WorldWideScience

Sample records for gene expression chromosomal

  1. X chromosome regulation of autosomal gene expression in bovine blastocysts

    Science.gov (United States)

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male to female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient. PMID:24817096

  2. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  3. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  4. Modeling Three-Dimensional Chromosome Structures Using Gene Expression Data.

    Science.gov (United States)

    Xiao, Guanghua; Wang, Xinlei; Khodursky, Arkady B

    2011-03-01

    Recent genomic studies have shown that significant chromosomal spatial correlation exists in gene expression of many organisms. Interestingly, coexpression has been observed among genes separated by a fixed interval in specific regions of a chromosome chain, which is likely caused by three-dimensional (3D) chromosome folding structures. Modeling such spatial correlation explicitly may lead to essential understandings of 3D chromosome structures and their roles in transcriptional regulation. In this paper, we explore chromosomal spatial correlation induced by 3D chromosome structures, and propose a hierarchical Bayesian method based on helical structures to formally model and incorporate the correlation into the analysis of gene expression microarray data. It is the first study to quantify and infer 3D chromosome structures in vivo using expression microarrays. Simulation studies show computing feasibility of the proposed method and that, under the assumption of helical chromosome structures, it can lead to precise estimation of structural parameters and gene expression levels. Real data applications demonstrate an intriguing biological phenomenon that functionally associated genes, which are far apart along the chromosome chain, are brought into physical proximity by chromosomal folding in 3D space to facilitate their coexpression. It leads to important biological insight into relationship between chromosome structure and function.

  5. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Science.gov (United States)

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  6. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    Science.gov (United States)

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth

    2010-01-01

    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  7. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

    Directory of Open Access Journals (Sweden)

    Stephanie K Mewborn

    Full Text Available BACKGROUND: Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. METHODS/FINDINGS: To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. CONCLUSIONS: These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.

  8. Number of X-chromosome genes influences social behavior and vasopressin gene expression in mice.

    Science.gov (United States)

    Cox, Kimberly H; Quinnies, Kayla M; Eschendroeder, Alex; Didrick, Paula M; Eugster, Erica A; Rissman, Emilie F

    2015-01-01

    Sex differences in behavior are widespread and often caused by hormonal differences between the sexes. In addition to hormones, the composition and numbers of the sex chromosomes also affect a variety of sex differences. In humans, X-chromosome genes are implicated in neurobehavioral disorders (i.e. fragile-X, autism). To investigate the role of X-chromosome genes in social behavior, we used a mouse model that has atypical sex chromosome configurations resembling Turner (45, XO) and Klinefelter syndromes (47, XXY). We examined a number of behaviors in juvenile mice. Mice with only one copy of most X-chromosome genes, regardless of gonadal sex, were less social in dyadic interaction and social preference tasks. In the elevated plus maze, mice with one X-chromosome spent less time in the distal ends of the open arms as compared to mice with two copies of X-chromosome genes. Using qRTPCR, we noted that amygdala from female mice with one X-chromosome had higher expression levels of vasopressin (Avp) as compared to mice in the other groups. Finally, in plasma from girls with Turner syndrome we detected reduced vasopressin (AVP) concentrations as compared to control patients. These novel findings link sex chromosome genes with social behavior via concentrations of AVP in brain, adding to our understanding of sex differences in neurobehavioral disorders.

  9. Expression and chromosomal localization of the Requiem gene.

    Science.gov (United States)

    Gabig, T G; Crean, C D; Klenk, A; Long, H; Copeland, N G; Gilbert, D J; Jenkins, N A; Quincey, D; Parente, F; Lespinasse, F; Carle, G F; Gaudray, P; Zhang, C X; Calender, A; Hoeppener, J; Kas, K; Thakker, R V; Farnebo, F; Teh, B T; Larsson, C; Piehl, F; Lagercrantz, J; Khodaei, S; Carson, E; Weber, G

    1998-08-01

    Apoptosis in murine myeloid cell lines requires the expression of the Requiem gene, which encodes a putative zinc finger protein. We detected the protein in both cytoplasmic and nuclear subcellular fractions of murine myeloid cells and human K562 leukemia cells, which suggests that the protein might have a function distinct from a transcription factor. This distribution did not alter upon apoptosis induction by IL-3 deprivation. As an approach to investigate its role in development, we determined the spatio-temporal expression pattern in the mouse. Expression was detected in various tissues in earlier gestational age; however, confined to testes, spleen, thymus, and part of the hippocampus in the adult mouse. The expression profile is consistent with a functional role during rapid growth and cell turnover, and in agreement with a regulatory function for hematopoietic cells. The human cDNA clone sequenced showed high homology to its murine counterpart and extended the open reading frame by 20 codons upstream. The gene is located in the proximal region of mouse Chromosome (Chr) 19. In the homologous human region at 11q13, it is located at about 150 kb centromeric from MLK3.

  10. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  11. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.

    Science.gov (United States)

    Vicoso, Beatriz; Kaiser, Vera B; Bachtrog, Doris

    2013-04-16

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes.

  12. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  13. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression.

    Science.gov (United States)

    Mueller, Jacob L; Mahadevaiah, Shantha K; Park, Peter J; Warburton, Peter E; Page, David C; Turner, James M A

    2008-06-01

    According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.

  14. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole;

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1......Ovarian cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth, whereas others are causal for metastasis and recurrence. By using publicly available data sets, we have investigated......-4 consecutive cytogenetic bands identified regions with increased expression for chromosome 5q12-14, and a very large region of chromosome 7 with the strongest signal at 7p15-13 among tumors from short-living patients. Reduced gene expression was identified at 4q26-32, 6p12-q15, 9p21-q32, and 11p14-11. We...

  15. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline.

    Science.gov (United States)

    Meiklejohn, Colin D; Presgraves, Daven C

    2012-01-01

    Male-biased genes-those expressed at higher levels in males than in females-are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.

  16. Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes.

    Science.gov (United States)

    Birchler, James A

    2014-10-01

    Studies of gene expression in aneuploids have often made the assumption that measurements of RNA abundance from the varied chromosome will establish whether there is a dosage effect or compensation. Typical procedures of RNA isolation and use of equal amounts of RNA for quantitative estimates will not measure the total transcriptome size nor the absolute expression levels per cell. Use of internal endogenous standards or averages from unvaried chromosomes for normalizations makes the assumption that there are no global modulations across the genome. However, studies that use controls to test these assumptions reveal that there are in fact often modulations on all chromosomes. The same caveats apply to gene expression studies of sex chromosomes, which also involve changes in dosage of a small portion of the genome. Here, we describe some of the pitfalls of studies of aneuploidy and sex chromosome gene expression and review methods that have been used to avoid them.

  17. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R;

    2015-01-01

    abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed...

  18. Position effect modifying gene expression in a patient with ring chromosome 14.

    Science.gov (United States)

    Guilherme, Roberta Santos; Moysés-Oliveira, Mariana; Dantas, Anelisa Gollo; Meloni, Vera Ayres; Colovati, Mileny Esbravatti; Kulikowski, Leslie Domenici; Melaragno, Maria Isabel

    2016-05-01

    The clinical phenotype of patients with ring chromosomes usually reflects the loss of genomic material during ring formation. However, phenotypic alterations can also be found in the presence of complete ring chromosomes, in which the breakage and rejoining in terminal regions of both chromosome arms result in no gene loss. Here, we present a patient with a ring chromosome 14 that lost nothing but the telomeres. Since he and other patients with a similar chromosome abnormality present certain abnormal characteristics, we investigated the gene expression of eight chromosome 14 genes to find out whether the configuration of the ring had changed it, possibly producing some of these clinical features. The expression of these eight genes was studied by quantitative real-time polymerase chain reaction (qPCR) in the patient and in seven controls matched for gender and age. Two of them were found to be downregulated in the patient compared to the controls, indicating that his phenotype might be related to alterations in the expression of genes located in the abnormal chromosome, even when the copy number is normal. Thus, the phenotypic alterations found in the presence of complete ring chromosomes may be related to changes in the chromatin architecture, bringing about a change of expression by position effect. These results may explain some of the characteristics presented by our patient.

  19. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  20. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    Science.gov (United States)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  1. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Science.gov (United States)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  2. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  3. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Bortoluzzi Stefania

    2004-06-01

    Full Text Available Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.

  4. Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes

    Science.gov (United States)

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-01-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno’s hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  5. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  6. Physical mapping, expression analysis and polymorphism survey of resistance gene analogues on chromosome 11 of rice

    Indian Academy of Sciences (India)

    Irfan A Ghazi; Prem S Srivastava; Vivek Dalal; Kishor Gaikwad; Ashok K Singh; Tilak R Sharma; Nagendra K Singh; Trilochan Mohapatra

    2009-06-01

    Rice is the first cereal genome with a finished sequence and a model crop that has important syntenic relationships with other cereal species. The objectives of our study were to identify resistance gene analogue (RGA) sequences from chromosome 11 of rice, understand their expression in other cereals and dicots by in silico analysis, determine their presence on other rice chromosomes, and evaluate the extent of polymorphism and actual expression in a set of rice genotypes. A total of 195 RGAs were predicted and physically localised. Of these, 91.79% expressed in rice, and 51.28% expressed in wheat, which was the highest among other cereals. Among monocots, sugarcane showed the highest (78.92%) expression, while among dicots, RGAs were maximally expressed in Arabidopsis (11.79%). Interestingly, two of the chromosome 11-specific RGAs were found to be expressing in all the organisms studied. Eighty RGAs of chromosome 11 had significant homology with chromosome 12, which was the maximum among all the rice chromosomes. Thirty-one per cent of the RGAs used in polymerase chain reaction (PCR) amplification showed polymorphism in a set of rice genotypes. Actual gene expression analysis revealed post-inoculation induction of one RGA in the rice line IRBB-4 carrying the bacterial blight resistance gene Xa-4. Our results have implications for the development of sequence-based markers and functional validation of specific RGAs in rice.

  7. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes.

    Science.gov (United States)

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori

    2015-09-15

    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X-linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation.

  8. Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression.

    Directory of Open Access Journals (Sweden)

    Yichi Xu

    2016-05-01

    Full Text Available Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes in vivo. As genome-wide transcription is organized under the high-order chromosome structure, it is largely uncharted how circadian gene expression is influenced by chromosome architecture. We focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor in circadian rhythm. Using circular chromosome conformation capture sequencing, we systematically examined the interacting loci of a Bmal1-bound super-enhancer upstream of a clock gene Nr1d1 in mouse liver. These interactions are largely stable in the circadian cycle and cohesin binding sites are enriched in the interactome. Global analysis showed that cohesin-CTCF co-binding sites tend to insulate the phases of circadian oscillating genes while cohesin-non-CTCF sites are associated with high circadian rhythmicity of transcription. A model integrating the effects of cohesin and CTCF markedly improved the mechanistic understanding of circadian gene expression. Further experiments in cohesin knockout cells demonstrated that cohesin is required at least in part for driving the circadian gene expression by facilitating the enhancer-promoter looping. This study provided a novel insight into the relationship between circadian transcriptome and the high-order chromosome structure.

  9. Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis

    Directory of Open Access Journals (Sweden)

    Eilers Paul HC

    2008-10-01

    Full Text Available Abstract Background Accurate staging of rectal tumors is essential for making the correct treatment choice. In a previous study, we found that loss of 17p, 18q and gain of 8q, 13q and 20q could distinguish adenoma from carcinoma tissue and that gain of 1q was related to lymph node metastasis. In order to find markers for tumor staging, we searched for candidate genes on these specific chromosomes. Methods We performed gene expression microarray analysis on 79 rectal tumors and integrated these data with genomic data from the same sample series. We performed supervised analysis to find candidate genes on affected chromosomes and validated the results with qRT-PCR and immunohistochemistry. Results Integration of gene expression and chromosomal instability data revealed similarity between these two data types. Supervised analysis identified up-regulation of EFNA1 in cases with 1q gain, and EFNA1 expression was correlated with the expression of a target gene (VEGF. The BOP1 gene, involved in ribosome biogenesis and related to chromosomal instability, was over-expressed in cases with 8q gain. SMAD2 was the most down-regulated gene on 18q, and on 20q, STMN3 and TGIF2 were highly up-regulated. Immunohistochemistry for SMAD4 correlated with SMAD2 gene expression and 18q loss. Conclusion On basis of integrative analysis this study identified one well known CRC gene (SMAD2 and several other genes (EFNA1, BOP1, TGIF2 and STMN3 that possibly could be used for rectal cancer characterization.

  10. Copy number variations of 11 macronuclear chromosomes and their gene expression in Oxytricha trifallax.

    Science.gov (United States)

    Xu, Ke; Doak, Thomas G; Lipps, Hans J; Wang, Jingmei; Swart, Estienne C; Chang, Wei-Jen

    2012-08-15

    Ciliated protozoa are peculiar for their nuclear dimorphism, wherein two types of nuclei divide nuclear functions: a germline micronucleus (MIC) is transcriptionally inert during vegetative growth, but serves as the genetic blueprint for the somatic macronucleus (MAC), which is responsible for all transcripts supporting cell growth and reproduction. While all the advantages/disadvantages associated with nuclear dimorphism are not clear, an essential advantage seems to be the ability to produce a highly polyploid MAC, which then allows for the maintenance of extremely large single cells - many ciliate cells are larger than small metazoa. In some ciliate classes, chromosomes in the MAC are extensively fragmented to create extremely short chromosomes that often carry single genes, and these chromosomes may be present in different copy numbers, resulting in different ploidies. While using gene copy number to regulate gene expression is limited in most eukaryotic systems, the extensive fragmentation in some ciliate classes provides this opportunity to every MAC gene. However, it is still unclear if this mechanism is in fact used extensively in these ciliates. To address this, we have quantified copy numbers of 11 MAC chromosomes and their gene expression in Oxytricha trifallax (CI: Spirotrichea). We compared copy numbers between two subpopulations of O. trifallax, and copy numbers of 7 orthologous genes between O. trifallax and the closely related Stylonychia lemnae. We show that copy numbers of MAC chromosomes are variable, dynamic, and positively correlated to gene expression. These features might be conserved in all spirotrichs, and might exist in other classes of ciliates with heavily fragmented MAC chromosomes.

  11. Gene Expression Signature TOPFOX Reflecting Chromosomal Instability Refines Prediction of Prognosis in Grade 2 Breast Cancer

    DEFF Research Database (Denmark)

    Szasz, A.; Li, Qiyuan; Sztupinszki, Z.

    2011-01-01

    were diagnosed between 1999–2002 at the Budai MA´ V Hospital. 187 formalinfixed, paraffin-embedded breast cancer samples were included in the qPCR-based measurement of expression of AURKA, FOXM1, TOP2A and TPX2 genes. The expression of the genes were correlated to recurrencefree survival (RFS......Purpose: To assess the ability of genes selected from those reflecting chromosomal instability to identify good and poor prognostic subsets of Grade 2 breast carcinomas. Methods: We selected genes for splitting grade 2 tumours into low and high grade type groups by using public databases. Patients...

  12. Random monoallelic expression of genes on autosomes: Parallels with X-chromosome inactivation.

    Science.gov (United States)

    Gendrel, Anne-Valerie; Marion-Poll, Lucile; Katoh, Kimiko; Heard, Edith

    2016-08-01

    Genes are generally expressed from their two alleles, except in some particular cases such as random inactivation of one of the two X chromosomes in female mammals or imprinted genes which are expressed only from the maternal or the paternal allele. A lesser-known phenomenon is random monoallelic expression (RME) of autosomal genes, where genes can be stably expressed in a monoallelic manner, from either one of the parental alleles. Studies on autosomal RME face several challenges. First, RME that is based on epigenetic mechanisms has to be distinguished from biased expression of one allele caused by a DNA sequence polymorphism in a regulatory element. Second, RME should not be confused with transient monoallelic expression often observed in single cell analyses, and that often corresponds to dynamic bursting of expression. Thanks to analyses on clonal cell populations, the existence of RME in cultured cells is now well established. Future studies of RME in vivo will have to overcome tissue heterogeneity and certain technical limitations. Here, we discuss current knowledge on autosomal RME, as well as possible mechanisms controlling these expression patterns and potential implications for development and disease, drawing parallels with what is known for X-chromosome inactivation, a paradigm of random monoallelic expression.

  13. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.

  14. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  15. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    Directory of Open Access Journals (Sweden)

    Emily L Landeen

    2016-07-01

    Full Text Available The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  16. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    Science.gov (United States)

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  17. Structure, expression pattern and chromosomal localization of the rice Osgrp-2 gene

    Institute of Scientific and Technical Information of China (English)

    LIU; Zongzhi; (刘宗旨); WANG; Jianlong; (王建龙); WANG; Qun; (王群); HUANG; Xun; (黄勋); XU; Weihui; (徐卫辉); ZHU; Lihuang; (朱立煌); HE; Ping; (何平); FANG; Rongxiang; (方荣祥)

    2003-01-01

    Glycine-rich proteins (GRPs) belong to a kind of important structural proteins of plant cell walls. The expression of GRP genes is regulated spatially and developmentally as well as by various environmental stresses, thus providing a good model for the study of plant gene expression. We obtained the genomic sequence of a new GRP gene (Osgrp-2) from a rice genomic library. The transcription start site of Osgrp-2 was determined by 5'-rapid amplification of cDNA ends (RACE) and a 2.4-kb promoter sequence was thus delimited. The spatial and developmental expression pattern as well as the wound-inducible character of Osgrp-2 in rice plants was analyzed in detail. Furthermore, the gene was mapped onto rice chromosome 10 by analysis of restriction fragment length polymorphism (RFLP).

  18. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Salido, E.C. (Faculty of Medicine, La Laguna (Spain)); Yen, P.H.; Koprivnikar, K.; Shapiro, L.J. (University of California School of Medicine, Torrence (United States)); Yu, Lohchung (Lawrence Livermore National Laboratory, CA (United States))

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organization of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.

  19. Expression of immune genes on chromosome 6p21.3-22.1 in schizophrenia.

    Science.gov (United States)

    Sinkus, Melissa L; Adams, Catherine E; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-08-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking.

  20. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  1. A group of type I keratin genes on human chromosome 17: Characterization and expression

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M.; Chaudhury, A.R.; Shows, T.B.; LeBeau, M.M.; Fuchs, E.

    1988-02-01

    The human type I keratins K16 and K14 are coexpressed in a number of epithelial tissues, including esophagus, tongue, and hair follicles. The authors determined that two genes encoding K16 and three genes encoding K14 were clustered in two distinct segments of chromosome 17. The genes within each cluster were tightly linked, and large parts of the genome containing these genes have been recently duplicated. The sequences of the two K16 genes showed striking homology not only within the coding sequences, but also within the intron positions and sequences and extending at least 400 base pairs 5' upstream and 850 base pairs 3' downstream from these genes. Despite the strong homologies between these two genes, only one of the genes encoded a protein which assembled into keratin filaments when introduced into simple epithelial cells. While there were no obvious abnormalities in the sequence of the other gene, its promoter seemed to be significantly weaker, and even a hybrid gene with the other gene's promoter gave rise to a much reduced mRNA level after gene transfection. To demonstrate that the functional K16 gene that they identified was in fact responsible for the K16 expressed in human tissues, we made a polyclonal antiserum which recognized our functional K16 gene product in both denatured and filamentous form and which was specific for bona fide human K16.

  2. Chromosome Mapping, Expression and Polymorphism Analysis of CRABP1 Gene in Pigs

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuan-ping; TANG Zhong-lin; ZHOU Rong; QU Chang-qing; ZHENG Jian-wei; LI Kui

    2014-01-01

    Cellular retinoic acid-binding protein 1 (CRABP1) is a well-conserved member of cytosolic lipid-binding protein family. It is an important modulator of retinoic acid signaling. Long serial analysis of gene expression (LongSAGE) analysis suggested that CRABP1 gene was differentially expressed during prenatal skeletal muscle development in porcine. Here, we obtained the full-length coding region sequence and genomic sequence of the porcine CRABP1 gene and analyzed its genomic structures. Subsequently, we examined CRABP1 chromosome assignment using INRA-University of Minnesota 7 000 porcine radiation hybrid panel (IMpRH) and explored its tissue distribution in adult Tongcheng pigs and dynamical expression proifles in prenatal skeletal muscle (33, 65 and 90 days post coitus, dpc) from Landrace (lean-type) (described as L33, L65 and L90) and Tongcheng pigs (obese-type) (described as T33, T65 and T90). The CRABP1 gene was mapped to chromosome 7q11-q23 and closely linked to the microsatellite marker SWR1928. Quantitative real-time PCR showed that CRABP1 mRNA was highly expressed in lung and stomach, moderately expressed in placenta and uterus, and weakly expressed in other tissues. Moreover, CRABP1 gene was down-regulated during prenatal skeletal muscle development in both Landrace and Tongcheng pigs and it was expressed much higher in T33 than L33. Two single-nucleotide polymorphisms (SNPs) were detected by sequencing and mass spectrometry methods, allele frequency analysis indicated that g. 281 (G>A) and g. 2992 (G>A) were deviated from Hardy-Weinberg equilibrium in the Landrace and DLY (Duroc×(Landrace×Yorkshire)) pig breeds.

  3. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome.

    Science.gov (United States)

    Reinius, Björn; Johansson, Martin M; Radomska, Katarzyna J; Morrow, Edward H; Pandey, Gaurav K; Kanduri, Chandrasekhar; Sandberg, Rickard; Williams, Robert W; Jazin, Elena

    2012-11-10

    Empirical evaluations of sexually dimorphic expression of genes on the mammalian X-chromosome are needed to understand the evolutionary forces and the gene-regulatory mechanisms controlling this chromosome. We performed a large-scale sex-bias expression analysis of genes on the X-chromosome in six different somatic tissues from mouse. Our results show that the mouse X-chromosome is enriched with female-biased genes and depleted of male-biased genes. This suggests that feminisation as well as de-masculinisation of the X-chromosome has occurred in terms of gene expression in non-reproductive tissues. Several mechanisms may be responsible for the control of female-biased expression on chromosome X, and escape from X-inactivation is a main candidate. We confirmed escape in case of Tmem29 using RNA-FISH analysis. In addition, we identified novel female-biased non-coding transcripts located in the same female-biased cluster as the well-known coding X-inactivation escapee Kdm5c, likely transcribed from the transition-region between active and silenced domains. We also found that previously known escapees only partially explained the overrepresentation of female-biased X-genes, particularly for tissue-specific female-biased genes. Therefore, the gene set we have identified contains tissue-specific escapees and/or genes controlled by other sexually skewed regulatory mechanisms. Analysis of gene age showed that evolutionarily old X-genes (>100 myr, preceding the radiation of placental mammals) are more frequently female-biased than younger genes. Altogether, our results have implications for understanding both gene regulation and gene evolution of mammalian X-chromosomes, and suggest that the final result in terms of the X-gene composition (masculinisation versus feminisation) is a compromise between different evolutionary forces acting on reproductive and somatic tissues.

  4. Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila.

    Science.gov (United States)

    Sun, Lin; Johnson, Adam F; Li, Jilong; Lambdin, Aaron S; Cheng, Jianlin; Birchler, James A

    2013-10-01

    Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.

  5. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.

    Science.gov (United States)

    Greenlee, Anne R; Shiao, Meng-Shin; Snyder, Elizabeth; Buaas, F William; Gu, Tongjun; Stearns, Timothy M; Sharma, Manju; Murchison, Elizabeth P; Puente, Gabriella C; Braun, Robert E

    2012-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNase III endonuclease encoded by Dicer1, is required for processing short 21-22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO) testes by postnatal day 18 (P18). Compared to wild-type (WT) at 8 weeks, GCKO males had no change in body weight; yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed that in comparison to WT testes, 75% of miRNA genes and 37% of protein coding genes were differentially expressed in GCKO testes. Among these, 96% of miRNA genes were significantly down-regulated, while 4% miRNA genes were overexpressed. Interestingly, we observed preferential overexpression of genes encoded on the sex chromosomes in GCKO testes, including more than 80% of previously identified targets of meiotic sex chromosome inactivation (MSCI). Compared to WT, GCKO mice showed higher percentages of germ cells at early meiotic stages (leptotene and zygotene) but lower percentages at later stages (pachytene, diplotene and metaphase I) providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Therefore, deleting Dicer1 in early postnatal germ cells resulted in deregulation of transcripts encoded by genes on the sex chromosomes, impaired meiotic progression and led to spermatogenic failure and infertility.

  6. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.

    Directory of Open Access Journals (Sweden)

    Anne R Greenlee

    Full Text Available MicroRNAs (miRNAs are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNase III endonuclease encoded by Dicer1, is required for processing short 21-22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO testes by postnatal day 18 (P18. Compared to wild-type (WT at 8 weeks, GCKO males had no change in body weight; yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed that in comparison to WT testes, 75% of miRNA genes and 37% of protein coding genes were differentially expressed in GCKO testes. Among these, 96% of miRNA genes were significantly down-regulated, while 4% miRNA genes were overexpressed. Interestingly, we observed preferential overexpression of genes encoded on the sex chromosomes in GCKO testes, including more than 80% of previously identified targets of meiotic sex chromosome inactivation (MSCI. Compared to WT, GCKO mice showed higher percentages of germ cells at early meiotic stages (leptotene and zygotene but lower percentages at later stages (pachytene, diplotene and metaphase I providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Therefore, deleting Dicer1 in early postnatal germ cells resulted in deregulation of transcripts encoded by genes on the sex chromosomes, impaired meiotic progression and led to spermatogenic failure and infertility.

