresses its target ATP synthase-β in testes and compromises spermatogenesis and male fertility. Moreover, we reveal surprising male-specific impact of RNAi factors on germ cell development and fertility, consistent with testis-directed function of the hpRNA pathway. Finally, the collected hpRNA loci chronicle an evolutionary timeline that reflects their origins from prospective target genes, mirroring a strategy described for plant miRNAs. PMID:25544562

  16. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures.

    Science.gov (United States)

    Abbasi, Asghar; Hauth, Melanie; Walter, Michael; Hudemann, Jens; Wank, Veit; Niess, Andreas M; Northoff, Hinnak

    2014-07-01

    Exhaustive exercise can interfere with immunity, causing transient immunosuppression and infections/inflammation in athletes. We used microarray technology to analyze the gene expression profiles of whole blood in short time (1h) LPS-stimulated and un-stimulated cultures drawn before, 30min after, 3h after and 24h after a half-marathon run. Four male and 4 female athletes participated. Exercise induced differential expression of genes known to be involved in innate immunity/inflammatory response, metabolic response, DNA methylation, apoptosis and regulation of brain function. Several genes with prominent anti-inflammatory function were up-regulated in un-stimulated cultures, including ARG-1, SOCS3, DUSP-1, ORMs, IRAK3, and GJB6. Some of these genes were also strongly up-regulated in LPS-stimulated cultures (ARG-1, ORM2, and GJB6). Some genes were strongly up-regulated through exercise in LPS-stimulated cultures, but not in un-stimulated cultures (TNIP3, PLAU, and HIVEP1). There was also a row of genes, which were strongly down-regulated by exercise in LPS-stimulated cultures, notably IFN-β1 and CXCL10. Exercise also significantly changed the expression of genes (OLIG2, TMEM106B) which are known to be related to brain function and expression of which has never been documented in peripheral blood. In summary, exhaustive exercise, in addition to modifying gene expression in un-stimulated cells, could also interfere with the early gene expression response to endotoxin. There was an anti-inflammatory bias of gene regulation by exercise, including genes involved in the negative regulation of TLRs signalling. The results of the present study demonstrate that some potentially important effects of exercise can only be detected in relation to pathogen stimulation.

  17. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus

    Science.gov (United States)

    Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms. PMID:28319194

  18. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens

    Directory of Open Access Journals (Sweden)

    Cui Huan-Xian

    2012-05-01

    Full Text Available Abstract Background Intramuscular fat (IMF is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY, a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA, a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY contained 1310 differentially expressed genes (DEGs in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling, cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid

  19. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.

    Science.gov (United States)

    Riquelme, Ismael; Tapia, Oscar; Espinoza, Jaime A; Leal, Pamela; Buchegger, Kurt; Sandoval, Alejandra; Bizama, Carolina; Araya, Juan Carlos; Peek, Richard M; Roa, Juan Carlos

    2016-10-01

    The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

  20. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway

    Science.gov (United States)

    Chen, Jianming; Panchanathan, Ravichandran; Choubey, Divaker

    2008-01-01

    Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T-cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T-cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5′-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway. PMID:18374989

  1. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Science.gov (United States)

    2012-01-01

    Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype. PMID:22471940

  2. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  3. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

    Science.gov (United States)

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Dasmahapatra, Asok K

    2016-09-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (pMB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

  4. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonathan A Ewald

    Full Text Available The effective detection and management of muscle-invasive bladder Transition Cell Carcinoma (TCC continues to be an urgent clinical challenge. While some differences of gene expression and function in papillary (Ta, superficial (T1 and muscle-invasive (≥T2 bladder cancers have been investigated, the understanding of mechanisms involved in the progression of bladder tumors remains incomplete. Statistical methods of pathway-enrichment, cluster analysis and text-mining can extract and help interpret functional information about gene expression patterns in large sets of genomic data. The public availability of patient-derived expression microarray data allows open access and analysis of large amounts of clinical data. Using these resources, we investigated gene expression differences associated with tumor progression and muscle-invasive TCC. Gene expression was calculated relative to Ta tumors to assess progression-associated differences, revealing a network of genes related to Ras/MAPK and PI3K signaling pathways with increased expression. Further, we identified genes within this network that are similarly expressed in superficial Ta and T1 stages but altered in muscle-invasive T2 tumors, finding 7 genes (COL3A1, COL5A1, COL11A1, FN1, ErbB3, MAPK10 and CDC25C whose expression patterns in muscle-invasive tumors are consistent in 5 to 7 independent outside microarray studies. Further, we found increased expression of the fibrillar collagen proteins COL3A1 and COL5A1 in muscle-invasive tumor samples and metastatic T24 cells. Our results suggest that increased expression of genes involved in mitogenic signaling may support the progression of muscle-invasive bladder tumors that generally lack activating mutations in these pathways, while expression changes of fibrillar collagens, fibronectin and specific signaling proteins are associated with muscle-invasive disease. These results identify potential biomarkers and targets for TCC treatments, and

  5. JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of Pituitary Tumor Transforming Gene 1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xu-Liang [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China); Wei, Wu; Xu, Hong-Liang; Zhang, Mei-Xiang; Qin, Xiao-Qi; Shi, Wen-Zhi; Jiang, Zhi-Ping [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Chen, Yi-Jian [Department of Hematology, The First Affiliated Hospital, GanNan Medical University, GanZhou 341000 (China); Chen, Fang-Ping, E-mail: xychenfp@2118.cn [Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China)

    2010-08-06

    Research highlights: {yields} AG490, a member of tyrosine kinase inhibitors, could inhibit the JAK2V617F/STAT5 signaling pathway in HEL cell which harbor JAK2V617F mutation. {yields} Inhibition of the JAK2V617F/STAT5 signaling pathway inhibited the growth of HEL cells. {yields} JAK2V617F mutation promotes cell proliferation through activation of PTTG1 expression. {yields} JAK2V617F/STAT5 signaling pathway regulate PTTG1 expression at transcriptional level. -- Abstract: Gain-of-function mutations of JAK2 play crucial roles in the development of myeloproliferative neoplasms; however, the underlying downstream events of this activated signaling pathway are not fully understood. Our experiment was designed and performed to address one aspect of this issue. Here we report that AG490, a potent JAK2V617F kinase inhibitor, effectively inhibits the proliferation of HEL cells. Interestingly, AG490 also decreases the expression of PTTG1, a possible target gene of the aberrant signaling pathway, in a dose- and time-dependent manner. Furthermore, the promoter activity analyses reveal that the inhibition of the PTTG1 expression is affected at the transcriptional level. Thus, our results suggest that the JAK2V617F/STAT5 signaling pathway promotes cell proliferation through the transcriptional activation of PTTG1.

  6. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.

    Science.gov (United States)

    Rimaux, T; Rivière, A; Illeghems, K; Weckx, S; De Vuyst, L; Leroy, F

    2012-07-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.

  7. Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms.

    Science.gov (United States)

    Mas, S; Gassó, P; Boloc, D; Rodriguez, N; Mármol, F; Sánchez, J; Bernardo, M; Lafuente, A

    2016-06-01

    To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.

  8. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    Science.gov (United States)

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  9. The influence of pCO2 and temperature on gene expression of carbon and nitrogen pathways in Trichodesmium IMS101.

    Directory of Open Access Journals (Sweden)

    Orly Levitan

    Full Text Available Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO(2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO(2 (400 and 900 µatm and temperature (25 and 31°C. Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO(2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX, energy metabolism (atpB, sod, prx, glcD, nitrogen metabolism (glnA, hetR, nifH, and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA. nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO(2 and temperature were elevated. CO(2 concentrating mechanism genes were not affected by pCO(2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO(2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO(2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N(2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO(2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity.

  10. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    Science.gov (United States)

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  11. gef Gene Expression in MCF-7 Breast Cancer Cells is Associated with a Better Prognosis and Induction of Apoptosis by p53-Mediated Signaling Pathway

    Science.gov (United States)

    Boulaiz, Houria; Álvarez, Pablo J.; Prados, Jose; Marchal, Juan; Melguizo, Consolación; Carrillo, Esmeralda; Peran, Macarena; Rodríguez, Fernando; Ramírez, Alberto; Ortíz, Raúl; Aránega, Antonia

    2011-01-01

    Breast cancer research has developed rapidly in the past few decades, leading to longer survival times for patients and opening up the possibility of developing curative treatments for advanced breast cancer. Our increasing knowledge of the biological pathways associated with the progression and development of breast cancer, alongside the failure of conventional treatments, has prompted us to explore gene therapy as an alternative therapeutic strategy. We previously reported that gef gene from E. coli has shown considerable cytotoxic effects in breast cancer cells. However, its action mechanism has not been elucidated. Indirect immunofluorescence technique using flow cytometry and immunocytochemical analysis were used to detect breast cancer markers: estrogen (ER) and progesterone (PR) hormonal receptors, human epidermal growth factor receptor-2 proto-oncogene (c-erbB-2), ki-67 antigen and p53 protein. gef gene induces an increase in ER and PR expressions and a decrease in ki-67 and c-erbB-2 gene expressions, indicating a better prognosis and response to treatment and a longer disease-free interval and survival. It also increased p53 expression, suggesting that gef-induced apoptosis is regulated by a p53-mediated signaling pathway. These findings support the hypothesis that the gef gene offers a new approach to gene therapy in breast cancer. PMID:22174609

  12. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    Directory of Open Access Journals (Sweden)

    Ying eZhao

    2015-06-01

    Full Text Available Metasequoiaglyptostroboidies is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as5-to-7years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  13. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Directory of Open Access Journals (Sweden)

    Sherif F Tadros

    Full Text Available Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  14. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Science.gov (United States)

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-01

    Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  15. Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway

    Science.gov (United States)

    Antoniv, Taras T; Ivashkiv, Lionel B

    2011-01-01

    Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011

  16. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  17. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    Science.gov (United States)

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  18. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.

    Science.gov (United States)

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  19. Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells.

    Science.gov (United States)

    Hijazi, Ayten; Guan, Haiyan; Yang, Kaiping

    2016-08-13

    We previously demonstrated that prenatal exposure to Bisphenol A (BPA) disrupts fetal lung maturation likely through the glucocorticoid signalling pathway, but the precise molecular mechanisms remain obscure. Given that BPA diminished the expression of epithelial sodium channel-γ (ENaCγ), a well-known glucocorticoid receptor (GR) target gene, in fetal lungs, we used this GR target gene to delineate the molecular pathway through which BPA exerts its effects on lung cells. The A549 lung epithelial cell line was used as an in vitro model system. As a first step, we validated our in vitro cell model by demonstrating a robust concentration-dependent suppression of ENaCγ expression following BPA exposure. We also showed that both dexamethasone and siRNA-mediated knockdown of GR expression blocked/abrogated the inhibitory effects of BPA on ENaCγ expression, suggesting that BPA repressed ENaCγ expression via inhibition of GR activity. Given the well-known antagonistic interactions between the pro-inflammatory transcriptional factor NF-κB and GR, we then showed that BPA inhibited GR activity through the activation of NF-κB. Lastly, since BPA is known to function as a pro-inflammatory factor via the estrogen receptor β (ERβ), we provided evidence that BPA signals through ERβ to activate the NF-κB signalling pathway. Taken together, these findings demonstrate that BPA acts on ERβ to activate the NF-κB signalling pathway, which in turn leads to diminished GR activity and consequent repression of ENaCγ expression in lung epithelial cells. Thus, our present study reveals a novel BPA signalling pathway that involves ERβ, NF-κB and GR.

  20. Identifying differentially expressed genes and pathways in two types of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Liu, J; Yang, X Y; Shi, W J

    2014-01-08

    Non-small cell lung carcinoma, NSCLC, accounts for 80-85% of lung cancers. NSCLC can be mainly divided into two types: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). The purpose of our study was to identify and differentiate the pathogenesis of ADC and SCC at the molecular level. The gene expression profiles of ADC and SCC were downloaded from Gene Expression Omnibus under accession No. GSE10245. Accordingly, differentially expressed genes (DEGs) were identified by the limma package in R language. In addition, DEGs were functionally analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. A total of 4124 DEGs were identified, including CDK1, CDK2, CDK4, and SKP2. The DEGs were mainly involved in 16 pathways related to cell proliferation, cell signal transduction and metabolism. We conclude that the molecular mechanisms of ADC and SCC are considerably different, and that they are involved in immune response, cell signal transduction, metabolism, cell division, and cell proliferation. Therefore, the two diseases should be treated differently. This study offers new insight into the diagnosis and therapy of these two types of lung cancer.

  1. Changed gene expression in subjects with schizophrenia and low cortical muscarinic M1 receptors predicts disrupted upstream pathways interacting with that receptor.

    Science.gov (United States)

    Scarr, E; Udawela, M; Thomas, E A; Dean, B

    2016-11-01

    We tested the hypothesis that, compared with subjects with no history of psychiatric illness (controls), changes in gene expression in the dorsolateral prefrontal cortex from two subgroups of subjects with schizophrenia, one with a marked deficit in muscarinic M1 receptors (muscarinic receptor-deficit schizophrenia (MRDS)), would identify different biochemical pathways that would be affected by their aetiologies. Hence, we measured levels of cortical (Brodmann area 9) mRNA in 15 MRDS subjects, 15 subjects with schizophrenia but without a deficit in muscarinic M1 receptors (non-MRDS) and 15 controls using Affymetrix Exon 1.0 ST arrays. Levels of mRNA for 65 genes were significantly different in the cortex of subjects with MRDS and predicted changes in pathways involved in cellular movement and cell-to-cell signalling. Levels of mRNA for 45 genes were significantly different in non-MRDS and predicted changes in pathways involved in cellular growth and proliferation as well as cellular function and maintenance. Changes in gene expression also predicted effects on pathways involved in amino acid metabolism, molecular transport and small-molecule biochemistry in both MRDS and non-MRDS. Overall, our data argue a prominent role for glial function in MRDS and neurodevelopment in non-MRDS. Finally, the interactions of gene with altered levels of mRNA in the cortex of subjects with MRDS suggest many of their affects will be upstream of the muscarinic M1 receptor. Our study gives new insight into the molecular pathways affected in the cortex of subjects with MRDS and supports the notion that studying subgroups within the syndrome of schizophrenia is worthwhile.Molecular Psychiatry advance online publication, 1 November 2016; doi:10.1038/mp.2016.195.