  7. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  8. Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Vibranovski Maria D

    2012-06-01

    Full Text Available Abstract Background Meiotic sex chromosome inactivation (MSCI during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in Drosophila. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, BMC Biol 2011, 9:29 that failed to support the MSCI in Drosophila. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in D. melanogaster. Second, they also analyzed expression data from several D. melanogaster tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes. Results By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several D. melanogaster tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes. Conclusions

  9. POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer.

    Science.gov (United States)

    Bera, Tapan K; Zimonjic, Drazen B; Popescu, Nicholas C; Sathyanarayana, Bangalore K; Kumar, Vasantha; Lee, Byungkook; Pastan, Ira

    2002-12-24

    We have identified a gene located on chromosomes 21 that is expressed in normal and neoplastic prostate, and in normal testis, ovary, and placenta. We name this gene POTE (expressed in prostate, ovary, testis, and placenta). The POTE gene has 11 exons and 10 introns and spans approximately equal 32 kb of chromosome 21q11.2 region. The 1.83-kb mRNA of POTE encodes a protein of 66 kDa. Ten paralogs of the gene have been found dispersed among eight different chromosomes (2, 8, 13, 14, 15, 18, 21, and 22) with preservation of ORFs and splice junctions. The synonymous:nonsynonymous ratio indicates that the genes were duplicated rather recently but are diverging at a rate faster than the average for other paralogous genes. In prostate and in testis, at least five different paralogs are expressed. In situ hybridization shows that POTE is expressed in basal and terminal cells of normal prostate epithelium. It is also expressed in some prostate cancers and in the LnCAP prostate cancer cell line. The POTE protein contains seven ankyrin repeats between amino acids 140 and 380. Expression of POTE in prostate cancer and its undetectable expression in normal essential tissues make POTE a candidate for the immunotherapy of prostate cancer. The existence of a large number of closely related but rapidly diverging members, their location on multiple chromosomes and their limited expression pattern suggest an important role for the POTE gene family in reproductive processes.

  10. Isolation, expression, and chromosomal localization of the human mitochondrial capsule selenoprotein gene (MCSP)

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Hanne; Schwemmer, M.; Tessmann, D.; Murphy, D. [Institut fuer Humangenetik der Universitaet, Goettingen (Germany)] [and others

    1996-03-01

    The mitochondrial capsule selenoprotein (MCS) (HGMW-approved symbol MCSP) is one of three proteins that are important for the maintenance and stabilization of the crescent structure of the sperm mitochondria. We describe here the isolation of a cDNA, the exon-intron organization, the expression, and the chromosomal localization of the human MCS gene. Nucleotide sequence analysis of the human and mouse MCS cDNAs reveals that the 5{prime}- and 3{prime}-untranslated sequences are more conserved (71%) than the coding sequences (59%). The open reading frame encodes a 116-amino-acid protein and lacks the UGA codons, which have been reported to encode the selenocysteines in the N-terminal of the deduced mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein (39%). The most striking homology lies in the dicysteine motifs. Northern and Southern zooblot analyses reveal that the MCS gene in human, baboon, and bovine is more conserved than its counterparts in mouse and rat. The single intron in the human MCS gene is approximately 6 kb and interrupts the 5{prime}-untranslated region at a position equivalent to that in the mouse and rat genes. Northern blot and in situ hybridization experiments demonstrate that the expression of the human MCS gene is restricted to haploid spermatids. The human gene was assigned to q21 of chromosome 1. 30 refs., 9 figs.

  11. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Science.gov (United States)

    Vibranovski, Maria D; Lopes, Hedibert F; Karr, Timothy L; Long, Manyuan

    2009-11-01

    In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  12. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Directory of Open Access Journals (Sweden)

    Maria D Vibranovski

    2009-11-01

    Full Text Available In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  13. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Directory of Open Access Journals (Sweden)

    Maria D Vibranovski

    2009-11-01

    Full Text Available In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  14. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    Science.gov (United States)

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  15. Changes in chromosome territory position within the nucleus reflect alternations in gene expression related to embryonic lineage specification.

    Science.gov (United States)

    Orsztynowicz, Maciej; Lechniak, Dorota; Pawlak, Piotr; Kociucka, Beata; Kubickova, Svatava; Cernohorska, Halina; Madeja, Zofia Eliza

    2017-01-01

    Loss of totipotentcy in an early embryo is directed by molecular processes responsible for cell fate decisions. Three dimensional genome organisation is an important factor linking chromatin architecture with stage specific gene expression patterns. Little is known about the role of chromosome organisation in gene expression regulation of lineage specific factors in mammalian embryos. Using bovine embryos as a model we have described these interactions at key developmental stages. Three bovine chromosomes (BTA) that differ in size, number of carried genes, and contain loci for key lineage regulators OCT4, NANOG and CDX2, were investigated. The results suggest that large chromosomes regardless of their gene density (BTA12 gene-poor, BTA5 gene-rich) do not significantly change their radial position within the nucleus. Gene loci however, may change its position within the chromosome territory (CT) and relocate its periphery, when stage specific process of gene activation is required. Trophectoderm specific CDX2 and epiblast precursor NANOG loci tend to locate on the surface or outside of the CTs, at stages related with their high expression. We postulate that the observed changes in CT shape reflect global alternations in gene expression related to differentiation.

  16. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

    Science.gov (United States)

    Gong, Shiaoching; Zheng, Chen; Doughty, Martin L; Losos, Kasia; Didkovsky, Nicholas; Schambra, Uta B; Nowak, Norma J; Joyner, Alexandra; Leblanc, Gabrielle; Hatten, Mary E; Heintz, Nathaniel

    2003-10-30

    The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.

  17. A GENE FROM HUMAN-CHROMOSOME REGION-3P21 WITH REDUCED EXPRESSION IN SMALL-CELL LUNG-CANCER

    NARCIS (Netherlands)

    CARRITT, B; KOK, K; van den Berg, Anke; OSINGA, J; PILZ, A; HOFSTRA, RMW; DAVIS, MB; VANDERVEEN, AY; RABBITTS, PH; GULATI, K; BUYS, CHCM

    1992-01-01

    A combination of cytogenetic and molecular studies has implicated the p21 region of human chromosome 3 as the probable site of a gene the loss of which contributes to the development of small cell lung cancer. We report here the isolation of a gene from this region which is expressed in normal lung

  18. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21

    Directory of Open Access Journals (Sweden)

    Zigman Warren B

    2006-03-01

    Full Text Available Abstract Background Down syndrome (DS is caused by trisomy 21 (+21, but the aberrations in gene expression resulting from this chromosomal aneuploidy are not yet completely understood. Methods We used oligonucleotide microarrays to survey mRNA expression in early- and late-passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry. Results We found chromosome 21 genes consistently over-represented among the genes over-expressed in the +21 samples. However, these sets of over-expressed genes differed across the three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-fold in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast conditioned medium, suggesting an autocrine loop for its over-expression. By immunohistochemistry the p78MX1 protein was induced in lesional tissue of alopecia areata, an autoimmune disorder associated with DS. We found strong over-expression of the purine biosynthesis gene GART (mean 3-fold in fetal hearts with +21 and verified this result by northern blotting and real-time RT-PCR. Conclusion Different subsets of chromosome 21 genes are over-expressed in different cell types with +21, and for some genes this over-expression is non-linear (>1.5X. Hyperactive interferon signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal purine metabolism should be investigated for a potential role in cardiac defects.

  19. Cohesins: chromatin architects in chromosome segregation, control of gene expression and much more.

    Science.gov (United States)

    Barbero, José L

    2009-07-01

    Cells have evolved to develop molecules and control mechanisms that guarantee correct chromosome segregation and ensure the proper distribution of genetic material to daughter cells. In this sense, the establishment, maintenance, and removal of sister chromatid cohesion is one of the most fascinating and dangerous processes in the life of a cell because errors in the control of these processes frequently lead to cell death or aneuploidy. The main protagonist in this mechanism is a four-protein complex denominated the cohesin complex. In the last 10 years, we have improved our understanding of the key players in the regulation of sister chromatid cohesion during cell division in mitosis and meiosis. The last 2 years have seen an increase in evidence showing that cohesins have important functions in non-dividing cells, revealing new, unexplored roles for these proteins in the control of gene expression, development, and other essential cell functions in mammals.

  20. Cloning, tissue expression pattern, and chromosome localization of human protein kinase Bγ gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Protein kinase B (PKB) is a member of the second messenger-regulated subfamily of protein kinases, and plays a key role in cell-cycle regulation, glucose uptake and promotion of cell differentiation. Evidence shows that PKB undergoes activation in some human tumors and is involved in Ras pathway, which implies that PKB can trigger a pathway to induce oncogenic transformation. A nucleotide sequence of mouse Pkb? was used as a probe to screen homolog in a human liver cDNA library. A fragment of 1998 bp containing a 1440 bp ORF encoding 479 amino acid residues was obtained. Then the 3'-terminal of this fragment was extended to 2788 bp by 'electronic walking' screening, and the extended fragment was confirmed by PCR amplification. The protein deduced by the gene had a high identity of 83% and 78% to the human PKBγ and γ, respectively, and was designated as human PKB?. Northern hybridization detected two equally expressed transcripts of 8.5 and 6.5 kb in length in all 16 human tissues tested, with the highest expression level in brain, and lower levels with variation in the other tissues. By RH mapping, the PKBγ was placed on chromosome 1q43, between markers D1S304 and D1S2693. It is a valuable clue for cloning the candidate genes related to prostate cancer; Arrhythmogenic Right Ventricular Dysplasia (ARVD); Chediak-Higashi, NK cell Deficiency (CHS); and Hypoparathyrodism with Short Stature, Mental Retardation and Seizures which have already been mapped in this chromosomal region.

  1. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  2. Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the Drosophila X Chromosome

    Science.gov (United States)

    Coolon, Joseph D.; Stevenson, Kraig R.; McManus, C. Joel; Yang, Bing; Graveley, Brenton R.; Wittkopp, Patricia J.

    2015-01-01

    In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and nonneutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a “faster-X” pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis-regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis- and trans-regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans-regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans-acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans-regulatory variation to faster-X expression divergence was larger within than between species, suggesting that it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and noncoding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes. PMID:26041937

  3. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functional...

  4. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    NARCIS (Netherlands)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Clevers, JC; Huminiecki, Lukasz

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally

  5. A locus on chromosome 20 encompassing genes that are highly expressed in the epididymis

    Institute of Scientific and Technical Information of China (English)

    (A)ke Lundwall

    2007-01-01

    During liquefaction of the ejaculate, the semen coagulum proteins semenogelin Ⅰ (SEMG1) and semenogelin Ⅱ (SEMG2) are degraded to low molecular mass fragments by kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen. Semenogelin molecules initiate their own destruction by chelating Zn2+ that normally would completely inhibit the proteolytic activity of KLK3. In a similar way, semenogelins might regulate the activity of kallikrein-related peptidases in the epididymis, something that might be of importance for the maturation of spermatozoa or generation of anti-bacterial peptides. Studies on the evolution of semen coagulum proteins have revealed that most of them carry an exon that displays a rapid and unusual evolution. As a consequence, homologous proteins in rodents and primates show almost no conservation in primary structure. Further studies on their evolution suggest that the progenitor of the semen coagulum proteins probably was a protease inhibitor that might have displayed antimicrobial activity. The semenogelin locus on chromosome 20 contains at least 17 homologous genes encoding probable protease inhibitors with homology to semen coagulum proteins. All of these are highly expressed in the epididymis where they, similar to the semenogelins, could affect the maturation of spermatozoa or display antibacterial properties.

  6. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    Science.gov (United States)

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  7. Gene expression in chromosomal Ridge domains : influence on transcription, mRNA stability, codon usage, and evolution

    NARCIS (Netherlands)

    Gierman, H.J.

    2010-01-01

    Chromosomes are the long DNA molecules that carry the genetic code of our genes. Each gene encodes a protein, but also contains the information that controls the activity of that gene. In this thesis, we find that chromosomal domains with many active genes (so-called 'Ridges'), also control gene

  8. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression.

    Directory of Open Access Journals (Sweden)

    Peng Cui

    Full Text Available To further understand the relationship between nucleosome-space occupancy (NO and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues--cerebrum, testis, and ESCs--and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK genes and tissue-specific (TS genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types.

  9. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression

    KAUST Repository

    Cui, Peng

    2011-08-19

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues-cerebrum, testis, and ESCs-and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. © 2011 Cui et al.

  10. Gene Expression Signature TOPFOX Reflecting Chromosomal Instability Refines Prediction of Prognosis in Grade 2 Breast Cancer

    DEFF Research Database (Denmark)

    Szasz, A.; Li, Qiyuan; Sztupinszki, Z.

    2011-01-01

    were diagnosed between 1999–2002 at the Budai MA´ V Hospital. 187 formalinfixed, paraffin-embedded breast cancer samples were included in the qPCR-based measurement of expression of AURKA, FOXM1, TOP2A and TPX2 genes. The expression of the genes were correlated to recurrencefree survival (RFS...

  11. Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes.

    OpenAIRE

    Kejnovský, E; Vrána, J; Matsunaga, S.; Soucek, P.; Siroký, J; Dolezel, J; Vyskot, B

    2001-01-01

    The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that ...

  12. Chromosomal Integration and Expression of Two Bacterial alpha-Acetolactate Decarboxylase Genes in Brewer's Yeast.

    Science.gov (United States)

    Blomqvist, K; Suihko, M L; Knowles, J; Penttilä, M

    1991-10-01

    A bacterial gene encoding alpha-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the alpha-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the alpha-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.

  13. POF regulates the expression of genes on the fourth chromosome in Drosophila melanogaster by binding to nascent RNA.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Allgardsson, Anders; Larsson, Jan

    2012-06-01

    In Drosophila, two chromosome-wide compensatory systems have been characterized: the dosage compensation system that acts on the male X chromosome and the chromosome-specific regulation of genes located on the heterochromatic fourth chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X chromosome mediated by the male-specific lethal (MSL) complex. The mechanism of this compensation is suggested to involve enhanced transcriptional elongation mediated by the MSL complex, while the mechanism of compensation mediated by the painting of fourth (POF) protein on the fourth chromosome has remained elusive. Here, we show that POF binds to nascent RNA, and this binding is associated with increased transcription output from chromosome 4. We also show that genes located in heterochromatic regions spend less time in transition from the site of transcription to the nuclear envelope. These results provide useful insights into the means by which genes in heterochromatic regions can overcome the repressive influence of their hostile environment.

  14. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    William J Murphy

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  15. The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation?

    Science.gov (United States)

    Vicoso, Beatriz; Charlesworth, Brian

    2009-05-01

    In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.

  16. Structure, sequence, expression, and chromosomal localization of the human V{sub 1a} vasopressin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Thibonnier, M.; Graves, M.K.; Wagner, M.S. [Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States)] [and others

    1996-02-01

    We recently reported the structure and functional expression of a human V{sub 1a} vasopressin receptor (V{sub 1a}R) cDNA isolated from human liver cDNA libraries. To understand further the expression and regulation of the V{sub 1a}R, we now describe the genomic characteristics, tissue expression, chromosomal localization, and regional mapping of the human V{sub 1a}R gene, AVPR1A. Tissue distribution of the human V{sub 1a}R mRNA explored by Northern blot analysis of various human tissues or organs revealed the presence of a 5.5-kb mRNA transcript expressed in the liver and to a lesser degree in the heart, the kidney, and skeletal muscle. Screening of human genomic libraries revealed that the human AVPR1A gene is included entirely within a 6.4-kb rated by a 2.2-kb intron located before the corresponding seventh transmembrane domain of the receptor sequence. The first exon also contains 2 kb of 5{prime}-untranslated region, and the second exon includes 1 kb of 3{prime}-untranslated region. 5{prime}-RACE analysis of human liver mRNA by PCR localized the V{sub 1a}R mRNA transcription start site 1973 bp upstream of the translation the intron sequence were used as primers in polymerase chain reaction (PCR) analysis of human/rodent somatic cell hybrids. AVPR1A was localized by PCR analysis of a somatic cell hybrid panel to chromosome 12. Fluorescence in situ hybridization using a yeast artificial chromosome physically mapped AVPR1A to region 12q14-q15. 34 refs., 4 figs.

  17. Differentially Expressed Genes Distributed Over Chromosomes and Implicated in Certain Biological Processes for Site Insertion Genetically Modified Rice Kemingdao

    Directory of Open Access Journals (Sweden)

    Zhi Liu, Yunhe Li, Jie Zhao, Xiuping Chen, Guiliang Jian, Yufa Peng, Fangjun Qi

    2012-01-01

    Full Text Available Release of genetically modified (GM plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11. The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

  18. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Science.gov (United States)

    Ji, Baohu; Higa, Kerin K.; Kelsoe, John R.; Zhou, Xianjin

    2015-01-01

    Background Psychiatric disorders are common mental disorders without a pathological biomarker. Classic genetic studies found that an extra X chromosome frequently causes psychiatric symptoms in patients with either Klinefelter syndrome (XXY) or Triple X syndrome (XXX). Over-dosage of some X-linked escapee genes was suggested to cause psychiatric disorders. However, relevance of these rare genetic diseases to the pathogenesis of psychiatric disorders in the general population of psychiatric patients is unknown. Methods XIST and several X-linked genes were studied in 36 lymphoblastoid cell lines from healthy females and 60 lymphoblastoid cell lines from female patients with either bipolar disorder or recurrent major depression. XIST and KDM5C expression was also quantified in 48 RNA samples from postmortem human brains of healthy female controls and female psychiatric patients. Findings We found that the XIST gene, a master in control of X chromosome inactivation (XCI), is significantly over-expressed (p = 1 × 10− 7, corrected after multiple comparisons) in the lymphoblastoid cells of female patients with either bipolar disorder or major depression. The X-linked escapee gene KDM5C also displays significant up-regulation (p = 5.3 × 10− 7, corrected after multiple comparisons) in the patients' cells. Expression of XIST and KDM5C is highly correlated (Pearson's coefficient, r = 0.78, p = 1.3 × 10− 13). Studies on human postmortem brains supported over-expression of the XIST gene in female psychiatric patients. Interpretations We propose that over-expression of XIST may cause or result from subtle alteration of XCI, which up-regulates the expression of some X-linked escapee genes including KDM5C. Over-expression of X-linked genes could be a common mechanism for the development of psychiatric disorders between patients with those rare genetic diseases and the general population of female psychiatric patients with XIST over-expression. Our studies

  19. Recurrent RECQL4 Imbalance and Increased Gene Expression Levels Are Associated with Structural Chromosomal Instability in Sporadic Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Georges Maire

    2009-03-01

    Full Text Available Osteosarcoma (OS is an aggressive bone tumor with complex abnormal karyotypes and a highly unstable genome, exhibiting both numerical- and structural-chromosomal instability (N- and S-CIN. Chromosomal rearrangements and genomic imbalances affecting 8q24 are frequent in OS. RECQL4 gene maps to this cytoband and encodes a putative helicase involved in the fidelity of DNA replication and repair. This protective genomic function of the protein is relevant because often patients with Rothmund-Thomson syndrome have constitutional mutations of RECQL4 and carry a very high risk of developing OS. To determine the relative level of expression of RECQL4 in OS, 18 sporadic tumors were studied by reverse transcription–polymerase chain reaction. All tumors overexpressed RECQL4 in comparison to control osteoblasts, and fluorescence in situ hybridization analysis of tumor DNA showed that expression levels were strongly copy number–dependent. Relative N- and S-CIN levels were determined by classifying copy number transitions within array comparative genomic hybridization profiles and by enumerating the frequency of break-apart fluorescence in situ hybridization within 8q24 using region-specific and control probes. Although there was no evidence that disruption of 8q24 in OS led to an elevated expression of RECQL4, there was a marked association between increased overall levels of S-CIN, determined by copy number transition frequency and higher levels of RECQL4.

  20. Identification and uniparental expression of a novel gene from the Prader-Willi region of chromosome 15

    Energy Technology Data Exchange (ETDEWEB)

    Wevrick, R.; Kerns, J.A.; Francke, U. [Stanford Univ., CA (United States)

    1994-09-01

    The Prader-Willi syndrome (PWS) is a neurobehavioral disorder which occurs at a frequency of about 1/25,000. Most patients ({approximately}70%) have a cytogentic deletion of their paternal 15q11-q13 region, while {approximately}30% have uniparental maternal disomy. The parent of origin dependence of the phenotype is thought to be reflective of the uniparental pattern of expression of genes in the region, a phenomenon known as genomic imprinting. A small subset of PWS patient with a typical cytogenetic rearrangements has defined a critical region for genes involved in PWS. We have used STSs from the region to construct a YAC contig including the entire PWS critical region, which is about 350 kb considering presently characterized deletions. We are now using these YACs to isolate and characterize novel genes potentially involved in PWS. Overlapping YACs from the critical region were subjected to the technique of cDNA selection. Gel-purified YAC DNA was biotinylated during PCR amplification and annealed in solution to amplified cDNA. cDNAs remaining after hybridization washing, and denaturation of the hybrids were tested for localization within the YAC contig. One such cDNA mapped back to the YAC contig and was further analyzed. A full length cDNA clone was isolated from a fetal brain library and sequenced. The pattern of expression was determined in cell lines derived from Prader-Willi and Angelman patients and in normal individuals. The gene was found to have monoallelic, paternal expression in normal individuals and is marginally or not expressed in cell lines derived form Prader-Willi individuals. Expression in cell lines from Angelman patients, who are deleted for the same region on the maternal chromosome 15, was normal. Thus this apparently maternally imprinted gene is a candidate for involvement in the Prader-Willi phenotype.

  1. Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions

    Institute of Scientific and Technical Information of China (English)

    Tatsuo Kido; Stephanie Schubert; J(o)rg Schmidtke; Yun-Fai Chris Lau

    2011-01-01

    The testis specific protein Y-encoded (TSPY) is a member of TSPY/SET/NAPl superfamily, encoded within the gonadoblastoma locus on the Y chromosome. TSPY shares a highly conserved SET/NAP-domain responsible for protein-protein interaction among TSPY/SET/NAPl proteins.Accumulating data, so far, support the role of TSPY as the gonadoblastoma gene, involved in germ cell tumorigenesis. The X-chromosome homolog of TSPY, TSPX is expressed in various tissues at both fetal and adult stages, including the brain, and is capable of interacting with the multi-domain adapter protein CASK, thereby influencing the synaptic and transcriptional functions and developmental regulation of CASK in the brain and other neural tissues. Similar to TSPX, we demonstrated that TSPY could interact with CASK at its SET/NAP-domain in cultured cells. Transgenic mice harboring a human TSPY gene and flanking sequences showed specific expression of the human TSPYtransgene in both testis and brain. The neural expression pattern of the human TSPY gene overlapped with those of the endogenous mouse Cask and Tspx gene. Similarly with TSPX, TSPY was co-localized with CASK in neuronal axon fibers in the brain, suggesting a potential role(s) of TSPY in development and/or physiology of the nervous system.

  2. Cloning, expression, and chromosomal assignment of the human mitochondrial intermediate peptidase gene (MIPEP).

    Science.gov (United States)

    Chew, A; Buck, E A; Peretz, S; Sirugo, G; Rinaldo, P; Isaya, G

    1997-03-15

    The mitochondrial intermediate peptidase of Saccharomyces cerevisiae (YMIP) is a component of the yeast mitochondrial protein import machinery critically involved in the biogenesis of the oxidative phosphorylation (OXPHOS) system. This leader peptidase removes specific octapeptides from the amino terminus of nuclear-encoded OXPHOS subunits and components of the mitochondrial genetic apparatus. To address the biologic role of the human peptidase [MIPEP gene, HMIP polypeptide], we have initiated its molecular and functional characterization. A full-length cDNA was isolated by screening a human liver library using a rat MIP (RMIP) cDNA as a probe. The encoded protein contained a typical mitochondrial leader peptide and showed 92 and 54% homology to RMIP and YMIP, respectively. A survey of human mitochondrial protein precursors revealed that, similar to YMIP, HMIP is primarily involved in the maturation of OXPHOS-related proteins. Northern analysis showed that the MIPEP gene is differentially expressed in human tissues, with the highest levels of expression in the heart, skeletal muscle, and pancreas, three organ systems that are frequently affected in OXPHOS disorders. Using fluorescence in situ hybridization, the MIPEP locus was assigned to 13q12. This information offers the possibility of testing the potential involvement of HMIP in the pathophysiology of nuclear-driven OXPHOS disorders.

  3. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment

    Energy Technology Data Exchange (ETDEWEB)

    Funk, C.D.; Funk, L.B.; Kennedy, M.E.; Pong, A.S.; Fitzgerald, G.A. (Vanderbilt Univ., Nashville, TN (United States))

    1991-06-01

    Platelets metabolize arachidonic acid to thromboxane A{sub 2}, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human-hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and it gene regulation.

  4. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    Directory of Open Access Journals (Sweden)

    Richard I Bailey

    Full Text Available BACKGROUND: The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. METHODS AND FINDINGS: We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean versus less (Cosmopolitan strain preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. CONCLUSION: Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  5. Active expression of Gγ globin gene on chromosome 11 with Yunnanese (Ayγδβ)~0-thalasseinia deletion in MEL cells

    Institute of Scientific and Technical Information of China (English)

    张俊武; 乔军; 宋文风; 邱志明

    1996-01-01

    A permanent lymphocyte cell line of a heterozygote with Yunnanese (Aγδβ)0-thalassemia deletion, associated with an increased production of Cry globin in adult, was founded using Epstein-Barr virus transformation. The hybrids of the lymphocyte cell and mouse erythroleukemia cell (MEL) were achieved and the hybrids containing human chromosome 11 were selected with the monoclonal antibody 53/6. The subclones containing only either the normal or the abnormal human chromosome 11 were separated and the expression of the human globin genes was studied. Expression of the β-globin gene, but not the Cγ and Aγ, was observed in the hybrids containing only the normal human chromosome 11, while active expression of the Cγ globin gene was observed in the hybrids containing only the abnormal human chromosome 11. These results have confirmed that the DNA deletion in the β-globin gene cluster is the cause of persistent active expression of the Cγ globin gene in the Yunnanese mutant.

  6. Heterologous expression of Avermectins biosynthetic gene cluster by construction of a Bacterial Artificial Chromosome library of the producers

    Directory of Open Access Journals (Sweden)

    Qian Deng

    2017-03-01

    Full Text Available Avermectins, a group of polyketide natural products, are widely used as anthelmintics in agriculture. Metabolic engineering and combinatorial biosynthesis were extensively employed to improve Avermectins production and create novel Avermectin derivatives, including Ivermectin and Doramectin. It is labor intensive and time cost to genetically manipulate Avermectins producer Streptomyces avermitilis in vivo. Cloning and heterologous expression of Avermectins biosynthetic gene cluster will make it possible to tailor the cluster in vitro. We constructed a Bacterial Artificial Chromosome (BAC library of S. avermitilis ATCC 31267 with inserted DNA fragments ranged from 100 to 130 Kb. Five recombinant BAC clones which carried the Avermectins biosynthetic gene cluster ave (81 Kb in size were screened out from the library. Then, ave was hetero-expressed in S. lividans. Three Avermectin components, A2a, B1a and A1a were detected from the cell extracts of recombinant strains. It will facilitate the development of Avermectin derivatives by polyketide synthase domain swapping and provide functional element for Avermectins synthetic biology study.

  7. Strong purifying selection at genes escaping X chromosome inactivation.

    Science.gov (United States)

    Park, Chungoo; Carrel, Laura; Makova, Kateryna D

    2010-11-01

    To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.

  8. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene.

    Science.gov (United States)

    Looijenga, Leendert H J; Hersmus, Remko; Gillis, Ad J M; Pfundt, Rolph; Stoop, Hans J; van Gurp, Ruud J H L M; Veltman, Joris; Beverloo, H Berna; van Drunen, Ellen; van Kessel, Ad Geurts; Pera, Renee Reijo; Schneider, Dominik T; Summersgill, Brenda; Shipley, Janet; McIntyre, Alan; van der Spek, Peter; Schoenmakers, Eric; Oosterhuis, J Wolter

    2006-01-01

    Spermatocytic seminomas are solid tumors found solely in the testis of predominantly elderly individuals. We investigated these tumors using a genome-wide analysis for structural and numerical chromosomal changes through conventional karyotyping, spectral karyotyping, and array comparative genomic hybridization using a 32 K genomic tiling-path resolution BAC platform (confirmed by in situ hybridization). Our panel of five spermatocytic seminomas showed a specific pattern of chromosomal imbalances, mainly numerical in nature (range, 3-24 per tumor). Gain of chromosome 9 was the only consistent anomaly, which in one case also involved amplification of the 9p21.3-pter region. Parallel chromosome level expression profiling as well as microarray expression analyses (Affymetrix U133 plus 2.0) was also done. Unsupervised cluster analysis showed that a profile containing transcriptional data on 373 genes (difference of > or = 3.0-fold) is suitable for distinguishing these tumors from seminomas/dysgerminomas. The diagnostic markers SSX2-4 and POU5F1 (OCT3/OCT4), previously identified by us, were among the top discriminatory genes, thereby validating the experimental set-up. In addition, novel discriminatory markers suitable for diagnostic purposes were identified, including Deleted in Azospermia (DAZ). Although the seminomas/dysgerminomas were characterized by expression of stem cell-specific genes (e.g., POU5F1, PROM1/CD133, and ZFP42), spermatocytic seminomas expressed multiple cancer testis antigens, including TSP50 and CTCFL (BORIS), as well as genes known to be expressed specifically during prophase meiosis I (TCFL5, CLGN, and LDHc). This is consistent with different cells of origin, the primordial germ cell and primary spermatocyte, respectively. Based on the region of amplification defined on 9p and the associated expression plus confirmatory immunohistochemistry, DMRT1 (a male-specific transcriptional regulator) was identified as a likely candidate gene for

  9. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    Energy Technology Data Exchange (ETDEWEB)

    Coon, S.L.; Bernard, M.; Roseboom, P.H. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-05-15

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable at low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.

  10. Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes

    DEFF Research Database (Denmark)

    Honoré, B; Rasmussen, H H; Vorum, H;

    1995-01-01

    and keratinocytes. In normal human keratinocytes, the expression level of H was unaffected by treatment with several substances tested including two second messengers and seven cytokines. Likewise the expression level of F was independent of these substances, although it was strikingly down-regulated by long term...... treatment with 4 beta-phorbol 12-myristate 13-acetate, indicating that the protein kinase C signaling pathway regulates its expression. No effect of 4 beta-phorbol 12-myristate 13-acetate was observed on the expression of hnRNP H. The genes coding for hnRNPs H, H', and F were chromosome-mapped to 5q35...

  11. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  12. Genes and chromosomes: control of development

    Directory of Open Access Journals (Sweden)

    Oleg Serov

    2004-09-01

    Full Text Available The past decade has witnessed immense progress in research into the molecular basis behind the developmental regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating expression of many genes has been introduced, to mention some of the major breakthroughs. It should be noted that the temporal and tissue-specific parameters of gene expression are correctly regulated in development only in the context of the chromosome and that they are to a great extent dependent on the position of the gene on the chromosome or the interphase nucleus. Moreover epigenetic inheritance of the gene states through successive cell generations has been conducted exclusively at the chromosome level by virtue of cell or chromosome memory. The ontogenetic memory is an inherent property of the chromosome and cis-regulation has a crucial role in its maintenance.Durante a última década houve imenso progresso na pesquisa sobre as bases moleculares da regulação gênica durante o desenvolvimento. Foram identificados grupos de genes funcionando sob controle hierárquico, sistemas de genes conservados ao longo da evolução atuando na transmissão célula a célula de sinais transmembrana e com uma função central na morfogênese foram intensamente estudados e o conceito de redes genômicas regulatórias coordenando a expressão de diversos genes foi introduzido, para citar apenas alguns dos principais avanços. Deve-se notar que os parâmetros tempo e tecido-específicos da expressão gênica são corretamente regulados durante o desenvolvimento apenas no contexto do cromossomo e que são amplamente dependentes da posição do gene no cromossomo ou no núcleo em interfase. Além do mais, a herança epigen

  13. Assignment of human sprouty 4 gene to chromosome segment 5q32∼33 and analysis of its pattern of expression

    Indian Academy of Sciences (India)

    Hua Liu; Jin-Zhong Chen; Shao-Hua Gu; Jian-Liang Dai; En-Pang Zhao; Lu Huang; Wang-Xiang Xu; Yi Xie; Yu-Min Mao

    2003-04-01

    The human sprouty 4 (SPYR4) gene was localized to chromosome band 5q32∼33 by screening the Stanford radiation hybrid G3 panel using a SPRY4-specific primer pair for PCR. Northern blot analysis revealed two different mRNAs (5 kb and 2 kb) in liver, skeletal muscle, heart, lung, kidney, spleen, placenta and small intestine. Reverse transcriptase-PCR analysis showed that SPYR4 was expressed in all tested tissues to different levels.

  14. 1q12 chromosome translocations form aberrant heterochromatic foci associated with changes in nuclear architecture and gene expression in B cell lymphoma

    Science.gov (United States)

    Fournier, Alexandra; McLeer-Florin, Anne; Lefebvre, Christine; Duley, Samuel; Barki, Leila; Ribeyron, Juliana; Kassambara, Alboukadel; Hamaidia, Sieme; Granjon, Aurélie; Gressin, Rémy; Lajmanovich, Alicia; Bonnefoix, Thierry; Chauvelier, Stéphanie; Debernardi, Alexandra; Rousseaux, Sophie; de Fraipont, Florence; Figeac, Martin; Kerckaert, Jean-Pierre; De Vos, John; Usson, Yves; Delaval, Katia; Grichine, Alexei; Vourc'h, Claire; Khochbin, Saadi; Feil, Robert; Leroux, Dominique; Callanan, Mary B

    2010-01-01

    Epigenetic perturbations are increasingly described in cancer cells where they are thought to contribute to deregulated gene expression and genome instability. Here, we report the first evidence that a distinct category of chromosomal translocations observed in human tumours—those targeting 1q12 satellite DNA—can directly mediate such perturbations by promoting the formation of aberrant heterochromatic foci (aHCF). By detailed investigations of a 1q12 translocation to chromosome 2p, in a case of human B cell lymphoma, aberrant aHCF were shown to be localized to the nuclear periphery and to arise as a consequence of long range ‘pairing’ between the translocated 1q12 and chromosome 2 centromeric regions. Remarkably, adjacent 2p sequences showed increased levels of repressive histone modifications, including H4K20me3 and H3K9me3, and were bound by HP1. aHCF were associated to aberrant spatial localization and deregulated expression of a novel 2p gene (GMCL1) that was found to have prognostic impact in diffuse large B cell lymphoma. Thus constitutive heterochromatin rearrangements can contribute to tumourigenesis by perturbing gene expression via long range epigenetic mechanisms. PMID:20432501

  15. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Science.gov (United States)

    Zhang, Yong E; Vibranovski, Maria D; Landback, Patrick; Marais, Gabriel A B; Long, Manyuan

    2010-10-05

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  16. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Directory of Open Access Journals (Sweden)

    Yong E Zhang

    Full Text Available Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI. These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  17. Condensin-mediated chromosome organization and gene regulation

    Directory of Open Access Journals (Sweden)

    Alyssa Christine Lau

    2015-01-01

    Full Text Available In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In C. elegans, dosage compensation is achieved by the dosage compensation complex (DCC binding to both X chromosomes in hermaphrodites to downregulate gene expression by two fold. The DCC contains a subcomplex (condensin IDC similar to the evolutionarily conserved condensin complexes which play a fundamental role in chromosome dynamics during mitosis. Therefore, mechanisms related to mitotic chromosome condensation are hypothesized to mediate dosage compensation. Consistent with this hypothesis, monomethylation of histone H4 lysine 20 (H4K20 is increased, whereas acetylation of histone H4 lysine 16 (H4K16 is decreased, both on mitotic chromosomes and on interphase dosage compensated X chromosomes in worms. These observations suggest that interphase dosage compensated X chromosomes maintain some characteristics associated with condensed mitotic chromosome. This chromosome state is stably propagated from one cell generation to the next. In this review we will speculate on how the biochemical activities of condensin can achieve both mitotic chromosome compaction and gene repression.

  18. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1.

    Science.gov (United States)

    Bilodeau, Mélanie; MacRae, Tara; Gaboury, Louis; Laverdure, Jean-Philippe; Hardy, Marie-Pierre; Mayotte, Nadine; Paradis, Véronique; Harton, Sébastien; Perreault, Claude; Sauvageau, Guy

    2009-10-19

    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del(16qB3Delta/+)). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del(16qB3Delta/16qB3Delta)) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del(16qB3Delta/16qB3Delta) animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del(16qB3Delta/16qB3Delta) hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the

  19. Mapping of a chromosome 12 region associated with airway hyperresponsiveness in a recombinant congenic mouse strain and selection of potential candidate genes by expression and sequence variation analyses.

    Directory of Open Access Journals (Sweden)

    Cynthia Kanagaratham

    Full Text Available In a previous study we determined that BcA86 mice, a strain belonging to a panel of AcB/BcA recombinant congenic strains, have an airway responsiveness phenotype resembling mice from the airway hyperresponsive A/J strain. The majority of the BcA86 genome is however from the hyporesponsive C57BL/6J strain. The aim of this study was to identify candidate regions and genes associated with airway hyperresponsiveness (AHR by quantitative trait locus (QTL analysis using the BcA86 strain. Airway responsiveness of 205 F2 mice generated from backcrossing BcA86 strain to C57BL/6J strain was measured and used for QTL analysis to identify genomic regions in linkage with AHR. Consomic mice for the QTL containing chromosomes were phenotyped to study the contribution of each chromosome to lung responsiveness. Candidate genes within the QTL were selected based on expression differences in mRNA from whole lungs, and the presence of coding non-synonymous mutations that were predicted to have a functional effect by amino acid substitution prediction tools. One QTL for AHR was identified on Chromosome 12 with its 95% confidence interval ranging from 54.6 to 82.6 Mbp and a maximum LOD score of 5.11 (p = 3.68 × 10(-3. We confirmed that the genotype of mouse Chromosome 12 is an important determinant of lung responsiveness using a Chromosome 12 substitution strain. Mice with an A/J Chromosome 12 on a C57BL/6J background have an AHR phenotype similar to hyperresponsive strains A/J and BcA86. Within the QTL, genes with deleterious coding variants, such as Foxa1, and genes with expression differences, such as Mettl21d and Snapc1, were selected as possible candidates for the AHR phenotype. Overall, through QTL analysis of a recombinant congenic strain, microarray analysis and coding variant analysis we identified Chromosome 12 and three potential candidate genes to be in linkage with airway responsiveness.

  20. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    Science.gov (United States)

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG.

  1. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    William J Freed

    Full Text Available BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS. Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons.

  2. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  3. Wheat beta-expansin (EXPB11 genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain

    Directory of Open Access Journals (Sweden)

    Jia Jizeng

    2010-05-01

    Full Text Available Abstract Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA and beta-expansin proteins (EXPB, with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11. The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of

  4. Comprehensive expression profiling of highly homologous 39 hox genes in 26 different human adult tissues by the modified systematic multiplex RT-pCR method reveals tissue-specific expression pattern that suggests an important role of chromosomal structure in the regulation of hox gene expression in adult tissues.

    Science.gov (United States)

    Yamamoto, Miyako; Takai, Daisaku; Yamamoto, Fumiya; Yamamoto, Fumiichiro

    2003-01-01

    Homeobox genes play a crucial role as molecular address labels in early embryogenesis by conferring cell fate and establishing regional identity in tissues. Homeobox gene expression is not restricted to the early development, but it is also observed in the differentiated cells in adult tissues. To have a better understanding of the functionality of homeobox gene expression in adult tissues in physiological and pathological phenomena, it is important to determine the expression profiles of Hox genes. We established a system to study the expression of 39 human Hox genes by the modified Systematic Multiplex RT-PCR method. Using this system, we have systematically examined their expression in 26 different adult tissues. The results showed tissue-specific differential expression. They also revealed that the posterior tissues generally express more Hox genes than the anterior tissues and that the genes located centrally in the Hox Gene Complexes are expressed in more tissues than the genes located at the 5' or 3' end of the complexes. Instead of similar expression patterns among paralogous genes, we found that several neighboring Hox genes on the same chromosomes exhibited similar tissue-specific expression pattern, which may suggest that the regulation of Hox gene expression may be more dependent on chromosomal structure in adult tissues.

  5. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL located in a chromosomal region associated with cattle feed intake and gain.

    Directory of Open Access Journals (Sweden)

    Amanda K Lindholm-Perry

    Full Text Available A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG and ligand dependent nuclear receptor corepressor-like protein (LCORL are positional candidate genes within this region. Previously identified genetic markers in both genes were associated with average daily gain (ADG and average daily feed intake (ADFI in a crossbred population of beef steers. These markers were also associated with hot carcass weight, ribeye area and adjusted fat thickness suggesting that they may have a role in lean muscle growth and/or fat deposition. The purpose of this study was to determine whether the transcript abundance of either of these genes in cattle adipose and muscle tissue was associated with variation in feed intake and average daily gain phenotypes. Transcript abundance for NCAPG and LCORL in adipose and muscle tissue was measured in heifers (adipose only, cows and steers using real-time polymerase chain reaction. In the adipose tissue from cows and heifers, a negative correlation between LCORL transcript abundance and ADFI were detected (P = 0.05. In the muscle tissue from cows, transcript abundance of NCAPG was associated with ADG (r = 0.26; P = 0.009. A positive correlation between LCORL transcript abundance from muscle tissue of steers and ADFI was detected (P = 0.04. LCORL protein levels in the muscle of steers were investigated and were associated with ADFI (P = 0.01. These data support our earlier genetic associations with ADFI and ADG within this region and represent the potential for biological activity of these genes in the muscle and adipose tissues of beef cattle; however, they also suggest that sex, age and/or nutrition-specific interactions may affect the expression of NCAPG and LCORL in these tissues.

  6. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain.

    Science.gov (United States)

    Lindholm-Perry, Amanda K; Kuehn, Larry A; Oliver, William T; Sexten, Andrea K; Miles, Jeremy R; Rempel, Lea A; Cushman, Robert A; Freetly, Harvey C

    2013-01-01

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. Previously identified genetic markers in both genes were associated with average daily gain (ADG) and average daily feed intake (ADFI) in a crossbred population of beef steers. These markers were also associated with hot carcass weight, ribeye area and adjusted fat thickness suggesting that they may have a role in lean muscle growth and/or fat deposition. The purpose of this study was to determine whether the transcript abundance of either of these genes in cattle adipose and muscle tissue was associated with variation in feed intake and average daily gain phenotypes. Transcript abundance for NCAPG and LCORL in adipose and muscle tissue was measured in heifers (adipose only), cows and steers using real-time polymerase chain reaction. In the adipose tissue from cows and heifers, a negative correlation between LCORL transcript abundance and ADFI were detected (P = 0.05). In the muscle tissue from cows, transcript abundance of NCAPG was associated with ADG (r = 0.26; P = 0.009). A positive correlation between LCORL transcript abundance from muscle tissue of steers and ADFI was detected (P = 0.04). LCORL protein levels in the muscle of steers were investigated and were associated with ADFI (P = 0.01). These data support our earlier genetic associations with ADFI and ADG within this region and represent the potential for biological activity of these genes in the muscle and adipose tissues of beef cattle; however, they also suggest that sex, age and/or nutrition-specific interactions may affect the expression of NCAPG and LCORL in these tissues.

  7. Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions.

    Science.gov (United States)

    Reynard, Louise N; Turner, James M A

    2009-11-15

    During male meiosis, the X and Y chromosomes are transcriptionally silenced, a process termed meiotic sex chromosome inactivation (MSCI). Recent studies have shown that the sex chromosomes remain substantially transcriptionally repressed after meiosis in round spermatids, but the mechanisms involved in this later repression are poorly understood. Mice with deletions of the Y chromosome long arm (MSYq-) have increased spermatid expression of multicopy X and Y genes, and so represent a model for studying post-meiotic sex chromosome repression. Here, we show that the increase in sex chromosome transcription in spermatids from MSYq- mice affects not only multicopy but also single-copy XY genes, as well as an X-linked reporter gene. This increase in transcription is accompanied by specific changes in the sex chromosome histone code, including almost complete loss of H4K8Ac and reduction of H3K9me3 and CBX1. Together, these data show that an MSYq gene regulates sex chromosome gene expression as well as chromatin remodelling in spermatids.

  8. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Hinsdale, M.E.; Farmer, S.C.; Hamm, D.A.; Tolwani, R.J.; Wood, P.A. [Univ. of Alabama, Birmingham, AL (United States)] [and others

    1995-07-20

    The cDNA for mouse long-chain acyl-CoA dehydrogenase (Acadl, gene symbol; LCAD, enzyme) was cloned and characterized. The cDNA was obtained by library screening and reverse transcription-polymerase chain reaction (RT-PCR). The deduced amino acid sequence showed a high degree of homology to both the rat and the human LCAD sequence. Northern analysis of multiple tissues using the mouse Acadl cDNA as a probe showed two bands in all tissues examined. We found a total of three distinct mRNAs for Acadl. These three mRNAs were encoded by a single gene that we mapped to mouse chromosome 1. The three transcripts differed in the 3{prime} untranslated region due to use of alternative polyadenylation sites. Quantitative evaluation of a multitissue Northern blot showed a varied ratio of the larger transcript as compared with the smaller transcripts. 40 refs., 6 figs., 1 tab.

  9. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Directory of Open Access Journals (Sweden)

    Baohu Ji

    2015-08-01

    Research in context: Due to lack of biological markers, diagnosis and treatment of psychiatric disorders are subjective. There is utmost urgency to identify biomarkers for clinics, research, and drug development. We found that XIST and KDM5C gene expression may be used as a biological marker for diagnosis of major affective disorders in a significantly large subset of female patients from the general population. Our studies show that over-expression of XIST and some X-linked escapee genes may be a common mechanism for development of psychiatric disorders between the patients with rare genetic diseases (XXY or XXX and the general population of female psychiatric patients.

  10. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  11. Buffering and the evolution of chromosome-wide gene regulation.

    Science.gov (United States)

    Stenberg, Per; Larsson, Jan

    2011-06-01

    Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.

  12. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.

    Science.gov (United States)

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-03-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-D-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg(-1). It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum.

  13. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation.

    Science.gov (United States)

    Khil, Pavel P; Smirnova, Natalya A; Romanienko, Peter J; Camerini-Otero, R Daniel

    2004-06-01

    Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.

  14. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus.

    Science.gov (United States)

    Rondon, M R; Raffel, S J; Goodman, R M; Handelsman, J

    1999-05-25

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.

  15. Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm.

    Science.gov (United States)

    Thorneycroft, David; Hosein, Felicia; Thangavelu, Madan; Clark, Joanna; Vizir, Igor; Burrell, Michael M; Ainsworth, Charles

    2003-07-01

    A full-length genomic clone containing the gene encoding the large subunit of the ADPglucose pyrophosphorylase (Agp2), was isolated from a genomic library prepared from etiolated shoots of hexaploid wheat (Triticum aestivum L., cv, Chinese Spring). The coding region of this gene is identical to one of the cDNA clones previously isolated from a developing wheat grain cDNA library and is therefore an actively transcribed gene. The sequence represented by the cDNA spans 4.8 kb of the genomic clone and contains 15 introns. 2852 bp of DNA flanking the transcription start site of the gene was cloned upstream of the GUS (beta-glucuronidase) reporter gene. This Agp2::GUS construct and promoter deletions were used to study the pattern of reporter gene expression in both transgenic tobacco and wheat plants. Histochemical analysis of GUS expression in transgenic tobacco demonstrated that the reporter gene was expressed in guard cells of leaves and throughout the seed. In transgenic wheat, reporter gene expression was confined to the endosperm and aleurone with no expression in leaves. The cloned Agp2 gene was located to chromosome 1B by gene-specific PCR with nullisomic-tetrasomic lines. Northern analysis demonstrated that the Agp2 genes are differentially expressed in leaves and developing endosperm; while all three classes of Agp2 genes are transcribed in developing wheat grain endosperm, only one is transcribed in leaves. The differences between the Agp2 genes are discussed in relation to the evolution of hexaploid wheat.

  16. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene.

    Science.gov (United States)

    Li, YanHua; Li, AiHua; Yang, Z Q

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  17. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  18. Ocular expression and distribution of products of the POAG-associated chromosome 9p21 gene region.

    Directory of Open Access Journals (Sweden)

    Glyn Chidlow

    Full Text Available It has recently been shown that there are highly significant associations for common single nucleotide polymorphisms (SNPs near the CDKN2B-AS1 gene region at the 9p21 locus with primary open angle glaucoma (POAG, a leading cause of irreversible blindness. This gene region houses the CDKN2B/p15(INK4B , CDKN2A/p16(INK4A and p14ARF (rat equivalent, p19(ARF tumour suppressor genes and is adjacent to the S-methyl-5'-thioadenosine phosphorylase (MTAP gene. In order to understand the ocular function of these genes and, therefore, how they may be involved in the pathogenesis of POAG, we studied the distribution patterns of each of their products within human and rat ocular tissues. MTAP mRNA was detected in the rat retina and optic nerve and its protein product was localised to the corneal epithelium, trabecular meshwork and retinal glial cells in both human and rat eyes. There was a very low level of p16(INK4A mRNA present within the rat retina and slightly more in the optic nerve, although no protein product could be detected in either rat or human eyes with any of the antibodies tested. P19(ARF mRNA was likewise only present at very low levels in rat retina and slightly higher levels in the optic nerve. However, no unambiguous evidence was found to indicate expression of specific P19(ARF/p14(ARF proteins in either rat or human eyes, respectively. In contrast, p15(INK4B mRNA was detected in much higher amounts in both retina and optic nerve compared with the other genes under analysis. Moreover, p15(INK4B protein was clearly localised to the retinal inner nuclear and ganglion cell layers and the corneal epithelium and trabecular meshwork in rat and human eyes. The presented data provide the basis for future studies that can explore the roles that these gene products may play in the pathogenesis of glaucoma and other models of optic nerve damage.