  2. Carbohydrate metabolism of Xylella fastidiosa: Detection of glycolytic and pentose phosphate pathway enzymes and cloning and expression of the enolase gene

    Directory of Open Access Journals (Sweden)

    Facincani Agda Paula

    2003-01-01

    Full Text Available The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor, Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

  3. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  4. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  5. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hwang, Un-Ki [Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083 (Korea, Republic of); Zhou, Bingsheng [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Choe, Joonho [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2016-08-15

    Highlights: • The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47. • Expression profiles of nearly all NR genes were the highest at naupliar stages 5–6. • USP, HR96, and FTZ-F1 genes showed significant sex differences (P < 0.05) over different developmental stages. • NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47. • BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. - Abstract: 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P < 0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P < 0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5–6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P < 0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P < 0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47

  6. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-11-01

    Full Text Available Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer’s disease. The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset Alzheimer’s disease. This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing.

  7. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    Science.gov (United States)

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A

    2008-07-01

    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  8. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  9. Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases

    Directory of Open Access Journals (Sweden)

    Gentile Massimiliano

    2008-03-01

    Full Text Available Abstract Background The neuronal ceroid lipofuscinoses (NCL are a group of children's inherited neurodegenerative disorders, characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of the different forms of NCL suggest that common disease mechanisms may be involved. To explore the NCL-associated disease pathology and molecular pathways, we have previously produced targeted knock-out mice for Cln1 and Cln5. Both mouse-models replicate the NCL phenotype and neuropathology; the Cln1-/- model presents with early onset, severe neurodegenerative disease, whereas the Cln5-/- model produces a milder disease with a later onset. Results Here we have performed quantitative gene expression profiling of the cortex from 1 and 4 month old Cln1-/- and Cln5-/- mice. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating neuronal growth cone stabilization display similar aberrations in both models. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products; adenylate cyclase-associated protein 1 (Cap1, protein tyrosine phosphatase receptor type F (Ptprf and protein tyrosine phosphatase 4a2 (Ptp4a2. The evidence from the gene expression data, indicating changes in the growth cone assembly, was substantiated by the immunofluorescence staining patterns of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in cytoskeleton-associated proteins actin and β-tubulin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Conclusion Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in INCL and vLINCL. Since CLN1 and CLN5 code for proteins with distinct functional roles

  10. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Schönauer, Anna; Paese, Christian L B; Hilbrant, Maarten; Leite, Daniel J; Schwager, Evelyn E; Feitosa, Natália Martins; Eibner, Cornelius; Damen, Wim G M; McGregor, Alistair P

    2016-07-01

    In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition. Here, we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of even-skipped (eve) and runt-1 (run-1), at least in part via caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but probably not sufficient to regulate the expression of eve and run-1 Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods, including insects.

  11. Analysis of the spatiotemporal expression of major genes in the TGF-β/Smad signaling pathway and correlation analysis using Hu sheep muscle tissue.

    Science.gov (United States)

    Wang, Q Z; Su, R; Lv, X Y; Gao, W; Chen, L; Bao, J J; Yu, J R; Wang, L H; Sun, W

    2016-05-23

    The mRNA expression levels of key genes (Smads, MSTN, and MyoG) in the TGF-β/Smad signaling pathway in Hu sheep at different growth stages (2 days, 2 months, and 6 months of age) and in different skeletal muscles (longissimus dorsi muscle and soleus muscle) and different genders were detected; and correlation of the Smad family (Smad2, Smad3, Smad4, and Smad7), MSTN, MyoG expressions was analyzed in Hu sheep. The results showed that the expression of Smads was higher in the soleus muscle than in the longissimus dorsi muscle; the expressions of Smad2, Smad3, and Smad4 were significantly higher in 2-day-old sheep than in sheep belonging to the other age groups (P muscle tissues, expression of Smad2 was significantly positively correlated (P < 0.01) with that of Smad3. The expression of Smad3 was significantly positively correlated (P < 0.01) with that of Smad4, which showed that the Smad family genes could have an inhibitory effect on the TGF-β/Smad signaling pathway.

  12. Differential age- and disease-related effects on the expression of genes related to the arachidonic acid signaling pathway in schizophrenia.

    Science.gov (United States)

    Tang, Bin; Capitao, Cristina; Dean, Brian; Thomas, Elizabeth A

    2012-04-30

    We have previously identified differential effects of age on global brain gene expression profiles in subjects with schizophrenia compared to normal controls. Here, we have focused on age-related effects of genes associated with the arachidonic acid-related inflammation pathway. Linear correlation analysis of published microarray expression data reveal strong age- and cell-type- specific-effects on the expression of genes related to the arachidonic acid signaling pathway, which differed in control subjects compared to those with schizophrenia. Using real-time qPCR analysis, we validated age and disease effects of arachidonic acid-related genes in a large cohort of subjects with schizophrenia and matched controls (n=76 subjects in total). We found that levels of prostaglandin-endoperoxide synthase 1 (PTGS1; aka COX-1) and prostaglandin-endoperoxide receptor 3 (PTGER3) mRNA are increased, and levels of prostaglandin-endoperoxide synthase 2 (PTGS2; aka COX-2) mRNA are decreased, in older subjects with schizophrenia (> 40years of age) compared to matched normal controls or younger subjects with schizophrenia (schizophrenia and further suggest that age may be an important factor in the potential use of anti-inflammatory therapies.

  13. Evidence of correlation between TGFBR2 gene expression mediated by NF-kB signaling pathways and Kawasaki disease in children.

    Science.gov (United States)

    Gao, Qinling; Yuan, Shuhua; Yuan, Dawei

    2017-09-15

    We explored the correlation between the TGFBR2 gene that is mediated by NF-kb signaling pathways and the pathogenesis of Kawasaki disease in children. In this study, 43 children with Kawasaki disease from April 2014 to January 2016 at our hospital were selected as the observation group, and 42 healthy children were selected as the control group. The mRNA expression levels of NF-kb gene and TGFBR2 gene in different groups were detected using fluorescence quantitative PCR. The protein expression levels of the NF-kb and TGFBR2 were detected using enzyme-linked immunosorbent assay (ELISA) in different groups. The expression levels of NF-kb and TGFBR2 in the observation group and the control group were detected using immunohistochemistry. Compared to the control group, the mRNA expression levels of NF-kb and TGFBR2 were 12.3 times and 27.5 times as high as those in the control group respectively and there were significant differences between the two groups (pKawasaki disease were significantly higher than those in healthy subjects (pKawasaki disease than that in healthy children (4.5%); there was significant difference between the two groups (pKawasaki disease in children through NF-kB signaling pathways.

  14. Effects of leucine supplementation and serum withdrawal on branched-chain amino acid pathway gene and protein expression in mouse adipocytes.

    Directory of Open Access Journals (Sweden)

    Abderrazak Kitsy

    Full Text Available The essential branched-chain amino acids (BCAA, leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2 and branched-chain alpha keto acid dehydrogenase (Bckdha was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4 compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our

  15. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  16. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

    Directory of Open Access Journals (Sweden)

    Anna Thorfve

    Full Text Available Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+. The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid (PLGA implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

  17. Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.

    Science.gov (United States)

    Fernández-Medarde, A; Porteros, A; de las Rivas, J; Núñez, A; Fuster, J J; Santos, E

    2007-04-25

    We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to

  18. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    Science.gov (United States)

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-11-25

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  19. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua [Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Berggren-Söderlund, Maria; Nilsson-Ehle, Peter [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden); Zhang, Xiaoying, E-mail: zhangxy6689996@163.com [Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Xu, Ning, E-mail: ning.xu@med.lu.se [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden)

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  20. Insulin-Mediated Down-Regulation of Apolipoprotein A5 Gene Expression through the Phosphatidylinositol 3-Kinase Pathway: Role of Upstream Stimulatory Factor

    Science.gov (United States)

    Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Martin, Geneviève; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2005-01-01

    The apolipoprotein A5 gene (APOA5) has been repeatedly implicated in lowering plasma triglyceride levels. Since several studies have demonstrated that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 is regulated by insulin. Here, we show that cell lines and mice treated with insulin down-regulate APOA5 expression in a dose-dependent manner. Furthermore, we found that insulin decreases human APOA5 promoter activity, and subsequent deletion and mutation analyses uncovered a functional E box in the promoter. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that this APOA5 E box binds upstream stimulatory factors (USFs). Moreover, in transfection studies, USF1 stimulates APOA5 promoter activity, and the treatment with insulin reduced the binding of USF1/USF2 to the APOA5 promoter. The inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway abolished insulin's effect on APOA5 gene expression, while the inhibition of the P70 S6 kinase pathway with rapamycin reversed its effect and increased APOA5 gene expression. Using an oligonucleotide precipitation assay for USF from nuclear extracts, we demonstrate that phosphorylated USF1 fails to bind to the APOA5 promoter. Taken together, these data indicate that insulin-mediated APOA5 gene transrepression could involve a phosphorylation of USFs through the PI3K and P70 S6 kinase pathways that modulate their binding to the APOA5 E box and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in men showed a decrease in the plasma ApoAV level. These results suggest a potential contribution of the APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia. PMID:15684402

  1. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Dolatshad, H; Pellagatti, A; Fernandez-Mercado, M; Yip, B H; Malcovati, L; Attwood, M; Przychodzen, B; Sahgal, N; Kanapin, A A; Lockstone, H; Scifo, L; Vandenberghe, P; Papaemmanuil, E; Smith, C W J; Campbell, P J; Ogawa, S; Maciejewski, J P; Cazzola, M; Savage, K I; Boultwood, J

    2015-05-01

    The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.

  2. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  3. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  4. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9

    Directory of Open Access Journals (Sweden)

    Marta eBrzóstkowska

    2012-12-01

    Full Text Available The environmental control of invasin expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates invasin gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences invasin expression directly via binding to the inv promoter, but not through modulation of rovA expression.

  5. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9.

    Science.gov (United States)

    Brzóstkowska, Marta; Raczkowska, Adrianna; Brzostek, Katarzyna

    2012-01-01

    The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression.

  6. Circulating blood leukocyte gene expression profiles: Effects of the Ames dwarf mutation on pathways related to immunity and inflammation

    OpenAIRE

    Dhahbi, Joseph; Li, Xichen; Tran, Tim; Masternak, Michal M.; Bartke, Andrzej

    2007-01-01

    Aging is associated with a decline of immune competence and an increase in markers of inflammation. There is considerable evidence that inflammatory processes play a role in aging and the determination of lifespan. Hypopituitary Ames dwarf mice have extended longevity and exhibit many symptoms of delayed aging, although various aspects of immune function are suppressed in the mutants. In the present study, the expression of genes related to immunity and inflammation was compared in peripheral...

  7. A temporal switch in the insulin-signalling pathway that regulates hepatic IGF-binding protein-1 gene expression

    OpenAIRE

    2006-01-01

    PUBLISHED Insulin regulation of hepatic gene transcription is a vital component of glucose homeostasis. Understanding the molecular regulationof thisprocess aids the searchfor the defect(s) that promotesinsulin-resistant states, such asdiabetesmellitus. We havepreviously shownthat the insulin regulationof hepatic IGF-binding protein-1 (IGFBP1) expression requiresthe signalling proteins phosphatidylinositol 3-kinase (PI 3-kinase) and mammalian target of rapamycin (mTOR). In this report, we ...

  8. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    Science.gov (United States)

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; P<0.05, GATA6; 2.08 fold change, 95% CI: 1.62-2.55; P<0.0001, and StAR; 1.4 fold change, 95% CI: 1.02-1.78; P<0.05), despite variations in different phases with maximum elevation for all genes in diestrus. The changes observed may impair the normal development of ovaries that mediate the programming of adult PCOS.

  9. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris.

    Science.gov (United States)

    Jedlička, Pavel; Ernst, Ulrich R; Votavová, Alena; Hanus, Robert; Valterová, Irena

    2016-01-01

    Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.

  10. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Pavel Jedlička

    2016-11-01

    Full Text Available Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause.In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen’s transition from solitary to social life. We focused on fundamental genes of three pathways: (1 Forkhead box protein O and insulin/insulin-like signaling, (2 Juvenile hormone signaling, and (3 Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and juvenile hormone (JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE and transcription factor Krüppel homolog 1 (Kr-h1. Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1 turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.

  11. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  12. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening.

    Science.gov (United States)

    Zhang, Bo; Shen, Ji-Yuan; Wei, Wen-Wen; Xi, Wan-Peng; Xu, Chang-Jie; Ferguson, Ian; Chen, Kunsong

    2010-05-26

    Changes in characteristic aroma volatiles, levels of fatty acids as aroma precursors, and expression patterns of related genes, including lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), alcohol acyltransferase (AAT), and fatty acid desaturase (FAD), were studied in peach ( Prunus persica L. Batsch., cv. Yulu) fruit during postharvest ripening at 20 degrees C. Concentrations of n-hexanal, (E)-2-hexenal, (E)-2-hexenol, and (Z)-3-hexenol decreased, whereas the production of (Z)-3-hexenyl acetate, gamma-hexalactone, gamma-octalactone, gamma-decalactone, and delta-decalactone increased with fruit ripening. Lactones showed a clear pattern concomitant with the climacteric rise in ethylene production, with gamma-decalactone being the principal volatile compound at the late ripening stage. Of the LOX family genes, PpLOX2 and PpLOX3 had relatively high transcript levels initially followed by a decline with fruit ripening, while levels of PpLOX1 and PpLOX4 transcripts were upregulated by accumulated ethylene production. Expression of PpHPL1, PpADH1, PpADH2, and PpADH3 showed similar decreasing patterns during ripening. Expression levels of PpAAT1 showed a rapid increase during the first 2 days of postharvest ripening followed by a gradual decrease. Contents of polyunsaturated linoleic and linolenic acids increased, and saturated palmitic acid levels tended to decline as the fruit ripened. The increased levels of unsaturated fatty acids closely paralleled increasing expression of PpFAD1 and PpFAD2. The significance of gene expression changes in relation to aroma volatile production is discussed.