  19. cDNA cloning, tissue distribution, and chromosomal localization of Ocp2, a gene encoding a putative transcription-associated factor predominantly expressed in the auditory organs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Thalmann, I.; Thalmann, R. [Washington Univ., St. Louis, MO (United States)] [and others

    1995-06-10

    We report the cloning of the Ocp2 gene encoding OCP-II from a guinea pig organ-of-Corti cDNA library. The predicted open reading frame encodes a protein of 163 amino acids with an estimated molecular mass of 18.6 kDa. A homology search revealed that Ocp2 shares significant sequence similarity with p15, a sub-unit of transcription factor SIII that regulates the activity of the RNA polymerase II elongation complex. The Ocp2 messenger RNA is expressed abundantly in the cochlea while not significantly in any other tissues examined, including brain, eye, heart, intestine, kidney, liver, lung, thigh muscle, and testis, demonstrating that the expression of this gene may be restricted to auditory organs. A polyclonal antiserum was raised against the N-terminal region of OCP-II. Immunohistochemical staining of paraffin-embedded sections of the cochlea showed that OCP-II is localized abundantly in nonsensory cells in the organ of Corti; in addition, it was also detected, at a lower concentration, in vestibular sensory organs, as well as auditory and vestibular brain stem nuclei. The Ocp2 gene was mapped to mouse chromosome 4 as well as 11. Our results suggest that OCP-II may be involved in transcription regulation for the development or maintenance of specialized functions of the inner ear. 40 refs., 5 figs.

  20. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  1. The X chromosome and immune associated genes.

    Science.gov (United States)

    Bianchi, Ilaria; Lleo, Ana; Gershwin, M Eric; Invernizzi, Pietro

    2012-05-01

    The X chromosome is known to contain the largest number of immune-related genes of the whole human genome. For this reason, X chromosome has recently become subject of great interest and attention and numerous studies have been aimed at understanding the role of genes on the X chromosome in triggering and maintaining the autoimmune aggression. Autoimmune diseases are indeed a growing heath burden affecting cumulatively up to 10% of the general population. It is intriguing that most X-linked primary immune deficiencies carry significant autoimmune manifestations, thus illustrating the critical role played by products of single gene located on the X chromosome in the onset, function and homeostasis of the immune system. Again, the plethora of autoimmune stigmata observed in patients with Turner syndrome, a disease due to the lack of one X chromosome or the presence of major X chromosome deletions, indicate that X-linked genes play a unique and major role in autoimmunity. There have been several reports on a role of X chromosome gene dosage through inactivation or duplication in women with autoimmune diseases, for example through a higher rate of circulating cells with a single X chromosome (i.e. with X monosomy). Finally, a challenge for researchers in the coming years will be to dissect the role for the large number of X-linked microRNAs from the perspective of autoimmune disease development. Taken together, X chromosome might well constitute the common trait of the susceptibility to autoimmune diseases, other than to explain the female preponderance of these conditions. This review will focus on the available evidence on X chromosome changes and discuss their potential implications and limitations.

  2. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available . To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH...

  3. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  4. Spare PRELI gene loci: failsafe chromosome insurance?

    Directory of Open Access Journals (Sweden)

    Wenbin Ma

    Full Text Available BACKGROUND: LEA (late embryogenesis abundant proteins encode conserved N-terminal mitochondrial signal domains and C-terminal (A/TAEKAK motif repeats, long-presumed to confer cell resistance to stress and death cues. This prompted the hypothesis that LEA proteins are central to mitochondria mechanisms that connect bioenergetics with cell responses to stress and death signaling. In support of this hypothesis, recent studies have demonstrated that mammalian LEA protein PRELI can act as a biochemical hub, which upholds mitochondria energy metabolism, while concomitantly promoting B cell resistance to stress and induced death. Hence, it is important to define in vivo the physiological relevance of PRELI expression. METHODS AND FINDINGS: Given the ubiquitous PRELI expression during mouse development, embryo lethality could be anticipated. Thus, conditional gene targeting was engineered by insertion of flanking loxP (flox/Cre recognition sites on PRELI chromosome 13 (Chr 13 locus to abort its expression in a tissue-specific manner. After obtaining mouse lines with homozygous PRELI floxed alleles (PRELI(f/f, the animals were crossed with CD19-driven Cre-recombinase transgenic mice to investigate whether PRELI inactivation could affect B-lymphocyte physiology and survival. Mice with homozygous B cell-specific PRELI deletion (CD19-Cre/Chr13 PRELI(-/- bred normally and did not show any signs of morbidity. Histopathology and flow cytometry analyses revealed that cell lineage identity, morphology, and viability were indistinguishable between wild type CD19-Cre/Chr13 PRELI(+/+ and CD19-Cre/Chr13 PRELI(-/- deficient mice. Furthermore, B cell PRELI gene expression seemed unaffected by Chr13 PRELI gene targeting. However, identification of additional PRELI loci in mouse Chr1 and Chr5 provided an explanation for the paradox between LEA-dependent cytoprotection and the seemingly futile consequences of Chr 13 PRELI gene inactivation. Importantly, PRELI expression

  5. Clinical Expression of an Inherited Unbalanced Translocation in Chromosome 6

    Directory of Open Access Journals (Sweden)

    Bani Bandana Ganguly

    2011-01-01

    Full Text Available Unbalanced chromosomal rearrangements are not common; however, they have a significant clinical expression. The parental balanced translocation produces unbalanced chromosome, which is transmitted to next generation through fertilization of gametes carrying the derivative chromosome. The carriers of balanced rearrangements mostly do not have recognizable phenotypic expression. We report a family comprising of healthy and non-consanguineous young parents and their preemie newborn severely affected with congenital anomalies and systemic disorders. Conventional Gbanding analysis of somatic chromosomes identified a balanced translocation, t(6;10(p23;q24, in mother and an unbalanced rearrangement, der(6t(6:10(p23;q24mat, in the child. The child has inherited a derivative chromosome 6 with partial deletion of 6(p23-pter and partial trisomy 10(q24-qter, which has resulted in fusion of genes of two different chromosomes. The prominent phenotypic features of del(6p, including high forehead, flat nasal bridge, agenesis of left ear, atrial septal defect (ASD, craniosynostosis, and growth retardation, are overlapping with specific Axenfeld-Reiger-, Larsen-, and Ritscher-Sinzel/3-C syndromes, however, lacking in ocular anomalies, skeletal laxity, or cerebellar malformation. Therefore, this paper rules out the isolated effect of del(6p23 or trisomy 10(q24 on distinct previously reported syndromes and proposes the combined effect of unbalanced chromosomal alteration.

  6. Chromosomal Abnormalities and Putative Susceptibility Genes in Autism Spectrum Disorders

    DEFF Research Database (Denmark)

    Nielsen, Mette Gilling

    Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental disorders with a significant genetic component as shown by family and twin studies. However, only a few genes have repeatedly been shown to be involved in the development of ASDs. The aim of this study has been...... to identify possible ASD susceptibility genes. Genome screens in ASD patients suggest possible susceptibility gene regions on almost every chromosome. We identified four ASD patients with chromosomal rearrangements, two of which were familial rearrangements involving one of these putative susceptibility gene......) was performed for all four patients. By combination of these methods we identified several putative susceptibility genes for ASDs. Expression patterns were established for several of these genes by Quantitative PCR (Q-PCR) or in situ hybridization and one gene was sequenced in 157 ASD patients. Our results...

  7. An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942.

    Science.gov (United States)

    Liu, Y; Tsinoremas, N F

    1996-06-12

    In eubacteria, the clustering of DnaA boxes around the dnaN (beta subunit of DNA polymerase III) and dnaA genes usually defines the chromosome replication origin (oriC). In this study, the dnaN locus from the cyanobacterium Synechococcus sp. strain PCC 7942 was sequenced. The gene order in this region is cbbZp-dnaN-orf288-purL-purF which contrasts with other eubacteria. A cluster of eleven DnaA boxes (consensus sequence: TTTTCCACA) was found in the intergenic region between dnaN and cbbZp. We also found a 41-bp sequence within this region that is 80% identical to the proposed oriC of Streptomyces coelicolor. Therefore, we propose that this intergenic region may serve as an oriC in Synechococcus. Using bacterial luciferase as a reporter, we also showed that dnaN is rhythmically expressed, suggesting that DNA replication could be under circadian control in this organism.

  8. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain.

    Science.gov (United States)

    Yu, Ping; Chen, Yiwang; Tagle, Danilo A; Cai, Tao

    2002-06-01

    RING-finger proteins contain cysteine-rich, zinc-binding domains and are involved in the formation of macromolecular scaffolds important for transcriptional repression and ubiquitination. In this study, we have identified a RING-H2 finger gene, PJA1 (for praja-1), from a human brain cDNA library and mapped it to human chromosome Xq12 between markers DXS983 and DXS1216, a region implicated in X-linked mental retardation (MRX). Northern blot analysis indicated a 2.7-kb transcript that was abundantly expressed in the brain, including regions of the cerebellum, cerebral cortex, medulla, occipital pole, frontal lobe, temporal lobe, and putamen. Amino acid sequence analysis of the 71-kDa protein PJA1 showed 52.3% identity to human PJA2 (for praja-2, also known as NEURODAP1/KIAA0438) and also a significant identity to its homologs in rat, mouse, and zebrafish. In vitro binding and immunoprecipitation assays demonstrated that both PJA1 and PJA2 are able to bind the ubiquitin-conjugating enzyme UbcH5B. Moreover, the ubiquitination assay indicated that PJA1 and PJA2 have an E2-dependent E3 ubiquitin ligase activity. Thus our findings demonstrate that PJA1 can be involved in protein ubiquitination in the brain and is a suitable candidate gene for MRX.

  9. Adipose and muscle tissue expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain

    Science.gov (United States)

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. We previously identified genetic ...

  10. A novel allelic variant of the human TSG-6 gene encoding an amino acid difference in the CUB module. Chromosomal localization, frequency analysis, modeling, and expression.

    Science.gov (United States)

    Nentwich, Hilke A; Mustafa, Zehra; Rugg, Marilyn S; Marsden, Brian D; Cordell, Martin R; Mahoney, David J; Jenkins, Suzanne C; Dowling, Barbara; Fries, Erik; Milner, Caroline M; Loughlin, John; Day, Anthony J

    2002-05-03

    Tumor necrosis factor-stimulated gene-6 (TSG-6) encodes a 35-kDa protein, which is comprised of contiguous Link and CUB modules. TSG-6 protein has been detected in the articular joints of osteoarthritis (OA) patients, with little or no constitutive expression in normal adult tissues. It interacts with components of cartilage matrix (e.g. hyaluronan and aggrecan) and thus may be involved in extracellular remodeling during joint disease. In addition, TSG-6 has been found to have anti-inflammatory properties in models of acute and chronic inflammation. Here we have mapped the human TSG-6 gene to 2q23.3, a region of chromosome 2 linked with OA. A single nucleotide polymorphism was identified that involves a non-synonymous G --> A transition at nucleotide 431 of the TSG-6 coding sequence, resulting in an Arg to Gln alteration in the CUB module (at residue 144 in the preprotein). Molecular modeling of the CUB domain indicated that this amino acid change might lead to functional differences. Typing of 400 OA cases and 400 controls revealed that the A(431) variant identified here is the major TSG-6 allele in Caucasians (with over 75% being A(431) homozygotes) but that this polymorphism is not a marker for OA susceptibility in the patients we have studied. Expression of the Arg(144) and Gln(144) allotypes in Drosophila Schneider 2 cells, and functional characterization, showed that there were no significant differences in the ability of these full-length proteins to bind hyaluronan or form a stable complex with inter-alpha-inhibitor.

  11. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  12. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene.

    Science.gov (United States)

    Mollereau, C; Simons, M J; Soularue, P; Liners, F; Vassart, G; Meunier, J C; Parmentier, M

    1996-08-01

    Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.

  13. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  14. Recombinant protein expression by targeting pre-selected chromosomal loci

    Directory of Open Access Journals (Sweden)

    Krömer Wolfgang

    2009-12-01

    Full Text Available Abstract Background Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs. Results We explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs were targeted by Flp recombinase mediated cassette exchange (RMCE. The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context

  15. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    Full Text Available An integrated quantitative genome data analysis was recently able to pinpoint 18 genes on human chromosome 20q that could potentially serve as novel molecular targets for cancer therapy. Researchers Antoine M Snijders and Jian-Hua Mao from Lawrence Berkeley National Laboratory’s Biological Systems and Engineering Division in Berkeley, California, United States, in their study published by the journal Advances in Modern Oncology Research (AMOR sought to compare the amounts of individual mRNAs – messenger RNAs that specify the amino acid sequence of the protein products of gene expression – in cancerous human tissues with corresponding normal tissues. The duo conducted a meta-analysis of genes on chromosome 20q that are found to be consistently upregulated across different human tumor types, while collecting gene transcript data of normal and tumor tissues across 11 different tumor types including brain, breast, colon, gastric, head and neck, liver, lung, ovarian, cervix, pancreas, and prostate cancers. “We calculated the differential expression of all 301 genes present on chromosome 20q for which gene transcript data was available. We then filtered for genes that were upregulated in tumors by at least 1.5 fold (p < 0.05 in seven or more tumor types,” they said. The resulting analysis identified 18 genes – some such as AURKA, UBE2C, TPX2, FAM83D, ZNF217, SALL4 and MMP9 have been previously known to potentially cause cancer. The 18-gene signature is revealed by the study to have robustly elevated levels across human cancers. “We observed significant association of our signature with disease-free survival in all 18 independent data… These data indicated that our signature is broadly predictive for disease-free survival, independent of tumor type,” the researchers said. In certain cases, Snijders and Mao found that increased gene expression was associated with better prognosis. “For example, the increased expressions of MMP9 and

  16. Mean expression of the X chromosome is associated with neuronal density

    Directory of Open Access Journals (Sweden)

    James Thomas Swingland

    2012-11-01

    Full Text Available Neurodegenerative diseases are characterised by neuronal loss. Neuronal loss causes a varying density of neurons across samples which confounds results from gene expression studies. Chromosome X is known to be specifically important in brain. We hypothesised the existence of a chromosomal signature of gene expression associated with the X-chromosome for neurological conditions not normally associated with that chromosome. The hypothesis was investigated using microarray datasets from studies on Parkinson's disease, Alzheimer's disease and Huntington's disease. Data were analysed using Chromowave, an analytical tool for detecting spatially extended expression changes across chromosomes. To examine associations with neuronal density, expressions from a set of neuron specific genes were extracted. The association between these genes and the expression patterns extracted by Chromowave was then analyzed. We observed an extended pattern of low expression of ChrX consistent in all the neurodegenerative disease brain datasets. There was a strong correlation between mean ChrX expression and the pattern extracted from the autosomal neuronal specific genes, but no correlation with mean autosomal expression. No chromosomal patterns associated with the neuron specific genes were found on other chromosomes. The chromosomal expression pattern was not present in datasets from blood cells. The ChrX:Autosome expression ratio was also higher in neuronal cells than in tissues with a mix of cell types.The results suggest that a loss of neurons manifests in gene expression experiments primarily as a reduction in mean expression of genes along ChrX. The most likely explanation for this finding relates to the documented general up-regulation of ChrX in brain tissue which, this work suggests, occurs primarily in neurons. The purpose and mechanisms behind this cell specific higher expression warrant further research, which may also help elucidate connectio

  17. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  18. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Lukasz Potrzebowski

    2008-04-01

    Full Text Available Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI. Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian and marsupial (metatherian lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought.

  19. Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation.

    NARCIS (Netherlands)

    Chen, W.; Jensen, L.R.; Gecz, J.; Fryns, J.P.; Moraine, C.; Brouwer, A.; Chelly, J.; Moser, B.; Ropers, H.H.; Kuss, A.W.

    2007-01-01

    MiRNAs are small noncoding RNAs that control the expression of target genes at the post-transcriptional level and have been reported to modulate various biological processes. Their function as regulatory factors in gene expression renders them attractive candidates for harbouring genetic variants

  20. Gene structure and chromosomal localization of plasma kallikrein

    Energy Technology Data Exchange (ETDEWEB)

    Beaubien, G.; Mbikay, M.; Chretien, M.; Seidah, N.G. (Clinical Research Institute of Montreal, Quebec (Canada)); Rosinski-Chupin, I. (Inst. Pasteur, Paris (France)); Mattei, M.G. (Groupe hospitalier de a Timone, Marseille (France))

    1991-02-12

    Plasma kallikrein (Fletcher factor) is a hepatic serine proteinase that participates in the early phase of blood coagulation. From two genomic libraries, the authors succeeded to isolate four overlapping clones representing the entire rat plasma kallikrein gene. Using selective DNA sequencing, polymerase chain reactions, and restriction mapping, the authors demonstrated that the gene for rat plasma kallikrein was 22 kb in length. Similar to human factor XI the authors also found that the plasma kallikrein gene is composed of 15 exons and 14 introns. A potential transcription initiation step was determined by a novel application of the polymerase chain reaction technique. Computer analysis of the 5{prime}-promoter region of this gene revealed some putative control elements that might regulate the rat plasma kallikrein gene expression. These data and the results of chromosomal localization reported in the present study for mouse (chromosome 8) and human (chromosome 4) plasma kallikrein genes strongly corroborate a genic duplication event from a common ancestor to both plasma kallikrein and factor XI.

  1. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  2. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Science.gov (United States)

    Scerri, Thomas S; Paracchini, Silvia; Morris, Andrew; MacPhie, I Laurence; Talcott, Joel; Stein, John; Smith, Shelley D; Pennington, Bruce F; Olson, Richard K; DeFries, John C; Monaco, Anthony P; Richardson, Alex J

    2010-10-28

    Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  3. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome.

    Science.gov (United States)

    Pessia, Eugénie; Makino, Takashi; Bailly-Bechet, Marc; McLysaght, Aoife; Marais, Gabriel A B

    2012-04-03

    How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.

  4. Cloning, Expression, and Chromosomal Stabilization of the Propionibacterium shermanii Proline Iminopeptidase Gene (pip) for Food-Grade Application in Lactococcus lactis

    Science.gov (United States)

    Leenhouts, Kees; Bolhuis, Albert; Boot, Johan; Deutz, Inge; Toonen, Marjolein; Venema, Gerard; Kok, Jan; Ledeboer, Aat

    1998-01-01

    Proline iminopeptidase produced by Propionibacterium shermanii plays an essential role in the flavor development of Swiss-type cheeses. The enzyme (Pip) was purified and characterized, and the gene (pip) was cloned and expressed in Escherichia coli and Lactococcus lactis, the latter species being an extensively studied, primary cheese starter culture that is less fastidious in its growth condition requirements than P. shermanii. The levels of expression of the pip gene could be enhanced with a factor 3 to 5 by using a strong constitutive promoter in L. lactis or the inducible tac promoter in E. coli. Stable replication of the rolling-circle replicating (rcr) plasmid, used to express pip in L. lactis, could only be obtained by providing the repA gene in trans. Upon the integration of pip, clear gene dosage effects were observed and stable multicopy integrants could be maintained upon growth under the selective pressure of sucrose. The multicopy integrants demonstrated a high degree of stability in the presence of glucose. This study examines the possibilities to overexpress genes that play an important role in food fermentation processes and shows a variety of options to obtain stable food-grade expression of such genes in L. lactis. PMID:9835556

  5. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-01-29

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage.

  6. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  7. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome.

    Science.gov (United States)

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W

    2010-08-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  8. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  9. Fish on avian lampbrush chromosomes produces higher resolution gene mapping

    NARCIS (Netherlands)

    Galkina, S.A.; Deryusheva, S.; Fillon, V.; Vignal, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Rodionov, A.V.; Gaginskaya, E.

    2006-01-01

    Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes

  10. Fish on avian lampbrush chromosomes produces higher resolution gene mapping

    NARCIS (Netherlands)

    Galkina, S.A.; Deryusheva, S.; Fillon, V.; Vignal, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Rodionov, A.V.; Gaginskaya, E.

    2006-01-01

    Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes o

  11. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  12. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems.

    Science.gov (United States)

    Ellegren, Hans

    2011-12-01

    There has been extensive traffic of male-biased genes out of the mammalian and Drosophila X-chromosomes, and there are also reports of an under-representation of male-biased genes on the X. This may reflect an adaptive process driven by natural selection where an autosomal location of male-biased genes is favored since male genes are only exposed to selection one-third of the time when X-linked. However, there are several alternative explanations to "out-of-the-X" gene movement, including mutational bias and a means for X-linked genes to escape meiotic sex chromosome inactivation (MSCI) during spermatogenesis. As a critical test of the hypothesis that genomic relocation of sex-biased genes is an adaptive process, I examined the emergence, and loss, of genes on the chicken Z-chromosome, i.e., a female heterogametic system (males ZZ, females ZW). Here, the analogous prediction would be an emergence of male-biased genes onto, not a loss from, the Z-chromosome because Z is found more often in males than autosomes are. I found that genes expressed in testis but not in ovary are highly over-represented among genes that have emerged on the Z-chromosome during avian evolution. Moreover, genes with male-biased expression are similarly over-represented among new Z-chromosomal genes. Interestingly, genes with female-biased expression have more often moved from than to the Z-chromosome. These observations show that male and female heterogametic organisms display opposing directionalities in the emergence and loss of sex-biased genes on sex chromosomes. This is consistent with theoretical models on the evolution of sexually antagonistic genes in which new mutations are at least partly dominant.

  13. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes.

    Science.gov (United States)

    Wolstenholme, J T; Rissman, E F; Bekiranov, S

    2013-03-01

    Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X-chromosome and a unique second sex chromosome creating the following genotypes: XY(*x) , XX, XY(*) , XX(Y) (*) . This Y(*) mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X-chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X-chromosomes. We present data showing, in addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y(*) model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.

  14. Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance.

    OpenAIRE

    LI, M; Luo, X.J.; Landén, M.; Bergen, S E; Hultman, C M; Li, X.; Zhang, W; Yao, Y. G.; Zhang, C.; Liu, J.; Mattheisen, M; Cichon, S; Mühleisen, T W; Degenhardt, F.A.; M.M. Nöthen

    2016-01-01

    BackgroundBipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.AimsWe sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.MethodTo detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes ...

  15. Stable expression of human H1-histamine-receptor cDNA in Chinese hamster ovary cells. Pharmacological characterisation of the protein, tissue distribution of messenger RNA and chromosomal localisation of the gene.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Noyer, M; Gillard, M; Guillaume, J P; Garcia, L; Szpirer, C; Szpirer, J; Bollen, A

    1994-09-01

    A cDNA clone for the histamine H1 receptor was isolated from a human lung cDNA library; it encoded a protein of 487 amino acids which showed characteristic features of G-protein-coupled receptors. The percentages of identity of the deduced amino acid sequence with bovine, rat and guinea pig H1 histamine receptors were 82.6%, 79.4% and 73.3%, respectively, whereas these percentages decreased to 74.6%, 66% and 56.7% for the amino acid sequence of the third intracellular loop. The human H1-receptor cDNA was transfected into Chinese hamster ovary cells (CHO) via an eukaryotic expression vector; the receptor protein present on cell membranes specifically bound [3H]mepyramine with a Kd of 3.7 nM. The binding was displaced by H1-histamine-receptor antagonists and histamine. Northern blot analysis indicated the presence of two histamine H1 receptor mRNAs of 3.5 kb and 4.1 kb in various human tissues and an additional mRNA of 4.8 kb restricted to the human brain. Finally, by means of somatic cell hybrids segregating either human or rat chromosomes, the gene for histamine H1 receptor was found to reside on human chromosome 3 and rat chromosome 4.

  16. The recurrent chromosomal translocation t(12;18)(q14~15;q12~21) causes the fusion gene HMGA2-SETBP1 and HMGA2 expression in lipoma and osteochondrolipoma.

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre

    2015-09-01

    Lipomas are the most common soft tissue tumors in adults. They often carry chromosome aberrations involving 12q13~15 leading to rearrangements of the HMGA2 gene in 12q14.3, with breakpoints occurring within or outside of the gene. Here, we present eleven lipomas and one osteochondrolipoma with a novel recurrent chromosome aberration, t(12;18)(q14~15;q12~21). Molecular studies on eight of the tumors showed that full-length HMGA2 transcript was expressed in three and a chimeric HMGA2 transcript in five of them. In three lipomas and in the osteochondrolipoma, exons 1-3 of HMGA2 were fused to a sequence of SETBP1 on 18q12.3 or an intragenic sequence from 18q12.3 circa 10 kbp distal to SETBP1. In another lipoma, exons 1-4 of HMGA2 were fused to an intronic sequence of GRIP1 which maps to chromosome band 12q14.3, distal to HMGA2. The ensuing HMGA2 fusion transcripts code for putative proteins which contain amino acid residues of HMGA2 corresponding to exons 1-3 (or exons 1-4 in one case) followed by amino acid residues corresponding to the fused sequences. Thus, the pattern is similar to the rearrangements of HMGA2 found in other lipomas, i.e., disruption of the HMGA2 locus leaves intact exons 1-3 which encode the AT-hooks domains and separates them from the 3'-terminal part of the gene. The fact that the examined osteochondrolipoma had a t(12;18) and a HMGA2-SETBP1 fusion identical to the findings in the much more common ordinary lipomas, underscores the close developmental relationship between the two tumor types.

  17. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S

    2016-03-26

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on

  18. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  19. Human artificial chromosome vectors meet stem cells: new prospects for gene delivery.

    Science.gov (United States)

    Ren, Xianying; Tahimic, Candice Ginn T; Katoh, Motonobu; Kurimasa, Akihiro; Inoue, Toshiaki; Oshimura, Mitsuo

    2006-01-01

    The recent emergence of stem cell-based tissue engineering has now opened up new venues for gene therapy. The task now is to develop safe and effective vectors that can deliver therapeutic genes into specific stem cell lines and maintain long-term regulated expression of these genes. Human artificial chromosomes (HACs) possess several characteristics that require gene therapy vectors, including a stable episomal maintenance, and the capacity for large gene inserts. HACs can also carry genomic loci with regulatory elements, thus allowing for the expression of transgenes in a genetic environment similar to the chromosome. Currently, HACs are constructed by a two prone approaches. Using a top-down strategy, HACs can be generated from fragmenting endogenous chromosomes. By a bottom-up strategy, HACs can be created de novo from cloned chromosomal components using chromosome engineering. This review describes the current advances in developing HACs, with the main focus on their applications and potential value in gene delivery, such as HAC-mediated gene expression in embryonic, adult stem cells, and transgenic animals.

  20. Deficit of mito-nuclear genes on the human X chromosome predates sex chromosome formation

    OpenAIRE

    Dean, R; Zimmer, F.; Mank, J E

    2015-01-01

    Two taxa studied to date, the therian mammals and Caenorhaditis elegans, display under-representations of mito-nuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions ov...

  1. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae)

    Science.gov (United States)

    Baker, Richard H.; Narechania, Apurva; DeSalle, Rob; Johns, Philip M.; Reinhardt, Josephine A.; Wilkinson, Gerald S.

    2016-01-01

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species, Teleopsis dalmanni. Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content—creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression—are elevated on the X chromosome of T. dalmanni. This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they

  2. Comprehensive evaluation of the contribution of X chromosome genes to platinum sensitivity.

    Science.gov (United States)

    Gamazon, Eric R; Im, Hae Kyung; O'Donnell, Peter H; Ziliak, Dana; Stark, Amy L; Cox, Nancy J; Dolan, M Eileen; Huang, Rong Stephanie

    2011-03-01

    Using a genome-wide gene expression data set generated from Affymetrix GeneChip Human Exon 1.0ST array, we comprehensively surveyed the role of 322 X chromosome gene expression traits on cellular sensitivity to cisplatin and carboplatin. We identified 31 and 17 X chromosome genes whose expression levels are significantly correlated (after multiple testing correction) with sensitivity to carboplatin and cisplatin, respectively, in the combined HapMap CEU (Utah residents with ancestry from northern and western Europe) and YRI (Yoruba in Ibahan, Nigeria) populations (false discovery rate, FDR gene expression quantification method, the Illumina Sentrix Human-6 Expression BeadChip, measured on the same HapMap cell lines, we found that 4 and 2 of these genes are significantly associated with carboplatin and cisplatin sensitivity, respectively, in both analyses. Two genes, CTPS2 and DLG3, were identified by both genome-wide gene expression analyses as correlated with cellular sensitivity to both platinating agents. The expression of DLG3 gene was also found to correlate with cellular sensitivity to platinating agents in NCI-60 cancer cell lines. In addition, we evaluated whether the expression of X chromosome genes contributed to the observed differences in sensitivity to the platinums between CEU and YRI-derived cell lines. Of the 34 distinct genes significantly correlated with either carboplatin or cisplatin sensitivity, 14 are differentially expressed (defined as P genes play a role in cellular sensitivity to platinating agents and differences in the expression level of these genes are an important source of variation that should be included in comprehensive pharmacogenomic studies.

  3. Chromosomal Location and Expression of Green Fluorescent Protein (gfp) Gene in Microspore Derived Transgenic Barley (Hordeum vulgare L.)%转基因大麦中gfp基因的染色体位置及其表达

    Institute of Scientific and Technical Information of China (English)

    陈建民; Carlson A R; 万建民; Kasha K J

    2003-01-01

    通过对大麦小孢子进行基因枪轰击获得4株转绿色荧光蛋白基因(gfp)的植株(A、C、D、E),以gfp基因为探针进行荧光原位杂交(FISH)研究转化植株中转基因插入位置和基因表达.4个株系在染色体7L(5HL)的不同位置都有一个插入点,而E株系在染色体5S(7HS)还有第2个插入点.所有的转基因T0代植株都是半合子并在T1、T2代发生分离.D株系GFP未表达,但FISH和PCR分析表明gfp基因已成功插入其染色体.各株系在根尖和花粉中的GFP表达水平不同:C株系在花粉表达强而在根尖表达中等;A株系在花粉中等表达而在根尖表达较淡;E株系则在根尖高表达,花粉中等表达.A和C株系在根尖和花粉的GFP分离都表现单位点特性,而E株系的根尖分离表现重叠作用(15∶1)特征,但在花粉中表达GFP的频率低.PCR结果和3个分离株系的根尖表达结果一致.D和E株系的GFP表达不正常可能和gfp基因插入位置或基因的结构有关.%Four doubled haploid barley lines (A,C,D,E) derived from gfp (green fluorescent protein) transformation and selection following particle bombardment of microspores were studied for gene expression pattern and the location of genome inserts.The integration sites were detected by fluorescence in situ hybridization (FISH) using the gfp plasmid DNA as a probe.Plants from events A,C,D and E all have a single insert site on chromosome 7L(5HL) at different locations while line E has a second insert site on chromosome 5S(7HS).All original transgenic plants were hemizygous for the transgenes and segregated in the T1 and T2 generations.Although line D had no GFP expression,FISH and PCR could detect gfp gene on its chromosome in transformed plants.Expression levels of GFP varied with lines and tissues examined.Plants from line C showed good expression in pollen and an intermediate level in root tips.Plants from A have intermediate expression of GFP in the pollen and light expression in the

  4. Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation.

    Science.gov (United States)

    Oka, Ayako; Takada, Toyoyuki; Fujisawa, Hironori; Shiroishi, Toshihiko

    2014-04-01

    Improper gene regulation is implicated in reproductive isolation, but its genetic and molecular bases are unknown. We previously reported that a mouse inter-subspecific X chromosome substitution strain shows reproductive isolation characterized by male-specific sterility due to disruption of meiotic entry in spermatogenesis. Here, we conducted comprehensive transcriptional profiling of the testicular cells of this strain by microarray. The results clearly revealed gross misregulation of gene expression in the substituted donor X chromosome. Such misregulation occurred prior to detectable spermatogenetic impairment, suggesting that it is a primal event in reproductive isolation. The misregulation of X-linked genes showed asymmetry; more genes were disproportionally downregulated rather than upregulated. Furthermore, this misregulation subsequently resulted in perturbation of global transcriptional regulation of autosomal genes, probably by cascading deleterious effects. Remarkably, this transcriptional misregulation was substantially restored by introduction of chromosome 1 from the same donor strain as the X chromosome. This finding implies that one of regulatory genes acting in trans for X-linked target genes is located on chromosome 1. This study collectively suggests that regulatory incompatibility is a major cause of reproductive isolation in the X chromosome substitution strain.

  5. Establishment and characterization of A novel Philadelphia-chromosome positive chronic myeloid leukemia cell line, TCC-S, expressing P210 and P190 BCR/ABL transcripts but missing normal ABL gene.

    Science.gov (United States)

    Van, Phan Nguyen Thanh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2005-03-01

    A novel Philadelphia-chromosome positive (Ph+) cell line, TCC-S, has been established from a patient with Ph+ chronic myeloid leukemia (CML) in the blastic crisis. TCC-S cells were shown to express both P210 and P190 BCR/ABL transcripts by reverse transcriptase-polymerase chain reaction (PCR), although quantitative-PCR revealed that TCC-S cells mainly expressed P210 BCR/ABL transcript. Karyotype analysis revealed several triploid clones which constantly harbored two der(9)del(9) (p12)t(9;22) (q34;qll)s and two del(9) (q21)s. The der(9)del(9) (p12)t(9;22) (q34;q11) is rarely found in other CML cell lines. Moreover, to the best of our knowledge, del(9) (q21) resulting in missing of a restrict region including normal ABL gene has not been found among CML cell lines previously described. Thus, TCC-S cells with only BCR/ABL gene and no normal ABL gene may be a useful tool for functional study of ABL in Ph+ CML.

  6. Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization.

    Directory of Open Access Journals (Sweden)

    Véronique Brault

    2006-07-01

    Full Text Available One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures.

  7. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences. (ERB)

  8. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep.

    Science.gov (United States)

    Hediger, R; Ansari, H A; Stranzinger, G F

    1991-01-01

    By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.

  9. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes.

    Science.gov (United States)

    Soh, Y Q Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G; Graves, Tina; Minx, Patrick J; Fulton, Robert S; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L; Rozen, Steve; Hughes, Jennifer F; Owens, Elaine; Womack, James E; Murphy, William J; Cao, Qing; de Jong, Pieter; Warren, Wesley C; Wilson, Richard K; Skaletsky, Helen; Page, David C

    2014-11-06

    We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.

  10. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  11. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  12. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  13. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter

    Energy Technology Data Exchange (ETDEWEB)

    White, R.A.; Dowler, L.L. [Univ. of Missouri, Kansas City, MO (United States); Adkison, L.R. [Mercer Univ. School of Medicine, Macon, GA (United States); Ray, R.B. [St. Louis Univ. Health Sciences Center, St. Louis, MO (United States)

    1997-02-01

    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome. 10 refs., 2 figs.

  14. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or posttranscriptional processing of coding genes

    Directory of Open Access Journals (Sweden)

    Atanu eGhorai

    2014-04-01

    Full Text Available MicroRNAs target specific mRNA(s to silence its expression and thereby regulate various cellular processes. We have investigated miRNA gene counts in chromosomes for 20 different species and observed wide variation. Certain chromosomes have extremely high number of miRNA gene compared with others in all the species. For example, high number of miRNA gene in X chromosome and the least or absence of miRNA gene in Y chromosome was observed in all species. To search the criteria governing such variation of miRNA gene counts in chromosomes, we have selected three parameters- length, number of non-coding and coding genes in a chromosome. We have calculated Pearson’s correlation coefficient of miRNA gene counts with length, number of non-coding and coding genes in a chromosome for all 20 species. Major number of species showed that number of miRNA gene was not correlated with chromosome length. 85% of species under study showed strong positive correlation coefficient (r≥0.5 between the numbers of miRNA gene vs non-coding gene in chromosomes as expected because miRNA is a sub-set of non-coding genes. 55% species under study showed strong positive correlation coefficient (r≥0.5 between numbers of miRNA gene vs coding gene. We hypothesize biogenesis of miRNA largely depends on coding genes, an evolutionary conserved process. Chromosomes having higher number of miRNA genes will be most likely playing regulatory roles in several cellular processes including different disorders. In humans, cancer and cardiovascular disease associated miRNAs are mostly intergenic and located in Chromosome 19, X, 14 and 1.

  15. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes.

    Science.gov (United States)

    Vernet, Nadège; Mahadevaiah, Shantha K; de Rooij, Dirk G; Burgoyne, Paul S; Ellis, Peter J I

    2016-10-13

    During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as 'executioners' for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism.

  16. Artifically inserting a reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of Marek's disease virus (MDV) alters expression of nearby MDV genes

    Science.gov (United States)

    The long terminal repeat (LTR) sequence of reticuloendotheliosis virus (REV) was inserted into the very virulent Marek’s disease virus (MDV) Md5 bacterial artificial chromosome clone. The insertion site was nearly identical to the REV LTR that was naturally inserted into the JM/102W strain of MDV fo...

  17. Genetic and epigenetic changes of genes on chromosome 3 in human urogenital tumors

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2011-02-01

    Full Text Available Numerous disorders of genes and alterations of their expression are observed on a short arm of human chromosome 3, particularly in 3p14, 3p21, 3p24 compact regions in epithelial tumors. These aberrations affect the key biological processes specific for cancerogenesis. Such genes or their products could be used for diagnostics and prognosis of cancer. Genetical and epigenetical changes of a number of genes on chromosome 3 in human urogenital cancer, their role in cellular processes and signal pathways and perspectives as molecular markers of cancer diseases are analyzed in the review

  18. Gene duplication of the human peptide YY gene (PYY) generated the pancreatic polypeptide gene (PPY) on chromosome 17q21.1

    Energy Technology Data Exchange (ETDEWEB)

    Hort, Y.; Shine, J.; Herzog, H. [Garvan Inst. of Medical Research, Sydney (Australia)

    1995-03-01

    Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) are structurally related but functionally diverse peptides, encoded by separate genes and expressed in different tissues. Although the human NPY gene has been mapped to chromosome 7, the authors demonstrate here that the genes for human PYY and PP (PPY) are localized only 10 kb apart from each another on chromosome 17q21.1. The high degree of homology between the members of this gene family, both in primary sequence and exon/intron structure, suggests that the NYP and the PYY genes arose from an initial gene duplication event, with a subsequent tandem duplication of the PYY gene being responsible for the creation of the PPY gene. A second weaker hybridization signal also found on chromosome 17q11 and results obtained by Southern blot analysis suggest that the entire PYY-PPY region has undergone a further duplication event. 27 refs., 5 figs.

  19. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    Science.gov (United States)

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-06-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5.

  20. Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts.

    Science.gov (United States)

    Hwang, Jae Yeon; Oh, Jong-Nam; Park, Chi-Hun; Lee, Dong-Kyung; Lee, Chang-Kyu

    2015-11-01

    X-chromosome inactivation (XCI) is an epigenetic mechanism that occurs in the eutherian embryo development to equalize the dosage of X-linked genes between males and females. This event is regulated by various factors, and the genes located in the X-chromosome inactivation center (XIC), which is known to be an evolutionary conserved region, are associated with XCI; however, a number of studies regarding this epigenetic event and genomic region are primarily performed in mouse models despite its species-specific features. Thus, in this study, the porcine XIC was identified, and we analyzed the expression of XIC-linked genes in porcine preimplantation embryos. Comparative sequence analysis revealed that the porcine XIC is synteny with that of human and the non-coding RNAs were less conserved compared with the protein coding genes in the XIC. Among the XIC-linked genes, the expression levels of CHIC1 and RLIM were decreased from morula to blastocyst development and their dosage was compensated between the male and female blastocysts. Additionally, the CpG sites of CHIC1 were approximately 50% methylated in parthenote blastocysts. Contrary to these genes, XIST and LOC102165544, an uncharacterized non-coding gene, showed dramatically increased expression levels after the morula stage and preferential female expression in blastocysts. Imprinted XIST expression was not observed, and their CpG sites were hypo-methylated in parthenogenic blastocysts. These results demonstrate that the porcine XIC consists of an evolutionary conserved structure with fewer sequences conserved non-coding RNAs. In addition, a few XIC-linked genes would likely achieve dosage compensation, but XCI would not be completed in porcine blastocysts.

  1. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    OpenAIRE

    Rondon, Michelle R.; Sandra J Raffel; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC li...

  2. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  3. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D;

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for P....... carinii, estimated on the basis of the sizes of chromosomes, is 7,000 kb. Genetic heterogeneity among different P. carinii isolates was documented by demonstration of chromosomal size variability. By hybridization studies, the genes for topoisomerase I, dihydrofolate reductase, rRNA, actin......, and thymidylate synthase were mapped to single chromosomes of approximately 650, 590, 550, 460, and 350 kb, respectively. Hybridization studies further confirmed the genetic heterogeneity of P. carinii....

  4. Y-chromosomal genes affecting male fertility: A review

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur Dhanoa

    2016-07-01

    Full Text Available The mammalian sex-chromosomes (X and Y have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility.

  5. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages.

    Science.gov (United States)

    Kemkemer, Claus; Kohn, Matthias; Kehrer-Sawatzki, Hildegard; Fundele, Reinald H; Hameister, Horst

    2009-01-01

    Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.

  6. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  7. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  8. Artificially inserting a reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of Marek's disease virus (MDV) alters expression of nearby MDV genes.

    Science.gov (United States)

    Kim, Taejoong; Mays, Jody; Fadly, Aly; Silva, Robert F

    2011-06-01

    Researchers reported that co-cultivating the JM/102W strain of Marek's disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in an REV long terminal repeat (LTR) being inserted into the internal repeat short (IRS) region of JM/102W. When the resulting recombinant virus was serially passed in cell culture, the initial LTR was duplicated and a second LTR spontaneously appeared in the terminal repeat short (TRS) region of the MDV genome. The virus, designated RM1, was significantly attenuated but still induced severe bursal and thymic atrophy (Isfort et al. PNAS 89:991-995). To determine whether the altered phenotype was due solely to the LTR, we cloned the LTR from the RM1 IRS region and inserted it into the IRS region of a very virulent bacterial artificial clone (BAC) of the Md5 strain of MDV, which we designated rMd5-RM1-LTR. During blind passage in duck embryo fibroblast cultures, the initial LTR in the rMd5-RM1-LTR was also duplicated, with LTRs appearing in both IRS and TRS regions of the MDV genome. The inserted LTR sequences and transcripts associated with the MDV open reading frames MDV085, MDV086, SORF2, US1, and US10 were molecularly characterized. The parental Md5 BAC contains a family of transcripts of 3, 2, and 1 kb that all terminate at the end of the US10 gene. The rMd5-RM1-LTR and RM1 viruses both express an additional 4 kb transcript that originates in the LTR and also terminates after US10. Collectively, the data suggest that our engineered rMd5-RM1-LTR virus very closely resembles the RM1 virus in its structure and transcription patterns.

  9. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-06

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.

  10. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  11. Isolation of Breast Tumor Suppressor Genes from Chromosome 11p

    Science.gov (United States)

    2001-09-01

    at chromosome crucial role in urogenital development (Pelletier et al., llp15 has also been described in Wilms tumors but thus 1991). However...Atkins L and Riccardi VM. (1979). Nowak NJ, Evans G, Stanbridge EJ, de Jong P, Shows TB , Cytogenet. Cell Genet., 24, 185-192. Weissman BE and Higgins MJ...Singh-Kahlon P, Weksberg R, Squire J, Grundy P, Coppes MJ and Haber D. (1995). Hematology/ Shows TB and Higgins MJ. (1994). Genes Chromosomes Oncology

  12. Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Philip Philge

    2012-03-01

    Full Text Available Abstract Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  13. Sequence signatures involved in targeting the Male-Specific Lethal complex to X-chromosomal genes in Drosophila melanogaster.

    Science.gov (United States)

    Philip, Philge; Pettersson, Fredrik; Stenberg, Per

    2012-03-19

    In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  14. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Science.gov (United States)

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  15. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Science.gov (United States)

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  16. Y Chromosome Regulation of Autism Susceptibility Genes

    Science.gov (United States)

    2009-06-01

    of chromatin immunoprecipitation and genome-wide promoter tiling microarray (ChIP-Chip) experiments with gonadal cells isolated from mouse embryos ...disorders: developmental disconnection syndromes. Curr Opin Neurobiol, 2007. 17(1): p. 103-11. 4. Kumar, R.A. and S.L. Christian , Genetics of autism... Christian , S.L., et al., Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry, 2008. 63(12): p. 1111

  17. Identification of Candidate Signaling Genes Including Regulators of Chromosome Condensation 1 Protein Family Differentially Expressed in the Soybean - Phytophthora Sojae Interaction

    Science.gov (United States)

    Stem and root rot caused by the oomycete pathogen, Phytopthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense resp...

  18. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  19. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    Energy Technology Data Exchange (ETDEWEB)

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. (National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  20. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  1. Synteny mapping of five human chromosome 7 genes on bovine chromosomes 4 and 21.

    Science.gov (United States)

    Antoniou, E; Womack, J E; Grosz, M D

    1999-01-01

    Five genes on human chromosome 7 (HSA 7) were assigned to bovine chromosome 21 (BTA 21) and 4 (BTA 4) using a bovine-rodent somatic hybrid cell panel. These five genes were alpha-I subunit of adenylate cyclase-inhibiting G-protein (GNAI1), alpha/beta preprotachykinin (TAC1), reelin (RELN), c-AMP dependant protein kinase type II beta regulatory chain (PRKAR2B) and apolipoprotein A1 regulatory protein 1 (TFCOUP2). Four genes mapped to BTA 4 (GNAI1, TAC1, RELN, PRKAR2B) while one gene mapped to BTA 21 (TFCOUP2). This study confirms the synteny conservation between HSA 7 and BTA 4, finely maps the breakpoints of conserved synteny on HSA 7 and defines a new synteny conservation between HSA 7 and BTA 21.

  2. Ectopic integration of chromosomal genes in Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, B.M.; Lacks, S.A.

    1984-12-01

    When a DNA fragment containing a marker gene was ligated to random chromosomal fragments of Streptococcus pneumoniae and used to transform a recipient strain lacking that gene, the gene was integrated at various locations in the chromosome. Such ectopic integration was demonstrated for the malM gene, and its molecular basis was analyzed with defined donor molecules consisting of ligated fragments containing the malM and sul genes of S. pneumoniae. In a recipient strain deleted in the mal region of its chromosome, these constructs gave Mal/sup +/ transformants in which the malM and sul genes were now linked, with malM located between duplicate sul segments. Ectopic integration was unstable under nonselective conditions; mal(sul) ectopic insertions were lost at a rate of 0.05% per generation. Several possible mechanisms of ectopic integration were examined. The donor molecule is most likely to be a circular form of ligated homologous and nonhomologous fragments that, after entry into the cell, undergoes circular synapsis with the recipient chromosome at the site of homology, followed by repair and additive integration.

  3. Cloning chromosome specific genes by reciprocal probing of arrayed cDNA and cosmid libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A.; Lee, C.C.; Wehnert, M. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    A human gene map will greatly facilitate the association of genes to single locus diseases and provide candidates for genes involved in complex genetic traits. Given the estimated 100,000 human genes an integrated strategy with a high throughput approach for isolation and mapping of expressed sequences is needed to create such a gene map. We have developed an approach that allows high throughput gene isolation and mapping using arrayed genomic and cDNA lambda libraries. Reciprocal probing of the arrayed genomic and cDNA cosmic libraries can rapidly establish cDNA-cosmid associations. Fluorescence in situ hybridization (FISH) chromosomal mapping and expressed sequence tag/sequence tag site (EST/STS) primers generated from DNA sequence of PCR-based mapping using somatic hybrid cell line mapping panels were utilized to characterize further the hybridization-based cDNA cosmid association. We have applied this approach to chromosome 17 using a placental cDNA library and have identified a total of 30 genes out of which 11 are novel. Furthermore seven cDNAs were mapped to 17q21 in this study, providing novel candidate genes for BRCA-1 gene for early onset breast cancer. The results of our study clearly show that an integration of an expression map into physical and genetic maps can provide candidate genes for human diseases that have been mapped to specific regions. This approach combined with the current physical mapping efforts could efficiently provide a detailed human gene map.

  4. Association analysis of chromosome 1 migraine candidate genes

    Directory of Open Access Journals (Sweden)

    MacMillan John

    2007-08-01

    Full Text Available Abstract Background Migraine with aura (MA is a subtype of typical migraine. Migraine with aura (MA also encompasses a rare severe subtype Familial Hemiplegic Migraine (FHM with several known genetic loci. The type 2 FHM (FHM-2 susceptibility locus maps to chromosome 1q23 and mutations in the ATP1A2 gene at this site have recently been implicated. We have previously provided evidence of linkage of typical migraine (predominantly MA to microsatellite markers on chromosome 1, in the 1q31 and 1q23 regions. In this study, we have undertaken a large genomic investigation involving candidate genes that lie within the chromosome 1q23 and 1q31 regions using an association analysis approach. Methods We have genotyped a large population of case-controls (243 unrelated Caucasian migraineurs versus 243 controls examining a set of 5 single nucleotide polymorphisms (SNPs and the Fas Ligand dinucleotide repeat marker, located within the chromosome 1q23 and 1q31 regions. Results Several genes have been studied including membrane protein (ATP 1 subtype A4 and FasL, cytoplasmic glycoprotein (CASQ 1 genes and potassium (KCN J9 and KCN J10 and calcium (CACNA1E channel genes in 243 migraineurs (including 85% MA and 15% of migraine without aura (MO and 243 matched controls. After correction for multiple testing, chi-square results showed non-significant P values (P > 0.008 across all SNPs (and a CA repeat tested in these different genes, however results with the KCN J10 marker gave interesting results (P = 0.02 that may be worth exploring further in other populations. Conclusion These results do not show a significant role for the tested candidate gene variants and also do not support the hypothesis that a common chromosome 1 defective gene influences both FHM and the more common forms of migraine.

  5. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT, recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  6. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Science.gov (United States)

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  7. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes

    Directory of Open Access Journals (Sweden)

    Austen B. McGuire

    2016-05-01

    Full Text Available Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G negative euchromatic (light bands and G-positive heterochromatic (dark bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

  8. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    Science.gov (United States)

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-05-05

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

  9. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2001-02-01

    Full Text Available Abstract Background Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. Results The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb. The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. Conclusions Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.