  13. Differential expression of genes involved in the degeneration and regeneration pathways in mouse models for muscular dystrophies.

    Science.gov (United States)

    Onofre-Oliveira, P C G; Santos, A L F; Martins, P M; Ayub-Guerrieri, D; Vainzof, M

    2012-03-01

    The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx), SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-β1 and Pro-collagen 1α2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-β1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.

  14. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses.

    Directory of Open Access Journals (Sweden)

    Natalia Castaño-Rodríguez

    Full Text Available BACKGROUND: Currently, it is well established that cancer arises in chronically inflamed tissue. A number of NOD-like receptors (NLRs form inflammasomes, intracellular multiprotein complexes critical for generating mature pro-inflammatory cytokines (IL-1β and IL-18. As chronic inflammation of the gastric mucosa is a consequence of Helicobacter pylori infection, we investigated the role of genetic polymorphisms and expression of genes involved in the NLR signalling pathway in H. pylori infection and related gastric cancer (GC. MATERIALS AND METHODS: Fifty-one genetic polymorphisms were genotyped in 310 ethnic Chinese (87 non-cardia GC cases and 223 controls with functional dyspepsia. In addition, gene expression of 84 molecules involved in the NLR signalling pathway was assessed in THP-1 cells challenged with two H. pylori strains, GC026 (GC and 26695 (gastritis. RESULTS: CARD8-rs11672725, NLRP3-rs10754558, NLRP3-rs4612666, NLRP12-rs199475867 and NLRX1-rs10790286 showed significant associations with GC. On multivariate analysis, CARD8-rs11672725 remained a risk factor (OR: 4.80, 95% CI: 1.39-16.58. Further, NLRP12-rs2866112 increased the risk of H. pylori infection (OR: 2.13, 95% CI: 1.22-3.71. Statistical analyses assessing the joint effect of H. pylori infection and the selected polymorphisms revealed strong associations with GC (CARD8, NLRP3, CASP1 and NLRP12 polymorphisms. In gene expression analyses, five genes encoding NLRs were significantly regulated in H. pylori-challenged cells (NLRC4, NLRC5, NLRP9, NLRP12 and NLRX1. Interestingly, persistent up-regulation of NFKB1 with simultaneous down-regulation of NLRP12 and NLRX1 was observed in H. pylori GC026-challenged cells. Further, NF-κB target genes encoding pro-inflammatory cytokines, chemokines and molecules involved in carcinogenesis were markedly up-regulated in H. pylori GC026-challenged cells. CONCLUSIONS: Novel associations between polymorphisms in the NLR signalling pathway (CARD8

  15. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.

    Science.gov (United States)

    Zha, Jian; Shen, Minghua; Hu, Menglong; Song, Hao; Yuan, Yingjin

    2014-01-01

    Fermentation of xylose in lignocellulosic hydrolysates by Saccharomyces cerevisiae has been achieved through heterologous expression of the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. However, the fermentation efficiency is far from the requirement for industrial application due to high yield of the byproduct xylitol, low ethanol yield, and low xylose consumption rate. Through evolutionary engineering, an improved xylose-utilizing strain SyBE005 was obtained with 78.3 % lower xylitol production and a 2.6-fold higher specific ethanol production rate than those of the parent strain SyBE004, which expressed an engineered NADP(+)-preferring XDH. The transcriptional differences between SyBE005 and SyBE004 were investigated by quantitative RT-PCR. Genes including XYL1, XYL2, and XKS1 in the initial xylose metabolic pathway showed the highest up-regulation in SyBE005. The increased expression of XYL1 and XYL2 correlated with enhanced enzymatic activities of XR and XDH. In addition, the expression level of ZWF1 in the oxidative pentose phosphate pathway increased significantly in SyBE005, indicating an elevated demand for NADPH from XR. Genes involved in the TCA cycle (LAT1, CIT1, CIT2, KGD1, KGD, SDH2) and gluconeogenesis (ICL1, PYC1) were also up-regulated in SyBE005. Genomic analysis revealed that point mutations in transcriptional regulators CYC8 and PHD1 might be responsible for the altered expression. In addition, a mutation (Y89S) in ZWF1 was identified which might improve NADPH production in SyBE005. Our results suggest that increasing the expression of XYL1, XYL2, XKS1, and enhancing NADPH supply are promising strategies to improve xylose fermentation in recombinant S. cerevisiae.

  16. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

    Science.gov (United States)

    Smita, Shuchi; Rajwanshi, Ravi; Lenka, Sangram Keshari; Katiyar, Amit; Chinnusamy, Viswanathan; Bansal, Kailash Chander

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the beta-carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype-Pusa Rohini. We found that expression of phytoene synthase and beta-carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  17. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits

    Indian Academy of Sciences (India)

    Shuchi Smita; Ravi Rajwanshi; Sangram Keshari Lenka; Amit Katiyar; Viswanathan Chinnusamy; Kailash Chander Bansal

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype—Pusa Rohini. We found that expression of phytoene synthase and -carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  18. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    Directory of Open Access Journals (Sweden)

    Yuri Sakamoto

    Full Text Available Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist, and GW9662 (a PPARγ antagonist. Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1 and interleukin 6 (Il6 mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB and c-Jun N-terminal kinase (JNK pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

  19. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation.

    Science.gov (United States)

    Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng

    2014-07-07

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.

  20. Influence of various stressors on the expression of core genes of the small interfering RNA pathway in the oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Xie, Yi-Fei; Niu, Jin-Zhi; Jiang, Xuan-Zhao; Yang, Wen-Jia; Shen, Guang-Mao; Wei, Dong; Smagghe, Guy; Wang, Jin-Jun

    2017-06-01

    RNA interference (RNAi)-based technology has emerged as a potential tool for controlling insect pests, however, previous studies found that the efficiency of RNAi in Bactrocera dorsalis was variable. In nature, insects often meet various challenges, such as pathogen infections, extreme temperatures, lack of nutrition and heavy metals. To better understand the association of the stressors with efficiency of RNAi, in the current study we tested the expression of three core genes, dicer2 (Bddcr2), r2d2 (Bdr2d2) and argonaute2 (Bdago2), of the small interfering RNA (siRNA) pathway of B. dorsalis upon various stressors. Our results showed that all three genes were upregulated by the infection of invertebrate iridescent virus 6, which suggested a function of the siRNA pathway against viral infection. The loading of FeCl3 could also increase the expression of Bddcr2. The treatments of Escherichia coli, extremely high (40°C) and low (0°C) temperatures, as well as starvation, could negatively influence the expression of Bddcr2 and/or Bdago2. In total, our results showed that various stressors could influence the expression of core components of B. dorsalis siRNA pathway. This highlights further speculation on the RNAi efficiency upon these stressors. Considering the complexity and variation of RNAi efficiency in different conditions, these results provide initial aspects in possible environmental stressors to influence the activity of the siRNA pathway, but the real impact of RNAi efficiency posed by these stressors requires further studies. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  1. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle Johnston

    Directory of Open Access Journals (Sweden)

    Sharma Madhu

    2010-11-01

    Full Text Available Abstract Background Geranyl pyrophosphate (GPP and p-hydroxybenzoate (PHB are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA and/or 2-C-methyl-D-erythritol 4-phosphate (MEP pathway(s, depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB. Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes, PP pathway (three genes, and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR and AePGT suggested critical role played by these genes in shikonins

  2. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  3. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  4. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution.

    Science.gov (United States)

    Islam, A F M Tariqul; Moly, Pricila Khan; Miyamoto, Yuki; Kusakabe, Takehiro G

    2010-02-01

    Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.

  5. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.

    Science.gov (United States)

    Tian, Chunjie; Kasiborski, Beth; Koul, Raman; Lammers, Peter J; Bücking, Heike; Shachar-Hill, Yair

    2010-07-01

    The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.

  6. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  7. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  8. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    Science.gov (United States)

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (PGR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (PGR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (PGR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.

  9. Synergistic effects of parabens on the induction of calbindin-D(9k) gene expression act via a progesterone receptor-mediated pathway in GH3 cells.

    Science.gov (United States)

    Yang, H; Nguyen, T-T; An, B-S; Choi, K-C; Jeung, Eui-Bae

    2012-02-01

    Although the endocrine-disrupting bioactivity of parabens is weakly estrogenic (parabens are xenoestrogens), their combined synergistic effect is unknown. The aim of this study was to investigate the effects of methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), isopropyl paraben (IPP), butyl paraben (BP), and isobutyl paraben (IBP), either alone or in combination (MP + EP + PP + BP; PP + IPP; and BP + IBP) on the induction of the estrogenic biomarker gene, calbindin-D(9k) (CaBP-9k), in rat pituitary lactosomatotrophic GH3 cells. The expression of CaBP-9k mRNA and protein was analyzed using real-time PCR and Western blot analysis, respectively. After 24 h of treatment, a significant increase in CaBP-9k expression was observed. This was dependent upon the length of the paraben alkyl chains (shortest in MP and longest in IBP). Interestingly, the synergistic effects of these paraben combinations were observed at a dose (10(-5) M) of these parabens, which induced the highest expression of CaBP-9k mRNA and protein. To investigate the involvement of estrogen receptors (ERs) and progesterone receptors (PRs), through which parabens exert their effects, the expression levels of ERα and PR-B were also examined. The expression of ERα mRNA and protein fluctuated after paraben treatment in GH3 cells, which was not significant. However, the expression level of ERα gene was induced when cotreated with 17β-estradiol (E2) and ICI 182, 780 (estrogen receptor antagonist). The different combinations of parabens induced the expression of the PR-B gene, which was abolished by cotreatment with ICI 182,780. The expression patterns of CaBP-9k and PR-B genes appeared to be similar in response to paraben treatments. This implied that CaBP-9k expression in GH3 cells may be induced by parabens via a PR-mediated pathway. Taken together, these results suggest that exposure to multiple parabens at low concentrations may increase their synergistic estrogenic activities in GH3 cells

  10. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.;

    2014-01-01

    (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P ... the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using...

  11. Increased expressions of genes and proteins involved in mitochondrial oxidation and antioxidant pathway in adipose tissue of pigs selected for a low residual feed intake.

    Science.gov (United States)

    Louveau, I; Vincent, A; Tacher, S; Gilbert, H; Gondret, F

    2016-12-01

    Adipose tissue is a primary sensor for nutrient availability and regulates many functions including feed intake and energy homeostasis. This study was undertaken to determine the molecular responses of adipose tissue to differences in feed intake and feed efficiency. Subcutaneous adipose tissue was collected from two lines of pigs divergently selected for residual feed intake (RFI), a measure of feed efficiency defined as the difference between actual and expected feed intake, and from a subset of high-RFI pigs that were feed-restricted at the level of the voluntary feed intake of low-RFI pigs during the growing-finishing period. Transcriptomics analyses indicated that the number of genes that were differentially expressed ( feed-restricted high-RFI ( = 8) pigs. They included in silico pathway analyses of the differentially expressed (DE) genes ( feed restriction. This indicates that the responses of adipose tissue to RFI difference shared only some common mechanisms with feed intake modulation, notably the regulation of cell cycle (including ) and transferase activity pathway. Two carboxylesterase genes (, ) involved in lipolysis, were among the most overexpressed genes in the low-RFI pigs; they were also affected by feed restriction within the high-RFI line. About 60% of the molecular changes between low- and high-RFI pigs were specific to genetic divergence in feed efficiency, independently of feed intake. Different genes and proteins known to be associated with mitochondrial oxidative metabolism were overexpressed in adipose tissue of low-RFI pigs compared with high-RFI pigs; other proteins participating in the generation of energy were also affected by feed restriction within the high-RFI line. Finally, mitochondrial antioxidant genes were upregulated in low-RFI pigs vs. high-RFI pigs. Altogether, increased oxidative and antioxidant processes in adipose tissue might be associated with improved feed efficiency.

  12. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death

    Directory of Open Access Journals (Sweden)

    Wei-Kung Chen

    2015-11-01

    Full Text Available During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2 is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP responsive element-binding protein (CREB is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions.

  13. Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek's disease virus infection.

    Science.gov (United States)

    Feng, Ze-Qing; Lian, Ting; Huang, Yong; Zhu, Qing; Liu, Yi-Ping

    2013-01-01

    It has been known that the chicken's resistance to disease was affected by chicken's genetic background. And RLR-mediated antiviral pathway plays an important role in detection of viral RNA. However, little is known about the interaction of genetic background with RLR-mediated antiviral pathway in chicken against MDV infection. In this study, we adopted economic line-AA broilers and native Erlang mountainous chickens for being infected with MDV. Upon infection with MDV, the expression of MDA-5 was upregulated in two-breed chickens at 4, 7, and 21 d.p.i. It is indicated that MDA-5 might be involved in detecting MDV in chicken. Interestingly, the expression of IRF-3 and IFN- β genes was decreased in spleen and thymus of broilers at 21 d.p.i, but it was upregulated in immune tissues of Erlang mountainous chickens. And the genome load of MDV in spleen of broiler is significantly higher than that in Erlang mountainous chickens. Meanwhile, we observed that the death of broiler mainly also occurred in this phase. Collectively, these present results demonstrated that the expression patters of IRF-3 and IFN- β genes in chicken against MDV infection might be affected by the genetic background which sequently influence the resistance of chicken response to MDV.