  10. Construction of a genetic map of human chromosome 17 by use of chromosome-mediated gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiming; Gorman, P.A.; Rider, S.H.; Hedge, P.J.; Moore, G.; Prichard, C.; Sheer, D.; Solomon, E. (Imperial Cancer Research Fund, London (England))

    1988-11-01

    The authors used somatic-cell hybrids, containing as their only human genetic contribution part or all of chromosome 17, as donors for chromosome-mediated gene transfer. A total of 54 independent transfectant clones were isolated and analyzed by use of probes or isoenzymes for >20 loci located on chromosome 17. By combining the data from this chromosome-mediated gene transfer transfectant panel, conventional somatic-cell hybrids containing well-defined breaks on chromosome 17, and in situ hybridization they propose the following order for these loci; pter-(TP53-RNP2-D17S1)-(MYH2-MYH1)-D17Z1-CRYB1-(ERBA1-GCSF-NGL)-acute promyelocytic leukemia breakpoint-RNU2-HOX2-(NGFR-COLIAI-MPO)-GAA-UMPH-GHC-TK1-GALK-qter. Using chromosome-mediated gene transfer, they have also regionally localized the random probes D17S6 to D17S19 on chromosome 17.

  11. Expressive Language Delay Related to Chromosome 7 Defect

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-11-01

    Full Text Available Genetic analysis in a boy aged 8 years 10 months with severe delay in expressive language and orofacial dyspraxia uncovered reciprocal duplications of the Williams-Beuren syndrome (WBS locus at chromosome 7q11.23, in a report from the University of Alberta, and other centers in Canada, USA, and Spain.

  12. The genomic distribution of sex-biased genes in drosophila serrata: X chromosome demasculinization, feminization, and hyperexpression in both sexes.

    Science.gov (United States)

    Allen, Scott L; Bonduriansky, Russell; Chenoweth, Stephen F

    2013-01-01

    The chromosomal distribution of genes with sex-biased expression is often nonrandom, and in species with XY sex chromosome systems, it is common to observe a deficit of X-linked male-biased genes and an excess of X-linked female-biased genes. One explanation for this pattern is that sex-specific selection has shaped the gene content of the X. Alternatively, the deficit of male-biased and excess of female-biased genes could be an artifact of differences between the sexes in the global expression level of their X chromosome(s), perhaps brought about by a lack of dosage compensation in males and hyperexpression in females. In the montium fruit fly, Drosophila serrata, both these explanations can account for a deficit of male-biased and excess of female-biased X-linked genes. Using genome-wide expression data from multiple male and female tissues (n = 176 hybridizations), we found that testis- and accessory gland-specific genes are underrepresented whereas female ovary-specific genes are overrepresented on the X chromosome, suggesting that X-linkage is disfavored for male function genes but favored for female function genes. However, genes with such sex-specific functions did not fully account for the deficit of male-biased and excess of female-biased X-linked genes. We did, however, observe sex differences in the global expression level of the X chromosome and autosomes. Surprisingly, and in contrast to other species where a lack of dosage compensation in males is responsible, we found that hyperexpression of X-linked genes in both sexes leads to this imbalance in D. serrata. Our results highlight how common genomic distributions of sex-biased genes, even among closely related species, may arise via quite different evolutionary processes.

  13. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    To investigate the function of the laminin alpha5-chain, previously identified in mice, cDNA clones encoding the 953-amino-acid carboxy terminal G-domain of the human laminin alpha5-chain were characterized. Northern blot analysis showed that the laminin alpha5-chain is expressed in human placenta...

  14. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  15. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    DEFF Research Database (Denmark)

    de Souza, S J; Camargo, A A; Briones, M R;

    2000-01-01

    by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48......Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central...... coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1, 181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes...

  16. Identification of susceptibility genes for bipolar affective disorder and schizophrenia on chromosome 22q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob Eg

    2006-01-01

    Linkage analyses suggest that chromosome 22q12-13 may harbor one or more shared susceptibility loci for bipolar affective disorder (BPD) and schizophrenia (SZ). In a study of distantly related cases and control individuals from the Faeroe Islands our group has previously reported that chromosome 22......q13 may harbor two shared susceptibility loci for BPD and SZ. The aim of the Ph.D. project was to identify and characterize susceptibility genes for BPD and SZ located in these two loci on 22q13, primarily by association analyses of selected positional candidate genes in a number of population...... samples (total of 1,751 individuals), and by bioinformatic and expression analyses of a subset of disease associated genes and gene variants. In total 67 single nucleotide polymorphisms (SNPs) located in 18 positional candidate genes, and 4 microsattelite markers were investigated, using a Scottish case...

  17. Molecular structure and chromosomal mapping of the human homolog of the agouti gene

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H.Y.; Woychik, R.P. [Oak Ridge National Lab., TN (United States); Bultman, S.J. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Oak Ridge, TN (United States); Loeffler, C.; Hansmann, I. [Universitaet Goettingen (Germany); Chen, W.J.; Furdon, P.J.; Wilkison, W. [Glaxo Research Institute, Research Triangle Park, NC (United States); Powell, J.G.; Usala, A.L. [Eastern Carolina Univ., Greenville, NC (United States)

    1994-10-11

    The agouti (a) locus in mouse chromosome 2 normally regulates coat color pigmentation. The mouse agouti gene was recently cloned and shown to encode a distinctive 131-amino acid protein with a consensus signal peptide. Here the authors describe the cloning of the human homolog of the mouse agouti gene using an interspecies DNA-hybridization approach. Sequence analysis revealed that the coding region of the human agouti gene is 85% identical to the mouse gene and has the potential to encode a protein of 132 amino acids with a consensus signal peptide. Chromosomal assignment using somatic-cell-hybrid mapping panels and fluorescence in situ hybridization demonstrated that the human agouti gene maps to chromosome band 20q11.2. This result revealed that the human agouti gene is closely linked to several traits, including a locus called MODY (for maturity onset diabetes of the young) and another region that is associated with the development of myeloid leukemia. Initial expression studies with RNA from several adult human tissues showed that the human agouti gene is expressed in adipose tissue and testis.

  18. PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice.

    Science.gov (United States)

    Maclary, Emily; Hinten, Michael; Harris, Clair; Sethuraman, Shriya; Gayen, Srimonta; Kalantry, Sundeep

    2017-05-03

    Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed (-/-) TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed (-/-) TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed (-/-) TSCs are depleted for active chromatin characteristics in WT TSCs. A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed (-/-) TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly.

  19. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2009-01-01

    Full Text Available Abstract Correction to Kirsch S, Pasantes J, Wolf A, Bogdanova N, Münch C, Pennekamp P, Krawczak M, Dworniczak B, Schempp W: Chromosomal evolution of the PKD1 gene family in primates. BMC Evolutionary Biology 2008, 8:263 (doi:10.1186/1471-2148-8-263

  20. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  1. Studies of Tumor Suppressor Genes via Chromosome Engineering

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kugoh

    2015-12-01

    Full Text Available The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.

  2. Studies of Tumor Suppressor Genes via Chromosome Engineering.

    Science.gov (United States)

    Kugoh, Hiroyuki; Ohira, Takahito; Oshimura, Mitsuo

    2015-12-30

    The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT) is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.

  3. Thermolabile phenol sulfotransferase gene (STM): Localization to human chromosome 16p11.2

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, I.A.; Her, C.; Weinshilboum, M. [Mayo Medical School, Rochester, MN (United States)] [and others

    1994-09-01

    Thermolabile (TL) phenol sulfotransferase (PST) catalyzes the sulfate conjugation of phenolic monoamine neurotransmitters such as dopamine and serotonin. We recently cloned a cDNA for human liver TL PST and expressed it in COS-1 cells. We now report the chromosomal localization of the human TL PST gene (STM) as well as its partial sequence. DNA from NIGMS Human/Rodent Somatic Cell Hybrid Mapping Panels 1 and 2 was screened by use of the PCR, and the STM gene was mapped to chromosome 16. Regional localization to 16p11.2 was performed by PCR analysis of a high-resolution mouse/human somatic cell hybrid panel that contained defined portions of human chromosome 16. 15 refs., 2 figs.

  4. Selection and mapping of replication origins from a 500-kb region of the human X chromosome and their relationship to gene expression.

    Science.gov (United States)

    Rivella, S; Palermo, B; Pelizon, C; Sala, C; Arrigo, G; Toniolo, D

    1999-11-15

    In higher eukaryotes the mechanism controlling initiation of DNA replication remains largely unknown. New technologies are needed to shed light on how DNA replication initiates along the genome in specific regions. To identify the human DNA sequence requirements for initiation of replication, we developed a new method that allows selection of replication origins starting from large genomic regions of human DNA. We repeatedly isolated 15 new putative replication origins (PROs) from a human DNA region of 500 kb in which 17 genes have previously been characterized. Fine-mapping of these PROs showed that DNA replication can initiate at many specific points along actively transcribed DNA in the cell lines used for our selection. In conclusion, in this paper we describe a new method to identify PROs that suggests that the availability of initiation sites is dependent on the transcriptional state of the DNA.

  5. Dynamics of sex expression and chromosome diversity in Cucurbitaceae: a story in the making

    Indian Academy of Sciences (India)

    Biplab Kumar Bhowmick; Sumita Jha

    2015-12-01

    The family Cucurbitaceae showcases a wide range of sexual phenotypes being variedly regulated by biological and environmental factors. In the present context, we have tried to assemble reports of cytogenetic investigations carried out in cucurbits accompanied by information on sex expression diversities and chromosomal or molecular basis of sex determination in dioecious (or other sexual types, if reported) taxa known so far. Most of the Cucurbitaceae tribes have mixed sexual phenotypes with varying range of chromosome numbers and hence, ancestral conditions become difficult to probe. Occurrence of polyploidy is rare in the family and has no influence on sexual traits. The sex determination mechanisms have been elucidated in some well-studied taxa like Bryonia, Coccinia and Cucumis showing interplay of genic, biochemical, developmental and sometimes chromosomal determinants. Substantial knowledge about genic and molecular sex differentiation has been obtained for genera like Momordica, Cucurbita and Trichosanthes. The detailed information on sex determination schemes, genomic sequences and molecular phylogenetic relationships facilitate further comprehensive investigations in the tribe Bryonieae. The discovery of organ identity genes and sex-specific sequences regulating sexual behaviour in Coccinia, Cucumis and Cucurbita opens up opportunities of relevant investigations to answer yet unaddressed questions pertaining to floral unisexuality, dioecy and chromosome evolution in the family. The present discussion brings the genera in light, previously recognized under subfamily Nhandiroboideae, where the study of chromosome cytology and sex determination mechanisms can simplify our understanding of sex expression pathways and its phylogenetic impacts.

  6. Assignment of the protein kinase C [delta] polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14

    Energy Technology Data Exchange (ETDEWEB)

    Huppi, K.; Siwarski, D.; Goodnight, J.; Mischak, H. (Molecular Genetics Section Lab. of Genetics, Bethesda, MD (United States))

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. The authors now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of back-cross mice. They find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p. 9 refs., 2 tabs.

  7. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14.

    Science.gov (United States)

    Huppi, K; Siwarski, D; Goodnight, J; Mischak, H

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. We now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of backcross mice. We find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p.

  8. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  9. The chromosomal arrangement of six soybean leghemoglobin genes

    DEFF Research Database (Denmark)

    Bojsen, Kirsten; Abildsten, Dorte; Jensen, Erik Ø

    1983-01-01

    Clones containing six leghemoglobin (Lb) genes have been isolated from two genomic libraries of soybean. They encompass two independent DNA regions: a 40-kb region containing four genes in the order 5' Lba-Lbc(1)-[unk]Lb-Lbc(3) 3' with the same transcriptional polarity, and another 40-kb region...... containing two genes in the order 5' Lbc(4)-Lbc(2) 3' with the same polarity. The order in which the Lb genes are arranged in the soybean genome imply that they are activated in the opposite order to which they are arranged on the chromosome. There is a close similarity between corresponding DNA regions...... differs from that of the Lb genes. The existence of two very similar Lb gene clusters in soybean suggest that soybean may have evolved from an ancestral form by genome duplication. Udgivelsesdato: 1983-null...

  10. Dosage compensation on the active X chromosome minimizes transcriptional noise of X-linked genes in mammals.

    Science.gov (United States)

    Yin, Shanye; Wang, Ping; Deng, Wenjun; Zheng, Hancheng; Hu, Landian; Hurst, Laurence D; Kong, Xiangyin

    2009-01-01

    Theory predicts that haploid-expressed genes should have noisier expression than comparable diploid-expressed ones with the same expression level. However, in mammals there are several classes of gene that are monoallelically expressed, including X-linked genes, imprinted genes and some other autosomal genes. Does it follow that the evolution of X chromosomes in eukaryotes comes at the cost of increased transcriptional noise in the heterogametic sex? Moreover, is escaping X-inactivation in mammalian females associated with an increase in transcriptional variation? To address these questions, we analyze gene expression variation between replicate samples of diverse mammalian cell lines in steady-state using microarray data. We observe that transcriptional variation of X-linked genes is no different to that of autosomal genes both before and after control for transcript abundance. By contrast, autosomal genes subject to allelic exclusion do have unusually high noise levels even allowing for their low transcript abundance. The prior theory we suggest was insufficient, at least as regards X-chromosomes, as it failed to appreciate the regulatory complexity of gene expression, not least the effects of genomic neighborhood. These results suggest that high noise is not a necessary consequence of haploid expression and emphasize the primacy of expression level as a determinant of noise. The latter has consequences for understanding the etiology of haplo-insufficiency and the evolution of gene expression levels. Given the coupling between expression level and noise on the X-chromosome, we suggest that part of the selective advantage of dosage compensation is noise abatement of X-linked genes.

  11. Development of specific chromosomal DNA pool for rice field eel and their application to gene mapping

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The chromosomes 1, 3, 5, 6, 7, 10 and 12 of rice field eel (Monopterus albus Zuiew) have been microdissected successfully from meiosis I diakinesis spreads by using glass microneedle under an inverted microscope. And the DOP-PCR products of the single chromosome dotted on the nylon membrane as "specific chromosomal DNA pool", have been hybridized with 6 probes to map these genes. The mapping results show that Zfa has been mapped to chromosome 1, rDNA to chromosomes 3 and 7, both Gh and Pdeg to chromosome 10, Hsl to chromosome 5 and Hox genes have been detected on chromosomes 1, 3, 6 and 10 meantime. It has initiatively been suggested that chromosome 10 of rice field eel might possess the commom conserved synteny to that on chromosome 17 of human, chromosome 11 of mouse,chromosome 12 of pig and chromosome 19 of bovine. And so chromosome 3 of rice field eel might also contain the commom conserved synteny to that on chromosome 2 of zebrafish. Our study is an attempt to establish a new and feasible method to advance the study of gene mapping and chromosome evolution in fish, and also to provide a new idea to distinguish each chromosome on the base of molecular markers for fish.

  12. Genomic and expression analysis of multiple Sry loci from a single Rattus norvegicus Y chromosome

    Directory of Open Access Journals (Sweden)

    Farkas Joel

    2007-04-01

    Full Text Available Abstract Background Sry is a gene known to be essential for testis determination but is also transcribed in adult male tissues. The laboratory rat, Rattus norvegicus, has multiple Y chromosome copies of Sry while most mammals have only a single copy. DNA sequence comparisons with other rodents with multiple Sry copies are inconsistent in divergence patterns and functionality of the multiple copies. To address hypotheses of divergence, gene conversion and functional constraints, we sequenced Sry loci from a single R. norvegicus Y chromosome from the Spontaneously Hypertensive Rat strain (SHR and analyzed DNA sequences for homology among copies. Next, to determine whether all copies of Sry are expressed, we developed a modification of the fluorescent marked capillary electrophoresis method to generate three different sized amplification products to identify Sry copies. We applied this fragment analysis method to both genomic DNA and cDNA prepared from mRNA from testis and adrenal gland of adult male rats. Results Y chromosome fragments were amplified and sequenced using primers that included the entire Sry coding region and flanking sequences. The analysis of these sequences identified six Sry loci on the Y chromosome. These are paralogous copies consistent with a single phylogeny and the divergence between any two copies is less than 2%. All copies have a conserved reading frame and amino acid sequence consistent with function. Fragment analysis of genomic DNA showed close approximations of experimental with predicted values, validating the use of this method to identify proportions of each copy. Using the fragment analysis procedure with cDNA samples showed the Sry copies expressed were significantly different from the genomic distribution (testis p Sry transcript expression, analyzed by real-time PCR, showed significantly higher levels of Sry in testis than adrenal gland (p, 0.001. Conclusion The SHR Y chromosome contains at least 6 full length

  13. Characterization of the genomic structure, chromosomal location, promoter, and development expression of the alpha-globin transcription factor CP2.

    Science.gov (United States)

    Swendeman, S L; Spielholz, C; Jenkins, N A; Gilbert, D J; Copeland, N G; Sheffery, M

    1994-04-15

    We recently cloned murine and human cDNAs that encode CP2, a cellular transcription factor that interacts with the alpha-globin promoter as well as with additional cellular and viral promoter elements. We have now characterized the genomic structure, chromosome location, promoter, and expression pattern of the factor. Genes for the murine and human mRNAs contained 16 and 15 exons, respectively. Both genes spanned approximately 30 kilobases of chromosomal DNA, and among coding exons, all exon/intron boundaries were conserved. The human gene for CP2 was found to reside on chromosome 12 while the murine gene mapped to the distal end of chromosome 15, near Gdc-1, Wnt-1, and Rarg, a region syntenic with human chromosome 12. The murine and human promoters initiated mRNAs at multiple start sites in a conserved region that spanned more than 450 nucleotides. Lastly, a study of the pattern of CP2 gene expression showed that the factor was expressed in all adult and fetal murine tissues examined from at least day 9.5 of development.

  14. Positional cloning of disease genes on chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Doggett, N. [Los Alamos National Lab., NM (United States); Bruening, M. [Leiden Univ. (Netherlands); Callen, D. [Adelaide Women`s and Children`s Hospital, North Adelaide, South Australia (Australia); Gardiner, M. [University Coll., London (United Kingdom); Lerner, T. [Massachusetts General Hospital, Boston, MA (United States)

    1996-04-01

    The project seeks to elucidate the molecular basis of an important genetic disease (Batten`s disease) by molecular cloning of the affected gene by utilizing an overlapping clone map of chromosome 16. Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomoter disturbances. The Batten disease gene was genetically mapped to the chromosome region 16p 12.1 in close linkage with the genetic markers D16S299 and D16S298. Exon amplification of a cosmid containing D16S298 yielded a candidate gene that was disrupted by a 1 kb genomic deletion in all patients containing the most common haplotype for the disease. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the gene as the Batten disease gene. The disease gene encodes a novel 438 amino acid membrane binding protein of unknown function.

  15. Associations of homologous RNA-binding motif gene on the X chromosome (RBMX) and its like sequence on chromosome 9(RBMXL9) with non-obstructive azoospermia

    Institute of Scientific and Technical Information of China (English)

    Akira Tsujimura; Masao Ota; Akihiko Okuyama; Kazutoshi Fujita; Kazuhiko Komori; Phanu Tanjapatkul; Yasushi Miyagawa; Shingo Takada; Kiyomi Matsumiya; Masaharu Sada; Yoshihiko Katsuyama

    2006-01-01

    Aim: To investigate the associations of autosomal and X-chromosome homologs of the RNA-binding-motif (RNA-binding-motif on the Y chromosome, RBMY) gene with non-obstructive azoospermia (NOA), as genetic factors for NOA may map to chromosomes other than the Y chromosome. Methods: Genomic DNA was extracted using a salting-out procedure after treatment of peripheral blood leukocytes with proteinase K from Japanese patients with NOA (n = 67) and normal fertile volunteers (n = 105). The DNA were analyzed for RBMX by expressed sequence tag (EST) deletion and for the like sequence on chromosome 9 (RBMXL9) by microsatellite polymorphism. Results: We examined six ESTs in and around RBMX and found a deletion of SHGC31764 in one patient with NOA and a deletion of DXS7491 in one other patient with NOA. No deletions were detected in control subjects. The association study with nine microsatellite markers near RBMXL9 revealed that D9S319 was less prevalent in patients than in control subjects, whereas D9S1853 was detected more frequently in patients than that in control subjects. Conclusion: We provide evidence that deletions in or around RBMX may be involved in NOA. In addition, analyses of markers in the vicinity of RBMXL9 on chromosome 9 suggest the possibility that variants of this gene may be associated with NOA.Although further studies are necessary, this is the first report of the association between RBMX and RBMXL9 with NOA.

  16. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  17. Faster-X Evolution of Gene Expression in Drosophila

    Science.gov (United States)

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  18. Structure and chromosomal localization of the human thrombospondin gene.

    Science.gov (United States)

    Wolf, F W; Eddy, R L; Shows, T B; Dixit, V M

    1990-04-01

    Thrombospondin (THBS1) is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins. Determination of THBS1 gene structure has revealed that the type I repeat modules are encoded by symmetrical exons and that the heparin-binding domain is encoded by a single exon. To further elucidate the higher level organization of THBS1, the gene was localized to the q11-qter region of chromosome 15.

  19. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  20. Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism

    Indian Academy of Sciences (India)

    Deepali Pathak; Sandeep Kumar Yadav; Leena Rawal; Sher Ali

    2015-12-01

    Sex chromosome-related anomalies engender plethora of conditions leading to male infertility. Hypogonadotropic hypogonadism (HH) is a rare but well-known cause of male infertility. Present study was conducted to ascertain possible consensus on the alterations of the Y-linked genes and loci in males representing hypogonadism (H), which in turn culminate in reproductive dysfunction. A total of nineteen 46, XY males, clinically diagnosed with H (11 representative HH adults and eight prepubertal boys suspected of having HH) were included in the study. Sequence-tagged site screening, gene sequencing, fluorescence in situ hybridization mapping (FISH), copy number and relative expression studies by real-time PCR were conducted to uncover the altered status of the Y chromosome in the patients. The result showed random microdeletions within the (73%)/ (78%) and (26%) regions. Sequencing of the gene showed nucleotide variations within and outside of the HMG box in four males (21%). FISH uncovered mosaicism for , , genes and DYZ1 arrays, structural rearrangement for (31%) and duplication of (57%) genes. Copy number variation for seven Y-linked genes (2–8 rounds of duplication), DYZ1 arrays (495–6201copies) and differential expression of , and in the patients’ blood were observed. Present work demonstrates the organizational vulnerability of several Y-linked genes in H males. These results are envisaged to be useful during routine diagnosis of H patients.

  1. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    Science.gov (United States)

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  2. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation

    OpenAIRE

    Measday, Vivien; Baetz, Kristin; Guzzo, Julie; Yuen, Karen; Kwok, Teresa; Sheikh, Bilal; Ding, Huiming; Ueta, Ryo; Hoac, Trinh; Cheng, Benjamin; Pot, Isabelle; Tong, Amy; Yamaguchi-Iwai, Yuko; Boone, Charles; Hieter, Phil

    2005-01-01

    Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosom...

  3. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome.

    Science.gov (United States)

    Wright, Alison E; Harrison, Peter W; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2014-11-01

    We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness.

  4. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  5. Introduction of the Bacteroides ruminicola xylanase gene into the Bacteroides thetaiotaomicron chromosome for production of xylanase activity.

    OpenAIRE

    Whitehead, T R; Cotta, M A; Hespell, R B

    1991-01-01

    The xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 is highly expressed in colonic Bacteroides species when carried on plasmid pVAL-RX. In order to stabilize xylanase expression in the absence of antibiotic selection, the xylanase gene was introduced into the chromosome of Bacteroides thetaiotaomicron 5482 by using suicide vector pVAL-7. Xylanase activity in the resulting strain, B. thetaiotaomicron BTX, was about 30% of that observed in B. thetaiotaomicron 5482 containing ...

  6. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  7. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped......Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...

  8. Assignment of genes encoding metallothioneins I and II to Chinese hamster chromosomes 3. Evidence for the role of chromosome rearrangement in gene amplification

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, R.L.; Munk, A.C.; Longmire, J.L.; Hildebrand, C.E.; Crawford, B.D.

    1984-12-01

    Cadmium resistant (Cd/sup r/) variants with coordinately amplified metallothionein I and II (MTI and MTII) genes have been derived from both Chinese hamster ovary and near-euploid Chinese hamster cell lines. Cytogenetic analyses of Cd/sup r/ variants consistently revealed breakage and rearrangement involving chromosome 3p. In situ hybridization with Chinese hamster MT-encoding cDNA probe localized amplified MT gene sequences near the translocation breakpoint involving chromosome 3p. These observations suggested that both functionally related, isometallothionein loci are linked on Chinese hamster chromosome 3. Southern blot analyses of DNAs isolated from a panel of Chinese hamster x mouse somatic cell hybrids which segregate hamster chromosomes confirmed that both MTI and MTII are located on chromosome 3. The authors speculate that rearrangement of chromosome 3p could be causally involved with the amplification of MT genes in Cd/sup r/ hamster cell lines. 34 references, 3 figures, 1 table.

  9. Chromosomal mutagen sensitivity associated with mutations in BRCA genes.

    Science.gov (United States)

    Speit, G; Trenz, K

    2004-01-01

    Chromosomal mutagen sensitivity is a common feature of cells from patients with different kinds of cancer. A portion of breast cancer patients also shows an elevated sensitivity to the induction of chromosome damage in cells exposed to ionizing radiation or chemical mutagens. Segregation analysis in families of patients with breast cancer indicated heritability of mutagen sensitivity. It has therefore been suggested that mutations in low-penetrance genes which are possibly involved in DNA repair predispose a substantial portion of breast cancer patients. Chromosomal mutagen sensitivity has been determined with the G2 chromosome aberration test and the G(0) micronucleus test (MNT). However, there seems to be no clear correlation between the results from the two tests, indicating that the inherited defect leading to enhanced G(0) sensitivity is different from that causing G2 sensitivity. Less than 5% of breast cancer patients have a familial form of the disease due to inherited mutations in the breast cancer susceptibility genes BRCA1 or BRCA2. Heterozygous mutations in BRCA1 or BRCA2 in lymphocytes from women with familial breast cancer are also associated with mutagen sensitivity. Differentiation between mutation carriers and controls seems to be much better with the MNT than with the G2 assay. Mutagen sensitivity was detected with the MNT not only after irradiation but also after treatment with chemical mutagens including various cytostatics. The enhanced formation of micronuclei after exposure of lymphocytes to these substances suggests that different DNA repair pathways are affected by a BRCA1 mutation in accordance with the proposed central role of BRCA1 in maintaining genomic integrity. Mutations in BRCA1 and BRCA2 seem to predispose cells to an increased risk of mutagenesis and transformation after exposure to radiation or cytostatics. This raises a question about potentially increased risks by mammography and cancer therapy in women carrying a mutation in

  10. Third chromosome candidate genes for conspecific sperm precedence between D. simulans and D. mauritiana.

    Science.gov (United States)

    Levesque, Lisa; Brouwers, Barb; Sundararajan, Vignesh; Civetta, Alberto

    2010-04-13

    Male - female incompatibilities can be critical in keeping species as separate and discrete units. Premating incompatibilities and postzygotic hybrid sterility/inviability have been widely studied as isolating barriers between species. In recent years, a number of studies have brought attention to postmating prezygotic barriers arising from male - male competition and male - female interactions. Yet little is known about the genetic basis of postmating prezygotic isolation barriers between species. Using D. simulans lines with mapped introgressions of D. mauritiana into their third chromosome, we find at least two D. mauritiana introgressions causing male breakdown in competitive paternity success. Eighty one genes within the mapped introgressed regions were identified as broad-sense candidates on the basis of male reproductive tract expression and male-related function. The list of candidates was narrowed down to five genes based on differences in male reproductive tract expression between D. simulans and D. mauritiana. Another ten genes were confirmed as candidates using evidence of adaptive gene coding sequence diversification in the D. simulans and/or D. mauritiana lineage. Our results show a complex genetic basis for conspecific sperm precedence, with evidence of gene interactions between at least two third chromosome loci. Pleiotropy is also evident from correlation between conspecific sperm precedence and female induced fecundity and the identification of candidate genes that might exert an effect through genetic conflict and immunity. We identified at least two loci responsible for conspecific sperm precedence. A third of candidate genes within these two loci are located in the 89B cytogenetic position, highlighting a possible major role for this chromosome position during the evolution of species specific adaptations to postmating prezygotic reproductive challenges.

  11. Third chromosome candidate genes for conspecific sperm precedence between D. simulans and D. mauritiana

    Directory of Open Access Journals (Sweden)

    Brouwers Barb

    2010-04-01

    Full Text Available Abstract Background Male - female incompatibilities can be critical in keeping species as separate and discrete units. Premating incompatibilities and postzygotic hybrid sterility/inviability have been widely studied as isolating barriers between species. In recent years, a number of studies have brought attention to postmating prezygotic barriers arising from male - male competition and male - female interactions. Yet little is known about the genetic basis of postmating prezygotic isolation barriers between species. Results Using D. simulans lines with mapped introgressions of D. mauritiana into their third chromosome, we find at least two D. mauritiana introgressions causing male breakdown in competitive paternity success. Eighty one genes within the mapped introgressed regions were identified as broad-sense candidates on the basis of male reproductive tract expression and male-related function. The list of candidates was narrowed down to five genes based on differences in male reproductive tract expression between D. simulans and D. mauritiana. Another ten genes were confirmed as candidates using evidence of adaptive gene coding sequence diversification in the D. simulans and/or D. mauritiana lineage. Our results show a complex genetic basis for conspecific sperm precedence, with evidence of gene interactions between at least two third chromosome loci. Pleiotropy is also evident from correlation between conspecific sperm precedence and female induced fecundity and the identification of candidate genes that might exert an effect through genetic conflict and immunity. Conclusions We identified at least two loci responsible for conspecific sperm precedence. A third of candidate genes within these two loci are located in the 89B cytogenetic position, highlighting a possible major role for this chromosome position during the evolution of species specific adaptations to postmating prezygotic reproductive challenges.

  12. Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer.

    Directory of Open Access Journals (Sweden)

    Mikhail Shugay

    Full Text Available Reciprocal chromosomal translocations (RCTs leading to the formation of fusion genes are important drivers of hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of translocation partner genes (TPGs. Our results show that fusion genes are generally overexpressed due to increased promoter activity of 5' TPGs and to more stable 3'-UTR regions of 3' TPGs. Furthermore, expression profiling of 5' TPGs and of interaction partners of 3' TPGs indicates that these features can help to explain tissue specificity of hematological translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in determining which 5' and 3' TPGs will combine in specific fusion genes. It is generally accepted that chromosomal proximity in the nucleus can explain the specific pairing of 5' and 3' TPGS and the recurrence of hematological translocations. Using recently available data for chromosomal contact probabilities (Hi-C we show that TPGs are preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that, in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken together, our results support a model in which genomic features related to regulation of expression and replication timing determine the set of candidate genes more likely to be translocated in

  13. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis.

    Science.gov (United States)

    Kroemer, Jeremy A; Coates, Brad S; Nusawardani, Tyasning; Rider, S Dean; Fraser, Lisa M; Hellmich, Richard L

    2011-07-01

    Males are homogametic (ZZ) and females are heterogametic (WZ) with respect to the sex chromosomes in many species of butterflies and moths (insect order Lepidoptera). Genes on the Z chromosome influence traits involved in larval development, environmental adaptation, and reproductive isolation. To facilitate the investigation of these traits across Lepidoptera, we developed 43 degenerate primer pairs to PCR amplify orthologs of 43 Bombyx mori Z chromosome-linked genes. Of the 34 orthologs that amplified by PCR in Ostrinia nubilalis, 6 co-segregated with the Z chromosome anchor markers kettin (ket) and lactate dehydrogenase (ldh), and produced a consensus genetic linkage map of ~89 cM in combination with 5 AFLP markers. The O. nubilalis and B. mori Z chromosomes are comparatively co-linear, although potential gene inversions alter terminal gene orders and a translocation event disrupted synteny at one chromosome end. Compared to B. mori orthologs, O. nubilalis Z chromosome-linked genes showed conservation of tissue-specific and growth-stage-specific expression, although some genes exhibited species-specific expression across developmental stages or tissues. The O. nubilalis Z chromosome linkage map provides new tools for isolating quantitative trait loci (QTL) involved in sex-linked traits that drive speciation and it exposes genome rearrangements as a possible mechanism for differential gene regulation in Lepidoptera.

  14. Sequence and chromosomal localization of the mouse brevican gene

    DEFF Research Database (Denmark)

    Rauch, U; Meyer, H; Brakebusch, C

    1997-01-01

    Brevican is a brain-specific proteoglycan belonging to the aggrecan family. Phage clones containing the complete mouse brevican open reading frame of 2649 bp and the complete 3'-untranslated region of 341 bp were isolated from a mouse brain cDNA library, and cosmid clones containing the mouse bre...... to an alternative brevican cDNA, coding for a GPI-linked isoform. Single strand conformation polymorphism analysis mapped the brevican gene (Bcan) to chromosome 3 between the microsatellite markers D3Mit22 and D3Mit11....

  15. [The human genome--chromosome 10 and the collagen genes].

    Science.gov (United States)

    Brdicka, R

    1995-05-17

    In relation to locuses of the 10th chromosome at present the following are in the focus of interest: tumours of endocrine glands, medullary carcinoma of the thyroid gland (MTC) and multiple endocrine neoplasias (MEN). It seems that the unifying basis is the oncogene RET, responsible for the development of Hirschsprung's disease HSCR. The authors mentions also metabolically important locuses for choline acetyltransferase (CHAT), uriporphyrinogen synthase (UROS) and methyl guanine methyltransferase (MGMT). A special paragraph is devoted to a list of collagenous genes COL1-COL18 and diseases associated with them.

  16. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli.

    Science.gov (United States)

    Ruiz, Cristian; Levy, Stuart B

    2010-05-01

    Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.

  17. The large-X effect in plants: increased species divergence and reduced gene flow on the Silene X-chromosome.

    Science.gov (United States)

    Hu, Xin-Sheng; Filatov, Dmitry A

    2016-06-01

    The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7)  years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed.

  18. Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma.

    Science.gov (United States)

    Corthals, Sophie L; Jongen-Lavrencic, Mojca; de Knegt, Yvonne; Peeters, Justine K; Beverloo, H Berna; Lokhorst, Henk M; Sonneveld, Pieter

    2010-05-01

    We have used copy number variation (CNV) analysis with SNP mapping arrays for miRNA-15a and miRNA-16-1 expression analysis in patients with multiple myeloma (MM) with or without deletion of chromosome 13q14. MiRNA-15a and miRNA-16 display a range of expression patterns in MM patients, independent of the chromosome 13 status. These findings suggest that genes other than miR-15a and miR-16 may explain the prognostic significance of 13q14 deletions.

  19. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  20. Transcript analysis of 250 novel yeast genes from chromosome XIV.

    Science.gov (United States)

    Planta, R J; Brown, A J; Cadahia, J L; Cerdan, M E; de Jonge, M; Gent, M E; Hayes, A; Kolen, C P; Lombardia, L J; Sefton, M; Oliver, S G; Thevelein, J; Tournu, H; van Delft, Y J; Verbart, D J; Winderickx, J

    1999-03-15

    The European Functional Analysis Network (EUROFAN) is systematically analysing the function of novel Saccharomyces cerevisiae genes revealed by genome sequencing. As part of this effort our consortium has performed a detailed transcript analysis for 250 novel ORFs on chromosome XIV. All transcripts were quantified by Northern analysis under three quasi-steady-state conditions (exponential growth on rich fermentative, rich non-fermentative, and minimal fermentative media) and eight transient conditions (glucose derepression, glucose upshift, stationary phase, nitrogen starvation, osmo-stress, heat-shock, and two control conditions). Transcripts were detected for 82% of the 250 ORFs, and only one ORF did not yield a transcript of the expected length (YNL285w). Transcripts ranged from low (62%), moderate (16%) to high abundance (2%) relative to the ACT1 mRNA. The levels of 73% of the 206 chromosome XIV transcripts detected fluctuated in response to the transient states tested. However, only a small number responded strongly to the transients: eight ORFs were induced upon glucose upshift; five were repressed by glucose; six were induced in response to nitrogen starvation; three were induced in stationary phase; five were induced by osmo-stress; four were induced by heat-shock. These data provide useful clues about the general function of these ORFs and add to our understanding of gene regulation on a genome-wide basis.

  1. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  2. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  3. Paralogous sm22alpha (Tagln) genes map to mouse chromosomes 1 and 9: further evidence for a paralogous relationship.

    Science.gov (United States)

    Stanier, P; Abu-Hayyeh, S; Murdoch, J N; Eddleston, J; Copp, A J

    1998-07-01

    SM22alpha (TAGLN) is one of the earliest markers of differentiated smooth muscle, being expressed exclusively in the smooth muscle cells of adult tissues and transiently in embryonic skeletal and cardiac tissues. We have identified and mapped the mouse Tagln gene and a closely related gene, Sm22alpha homolog (Tagln2). The chromosomal localization for Tagln was identified by linkage analysis to distal mouse chromosome 9 between D9Mit154 and D9Mit330, closely linked to the anchor locus D9Nds10. The localization of Tagln2 was also determined and was found to map between Fcgr2 and D1Mit149 on distal mouse chromosome 1. This localization is homologous to a region of human 1q21-q25 to which an EST representing human TAGLN2 was previously mapped. The two regions, distal mouse chromosome 1 and proximal mouse chromosome 9, and the human regions with conserved synteny (1q21-q25 and 11q22-qter) are believed to be paralogous, reflecting either conserved remnants of duplicated chromosomes or segments of chromosomes during vertebrate evolution. Copyright 1998 Academic Press.

  4. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  5. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer

    Institute of Scientific and Technical Information of China (English)

    TomohikoICHIKAWA; ShigeruHOSOKI; HiroyoshiSUZUKI; KoichiroAKAKURA; TatsuoIGARASHI; YuzoFURUYA; MitsuoOSHIMURA; CarrieW.RINKER-SCHAEFFER; NaokiNIHEI; JohnT.ISAACS; HaruoITO

    2000-01-01

    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  6. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  7. Analysis of Bos taurus and Sus scrofa X and Y chromosome transcriptome highlights reproductive driver genes.

    Science.gov (United States)

    Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang

    2017-08-15

    The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability.

  8. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.C.; Fasching, C.L.; Stanbridge, E.J. (Univ. of California, Irvine (United States)); Cho, K.; Levy, D.B.; Kinzler, K.W.; Vogelstein, B. (John Hopkins Univ. School of Medicine and Hospital, Baltimore, MD (United States)); Paraskeva, C. (Univ. of Bristol, University Walk, Bristol (United Kingdom))

    1992-03-01

    Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, the authors have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 5 express the APC gene present on that chromosome as well as the endogenous mutant transcript. Expression of the putative tumor suppressor gene, DCC, was seen in the clones containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.

  9. Amplified and homozygously deleted genes in glioblastoma: impact on gene expression levels.

    Directory of Open Access Journals (Sweden)

    Inês Crespo

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY: Single-nucleotide polymorphism (SNP-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46, and to evaluate the impact of copy number alterations (CNA on mRNA levels of the genes involved. PRINCIPAL FINDINGS: Recurrent amplicons were detected for chromosomes 7 (50%, 12 (22%, 1 (11%, 4 (9%, 11 (4%, and 17 (4%, whereas homozygous deletions involved chromosomes 9p21 (52% and 10q (22%. Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2, while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively. Despite homozygous del(9p21 and del(10q23.31 included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS: Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.

  10. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, G.G.; Giorgi, D.; Martin, J.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  11. Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Xia, Mian

    2005-01-01

    BACKGROUND: Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models...... definition of the heterochromatin and euchromatin domains. The heterochromatin domain appears to associate with distinct chromosome level transcriptional activities under normal and stress conditions. CONCLUSION: These results demonstrated the utility of genome tiling microarray in evaluating annotated rice...

  12. Identification of chromosomal genes in Yersinia pestis that influence type III secretion and delivery of Yops into target cells.

    Directory of Open Access Journals (Sweden)

    Andrew S Houppert

    Full Text Available Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.

  13. Pronounced cohabitation of active immunoglobulin genes from three different chromosomes in transcription factories during maximal antibody synthesis.

    Science.gov (United States)

    Park, Sung-Kyun; Xiang, Yougui; Feng, Xin; Garrard, William T

    2014-06-01

    To understand the relationships between nuclear organization and gene expression in a model system, we employed three-dimensional imaging and chromatin immunoprecipitation (ChIP)-chromosome conformation capture (3C) techniques to investigate the topographies of the immunoglobulin (Ig) genes and transcripts during B-cell development. Remarkably, in plasma cells, when antibody synthesis peaks, active Ig genes residing on three different chromosomes exhibit pronounced colocalizations in transcription factories, often near the nuclear periphery, and display trans-chromosomal enhancer interactions, and their transcripts frequently share interchromatin trafficking channels. Conceptually, these features of nuclear organization maximize coordinated transcriptional and transcript trafficking control for potentiating the optimal cytoplasmic assembly of the resulting translation products into protein multimers.

  14. Localization of Sry gene on Y chromosome of Muntjac munticus vaginalis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chromosomes 1, Y1, Y2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). A primer pair within human Sry HMG box was designed and the Sry gene of the male M. m vaginalis was amplified. The product was cloned and sequenced. The result proved that Sry is located on chromosome Y2, which is the sex-determining chromosome in the male M. m vaginalis.

  15. [CHL15--a new gene controlling the replication of chromosomes in saccharomycetes yeast: cloning, physical mapping, sequencing, and sequence analysis].

    Science.gov (United States)

    Kuprina, N Iu; Krol', E S; Koriabin, M Iu; Shestopalov, B V; Bliskovskiĭ, V V; Bannikov, V M; Gizatullin, R Z; Kirillov, A V; Kravtsov, V Iu; Zakhar'ev, V M

    1993-01-01

    We have analyzed the CHL15 gene, earlier identified in a screen for yeast mutants with increased loss of chromosome III and artificial circular and linear chromosomes in mitosis. Mutations in the CHL15 gene lead to a 100-fold increase in the rate of chromosome III loss per cell division and a 200-fold increase in the rate of marker homozygosis on this chromosome by mitotic recombination. Analysis of segregation of artificial circular minichromosome and artificially generated nonessential marker chromosome fragment indicated that sister chromatid loss (1:0 segregation) is a main reason of chromosome destabilization in the chl15-1 mutant. A genomic clone of CHL15 was isolated and used to map its physical position on chromosome XVI. Nucleotide sequence analysis of CHL15 revealed a 2.8-kb open reading frame with a 105-kD predicted protein sequence. At the N-terminal region of the protein sequences potentially able to form DNA-binding domains defined as zinc-fingers were found. The C-terminal region of the predicted protein displayed a similarity to sequence of regulatory proteins known as the helix-loop-helix (HLH) proteins. Data on partial deletion analysis suggest that the HLH domain is essential for the function of the CHL15 gene product. Analysis of the upstream untranslated region of CHL15 revealed the presence of the hexamer element, ACGCGT (an MluI restriction site) controlling both the periodic expression and coordinate regulation of the DNA synthesis genes in budding yeast. Deletion in the RAD52 gene, the product of which is involved in double-strand break/recombination repair and replication, leads to a considerable decrease in the growth rate of the chl15 mutant. We suggest that CHL15 is a new DNA synthesis gene in the yeast Saccharomyces cerevisiae.

  16. Exploring Codon Usage Patterns of Alternatively Spliced Genes in Human Chromosome 1

    Institute of Scientific and Technical Information of China (English)

    马飞; 庄永龙; 黄颖; 李衍达

    2004-01-01

    In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons.Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=-0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.

  17. A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping

    OpenAIRE

    Naruse, Kiyoshi; Tanaka, Minoru; Mita, Kazuei; Shima, Akihiro; Postlethwait, John; Mitani, Hiroshi

    2004-01-01

    The mapping of Hox clusters and many duplicated genes in zebrafish indicated an extra whole-genome duplication in ray-fined fish. However, to reconstruct the preduplication chromosomes (proto-chromosomes), the comparative genomic studies of more distantly related teleosts are essential. Medaka and zebrafish are ideal for this purpose, because their lineages separated from their last common ancestor ∼140 million years ago. To reconstruct ancient vertebrate chromosomes, including the chromosome...

  18. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    Directory of Open Access Journals (Sweden)

    Jasdeep S. Mutti

    2017-04-01

    Full Text Available Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14% in the anthers and the smallest (7% in the pistils. The highest number (1.72/3 of homeologs/gene expression was in the roots and the lowest (1.03/3 in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  19. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids.

    Science.gov (United States)

    Mutti, Jasdeep S; Bhullar, Ramanjot K; Gill, Kulvinder S

    2017-04-03

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76-87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  20. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues

    Directory of Open Access Journals (Sweden)

    Ding Guohui

    2010-03-01

    Full Text Available Abstract Background Expansion of multi-C2H2 domain zinc finger (ZNF genes, including the Krüppel-associated box (KRAB subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517 of the seven locus members contain exons encoding KRAB domains, one (ZNF16 does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517 and potential protein truncations in primates (ZNF252 illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS modules. Common TFBS

  1. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  2. Tolerant Mechanism and Chromosome Location of Gene Controlling Sprouting Tolerance in Aegilops Tauschii Cosson

    Institute of Scientific and Technical Information of China (English)

    LAN Xiu-jin; ZHENG You-liang; LIU Deng-cai; WEI Yu-ming; YAN Ze-hong; ZHOU Yong-hong

    2002-01-01

    An artificial amphiploid RSP (2n = 42, AABBDD) between tetraploid landrace Ailanmai(Triticum turgidum L., 2n= 28, AABB) and Aegilops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which derived from Ae. tauschii. Tolerance to preharvest sprouting of RSP was examined by four ways in six varying periods after anthesis. The germination percentages of preharvest intact spikes were only 6.06 % in its high peak period of germination. Its tolerance was mainly decided by the seed a recessive trait which was controlled by one gene, located on chromosome 2D.

  3. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns...... that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns...

  4. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  5. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    Science.gov (United States)

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  6. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    OpenAIRE

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribo...

  7. Physical and genetic mapping of the muscle phosphofructokinase gene (PFKM): Reassignment to human chromosome 12q

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.D.; Akots, G.; Bowden, D.W. [Bowman Gray School of Medicine of Wake Forest Univ., Winston-Salem, NC (United States)

    1996-05-15

    Phosphofructokinase (PFK) is a key rate-limiting enzyme in glycolysis and represents a major control point in the metabolism of glucose. There are at least three known isoforms of PFK in humans, referred to as the muscle, platelet, and liver forms, each of which is differentially expressed in various tissues. The gene for muscle phosphofructokinase, PFKM, is mutated in Tarui disease and conceivably contributes to non-insulin-dependent diabetes mellitus (NIDDM). Based on physical and genetic mapping, we have found that the gene for PFKM does not map to chromosome 1 as previously described, but instead maps to chromosome 12. PCR analysis with a somatic cell hybrid mapping panel using primers derived from intron 6 and exon 18 of the PFKM gene showed consistent amplification of cell lines containing chromosome 12 (concordance, 100%). Fluorescence in situ hybridization analysis with CEPH YAC 762G4, isolated with exon 18 primers, indicated that this clone maps to 12q13, centromeric to the diacylglycerol kinase gene (DAGK) at 12q13.3. A highly informative genetic marker isolated from YAC 762G4 was used to map PFKM genetically between the CHLC framework markers D12S1090 and D12S390. This placement for 762G4 was significantly proximal to the recently reported locus for a third gene for maturity onset diabetes of the young (MODY). The PFKM-associated microsatellite will be a valuable tool in the evaluation of PFKM in diabetic populations as well as in linkage analysis in families with Tarui disease. 23 refs., 3 figs., 2 tabs.

  8. Analyses of numerical aberrations of chromosome 17 and tp53 gene deletion/amplification in human oral squamous cell carcinoma using dual-color fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Noemi MESZAROS

    2010-05-01

    Full Text Available In Romania, oral and facial cancers represent approximately 5% of all cancers. Deactivation and unregulated expression of oncogenes and tumor suppressor genes may be involved in the pathogenesis of oral squamous cell carcinoma. The genomic change results in numerical and structural chromosomal alterations, particularly in chromosomes 3, 9, 11 and 17. The aim of our study was to identify numerical aberrations of chromosome 17, deletion or amplification of p53 gene and to reveal correlations between abnormalities of chromosome 17and of p53 gene with TNM status and grading in 15 subjects with oral squamous cell carcinoma. 80 % of cases presented chromosome 17 polysomy and only 20% of cases had chromosome 17 monosomy. 46.6 % of samples revealed p53 gene amplification and 33.3 % of them p53 deletion. Polysomy of chromosome 17 was also detected in tumor-adjacent epithelia. The degree of the cytogenetic abnormality did not correlate with the stage of the disease, the histological differentiation of oral squamous cell carcinoma and lymph node metastasis. Molecular cytogenetic techniques, using fluorescence in situ hybridization with chromosome-specific DNA probes, facilitate the confirmation of presumed chromosomal aberrations with high sensitivity and specificity.

  9. Relationship between gene co-expression and probe localization on microarray slides

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    2003-12-01

    Full Text Available Abstract Background Microarray technology allows simultaneous measurement of thousands of genes in a single experiment. This is a potentially useful tool for evaluating co-expression of genes and extraction of useful functional and chromosomal structural information about genes. Results In this work we studied the association between the co-expression of genes, their location on the chromosome and their location on the microarray slides by analyzing a number of eukaryotic expression datasets, derived from the S. cerevisiae, C. elegans, and D. melanogaster. We find that in several different yeast microarray experiments the distribution of the number of gene pairs with correlated expression profiles as a function of chromosomal spacing is peaked at short separations and has two superimposed periodicities. The longer periodicity has a spacing of 22 genes (~42 Kb, and the shorter periodicity is 2 genes (~4 Kb. Conclusion The relative positioning of DNA probes on microarray slides and source plates introduces subtle but significant correlations between pairs of genes. Careful consideration of this spatial artifact is important for analysis of microarray expression data. It is particularly relevant to recent microarray analyses that suggest that co-expressed genes cluster along chromosomes or are spaced by multiples of a fixed number of genes along the chromosome.