  14. Expression Pattern of Genes of RLR-Mediated Antiviral Pathway in Different-Breed Chicken Response to Marek’s Disease Virus Infection

    Directory of Open Access Journals (Sweden)

    Ze-Qing Feng

    2013-01-01

    Full Text Available It has been known that the chicken’s resistance to disease was affected by chicken’s genetic background. And RLR-mediated antiviral pathway plays an important role in detection of viral RNA. However, little is known about the interaction of genetic background with RLR-mediated antiviral pathway in chicken against MDV infection. In this study, we adopted economic line-AA broilers and native Erlang mountainous chickens for being infected with MDV. Upon infection with MDV, the expression of MDA-5 was upregulated in two-breed chickens at 4, 7, and 21 d.p.i. It is indicated that MDA-5 might be involved in detecting MDV in chicken. Interestingly, the expression of IRF-3 and IFN-β genes was decreased in spleen and thymus of broilers at 21 d.p.i, but it was upregulated in immune tissues of Erlang mountainous chickens. And the genome load of MDV in spleen of broiler is significantly higher than that in Erlang mountainous chickens. Meanwhile, we observed that the death of broiler mainly also occurred in this phase. Collectively, these present results demonstrated that the expression patters of IRF-3 and IFN-β genes in chicken against MDV infection might be affected by the genetic background which sequently influence the resistance of chicken response to MDV.

  15. Effects of Fluoride on the Expression of p38MAPK Signaling Pathway-Related Genes and Proteins in Spleen Lymphocytes of Mice.

    Science.gov (United States)

    Shi, Zeyu; Zhan, Yaqi; Zhao, Junxing; Wang, Jinming; Ma, Haili

    2016-10-01

    This study investigated the effects of sodium fluoride on the expression of p38MAPK signaling pathway-related genes and proteins in the spleen lymphocytes of mice, revealing the mechanism of the toxicity of fluoride to the immune system. The spleen lymphocytes, isolated from mice consuming different NaF doses (0, 50, 100, and 150 mg/L) for 60 days, were cultured in medium with bacteria lipopolysaccharide, and the cells' proliferation ability was analyzed through MTT; real-time PCR detected the change of MLK3/MKK6/p38MAPK/MSK1/ATF1 on mRNA, and the difference of protein expression of MKK6/p38MAPK were detected through the Western blotting. The results suggested that the proliferation ability of spleen lymphocytes isolated from mice consuming different NaF doses is lower, and the expression of genes and proteins of MKK6/p38MAPK showed a decreasing trend. These results demonstrate that fluoride can suppress the activation of p38MAPK pathway in mice spleen lymphocytes and further influences the function of the immune system.

  16. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  17. Uterine and placental expression of TRPV6 gene is regulated via progesterone receptor- or estrogen receptor-mediated pathways during pregnancy in rodents

    Directory of Open Access Journals (Sweden)

    Choi Kyung-Chul

    2009-05-01

    Full Text Available Abstract Transient receptor potential cation channel, subfamily V, member 6 (TRPV6 is an epithelial Ca2+ channel protein expressed in calcium absorbing organs. In the present study, we investigated the expression and regulation of uterine and placental TRPV6 during gestation in rodents. Uterine TRPV6 peaked at pregnancy day (P 0.5, P5.5 and, P13.5 and was detected in uterine epithelium and glands of rats, while placental TRPV6 mRNA levels increased in mid-gestation. Uterine and placental TRPV6 mRNA levels in rats appear to cyclically change during pregnancy, suggesting that TRPV6 may participate in the implantation process. In addition, uterine TRPV6 mRNA is only expressed in placenta-unattached areas of the uterus, and uterine TRPV6 immunoreactivity was observed in luminal and glandular epithelial cells. In the placenta, TRPV6 was detected in the labyrinth and spongy zone. These results may indicate that TRPV6 has at least two functions: implantation of the embryo and maintenance of pregnancy. To investigate the pathway(s mediating TRPV6 expression in rodents, anti-steroid hormone antagonists were injected prior to maximal TRPV6 expression. In rats, TRPV6 expression was reduced by RU486 (an anti-progesterone through progesterone receptors, and ICI 182,780 (an anti-estrogen blocked TRPV6 expression via estrogen receptors in mice. The juxtaposition of uterine and placental TRPV6 expressed in these tissues supports the notion that TRPV6 participates in transferring calcium ions between the maternal and fetal compartments. Taken together, TRPV6 gene may function as a key element in controlling calcium transport in the uterus between the embryo and the placenta during pregnancy.

  18. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice.

    Directory of Open Access Journals (Sweden)

    Youko Oono

    Full Text Available Plant growth is severely affected by toxic concentrations of the non-essential heavy metal cadmium (Cd. Comprehensive transcriptome analysis by RNA-Seq following cadmium exposure is required to further understand plant responses to Cd and facilitate future systems-based analyses of the underlying regulatory networks. In this study, rice plants were hydroponically treated with 50 µM Cd for 24 hours and ∼60,000 expressed transcripts, including transcripts that could not be characterized by microarray-based approaches, were evaluated. Upregulation of various ROS-scavenging enzymes, chelators and metal transporters demonstrated the appropriate expression profiles to Cd exposure. Gene Ontology enrichment analysis of the responsive transcripts indicated the upregulation of many drought stress-related genes under Cd exposure. Further investigation into the expression of drought stress marker genes such as DREB suggested that expression of genes in several drought stress signal pathways was activated under Cd exposure. Furthermore, qRT-PCR analyses of randomly selected Cd-responsive metal transporter transcripts under various metal ion stresses suggested that the expression of Cd-responsive transcripts might be easily affected by other ions. Our transcriptome analysis demonstrated a new transcriptional network linking Cd and drought stresses in rice. Considering our data and that Cd is a non-essential metal, the network underlying Cd stress responses and tolerance, which plants have developed to adapt to other stresses, could help to acclimate to Cd exposure. Our examination of this transcriptional network provides useful information for further studies of the molecular mechanisms of plant adaptation to Cd exposure and the improvement of tolerance in crop species.

  19. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray.

    Science.gov (United States)

    Shang, Hung-Sheng; Shih, Yung-Luen; Lee, Ching-Hsiao; Hsueh, Shu-Ching; Liu, Jia-You; Liao, Nien-Chieh; Chen, Yung-Liang; Huang, Yi-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2017-01-01

    Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca(2+) production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca(2+) production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.

  20. Sequence and expression variations in 23 genes involved in mitochondrial and non-mitochondrial apoptotic pathways and risk of oral leukoplakia and cancer.

    Science.gov (United States)

    Datta, Sayantan; Ray, Anindita; Singh, Richa; Mondal, Pinaki; Basu, Analabha; De Sarkar, Navonil; Majumder, Mousumi; Maiti, Guruparasad; Baral, Aradhita; Jha, Ganga Nath; Mukhopadhyay, Indranil; Panda, Chinmay; Chowdhury, Shantanu; Ghosh, Saurabh; Roychoudhury, Susanta; Roy, Bidyut

    2015-11-01

    Oral cancer is usually preceded by pre-cancerous lesion and related to tobacco abuse. Tobacco carcinogens damage DNA and cells harboring such damaged DNA normally undergo apoptotic death, but cancer cells are exceptionally resistant to apoptosis. Here we studied association between sequence and expression variations in apoptotic pathway genes and risk of oral cancer and precancer. Ninety nine tag SNPs in 23 genes, involved in mitochondrial and non-mitochondrial apoptotic pathways, were genotyped in 525 cancer and 253 leukoplakia patients and 538 healthy controls using Illumina Golden Gate assay. Six SNPs (rs1473418 at BCL2; rs1950252 at BCL2L2; rs8190315 at BID; rs511044 at CASP1; rs2227310 at CASP7 and rs13010627 at CASP10) significantly modified risk of oral cancer but SNPs only at BCL2, CASP1and CASP10 modulated risk of leukoplakia. Combination of SNPs showed a steep increase in risk of cancer with increase in "effective" number of risk alleles. In silico analysis of published data set and our unpublished RNAseq data suggest that change in expression of BID and CASP7 may have affected risk of cancer. In conclusion, three SNPs, rs1473418 in BCL2, rs1950252 in BCL2L2 and rs511044 in CASP1, are being implicated for the first time in oral cancer. Since SNPs at BCL2, CASP1 and CASP10 modulated risk of both leukoplakia and cancer, so, they should be studied in more details for possible biomarkers in transition of leukoplakia to cancer. This study also implies importance of mitochondrial apoptotic pathway gene (such as BCL2) in progression of leukoplakia to oral cancer.

  1. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    Science.gov (United States)

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  2. Glucocorticoids regulate the expression of the mouse urocortin II gene: a putative connection between the corticotropin-releasing factor receptor pathways.

    Science.gov (United States)

    Chen, Alon; Vaughan, Joan; Vale, Wylie W

    2003-08-01

    Peptides encoded by the urocortin II (Ucn II) gene were recently identified as new members of the corticotropin-releasing factor (CRF) family. Ucn II is a specific ligand for the type 2 CRF receptor. Using RT-PCR, DNA sequencing, and immunofluorescence staining, we report the expression of Ucn II mRNA in several human and mouse (m) neuronal cell lines. Using these neuronal cell lines, we provide evidence that exposure to glucocorticoid hormones increases mUcn II mRNA expression and promoter activation. The effect of glucocorticoids on mUcn II mRNA expression was tested in the Ucn II/glucocorticoid receptor-positive cell line NG108-15. The results demonstrate that mUcn II mRNA expression is up-regulated by dexamethasone in a dose- and time-dependent fashion. Computer analysis revealed the presence of 14 putative half-palindrome glucocorticoid response element sequences within 1.2 kb of the mUcn II 5' flanking region. Transfections with different fragments of the 5'-flanking region of the mUcn II gene fused to a luciferase reporter gene showed a promoter-dependent expression of the reporter gene and regulation by dexamethasone. Promoter deletion studies clarify the sufficient putative glucocorticoid response element site mediating this effect. The steroid hormone antagonist RU486 blocked the effect of dexamethasone on mUcn II mRNA expression and promoter activation, suggesting a direct glucocorticoid receptor-mediated effect of dexamethasone on mUcn II mRNA expression. Ucn II is expressed in vivo in the hypothalamus, brainstem, olfactory bulb, and pituitary. Low levels were also detected in the mouse cortex, hippocampus, and spinal cord. We demonstrated that mUcn II gene transcription was stimulated by glucocorticoid administration in vivo and inhibited by removal of glucocorticoids by adrenalectomy. Administration of dexamethasone to mice resulted in an increase of mUcn II levels in the hypothalamus and brainstem but not in the olfactory bulb region 12 h following

  3. Laminin-5 Induces Osteogenic Gene Expression in Human Mesenchymal Stem Cells through an ERK-dependent Pathway

    Science.gov (United States)

    Klees, Robert F.; Salasznyk, Roman M.; Kingsley, Karl; Williams, William A.; Boskey, Adele; Plopper, George E.

    2005-01-01

    The laminin family of proteins is critical for managing a variety of cellular activities including migration, adhesion, and differentiation. In bone, the roles of laminins in controlling osteogenic differentiation of human mesenchymal stem cells (hMSC) are unknown. We report here that laminin-5 is found in bone and expressed by hMSC. hMSC isolated from bone synthesize laminin-5 and adhere to exogenous laminin-5 through α3β1 integrin. Adhesion to laminin-5 activates extracellular signal-related kinase (ERK) within 30 min and leads to phosphorylation of the osteogenic transcription factor Runx2/CBFA-1 within 8 d. Cells plated on laminin-5 for 16 d express increased levels of osteogenic marker genes, and those plated for 21 d deposit a mineralized matrix, indicative of osteogenic differentiation. Addition of the ERK inhibitor PD98059 mitigates these effects. We conclude that contact with laminin-5 is sufficient to activate ERK and to stimulate osteogenic differentiation in hMSC. PMID:15574877

  4. Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts.

    Science.gov (United States)

    Kanaya, Sousuke; Nemoto, Eiji; Ebe, Yukari; Somerman, Martha J; Shimauchi, Hidetoshi

    2010-09-01

    Cementoblasts, tooth root lining cells, are responsible for laying down cementum on the root surface, a process that is indispensable for establishing a functional periodontal ligament. Cementoblasts share phenotypical features with osteoblasts. Elevated levels of extracellular Ca(2+) have been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of extracellular Ca(2+) signaling in cementogenesis has not been examined. Using RT-PCR, we found that elevated levels of extracellular Ca(2+) increase fibroblast growth factor (FGF)-2 gene expression with a peak at 6h. Pretreatment with a protein kinase A (PKA) inhibitor, H89, or an adenylate cyclase inhibitor, MDL-12,330A, inhibited Ca(2+)-stimulated Fgf-2 expression. In contrast, pretreatment with the protein kinase C (PKC) inhibitor GF-109203X or the phospholipase C (PLC) inhibitor U73122 did not affect the expression of Fgf-2 transcripts, suggesting that the increase in Fgf-2 expression was dependent on the PKA but not the PLC/PKC signaling pathway. Treatment with an activator of adenylate cyclase, forskolin, or a cell-permeable analog of cAMP, 8-Br-cAMP, enhanced Ca(2+)-stimulated Fgf-2 expression, but a single treatment with forskolin or 8-Br-cAMP did not, suggesting that cAMP generation is indispensable but not sufficient for Ca(2+)-stimulated FGF2 expression. Next, we examined the cation specificity of the putative receptor and showed that treatment with trivalent/divalent inorganic ions, Ca(2+), Gd(3+), Sr(2+), or Al(3+), caused a dose-dependent increase in Fgf-2 mRNA levels in a cAMP-dependent fashion, whereas Mg(2+) and the organic ions neomycin and spermine had no effect on Fgf-2 gene expression levels. These findings suggest that an extracellular Ca(2+)-sensing mechanism is present in cementoblasts and its activation leads to FGF-2 stimulation in a cAMP/PKA dependent fashion. Understanding the pathway regulating key genes involved in modulating the

  5. Prostaglandins from Cytosolic Phospholipase A2α/Cyclooxygenase-1 Pathway and Mitogen-activated Protein Kinases Regulate Gene Expression in Candida albicans-infected Macrophages.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Jayaraja, Sabarirajan; Suram, Saritha; Murphy, Robert C; Leslie, Christina C

    2016-03-25

    In Candida albicans-infected resident peritoneal macrophages, activation of group IVA cytosolic phospholipase A2(cPLA2α) by calcium- and mitogen-activated protein kinases triggers the rapid production of prostaglandins I2 and E2 through cyclooxygenase (COX)-1 and regulates gene expression by increasing cAMP. InC. albicans-infected cPLA2α(-/-)or COX-1(-/-)macrophages, expression ofI l10,Nr4a2, and Ptgs2 was lower, and expression ofTnfα was higher, than in wild type macrophages. Expression was reconstituted with 8-bromo-cAMP, the PKA activator 6-benzoyl-cAMP, and agonists for prostaglandin receptors IP, EP2, and EP4 in infected but not uninfected cPLA2α(-/-)or COX-1(-/-)macrophages. InC. albicans-infected cPLA2α(+/+)macrophages, COX-2 expression was blocked by IP, EP2, and EP4 receptor antagonists, indicating a role for both prostaglandin I2 and E2 Activation of ERKs and p38, but not JNKs, by C. albicansacted synergistically with prostaglandins to induce expression of Il10,Nr4a2, and Ptgs2. Tnfα expression required activation of ERKs and p38 but was suppressed by cAMP. Results using cAMP analogues that activate PKA or Epacs suggested that cAMP regulates gene expression through PKA. However, phosphorylation of cAMP-response element-binding protein (CREB), the cAMP-regulated transcription factor involved inIl10,Nr4a2,Ptgs2, andTnfα expression, was not mediated by cAMP/PKA because it was similar inC. albicans-infected wild type and cPLA2α(-/-)or COX-1(-/-)macrophages. CREB phosphorylation was blocked by p38 inhibitors and induced by the p38 activator anisomycin but not by the PKA activator 6-benzoyl-cAMP. Therefore, MAPK activation inC. albicans-infected macrophages plays a dual role by promoting the cPLA2α/prostaglandin/cAMP/PKA pathway and CREB phosphorylation that coordinately regulate immediate early gene expression.

  6. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    Science.gov (United States)

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  7. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms.

    Science.gov (United States)

    Mas, S; Gassó, P; Parellada, E; Bernardo, M; Lafuente, A

    2015-10-01

    To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.

  8. A gene encoding a vicilin-like protein is specifically expressed in fern spores. Evolutionary pathway of seed storage globulins.

    Science.gov (United States)

    Shutov, A D; Braun, H; Chesnokov, Y V; Bäumlein, H

    1998-02-15

    The isolation and characterisation of a cDNA coding for a vicilin-like protein of the fern Matteuccia struthiopteris is described. The corresponding gene is specifically expressed during late stages of spore development. Extensive sequence comparisons suggest that the fern protein can be considered as a molecular missing link between single-domain germin/spherulin-like proteins and two-domain seed storage globulins of gymnosperms and angiosperms. Further, evidence is provided for the existence of a superfamily of structurally related, functionally different proteins which includes storage globulins of the vicilin and legumin families, a membrane-associated sucrose-binding protein of soybean, a Forssman antigen-binding lectin of velvet bean, the precursor of the vacuolar membrane bound proteins MP27/MP32 of pumpkin, the embryogenesis-specific protein Gea8 of carrot, the fern-spore-specific protein described here as well as the functionally diverse family of germins/germin-like proteins and the spherulins of myxomycetes. We propose that seed storage globulins of spermatophytes evolved from desiccation-related single-domain proteins of prokaryotes via a duplicated two-domain ancestor that is best represented by the extant fern spore-specific vicilin-like protein.

  9. Icariin-mediated expression of cardiac genes and modulation of nitric oxide signaling pathway during differentiation of mouse embryonic stem cells into cardiomyocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Dan-yan ZHU; Yi-jia LOU

    2006-01-01

    Aim:To investigate effects of icariin on cardiac gene expression and the modulation of nitric oxide (NO)signal transduction during the differentiation of embryonic stem(ES)cells into cardiomyocytes in vitro.Methods:The expression levels of cardiac developmental-dependent genes were measured using reverse transcription-polymerase chain reaction(RT-PCR).The chronotropic responses of cardiomyocytes to β-adrenoceptor stimulation were determined.The levels of cAMP and cGMP in ES cells were measured using radioimmunoassay.Endogenous NO levels were measured by using the Griess reaction.Aminoguanidine (AG) was used to confirm the influence of icariin on the endogenous NO signal pathway.Results:Icariin significantly elevated mRNA levels of cardiac transcription factors GATA4 and Nkx2.5,and cardiac-specific α-MHC,MLC-2ν and β-AR genes in a concentration-and time-dependent manner (P<0.05).Cardiomyocytes derived from embryoid body (EB)treated with icariin were more sensitive to isoprenaline (P<0.01).Treatment of ES cells with icariin resulted in a continued elevation in the cAMP/cGMP ratio before a shift to the cardiomyocyte phenotype (P<0.05).AG decreased the NO level,and delayed and decreased the incidence of contracting EB to only approximately 35% on d 5+11,an effect that could be rescued by icariin.When cells were cocultured with icariin and AG,the percentage of beating EB reached a peak level of 73% on d 5+11(P<0.05).Conclusion:The inducible effects of icariin were partly related to increase in the expression of cardiac developmental-dependent genes,and elevation of the cAMP/cGMP ratio in ES cells,as well as upregulation of endogenous NO generation during the early stages of cardiac development.

  10. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals

    Science.gov (United States)

    Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T.; Clerici, Mario; Biasin, Mara

    2017-01-01

    Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection. PMID:28243241

  11. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Yunshun Chen

    2016-08-01

    Full Text Available In recent years, RNA sequencing (RNA-seq has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  12. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    Science.gov (United States)

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  13. Two Chitin Biosynthesis Pathway Genes in Bactrocera dorsalis (Diptera: Tephritidae): Molecular Characteristics, Expression Patterns, and Roles in Larval-Pupal Transition.

    Science.gov (United States)

    Yang, Wen-Jia; Wu, Yi-Bei; Chen, Li; Xu, Kang-Kang; Xie, Yi-Fei; Wang, Jin-Jun

    2015-10-01

    Glucose-6-phosphate isomerase (G6PI) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), two key components in the chitin biosynthesis pathway, are critical for insect growth and metamorphosis. In this study, we identified the genes BdG6PI and BdUAP from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frames (ORFs) of BdG6PI (1,491 bp) and BdUAP (1,677 bp) encoded 496 and 558 amino acid residues, respectively. Multiple sequence alignments showed that BdG6PI and BdUAP had high amino acid sequence identity with other insect homologues. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated that BdG6PI was mainly expressed in the early stages of third-instar larvae and adults, while significantly higher expression of BdUAP was observed in adults. Both transcripts were expressed highly in the Malpighian tubules, but only slightly in the tracheae. The expression of both BdG6PI and BdUAP was significantly up-regulated by 20-hydroxyecdysone exposure and down-regulated by starvation. Moreover, injection of double-stranded RNAs of BdG6PI and BdUAP into third-instar larvae significantly reduced the corresponding gene expressions. Additionally, silencing of BdUAP resulted in 65% death and abnormal phenotypes of larvae, while silencing of BdG6PI had a slight effect on insect molting. These findings provide some data on the roles of BdG6PI and BdUAP in B. dorsalis and demonstrate the potential role for BdUAP in larval-pupal transition. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression

    Directory of Open Access Journals (Sweden)

    Luque Ana

    2008-09-01

    Full Text Available Abstract Background Formation of haemorrhagic neovessels in the intima of developing atherosclerotic plaques is thought to significantly contribute to plaque instability resulting in thrombosis. C-reactive protein (CRP is an acute phase reactant whose expression in the vascular wall, in particular, in reactive plaque regions, and circulating levels increase in patients at high risk of cardiovascular events. Although CRP is known to induce a pro-inflammatory phenotype in endothelial cells (EC a direct role on modulation of angiogenesis has not been established. Results Here, we show that CRP is a powerful inducer of angiogenesis in bovine aortic EC (BAEC and human coronary artery EC (HCAEC. CRP, at concentrations corresponding to moderate/high risk (1–5 μg/ml, induced a significant increase in proliferation, migration and tube-like structure formation in vitro and stimulated blood vessel formation in the chick chorioallantoic membrane assay (CAM. CRP treated with detoxi-gel columns retained such effects. Western blotting showed that CRP increased activation of early response kinase-1/2 (ERK1/2, a key protein involved in EC mitogenesis. Furthermore, using TaqMan Low-density Arrays we identified key pro-angiogenic genes induced by CRP among them were vascular endothelial cell growth factor receptor-2 (VEGFR2/KDR, platelet-derived growth factor (PDGF-BB, notch family transcription factors (Notch1 and Notch3, cysteine-rich angiogenic inducer 61 (CYR61/CCN1 and inhibitor of DNA binding/differentiation-1 (ID1. Conclusion This data suggests a role for CRP in direct stimulation of angiogenesis and therefore may be a mediator of neovessel formation in the intima of vulnerable plaques.

  15. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression.

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (-) mating-type-specific enzyme in the pathway from beta-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (-) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (-) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation.

  16. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    Science.gov (United States)

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.

  17. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  18. Fucoidan reduces oxidative stress by regulating the gene expression of HO‑1 and SOD‑1 through the Nrf2/ERK signaling pathway in HaCaT cells.

    Science.gov (United States)

    Ryu, Min Ju; Chung, Ha Sook

    2016-10-01

    Fucoidan, a sulfated polysaccharide, is found in edible brown algae. In the present study, the molecular mechanisms of fucoidan against mild oxidative stress in human keratinocytes were investigated. The current study indicated that fucoidan significantly augmented the antioxidants heme oxygenase‑1 (HO‑1) and superoxide dismutase‑1 (SOD‑1) via the upregulation of nuclear factor erythroid 2‑related factor 2 (Nrf2) and markedly reduced the cytoplasmic stability of kelch‑like ECH‑associated protein 1. The upregulation of HO‑1 and SOD‑1 detected in the fucoidan‑treated cells may be responsible for the increased resistance to mild oxidative stress, indicating that fucoidan may augment the activities of antioxidant enzymes via stimulating Nrf2. This is the first report, to the best of our knowledge, to demonstrate that fucoidan attenuates oxidative stress by regulating the gene expression of SOD‑1 and HO‑1 via the Nrf2/extracellular signal‑regulated kinase signaling pathway.

  19. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Mayer, Christopher M; Belsham, Denise D

    2009-08-13

    Insulin plays a key role in the maintenance of nutrient homeostasis through central regulation of neuropeptides. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) are vital orexigenic peptides that are regulated by insulin, although the processes utilized are unknown. Using a hypothalamic, clonal cell line, mHypoE-46, which endogenously expresses NPY, AgRP and the insulin receptor, we studied the mechanisms involved in the regulation of the NPY/AgRP neuron by insulin. We determined that insulin has direct actions on the neurons and acts to repress NPY/AgRP gene expression through a MAPK MEK/ERK-dependent pathway. Transient transfection analysis determined that human NPY and AgRP 5' flanking gene regions were not regulated by insulin in the mouse cell line, while sequence comparison analysis indicated only a 50% sequence similarity between human and mouse NPY and AgRP 5' flanking regions. These experiments indicate that insulin acts directly on specific hypothalamic neurons to regulate neuropeptide transcription.

  20. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome

    NARCIS (Netherlands)

    Mahfouz, A.; Ziats, M.N.; Rennert, O.M.; Lelieveldt, B.P.F.; Reinders, M.J.T.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains un

  1. Sex reversal in C57BL/6J XY mice caused by increased expression of ovarian genes and insufficient activation of the testis determining pathway.

    Directory of Open Access Journals (Sweden)

    Stephanie M Correa

    Full Text Available Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6 mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XY(B6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a Y(AKR chromosome replaced the Y(B6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/- B6 XY(AKR, Wt1+/- B6 XY(AKR, B6 XY(POS, and B6 XY(AKR fetuses. We propose that Wt1(B6 and Sf1(B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4(B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1(B6 and/or Sf1(B6 alleles that compromise testis differentiation and a Wnt4(B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a "weak" Sry allele, such as the one on the Y(POS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal.

  2. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek's disease.

    Science.gov (United States)

    Haunshi, Santosh; Cheng, Hans H

    2014-03-01

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.

  3. Mechanisms of AEG-1 and CXCR4 gene expression regulating the epithelial-mesenchymal transition pathway involved in brain metastases of breast cancer.

    Science.gov (United States)

    Chen, Yanjun; Wang, Xinjun

    2017-01-01

    To study the astrocyte elevated gene (AEG)-1 in breast cancer and the mechanism of the chemokine receptor CXCR4 regulating the epithelial-mesenchymal transition (EMT) involved in brain metastases of breast cancer. A total of 20 breast cancer patients with and 40 without brain metastases were recruited. The expressions of AEG-1, CXCR4, E-cadherin, N-cadherin and α-SMA were detected by immunohistochemical staining, real-time (RT) quantitative (q) PCR and Western blot respectively in cancer and adjacent normal tissues. The expressions detected in the adjacent normal tissues from both groups showed no significant difference (p>0.05). In the group with brain metastases, AEG-1, CXCR4, N-cadherin, α-SMA, mRNA and the relative expression level of protein were higher than those of patients without brain metastases, while E-cadherin showed the opposite trend. AEG-1 and CXCR4 activate and regulate the EMT pathway to participate in brain metastases.

  4. JNK-dependent NFATc1 pathway positively regulates IL-13 gene expression induced by (-)-epigallocatechin-3-gallate in human basophilic KU812 cells.

    Science.gov (United States)

    Wu, Haitao; Qi, Hang; Iwasaki, Dai; Zhu, Beiwei; Shimoishi, Yasuaki; Murata, Yoshiyuki; Nakamura, Yoshimasa

    2009-10-01

    (-)-Epigallocatechin-3-gallate (EGCG) has been reported to possess a wide range of biological and pharmacological properties. In this study, we investigated the effects of EGCG on IL-13 gene expression in human basophilic KU812 cells. The IL-13 mRNA expression level was dose-dependently increased by treatment with EGCG (5-20 microM) for 1 h and additional incubation in a medium for 23 h. EGCG significantly increased the intracellular peroxide level as detected by the peroxide-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. A pharmacological experiment using catalase and a structure-activity relationship study revealed that the exogenously produced H(2)O(2) significantly, but partially, contributed to the IL-13 expression as well as the intracellular oxidative status. Furthermore, EGCG at the concentration required for IL-13 up-regulation activated c-Jun NH(2)-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase in KU812 cells. Transfection of a JNK-specific siRNA as well as treatment with a JNK-specific inhibitor, SP600125, significantly reduced the EGCG-induced IL-13 mRNA expression, by 47.1 and 44.6%, respectively. In addition, we observed the nuclear translocation, mRNA up-regulation, and activation of DNA binding with the IL-13 promoter of nuclear factor of activated T cells (NFATc1) in the EGCG-treated cells. These data provide biological evidence that EGCG induces IL-13 mRNA expression via the JNK-dependent NFATc1 pathway in KU812 cells.

  5. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    Science.gov (United States)

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus.

  6. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway.

    Science.gov (United States)

    Jo, Hee Kyung; Kim, Go Woon; Jeong, Kyung Ju; Kim, Do Yeon; Chung, Sung Hyun

    2014-01-01

    Beneficial effect of eugenol on fatty liver was examined in hepatocytes and liver tissue of high fat diet (HFD)-fed C57BL/6J mice. To induce a fatty liver, palmitic acid or isolated hepatocytes from HFD-fed Sprague-Dawley (SD) rats were used in vitro studies, and C57BL/6J mice were fed HFD for 10 weeks. Lipid contents were markedly decreased when hepatocytes were treated with eugenol for up to 24 h. Gene expressions of sterol regulatory element binding protein 1 (SREBP1) and its target enzymes were suppressed but those of lipolysis-related proteins were increased. As a regulatory kinase for lipogenic transcriptional factors, the AMP-activated protein kinase (AMPK) signaling pathway was examined. Protein expressions of phosphorylated Ca(2+)-calmodulin dependent protein kinase kinase (CAMKK), AMPK and acetyl-CoA carboxylase (ACC) were significantly increased and those of phosphorylated mammalian target of rapamycin (mTOR) and p70S6K were suppressed when the hepatocytes were treated with eugenol at up to 100 µM. These effects were all reversed in the presence of specific inhibitors of CAMKK, AMPK or mTOR. In vivo studies, hepatic triglyceride (TG) levels and steatosis score were decreased by 45% and 72%, respectively, in eugenol-treated mice. Gene expressions of fibrosis marker protein such as α-smooth muscle actin (α-SMA), collagen type I (Col-I) and plasminogen activator inhibitor-1 (PAI-1) were also significantly reduced by 36%, 63% and 40% in eugenol-treated mice. In summary, eugenol may represent a potential intervention in populations at high risk for fatty liver.

  7. Effects of porcine MyD88 knockdown on the expression of TLR4 pathway-related genes and proinflammatory cytokines.

    Science.gov (United States)

    Dai, Chaohui; Sun, Li; Yu, Lihuai; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-12-01

    As a critical adapter protein in Toll-like receptor (TLR)/Interleukin (IL)-1R signalling pathway, myeloid differentiation protein 88 (MyD88) plays an important role in immune responses and host defence against pathogens. The present study was designed to provide a foundation and an important reagent for the mechanistic study of MyD88 and its role TLR/IL-1R signalling pathways in porcine immunity. Lentivirus-mediated RNAi was used to generate a porcine PK15 cell line with a silenced MyD88 gene and quantitative real-time PCR (qPCR) and Western blotting were used to detect changes in the expression of critical genes in the Toll-like receptor 4 (TLR4) signalling pathway. ELISA was used to measure the levels of seven proinflammatory cytokines-interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, macrophage inflammatory protein (MIP)-1α and MIP-1β-in cell culture supernatants after MyD88 silencing. We successfully obtained a PK15 cell line with 61% MyD88 mRNA transcript down-regulated. In PK15 cells with MyD88 silencing, the transcript levels of TLR4 and IL-1β were significantly reduced, whereas there were no significant changes in the expression levels of cluster of differentiation antigen 14 (CD14), interferon-α (IFN-α) or TNF-α The ELISA results showed that the levels of most cytokines were not significantly changed apart from IL-8 without stimulation, which was significantly up-regulated. When cells were induced by lipopolysaccharide (LPS) (0.1 μg/ml) for 6 h, the global level of seven proinflammatory cytokines up-regulated and the level of IL-1β, TNF-α, IL-6, IL-8 and IL-12 of Blank and negative control (NC) group up-regulated more significantly than RNAi group (Pproinflammatory cytokines and finally leaded to immunosuppression.

  8. Altered Expression of ARP2/3 Complex Signaling Pathway Genes in Prefrontal Layer 3 Pyramidal Cells in Schizophrenia.

    Science.gov (United States)

    Datta, Dibyadeep; Arion, Dominique; Roman, Kaitlyn M; Volk, David W; Lewis, David A

    2017-02-01

    Lower dendritic spine density on layer 3 pyramidal cells in the dorsolateral prefrontal cortex (DLPFC) appears to contribute to cognitive dysfunction in schizophrenia, whereas psychosis is associated with excessive dopamine release in the striatum. These findings may be related via excitatory projections from the DLPFC to the ventral mesencephalon, the location of dopamine cells projecting to the striatum. Consistent with this hypothesis, deletion of the actin-related protein-2/3 (ARP2/3) complex, which regulates the actin cytoskeleton supporting dendritic spines, produced spine loss in cortical pyramidal cells and striatal hyperdopaminergia in mice. The authors sought to determine whether the ARP2/3 complex is altered in schizophrenia. In matched pairs of schizophrenia and comparison subjects, transcript levels of ARP2/3 complex signaling pathway were assessed in laser-microdissected DLPFC layer 3 and 5 pyramidal cells and layer 3 parvalbumin interneurons, and in total DLPFC gray matter. Transcript levels of ARP2/3 complex subunits and of nucleation promotion factors that regulate the ARP2/3 complex were significantly lower in DLPFC layer 3 and 5 pyramidal cells in schizophrenia. In contrast, these transcripts were unaltered, or only modestly changed, in parvalbumin interneurons and DLPFC gray matter. Down-regulation of the ARP2/3 complex signaling pathway, a common final pathway for multiple signaling cascades that regulate the actin cytoskeleton, would compromise the structural stability of spines, leading to their loss. In concert with findings from deletion of the ARP2/3 complex in mice, these findings support the idea that spine deficits in the DLPFC may contribute to subcortical hyperdopaminergia in schizophrenia.

  9. Grape skin extract reduces adipogenesis- and lipogenesis-related gene expression in 3T3-L1 adipocytes through the peroxisome proliferator-activated receptor-γ signaling pathway.

    Science.gov (United States)

    Jeong, Yoo Seok; Hong, Joo Heon; Cho, Kyung Hyun; Jung, Hee Kyoung

    2012-07-01

    We previously reported that grape skin ethanol extract (GSE) decreases adipogenic transcription factor gene expression, inhibiting triglyceride accumulation in 3T3-L1 adipocytes. In this study, we hypothesized that GSE may induce differential expression profiles in adipocytes, thus providing protection against obesity. Thirty-five genes involved in the peroxisome proliferator-activated receptor-γ (PPARγ) signaling pathway, lipid metabolism, or adipogenesis were identified through microarray analysis of adipocytes treated with GSE. Expression of the genes involved in PPARγ signaling, Adipoq, Scd1, Nr1h3, Fabp5, Scd2, and Pparg decreased with GSE treatment, whereas expression of Ppargc1a increased. Lipid metabolism-associated genes Mlxp1, Stat5a, Hsl, Plin1, and Vdr were down-regulated. Interestingly, GSE also affected expression of genes related to the mitogen-activated protein kinases pathway. GSE extract treatment decreased expression of aP2, Fas, and Tnfa, known markers of adipogenesis, as measured by real-time polymerase reaction. These findings demonstrate the antiadipogenic effects of GSE on 3T3-L1 adipocytes at the genetic level, primarily on the PPARγ signaling pathway. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  10. Effects of water stress on development, operation and gene expression of cyanide-resistant respiratory pathway in wheat

    Institute of Scientific and Technical Information of China (English)

    何军贤; 韦振泉; 梁厚果

    1999-01-01

    Osmotic dehydration of wheat seedlings in-0.5 MPa polyethylene glycol (PEG) solutions for 24, 48 and 72 h resulted in mild, moderate and severe water stress respectively in leaves, but only caused mild water stress in roots as reflected by the changes in relative water content (RWC). In response to the above water stress conditions, leaf total respiratory rate (Vt) decreased progressively, and the alternative pathway (AP) capacity (Valt) and its actual operation activity (ρValt) decreased more severely. Water stress also led to continuous reduction in cytochrome pathway (CP) activity ((ρ’ Vcyt) and different changes in the contribution of ρValt and ρ’ Vcyt to Vt in leaves, with ρValt/Vt decreasing and ρ’ Vcyt/Vt increasing. The change pattern of root Vt was similar to that of its RWC, while root Valt and ρValt were found to decrease during the first 24 h of stress and thereafter recover to a level close to that of the control (O h). These data indicate that the alt

  11. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L.

    Science.gov (United States)

    Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S

    2013-05-01

    Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.

  12. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice.

    Science.gov (United States)

    Shukla, Sanjeev; Shankar, Eswar; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-01-01

    Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it's phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.

  13. Effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia

    Institute of Scientific and Technical Information of China (English)

    Zu-Bin Wang; Yi-Lin Zhu

    2016-01-01

    Objective:To study the effect of hUC-MSCs treatment on immune function, tryptophan metabolic pathways and related gene expression of children with immune thrombocytopenia. Methods: A total of 58 cases of children with immune thrombocytopenia were enrolled for study and randomly divided into hUC-MSCs group and conventional group, hUC-MSCs group received glucocorticoid + gamma globulin + hUC-MSCs treatment and conventional group received glucocorticoid + gamma globulin treatment. Then platelet content, immune function, tryptophan metabolism as well as expression of T-bet and GATA-3 of two groups were compared.Results: Platelet content of hUC-MSCs group was higher than that of conventional group; serum IFN-γ and IL-2 contents of hUC-MSCs group were lower than those of conventional group, and serum IL-4 and IL-10 contents as well as peripheral blood Treg cell ratio was higher than those of conventional group; serum Trp concentration and Trp/Kyn ratio of hUC-MSCs group were lower than those of conventional group, Kyn concentration was higher than that of conventional group, IDO expression in peripheral blood mononuclear cells was higher than that of conventional group, and TTS expression was lower than that of conventional group; mRNA content of T-bet in peripheral blood mononuclear cells of hUC-MSCs group was lower than that of conventional group, and mRNA content of GATA-3 was higher than that of conventional group.Conclusion: hUC-MSCs therapy can increase platelet content and regulate Th1/Th2 balance and tryptophan metabolism; it's an ideal method for the treatment of immune thrombocytopenia.

  14. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus.

    OpenAIRE

    Stilling, Roman M; Eva eBenito; Michael eGertig; Vincenzo eCapece; Jonas eBarth; Susanne eBurkhardt; Stefan eBonn; Andre eFischer

    2014-01-01

    Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer’s disease. The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA e...

  15. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  16. Effects of phenotypic residual feed intake on response to a glucose tolerance test and gene expression in the insulin signaling pathway in longissimus dorsi in beef cattle.

    Science.gov (United States)

    Fitzsimons, C; Kenny, D A; Waters, S M; Earley, B; McGee, M

    2014-10-01

    The objectives of this study were to determine the insulinogenic response to an intravenous glucose tolerance test (GTT) and examine gene expression profiles in the insulin signaling pathway (ISP) in beef animals of differing phenotypic residual feed intake (RFI). Two experiments were conducted. In Exp. 1, a total of 39 Simmental heifers, over 2 yr (yr 1, n = 22, and yr 2, n = 17; mean initial BW = 472 kg [SD = 52.4 kg]), were offered grass silage ad libitum for 104 d. Heifers were subjected to a GTT on d 8 and 65 of the RFI measurement period in yr 1 and 2, respectively. Concentrations of plasma glucose and insulin were measured at -45, -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, and 180 min relative to glucose infusion (0 min). In Exp. 2, a total of 67 Simmental bulls, over 3 yr (yr 1, n = 20; yr 2, n = 33; and yr 3, n = 14; mean initial BW = 431 kg [SD = 63.7 kg]), were offered concentrates ad libitum for 105 d. Biopsies of LM were harvested during the RFI measurement period (yr 1, d 49 and 91; yr 2, d 52 and 92; and yr 3, d 50 and 92). The residuals of the regression of DMI on ADG, midtest metabolic BW (BW(0.75)), and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium, or low groupings by dividing them into terciles, resulting in 13 heifers and 22, 23, and 22 bulls in their respective RFI groups. In Exp. 1, data from 13 heifers from each of the high- and low-RFI groups, and in Exp. 2, data from the 15 highest and 15 lowest ranking bulls on RFI are reported. In Exp. 1, glucose and insulin response and area under the response curve for glucose and insulin were similar (P > 0.05) between high- and low-RFI heifers. In Exp. 2, no differences (P > 0.05) were found for mRNA expression of 22 genes of the ISP in muscle tissue; however, expression of the transcription factor SREBP1c tended to be positively correlated (r = 0.25, P = 0.07) with RFI

  17. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    Science.gov (United States)

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  18. Gene expression regulation of the TLR9 and MyD88-dependent pathways in rock bream against rock bream iridovirus (RBIV) infection.

    Science.gov (United States)

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-09-13

    Rock bream iridovirus (RBIV), which is a member of the Megalocytivirus genus, causes severe mass mortalities in rock bream in Korea. To date, the innate immune defense mechanisms of rock bream against RBIV is unclear. In this study, we assessed the expression levels of genes related to TLR9 and MyD88-dependent pathways in RBIV-infected rock bream in high, low or no mortality conditions. In the high mortality group (100% mortality at 15 days post infection (dpi)), high levels of TLR9 and MyD88 expressions (6.4- and 2.4-fold, respectively) were observed at 8 d and then reduced (0.6- and 0.1-fold, respectively) with heavy viral loads at 10 dpi (2.21 × 10(7)/μl). Moreover, TRAF6, IRF5, IL1β, IL8, IL12 and TNFα expression levels showed no statistical significance until 10 dpi. Conversely, in the low mortality group (28% expected mortality at 35 dpi), TLR9, MyD88 and TRAF6 expression levels were significantly higher than those in the control group at several sampling points until 30 dpi. Higher levels of IRF5, IL1β, IL8, IL12 and TNFα expression were also observed, however, these were not significantly different from those of the control group. In the no mortality group (0% mortality at 40 dpi), significantly higher levels of MyD88 (2 d, 4 d and 40 dpi), TRAF6 (2 dpi), IL1β (4 dpi) and IL8 (2 d and 4 dpi) expression were observed. In summary, RBIV-infected rock bream induces innate immune response, which could be a major contributing factor to effective fish control over viral transcription. MyD88, TRAF6, IL1β and IL8-related immune responses were activated in fish survivor condition (low or no mortality group). This is a critical factor for RBIV disease recovery; however, these immune responses did not efficiently respond in fish dead condition (high mortality group). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.

  20. 玉米种子老化相关MAPK途径基因表达分析%Analysis of MAPK Pathway Genes Expression Related to Maize Seed Ageing

    Institute of Scientific and Technical Information of China (English)

    吕伟增; 曹广灿; 林一欣; 薛梅真; 陈军营

    2015-01-01

    The MAPKs (mitogen-activated protein kinases) play an important role in ROS (reactive oxygen species) signal transduction. However, the mechanism of MAPKs cascade in seed ageing is unclear. In this study, maize (Zea mays L.) cultivar (‘Zhengdan 958’) seeds were used as a model and the effect of artiifcial ageing treatment (temperature 45℃, relative humidity 100%) on seed vigor and physiological features were studied. The technology of Digital Gene Expression Proifle was performed to screen the differentially expressed genes related to MAPKs during artiifcial ageing. The results indicated that the seed vigor index decreased dra-matically with the prolongation of ageing time. The superoxide anion production rate in the embryo reached the peak on the 3rd day and then declined. The ABA content showed a decreasing trend. During the process of seed ageing, there were 53 MAPK pathway genes identiifed and among of them, twenty ifve genes showed signiif-cant difference (14 up-regulation genes, 11 down-regulation genes). Analysis of promoter sequences (2 kb) of MAPK genes responded to ROS stimulation was performed and some cis-acting elements responding to ABA, such as ABRE, DRE/CRT etc were found. Expression of genes in MEKK1-MKK4/MKK5-MPK3/MPK6 cas-cade were investigated. MKK4 (GRMZM5G878379) gene expression was up-regulated and ZmMPK6 (AC188023.3_FG011) activated by ROS was down-regulated. This data suggested that the MEKK1-MKK4/MKK5-MPK3/MPK6 signal transduction pathway might be damaged. So it is speculated that the breakage of MAPK signal transduction system might be one of the important cause leading to seed deterioration.%促分裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)在活性氧(reactive oxygen species, ROS)信号转导过程中起重要作用,然而MAPKs途径相关基因在种子老化过程中的表达变化尚不清楚。本文以玉米杂交种‘郑单958’种子为材料,研究了人工老化处理(温度45℃、RH 100%)对玉

  1. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts.

    Science.gov (United States)

    Kumar, Shashi; Hahn, Frederick M; Baidoo, Edward; Kahlon, Talwinder S; Wood, Delilah F; McMahan, Colleen M; Cornish, Katrina; Keasling, Jay D; Daniell, Henry; Whalen, Maureen C

    2012-01-01

    Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.

  2. Inference of gene pathways using mixture Bayesian networks

    Directory of Open Access Journals (Sweden)

    Ko Younhee

    2009-05-01

    Full Text Available Abstract Background Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted. Results The first reconstructions of a circadian rhythm pathway in honey bees and an adherens junction pathway in mouse embryos were obtained. In addition, general and condition-specific gene relationships, some unexpected, were detected in these two pathways and in a yeast cell-cycle pathway. The mixture Bayesian network approach identified all (honey bee circadian rhythm and mouse adherens junction pathways or the vast majority (yeast cell-cycle pathway of the gene relationships reported in empirical studies. Findings across the three pathways and data sets indicate that the mixture Bayesian network approach is well-suited to infer gene pathways based on microarray data. Furthermore, the interpretation of model estimates provided a broader understanding of the relationships between genes. The mixture models offered a comprehensive description of the relationships among genes in complex biological processes or across a wide range of conditions. The mixture parameter estimates and corresponding odds that the gene network inferred for a sample pertained to each mixture component allowed the uncovering of both general and condition-dependent gene relationships and patterns of expression. Conclusion This study demonstrated the two main benefits of learning gene pathways using mixture Bayesian networks. First, the identification of the optimal number of mixture components supported by the data offered a robust approach to infer gene relationships and

  3. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    Science.gov (United States)

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future.

  4. Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway.

    Science.gov (United States)

    Daniel, Zoe C; Akyol, Asli; McMullen, Sarah; Langley-Evans, Simon C

    2014-01-01

    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n = 9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma and components of the insulin signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P = 0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P = 0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific.

  5. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    Science.gov (United States)

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  6. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    Science.gov (United States)

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  7. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  8. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  9. Expression and correlation of Hedgehog signaling pathway and LKB1 gene in breast cancer%Hedgehog信号通路与LKB1基因在乳腺癌中的达及其相关性研究

    Institute of Scientific and Technical Information of China (English)

    屈雪莹; 庄志刚

    2011-01-01

    Hedgehog signaling pathway is excessive activated in breast cancer.LKBl is currently accepted as a tumor-suppressor gene,which can inhibit the proliferation of breast cancer.The overexpression of LKB1 can regulate the expression of CyclinDl series gene which is a target gene of Hedgehog signaling pathway.Meanwhile,the study found that PKA gene play an important role in Hedgehog signaling pathway,its activation is related with the cAMP state,and LKB1 genes can influence the cAMP state.Therefore,LKB1 gene and the Hedgehog signaling pathway may exist some inevitable connection.%Hedgehog信号通路在乳腺癌中过度激活,LKB1是抑癌基因,有抑制乳腺癌增殖的功能.LKB1过表达可调控Hedgehog信号通路的靶基因CyclinD1系列基因的表达,同时研究发现Hedgehog信号通路中PKA基因起重要作用,其激活与cAMP状态有关,而LKB1基因能影响cAMP的状态.因此,LKB1基因与Hedgehog信号通路可能存在某种必然的联系.

  10. Text mining in cancer gene and pathway prioritization.

    Science.gov (United States)

    Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.

  11. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  12. Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis

    Science.gov (United States)

    Ah-Fong, Audrey M. V.; Davis, Carol; Andreeva, Kalina; Judelson, Howard S.

    2016-01-01

    To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity. PMID:27936244

  13. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water1

    Science.gov (United States)

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-01-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50–1000 µg/ L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic’s possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  14. Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista

    Directory of Open Access Journals (Sweden)

    Alice Mühlroth

    2013-11-01

    Full Text Available The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3. Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.

  15. Autism: Many Genes, Common Pathways?

    OpenAIRE

    Geschwind, Daniel H.

    2008-01-01

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  16. Autism: many genes, common pathways?

    Science.gov (United States)

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  17. Gene Expression Analysis of an EGFR Indirectly Related Pathway Identified PTEN and MMP9 as Reliable Diagnostic Markers for Human Glial Tumor Specimens

    Directory of Open Access Journals (Sweden)

    Sergio Comincini

    2009-01-01

    Full Text Available In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.

  18. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    Science.gov (United States)

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  19. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  20. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Hagedorn Peter H

    2011-02-01

    Full Text Available Abstract Background Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA. Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. Results Microrray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708 with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY. Conclusions In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes.

  1. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes

    DEFF Research Database (Denmark)

    Bang-Berthelsen, Claus Heiner; Pedersen, Lykke; Fløyel, Tina;

    2011-01-01

    enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). CONCLUSIONS: In this study, ICA...... (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. RESULTS: Microrray profiling identified eight miRNAs (miR-124...... between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes....

  2. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes

    DEFF Research Database (Denmark)

    Bang-Berthelsen, Claus Heiner; Pedersen, Lykke; Fløyel, Tina;

    2011-01-01

    (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. RESULTS: Microrray profiling identified eight miRNAs (miR-124...... enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). CONCLUSIONS: In this study, ICA...... between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes....

  3. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways.

    Science.gov (United States)

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M

    2011-05-27

    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  4. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  5. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Science.gov (United States)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  6. A novel benzofuran, 4-methoxybenzofuran-5-carboxamide, from Tephrosia purpurea suppressed histamine H1 receptor gene expression through a protein kinase C-δ-dependent signaling pathway.

    Science.gov (United States)

    Shill, Manik Chandra; Mizuguchi, Hiroyuki; Karmakar, Sanmoy; Kadota, Takuya; Mukherjee, Pulok K; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Nemoto, Hisao; Takeda, Noriaki; Fukui, Hiroyuki

    2016-01-01

    Histamine H1 receptor (H1R) gene is upregulated in patients with allergic rhinitis (AR), and its expression level is strongly correlated with the severity of allergic symptoms. We previously reported isolation of the putative anti-allergic compound, 4-methoxybenzofuran-5-carboxamide (MBCA) from Tephrosia purpurea and its chemical synthesis (Shill et al., Bioorg Med Chem 2015;23:6869-6874). However, the mechanism underlying its anti-allergic activity remains to be elucidated. Here, we report the mechanism of MBCA on phorbol 12-myristate-13-acetate (PMA)- or histamine-induced upregulation of H1R gene expression in HeLa cells, and in vivo effects of MBCA were also determined in toluene-2,4-diisocyanate (TDI)-sensitized rats. MBCA suppressed PMA- and histamine-induced upregulation of H1R expression at both mRNA and protein levels and inhibited PMA-induced phosphorylation of PKCδ at Tyr(311) and subsequent translocation to the Golgi. Furthermore, MBCA ameliorated allergic symptoms and suppressed the elevation of H1R and helper T cell type 2 (Th2) cytokine mRNAs in TDI-sensitized rats. Data suggest that MBCA alleviates nasal symptoms in TDI-sensitized rats through the inhibition of H1R and Th2 cytokine gene expression. The mechanism of its H1R gene suppression underlies the inhibition of PKCδ activation.

  7. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  8. PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways.

    Science.gov (United States)

    Mlecnik, Bernhard; Scheideler, Marcel; Hackl, Hubert; Hartler, Jürgen; Sanchez-Cabo, Fatima; Trajanoski, Zlatko

    2005-07-01

    While generation of high-throughput expression data is becoming routine, the fast, easy, and systematic presentation and analysis of these data in a biological context is still an obstacle. To address this need, we have developed PathwayExplorer, which maps expression profiles of genes or proteins simultaneously onto major, currently available regulatory, metabolic and cellular pathways from KEGG, BioCarta and GenMAPP. PathwayExplorer is a platform-independent web server application with an optional standalone Java application using a SOAP (simple object access protocol) interface. Mapped pathways are ranked for the easy selection of the pathway of interest, displaying all available genes of this pathway with their expression profiles in a selectable and intuitive color code. Pathway maps produced can be downloaded as PNG, JPG or as high-resolution vector graphics SVG. The web service is freely available at https://pathwayexplorer.genome.tugraz.at; the standalone client can be downloaded at http://genome.tugraz.at.

  9. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  10. Gene expression profile of patients with Mayer-Rokitansky-Kuster-Hauser syndrome: new insights into the potential role of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Cristina Nodale

    Full Text Available Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS is a rare disease characterized by congenital aplasia of uterus and vagina. Although many studies have investigated several candidate genes, up to now none of them seem to be responsible for the aetiology of the syndrome. In our study, we identified differences in gene expression profile of in vitro cultured vaginal tissue of MRHKS patients using whole-genome microarray analysis. A group of eight out of sixteen MRKHS patients that underwent reconstruction of neovagina with an autologous in vitro cultured vaginal tissue were subjected to microarray analysis and compared with five healthy controls. Results obtained by array were confirmed by qRT-PCR and further extended to other eight MRKHS patients. Gene profiling of MRKHS patients delineated 275 differentially expressed genes, of which 133 downregulated and 142 upregulated. We selected six deregulated genes (MUC1, HOXC8, HOXB2, HOXB5, JAG1 and DLL1 on the basis of their fold change, their differential expression in most patients and their relevant role in embryological development. All patients showed upregulation of MUC1, while HOXB2 and HOXB5 were downregulated, as well as Notch ligands JAG1 and DLL1 in the majority of them. Interestingly, HOXC8 was significantly upregulated in 47% of patients, with a differential expression only in MRKHS type I patients. Taken together, our results highlighted the dysregulation of developmental genes, thus suggesting a potential alteration of networks involved in the formation of the female reproductive tract and providing a useful clue for understanding the pathophysiology of MRKHS.

  11. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.

    Science.gov (United States)

    Martín, Juan F

    2016-08-26

    Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the

  12. Integrative analysis of RUNX1 downstream pathways and target genes

    Science.gov (United States)

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both

  13. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  14. Expression Profile Changes of Genes Involved in Lipid Metabolism Pathway During Liver Regeneration in Mice%小鼠肝再生过程中脂质代谢相关通路中基因的表达谱变化

    Institute of Scientific and Technical Information of China (English)

    袁运生; 张夕原; 严德珺; 杨婷旭; 郜尽; 俞雁

    2009-01-01

    [Objective] The aim of the research was to study the expression profile changes of genes involved in lipid metabolism pathway during liver regeneration in mice. [Method] The CCl4 induced mouse model of liver regeneration was established and the total RNA was isolated from liver tissue of mouse. Then the changes of genes involved in lipid metabolism pathway during different stages of liver regeneration were detected through micro-array chip gene technique and their specific functions were also analyzed. [Result] During the process of liver regeneration, the expression level of 98 genes involved in lipid metabolism pathway changed, which were divided into eight groups according to change trend. In the mass, the expression of genes was inhibited in the early stage and up-regulated in the late phase. And the gene expression associated with fatty acid synthesis pathway was mainly up-regulated while the catabolic pathway did not change significantly. Most of genes involved in bile acid synthesis pathway were suppressed before 4.5 d and up-regulated after 4.5 d or 7 d. [Conclusion] During the process of liver regeneration, the genes associated with lipid metabolism are expressed in different trends, and this data should provide a specific range of genes for further studying the regulation effect of lipid metabolism related pathway on liver regeneration.

  15. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Shabbir-Hussain, Murtaza; Frogue, Keith; Blenner, Mark; Wheeldon, Ian

    2016-12-22

    The yeast Yarrowia lipolytica is a promising microbial host due to its native capacity to produce lipid-based chemicals. Engineering stable production strains requires genomic integration of modified genes, avoiding episomal expression that requires specialized media to maintain selective pressures. Here, we develop a CRISPR-Cas9-based tool for targeted, markerless gene integration into the Y. lipolytica genome. A set of genomic loci was screened to identify sites that were accepting of gene integrations without impacting cell growth. Five sites were found to meet these criteria. Expression levels from a GFP expression cassette were consistent when inserted into AXP, XPR2, A08, and D17, with reduced expression from MFE1. The standardized tool is comprised of five pairs of plasmids (one homologous donor plasmid and a CRISPR-Cas9 expression plasmid), with each pair targeting gene integration into one of the characterized sites. To demonstrate the utility of the tool we rapidly engineered a semisynthetic lycopene biosynthesis pathway by integrating four different genes at different loci. The capability to integrate multiple genes without the need for marker recovery and into sites with known expression levels will enable more rapid and reliable pathway engineering in Y. lipolytica.

  16. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  17. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    Science.gov (United States)

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway.

  18. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes.

    Science.gov (United States)

    Malik, Nasir; Wang, Xiantao; Shah, Sonia; Efthymiou, Anastasia G; Yan, Bin; Heman-Ackah, Sabrina; Zhan, Ming; Rao, Mahendra

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.

  19. EPO gene expression induces the proliferation, migration and invasion of bladder cancer cells through the p21WAF1‑mediated ERK1/2/NF-κB/MMP-9 pathway.

    Science.gov (United States)

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-11-01

    Erythropoietin (EPO) is a cytokine that modulates the production of red blood cells. Previous studies have contradicted the assumed role of EPO in tumor cell proliferation. In the present study, we investigated the effect of EPO in the proliferation, migration and invasion that is involved in the signaling pathways and cell-cycle regulation of bladder cancer 5637 cells. The results showed that an overexpression of the EPO gene has a potent stimulatory effect on DNA synthesis, migration and invasion. EPO gene expression increased the expression of matrix metalloproteinase (MMP)-9 via the binding activity of NF-κB, AP-1 and Sp-1 in 5637 cells. The transfection of 5637 cells with the EPO gene induced the phosphorylation of ERK1/2. Treatment with ERK1/2 inhibitor U0126 significantly inhibited the increased proliferation, migration and invasion of EPO gene-transfected cells. U0126 treatment suppressed the induction of MMP-9 expression through NF-κB binding activity in EPO gene transfectants. In addition, EPO gene expression was correlated with the upregulation of cyclins/CDKs and the upregulation of the CDK inhibitor p21WAF1 expression. Finally, the inhibition of p21WAF1 function by siRNA blocked the proliferation, migration, invasion and phosphorylation of ERK1/2 signaling, as well as MMP-9 expression and activation of NF-κB in EPO gene-transfected cells. These novel findings suggest that the molecular mechanisms of EPO contribute to the progression and development of bladder tumors.

  20. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  1. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Science.gov (United States)

    Parfett, Craig L.; Desaulniers, Daniel

    2017-01-01

    An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF

  2. Genes and (Common) Pathways Underlying Drug Addiction

    OpenAIRE

    Chuan-Yun Li; Xizeng Mao; Liping Wei

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addict...

  3. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Directory of Open Access Journals (Sweden)

    Hui-Yeng Y Yap

    Full Text Available Lignosus rhinocerotis (Cooke Ryvarden (tiger milk mushroom has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  4. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Science.gov (United States)

    Yap, Hui-Yeng Y; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  5. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways.

    Science.gov (United States)

    Lin, Musen; Zhai, Xiaohan; Wang, Guangzhi; Tian, Xiaofeng; Gao, Dongyan; Shi, Lei; Wu, Hang; Fan, Qing; Peng, Jinyong; Liu, Kexin; Yao, Jihong

    2015-02-01

    Acetaminophen (APAP) is used drugs worldwide for treating pain and fever. However, APAP overdose is the principal cause of acute liver failure in Western countries. Salvianolic acid B (SalB), a major water-soluble compound extracted from Radix Salvia miltiorrhiza, has well-known antioxidant and anti-inflammatory actions. We aimed to evaluate the ability of SalB to protect against APAP-induced acute hepatotoxicity by inducing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. SalB pretreatment ameliorated acute liver injury caused by APAP, as indicated by blood aspartate transaminase levels and histological findings. Moreover, SalB pretreatment increased the expression of Nrf2, Heme oxygenase-1 (HO-1) and glutamate-l-cysteine ligase catalytic subunit (GCLC). Furthermore, the HO-1 inhibitor zinc protoporphyrin and the GCLC inhibitor buthionine sulfoximine reversed the protective effect of SalB. Additionally, siRNA-mediated depletion of Nrf2 reduced the induction of HO-1 and GCLC by SalB, and SalB pretreatment activated the phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) signaling pathways. Both inhibitors (PI3K and PKC) blocked the protective effect of SalB against APAP-induced cell death, abolishing the SalB-induced Nrf2 activation and decreasing HO-1 and GCLC expression. These results indicated that SalB induces Nrf2, HO-1 and GCLC expression via activation of the PI3K and PKC pathways, thereby protecting against APAP-induced liver injury.

  6. Adenovirus vector E4 gene regulates connexin 40 and 43 expression in endothelial cells via PKA and PI3K signal pathways.

    Science.gov (United States)

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K; Vincent, Loïc; Hackett, Neil R; Wang, Shiyang; Young, Lauren M; Hempstead, Barbara; Crystal, Ronald G; Rafii, Shahin

    2005-05-13

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4-, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intra-tracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways.

  7. Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Gröner, Frederike; Ziková, Andrea; Kloas, Werner

    2015-01-01

    The expression levels of key enzymes of the xenobiotic metabolism and excretion pathways concerning biotransformation phases I (cytochrome P4501A), II (glutathione S-transferase) and III (multidrug resistance protein) and of the estrogenic biomarker vitellogenin (vtg) were investigated in primary hepatocytes isolated from male Nile tilapia (Oreochromis niloticus) after exposure to diclofenac and metoprolol, two pharmaceuticals prevalent in the aquatic environment worldwide. The lowest test concentration (4×10(-9) M) was chosen to reflect an environmentally relevant exposure situation. Furthermore concentration dependent effects were investigated. Therefore a series of concentrations higher than the environmentally relevant range were used (10- and 100-fold). Diclofenac significantly induced all chosen biomarkers already at the environmentally relevant concentration indicating that biotransformation and elimination occur via the pathways under investigation. Estrogenic potential of this substance was demonstrated by VTG up-regulation as well. Metoprolol was either less effective than diclofenac or metabolized using different pathways. Key enzymes of the xenobiotic metabolism were less (CYP1A, GST) or not (MDRP) induced and a mild increase in vtg mRNA was detected only for 4×10(-8) M. No concentration-dependency for metoprolol was found.

  8. Design and synthesis of pathway genes for polyketide biosynthesis.

    Science.gov (United States)

    Peirú, Salvador; Gramajo, Hugo; Menzella, Hugo G

    2009-01-01

    In this chapter we describe novel methods for the design and assembly of synthetic pathways for the synthesis of polyketides and tailoring sugars. First, a generic design for type I polyketide synthase genes is presented that allows their facile assembly for the expression of chimeric enzymes in an engineered Escherichia coli host. The sequences of the synthetic genes are based on naturally occurring polyketide synthase genes but they are redesigned by custom-made software to optimize codon usage to maximize expression in E. coli and to provide a standard set of restriction sites to allow combinatorial assembly into unnatural enzymes. The methodology has been validated by building a large number of bimodular mini-PKSs that make easily assayed triketide products. Learning from the successful bimodules, a conceptual advance was made by assembling genes encoding functional trimodular enzymes, capable of making tetraketide products. Second, methods for the rapid assembly and exchange of sugar pathway genes into functional operons are described. The approach was validated by the assembly of the 15 genes for the synthesis of mycarose and desosamine in two operons, which yielded erythromycin C when coexpressed with the corresponding PKS genes. These methods are important enabling steps toward the goals of making designer drugs by polyketide synthase and sugar pathway engineering and, in the shorter term, producing by fermentation advanced intermediates for the synthesis of compounds that otherwise require large numbers of chemical steps.

  9. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  10. Evaluation of cellular retinoic acid binding protein 2 gene expression through the retinoic acid pathway by co-incubation of Blastocystis ST-1 with HT29 cells in vitro.

    Science.gov (United States)

    Liao, Chen-Chieh; Song, Eing-Ju; Chang, Tsuey-Yu; Lin, Wei-Chen; Liu, Hsiao-Sheng; Chen, Lih-Ren; Huang, Lynn L H; Shin, Jyh-Wei

    2016-05-01

    Blastocystis is a parasitic protist with a worldwide distribution that is commonly found in patients with colon and gastrointestinal pathological symptoms. Blastocystis infection has also commonly been reported in colorectal cancer and HIV/AIDS patients with gastrointestinal symptoms. To understand the pathway networks of gene regulation and the probable mechanisms influencing functions of HT-29 host cells in response to parasite infection, we examined the expression of 163 human oncogenes and kinases in human colon adenocarcinoma HT-29 cells co-incubated with Blastocystis by in-house cDNA microarray and PCR analysis. At least 10 genes were shown to be modified following Blastocystis co-incubation, including those with immunological, tumorigenesis, and antitumorigenesis functions. The expression of genes encoding cellular retinoic acid binding protein 2 (CRABP2) and proliferating cell nuclear antigen (PCNA) was markedly upregulated and downregulated, respectively. Reverse transcriptase-PCR validated the modified transcript expression of CRABP2 and other associated genes such as retinoic acid (RA)-related nuclear-receptor (RARα). Together, our data indicate that CRABP2, RARα, and PCNA expressions are involved in RA signaling regulatory networks that affect the growth, proliferation, and inflammation of HT-29 cells.

  11. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  12. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen.

    Science.gov (United States)

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Yang, Yu; Ren, Xiao-Min; Zhang, Hui

    2015-10-05

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that is used worldwide and is continuously being detected in biota and the environment, thus presenting potential threats to the ecosystem and human health. Although PFOS is highly immunotoxic, its underlying molecular mechanisms remain largely unknown. The present study examined PFOS-induced immunotoxicity in the mouse spleen and explored its underlying mechanisms by gene expression profiling. Oral exposure of male BALB/c mice for three weeks followed by one-week recovery showed that a 10 mg/kg/day PFOS exposure damaged the splenic architecture, inhibited T-cell proliferation in response to mitogen, and increased the percentages of T helper (CD3(+)CD4(+)) and cytotoxic T (CD3(+)CD8(+)) cells, despite the decrease in the absolute number of these cells. A delayed type of PFOS immunotoxicity was observed, which mainly occurred during the recovery period. Global gene expression profiling of mouse spleens and QRT-PCR analyses suggest that PFOS inhibited the expression of genes involved in cell cycle regulation and NRF2-mediated oxidative stress response, and upregulated those in TCR signaling, calcium signaling, and p38/MAPK signaling pathways. Western blot analysis confirmed that the expressions of CAMK4, THEMIS, and CD3G, which were involved in the upregulated pathways, were induced upon PFOS exposure. Acute PFOS exposure modulated calcium homoeostasis in splenocytes. These results indicate that PFOS exposure can activate TCR signaling and calcium ion influx, which provides a clue for the potential mechanism of PFOS immunotoxicity. The altered signaling pathways by PFOS treatment as revealed in the present study might facilitate in better understanding PFOS immunotoxicity and explain the association between immune disease and PFOS exposure.

  13. Quantitative Expression Analysis of APP Pathway and Tau Phosphorylation-Related Genes in the ICV STZ-Induced Non-Human Primate Model of Sporadic Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Sang-Je Park

    2015-01-01

    Full Text Available The accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer’s disease (AD. Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD research using intracerebroventricular administration of streptozotocin (icv STZ. To date, no characterization of AD-related genes in different brain regions has been performed. Therefore, in the current study, the expression of seven amyloid precursor protein (APP pathway-related and five tau phosphorylation-related genes was investigated by quantitative real-time PCR experiments, using two matched-pair brain samples from control and icv STZ-treated cynomolgus monkeys. The genes showed similar expression patterns within the control and icv STZ-treated groups; however, marked differences in gene expression patterns were observed between the control and icv STZ-treated groups. Remarkably, other than β-secretase (BACE1 and cyclin-dependent kinase 5 (CDK5, all the genes tested showed similar expression patterns in AD models compared to controls, with increased levels in the precuneus and occipital cortex. However, significant changes in gene expression patterns were not detected in the frontal cortex, hippocampus, or posterior cingulate. Based on these results, we conclude that APP may be cleaved via the general metabolic mechanisms of increased α- and γ-secretase levels, and that hyperphosphorylation of tau could be mediated by elevated levels of tau protein kinase, specifically in the precuneus and occipital cortex.

  14. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.