  10. The gamma fibrinogen gene (FGG) maps to chromosome 17 in both cattle and sheep.

    Science.gov (United States)

    Johnson, S E; Barendse, W; Hetzel, D J

    1993-01-01

    The gamma fibrinogen gene (FGG) was localised in both cattle and sheep using in situ hybridisation. The probe employed was a 1-kb bovine cDNA fragment. Based on observations of QFQ-banded chromosome preparations, this locus is on bovine chromosome 17q12-->q13 and on the homologous sheep chromosome 17. This localisation is, to our knowledge, the first assignment to chromosome 17 in either the bovine or ovine genome. In addition to localising FGG to this chromosome, the assignment provisionally maps the previously unassigned syntenic group U23, containing (besides FGG) the genes for mitochondrial aldehyde dehydrogenase 2 (ALDH2), interleukin 2 (IL2), immunoglobulin lambda (IGL), and beta fibrinogen (FGB), to chromosome 17 in cattle and probably to the same chromosome in sheep.

  11. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments

    NARCIS (Netherlands)

    B.C. Broughton; N.C. Barbet; J. Murray (Johanne); F.Z. Watts (Felicity); M.H.M. Koken (Marcel); A.R. Lehmann (Alan); A.M. Carr (Anthony)

    1991-01-01

    textabstractTen DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.

  12. Chromosomal mapping of 18S-28S rRNA genes and 10 cDNA clones of human chromosome 1 in the musk shrew (Suncus murinus).

    Science.gov (United States)

    Kuroiwa, A; Matsubara, K; Nagase, T; Nomura, N; Seong, J K; Ishikawa, A; Anunciado, R V; Tanaka, K; Yamagata, T; Masangkay, J S; Dang, V B; Namikawa, T; Matsuda, Y

    2001-01-01

    The direct R-banding fluorescence in situ hybridization (FISH) method was used to map 18S-28S ribosomal RNA genes and 10 human cDNA clones on the chromosomes of the musk shrew (Suncus murinus). The chromosomal locations of 18S-28S ribosomal RNA genes were examined in the five laboratory lines and wild animals captured in the Philippines and Vietnam, and the genes were found on chromosomes 5, 6, 9, and 13 with geographic variation. The comparative mapping of 10 cDNA clones of human chromosome 1 demonstrated that human chromosome 1 consisted of at least three segments homologous to Suncus chromosomes (chromosomes 7, 10, and 14). This approach with the direct R-banding FISH method is useful for constructing comparative maps between human and insectivore species and for explicating the process of chromosomal rearrangements during the evolution of mammals.

  13. Increased chromosomal breakage in Tourette syndrome predicts the possibility of variable multiple gene involvement in spectrum phenotypes: Preliminary findings and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, G.S.; Simonic, I.; Cloete, E.; Buckle, C. [Univ. of Pretoria (South Africa)] [and others

    1995-10-09

    Increased chromosomal breakage was found in 12 patients with DSM-IV Tourette syndrome (TS) as compared with 10 non-TS control individuals with respect to untreated, modified RPM1-, and BrdU treated lymphocyte cultures (P < 0.001 in each category). A hypothesis is proposed that a major TS gene is probably connected to genetic instability, and associated chromosomal marker sites may be indicative of the localization of secondary genes whose altered expression could be responsible for associated comorbid conditions. This concept implies that genes influencing higher brain functions may be situated at or near highly recombigenic areas allowing enhanced amplification, duplication and recombination following chromosomal strand breakage. Further studies on a larger sample size are required to confirm the findings relating to chromosomal breakage and to analyze the possible implications for a paradigmatic shift in linkage strategy for complex disorders by focusing on areas at or near unstable chromosomal marker sites. 32 refs., 1 tab.

  14. Disruption of Imprinted Genes at Chromosome Region 11p15.5 in Paediatric Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    John Anderson

    1999-10-01

    Full Text Available Rhabdomyosarcomas are characterized by loss of heterozygosity (LOH at chromosome region 11pl5.5, a region known to contain several imprinted genes including insulin-like growth factor 2 (IGF2, H19, p57KIP2. We analyzed 48 primary tumour samples and found distinct genetic changes at 11p15.5 in alveolar and embryonal histological subtypes. LOH was a feature of embryonal tumours, but at a lower frequency than previous studies. Loss of imprinting (LOI of the IGF2 gene was detected in 6 of 13 informative cases, all harbouring PAX3—FKHR or PAX7—FKHR fusion genes characteristic of alveolar histology. In contrast, H19 imprinting was maintained in 14 of 15 informative cases and the case with H19 LOI had maintenance of the IGF2 imprint indicating separate mechanisms controlling imprinting of IGF2 and H19. The adult promoter of IGF2, P1, was used in 5 of 14 tumours and its expression was unrelated to IGF2 imprinting status implying a further mechanism of altered IGF2 regulation. The putative tumour suppressor gene p57KIP2 was expressed in 15 of 29 tumours and expression was unrelated to allele status. Moreover, in tumours with p57KIP2 expression, there was no evidence for inactivating mutations, suggesting that p57KIP2 is not a tumour suppressor in rhabdomyosarcoma.

  15. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on

  16. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-08-01

    Full Text Available The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani, is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI. Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique

  17. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes

    Science.gov (United States)

    Sarahan, Kari A.; Fisler, Janis S.

    2011-01-01

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions. PMID:21730028

  18. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes.

    Science.gov (United States)

    Sarahan, Kari A; Fisler, Janis S; Warden, Craig H

    2011-09-22

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions.

  19. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus

    Science.gov (United States)

    Klaenhammer, Todd R.

    2016-01-01

    ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is

  20. Genetics of sputum gene expression in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Qiu, Weiliang; Cho, Michael H; Riley, John H; Anderson, Wayne H; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A; Lomas, David A; Crapo, James D; Beaty, Terri H; Celli, Bartolome R; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M; Silverman, Edwin K; Hersh, Craig P

    2011-01-01

    Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.

  1. Genetics of sputum gene expression in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Weiliang Qiu

    Full Text Available Previous expression quantitative trait loci (eQTL studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs. The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5, the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.

  2. Sex-biased gene expression during head development in a sexually dimorphic stalk-eyed fly.

    Science.gov (United States)

    Wilkinson, Gerald S; Johns, Philip M; Metheny, Jackie D; Baker, Richard H

    2013-01-01

    Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually

  3. Sex-biased gene expression during head development in a sexually dimorphic stalk-eyed fly.

    Directory of Open Access Journals (Sweden)

    Gerald S Wilkinson

    Full Text Available Stalk-eyed flies (family Diopsidae are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and

  4. The transcriptional interactome: gene expression in 3D.

    Science.gov (United States)

    Schoenfelder, Stefan; Clay, Ieuan; Fraser, Peter

    2010-04-01

    Transcription in the eukaryotic nucleus has long been thought of as conforming to a model in which RNA polymerase complexes are recruited to and track along isolated templates. However, a more dynamic role for chromatin in transcriptional regulation is materializing: enhancer elements interact with promoters forming loops that often bridge considerable distances and genomic loci, even located on different chromosomes, undergo chromosomal associations. These associations amass to form an extensive 'transcriptional interactome', enacted at functional subnuclear compartments, to which genes dynamically relocate. The emerging view is that long-range chromosomal associations between genomic regions, and their repositioning in the three-dimensional space of the nucleus, are key contributors to the regulation of gene expression. 2010 Elsevier Ltd. All rights reserved.

  5. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    Science.gov (United States)

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  6. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    LiLi-jia; SongYun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Htl, Htnl and Ht2, Helminthosporium maydis Nisik resistance genes Rhml and Rhm2,maize dwarf mosaic virus resistance gene Mdml, wheat streak mosaic virus resistance gene Wsml, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2. 1 of tomato, and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i. e. , chromosomesl, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3. 25) except for genes Rhml, Rhm2, Mdml and Wsml which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  7. Function and Chromosomal Localization of Differentially Expressed Genes Induced by Marssonina brunnea f. sp. multigermtubi in Populus deltoides%杨盘二孢菌诱导的杨树差异表达基因的功能分析和染色体定位

    Institute of Scientific and Technical Information of China (English)

    张燕梅; 张新叶; 陈雨辰; 王琦; 王明庥; 黄敏仁

    2007-01-01

    利用cDNA芯片技术从含有2,952个克隆的杨树芯片中筛选出1,160个受杨盘二孢菌诱导的基因.功能分析表明,该1,160个基因分别属于11个功能类别,除了功能未知基因外,参与新陈代谢、防御反应、信号传导及转录调控的基因最多,这4大类基因约占基因总数的42%.1,160个差异表达基因中有926个基因被定位于19条染色体上,其中被定位于第Ⅱ条染色体上的差异基因最多,共102个(11.0%),其次是第Ⅰ条染色体,共93个(10%),被定位到第ⅩⅦ条染色体上的差异基因最少,仅有11个,基因在染色体上的分布则表现为在部分染色体的末端区域存在大量的聚集,在中间区段则相对较少和排列稀疏,基因的这种分布情况与植物抗病的关系有待进一步研究.%A total of 1,160 differentially expressed genes induced by Marssonina brunnea f.sp.multigermtubi were identified in Populus deltoides cv.'Lux'(I-69/55)with two-colour cDNA microarray including 2,952 cDNAs from two cDNA libraries constructed with 72 h inoculated poplar leaves.Functional analysis showed that 1,160 genes were classified into 11 functional categories that are involved in metabolism(15.9%),signal transduction(9.5%),transcription and replication(8.7%),and cell rescue and defense(7.8%).Among them,926 genes were sporadically localized on 19 linkage groups.Chromosome 2 contained 102(11%) differentially expressed genes,followed by chromosome 1 which contains 93 genes(10%),and chromosome 17 had the least number of differentially expressed genes.Clustering of expressed sequence tags(ESTs)in poplar genome was observed at the terminal regions of several chromosomes.The relationship between cluster of genes and plant defense response would be further studied.

  8. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  9. Chromosomal assignment of canine THADA gene to CFA 10q25

    Directory of Open Access Journals (Sweden)

    Dolf Gaudenz

    2008-06-01

    Full Text Available Abstract Background Chromosomal translocations affecting the chromosome 2p21 cluster in a 450 kb breakpoint region are frequently observed in human benign thyroid adenomas. THADA (thyroid adenoma associated was identified as the affected gene within this breakpoint region. In contrast to man tumours of the thyroid gland of dogs (Canis lupus familiaris constitute mainly as follicular cell carcinomas, with malignant thyroid tumours being more frequent than benign thyroid adenomas. In order to elucidate if the THADA gene is also a target of chromosomal rearrangements in thyroid adenomas of the dog we have physically mapped the canine THADA gene to canine chromosome 10. A PCR was established to screen a canine genome library for a BAC clone containing the gene sequence of canine THADA. Further PCR reactions were done using the identified BAC clone as a template in order to verify the corresponding PCR product by sequencing. Canine whole blood was incubated with colcemid in order to arrest the cultured cells in metaphases. The verified BAC DNA was digoxigenin labeled and used as a probe in fluorescence in situ hybridization (FISH. Ten well spread metaphases were examined indicating a signal on canine chromosome 10 on both chromatids. A detailed fine mapping was performed indicating the canine THADA gene locus on the q-arm of chromosome 10. Results The canine THADA gene locus was mapped on chromosome 10q25. Our mapping results obtained in this study following the previously described nomenclature for the canine karyotype. Conclusion We analysed whether the THADA gene locus is a hotspot of canine chromosomal rearrangements in canine neoplastic lesions of the thyroid and in addition might play a role as a candidate gene for a possible malignant transformation of canine thyroid adenomas. Although the available cytogenetic data of canine thyroid adenomas are still insufficient the chromosomal region to which the canine THADA has been mapped seems to be no

  10. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  11. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  12. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  13. Dynamics of X Chromosome Inactivation

    NARCIS (Netherlands)

    F. Loos (Friedemann)

    2015-01-01

    markdownabstract__Abstract__ Dosage compensation evolved to account for the difference in expression of sex chromosome-linked genes. In mammals dosage compensation is achieved by inactivation of one X chromosome during early female embryogenesis in a process called X chromosome inactivation (XCI).

  14. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  15. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19.

    Directory of Open Access Journals (Sweden)

    Marco Di Stefano

    Full Text Available The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most (≈ 88% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organized in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here.

  16. Disentangling the relationship between sex-biased gene expression and X-linkage

    Science.gov (United States)

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    X chromosomes are preferentially transmitted through females, which may favor the accumulation of X-linked alleles/genes with female-beneficial effects. Numerous studies have shown that genes with sex-biased expression are under- or over-represented on the X chromosomes of a wide variety of organisms. The patterns, however, vary between different animal species, and the causes of these differences are unresolved. Additionally, genes with sex-biased expression tend to be narrowly expressed in a limited number of tissues, and narrowly expressed genes are also non-randomly X-linked in a taxon-specific manner. It is therefore unclear whether the unique gene content of the X chromosome is the result of selection on genes with sex-biased expression, narrowly expressed genes, or some combination of the two. To address this problem, we measured sex-biased expression in multiple Drosophila species and at different developmental time points. These data were combined with available expression measurements from Drosophila melanogaster and mouse to reconcile the inconsistencies in X-chromosome content among taxa. Our results suggest that most of the differences between Drosophila and mammals are confounded by disparate data collection/analysis approaches as well as the correlation between sex bias and expression breadth. Both the Drosophila and mouse X chromosomes harbor an excess of genes with female-biased expression after controlling for the confounding factors, suggesting that the asymmetrical transmission of the X chromosome favors the accumulation of female-beneficial mutations in X-linked genes. However, some taxon-specific patterns remain, and we provide evidence that these are in part a consequence of constraints imposed by the dosage compensation mechanism in Drosophila. PMID:22499666

  17. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  18. Zipf's Law in Gene Expression

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  19. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  20. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Danielle Queiroz Calcagno; Márcia Valéria Pitombeira Ferreira; Marília de Arruda Cardoso Smith; Rommel Rodríguez Burbano; Mariana Ferreira Leal; Aline Damaceno Seabra; André Salim Khayat; Elizabeth Suchi Chen; Samia Demachki; Paulo Pimentel Assump(c)(a)o; Mario Henrique Gir(a)o Faria; Silvia Helena Barem Rabenhorst

    2006-01-01

    AIM: To investigate chromosome 8 numerical aberrations, C-MYC oncogene alterations and its expression in gastric cancer and to correlate these findings with histopathological characteristics of gastric tumors.METHODS: Specimens were collected surgically from seven patients with gastric adenocarcinomas. Immunostaining for C-MYC and dual-color fluorescence in situ hybridization (FISH) for C-MYC gene and chromosome 8centromere were performed.RESULTS: All the cases showed chromosome 8 aneuploidy and C-MYC amplification, in both the diffuse and intestinal histopathological types of Lauren. No significant difference (P < 0.05) was observed between the level of chromosome 8 ploidy and the site, stage or histological type of the adenocarcinomas. C-MYC high amplification,like homogeneously stained regions (HSRs) and double minutes (DMs), was observed only in the intestinal-type.Structural rearrangement of C-MYC, like translocation,was observed only in the diffuse type. Regarding C-MYC gene, a significant difference (P < 0.05) was observed between the two histological types. The C-MYC protein was expressed in all the studied cases. In the intestinaltype the C-MYC immunoreactivity was localized only in the nucleus and in the diffuse type in the nucleus and cytoplasm.CONCLUSION: Distinct patterns of alterations between intestinal and diffuse types of gastric tumors support the hypothesis that these types follow different genetic pathways.

  1. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf; Hayward, Simon W.; Weier, Jingly F.; Zitzelsberger, Horst F.

    2009-07-07

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  2. GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Stærfeldt, Hans Henrik; Rotenberg, Eva;

    2009-01-01

    We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome......, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal...

  3. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, J.M.; Wu, S.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  4. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  5. Genomic and gene expression signature of the pre-invasive testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Ottesen, Anne Marie; Sonne, Si Brask

    2005-01-01

    on the pre-invasive CIS and its possible fetal origin by reviewing recent data originating from DNA microarrays and comparative genomic hybridisations. A comparison of gene expression and genomic aberrations reveal chromosomal "hot spots" with mutual clustering of gene expression and genomic amplification...

  6. Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, A.; Andria, G. (Univ. of Reggio Calabria, Catanzaro (Italy)); Bardoni, B.; Fraccaro, M.; Maraschio, P.; Zuffardi, O.; Guioli, S.; Camerino, G. (Univ. of Pavia (Italy)); Carrozzo, R. (Univ. of Naples (Italy)); Bick, D.; Campbell, L. (Univ. of Texas, San Antonio (USA)); Hamel, B. (Univ. of Nijmegen (Netherlands)); Ferguson-Smith, M.A. (Univ. of Cambridge (England)); Gimelli, G. (G. Gaslini Institute, Genoa (Italy))

    1989-12-01

    Mendelian inherited disorders to deletions of adjacent genes on a chromosome have been described as contiguous gene syndromes. Short stature, chondrodysplasia punctata, mental retardation, steroid sulfatase deficiency, and Kallmann syndrome have been found as isolated entities or associated in various combination in 27 patients with interstitial and terminal deletions involving the distal short are of the X chromosome. The use of cDNA and genomic probes from the Xp22-pter region allowed us to identify 12 different deletion intervals and to confirm, and further refine, the chromosomal assignment of X-linked recessive chondrodysplasia punctata and Kallmann syndrome genes. A putative pseudoautosomal gene affecting height and an X-linked nonspecific mental retardation gene have been tentatively assigned to specific intervals. The deletion panel described is a useful tool for mapping new sequences and orienting chromosome walks in the region.

  7. DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes.

    Directory of Open Access Journals (Sweden)

    Nickolai A Tchurikov

    2013-04-01

    Full Text Available Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50-250 kb DNA domains. We found that about 30% of the domains (denoted forum domains possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.

  8. Expression of regulators of mitotic fidelity are associated with intercellular heterogeneity and chromosomal instability in primary breast cancer

    DEFF Research Database (Denmark)

    Roylance, Rebecca; Endesfelder, David; Jamal-Hanjani, Mariam

    2014-01-01

    Regulators of transition through mitosis such as SURVIVIN and Aurora kinase A (AURKA) have been previously implicated in the initiation of chromosomal instability (CIN), a driver of intratumour heterogeneity. We investigate the relationship between protein expression of these genes and directly...... quantified CIN, and their prognostic utility in breast cancer. The expression of SURVIVIN and AURKA was determined by immunohistochemistry in a cohort of 426 patients with primary breast cancer. The association between protein expression and histopathological characteristics, clinical outcome and CIN status...... expression were significantly associated with breast cancer grade. There was a significant association between increased CIN and both increased AURKA and SURVIVIN expression. AURKA gene amplification was also associated with increased CIN. To our knowledge this is the largest study assessing CIN status...

  9. Localization to Chromosomes of Structural Genes for the Major Protease Inhibitors of Barley Grains

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Bjørn, S.E.; Nielsen, Gunnar Gissel

    1984-01-01

    Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both...

  10. 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp.

    Directory of Open Access Journals (Sweden)

    Jing Huang

    Full Text Available BACKGROUND: In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS: During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS: The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed.

  11. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  12. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    Science.gov (United States)

    Wehr Mathews, Kristina; Cavegn, Margrith; Zwicky, Monica

    2017-01-06

    Drosophila females are larger than males. In this paper, we describe how X chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X-linked growth regulating gene and second, through female-specific activation of the sex-determination pathway. X-chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X-chromosome signal elements (XSEs), Sex-lethal (Sxl) is activated in female (XX) but not male (XY) animals. Sxl activates transformer (tra), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by over 9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc, was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early, development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism.

  13. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  14. The murine decorin. Complete cDNA cloning, genomic organization, chromosomal assignment, and expression during organogenesis and tissue differentiation.

    Science.gov (United States)

    Scholzen, T; Solursh, M; Suzuki, S; Reiter, R; Morgan, J L; Buchberg, A M; Siracusa, L D; Iozzo, R V

    1994-11-11

    Decorin, a proteoglycan known to interact with collagen and growth factors, may play key roles during ontogenesis, tissue remodeling, and cancer. We have deciphered the complete protein sequence of the murine decorin by cDNA cloning, elucidated its gene structure and chromosomal location, and investigated its expression in the developing embryo. The decorin protein and the gene were highly conserved vis à vis the human counterpart; however, the murine gene lacked a leader exon, exon Ib, which was found only in the human. Using interspecific backcrossing, we assigned the gene to chromosome 10 just proximally to the Steel gene locus. In situ hybridization studies of developing mouse embryos showed a distinct pattern of expression with a progressive increase of decorin mRNA during ontogenesis. At early stages (day 11 postconception), decorin was detectable only in the floor plate region. Subsequently (days 13-16 postconception), decorin expression was especially prominent in the meninges and mesothelial linings of pericardium, pleura, and coelomic cavity, as well as in the dermis and subepithelial layers of the intestine and urinary bladder. In contrast, the major parenchymal organs were only weakly positive for decorin mRNA. These findings suggest that decorin may play a role in epithelial/mesenchymal interactions during organ development and shaping.

  15. Positional and functional mapping of a neuroblastoma differentiation gene on chromosome 11

    Directory of Open Access Journals (Sweden)

    Bader Scott

    2005-07-01

    Full Text Available Abstract Background Loss of chromosome 11q defines a subset of high-stage aggressive neuroblastomas. Deletions are typically large and mapping efforts have thus far not lead to a well defined consensus region, which hampers the identification of positional candidate tumour suppressor genes. In a previous study, functional evidence for a neuroblastoma suppressor gene on chromosome 11 was obtained through microcell mediated chromosome transfer, indicated by differentiation of neuroblastoma cells with loss of distal 11q upon introduction of chromosome 11. Interestingly, some of these microcell hybrid clones were shown to harbour deletions in the transferred chromosome 11. We decided to further exploit this model system as a means to identify candidate tumour suppressor or differentiation genes located on chromosome 11. Results In a first step, we performed high-resolution arrayCGH DNA copy-number analysis in order to evaluate the chromosome 11 status in the hybrids. Several deletions in both parental and transferred chromosomes in the investigated microcell hybrids were observed. Subsequent correlation of these deletion events with the observed morphological changes lead to the delineation of three putative regions on chromosome 11: 11q25, 11p13->11p15.1 and 11p15.3, that may harbour the responsible differentiation gene. Conclusion Using an available model system, we were able to put forward some candidate regions that may be involved in neuroblastoma. Additional studies will be required to clarify the putative role of the genes located in these chromosomal segments in the observed differentiation phenotype specifically or in neuroblastoma pathogenesis in general.

  16. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  17. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Pettersson, Fredrik; Larsson, Jan

    2007-11-01

    Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF) protein, which, together with heterochromatin protein 1 (HP1), modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  18. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Directory of Open Access Journals (Sweden)

    Anna-Mia Johansson

    2007-11-01

    Full Text Available Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF protein, which, together with heterochromatin protein 1 (HP1, modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  19. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  20. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    Li Li-jia; Song Yun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  1. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location

    NARCIS (Netherlands)

    Slager, Jelle; Veening, Jan-Willem

    2016-01-01

    Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A

  2. Mapping of a liver phosphorylase kinase [alpha]-subunit gene on the mouse x chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yan; Derry, J.M.J.; Barnard, P.J. (MRC Molecular Neurobiology Unit, Cambridge (United Kingdom)); Hendrickx, J.; Coucke, P.; Willems, P.R. (Univ. of Antwerp (Belgium))

    1993-01-01

    Phosphorylase kinase (PHK) is a regulatory enzyme of the glycogenolytic pathway composed of a complex of four subunits. We recently mapped the muscle [alpha]-subunit gene (Phka) to the mouse X chromosome in a region syntenic with the proximal long arm of the human X chromosome and containing the human homologue of this gene, PHKA. We now report the mapping of the liver [alpha]-subunit gene to the telomeric end of the mouse X chromosome. This mapping position would suggest a location for the human liver [alpha]-subunit gene on the proximal short arm of the X chromosome, a region recently implicated in X-linked liver glycogenosis (XLG). 20 refs., 2 figs.

  3. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location

    NARCIS (Netherlands)

    Slager, Jelle; Veening, Jan-Willem

    2016-01-01

    Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combinati

  4. cDNA cloning, chromosome mapping and expression characterization of human geranylgeranyl pyrophosphate synthase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geranylgeranyl pyrophosphate (GGPP) mainly participates in post-translational modification for various proteins including Rho/Rac, Rap and Rab families, as well as in regulation for cell apoptosis. Geranylgeranyl pyrophosphate synthase (GGPPS), which catalyzes the condensation reaction between farnesyl diphosphate and isopentenyl diphosphate, is the key enzyme for synthesizing GGPP. We report the isolation of a gene transcript showing high homology with Drosophila GGPPS cDNA. The transcript is 1 466 bp in length and contains an intact open reading frame (ORF) ranging from nt 239 to 1 138. This ORF encodes a deduced protein of 300 residues with calculated molecular weight of 35 ku. The deduced protein shows 57.5% identity and 75% similarity with Drosophila GGPPS, and contains five characteristic domains of prenyltransferases. Northern hybridization revealed that human GGPPS was expressed highest in heart, and moderately in spleen, testis, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. No obvious bands were detected in other examined tissues. The GGPPS gene was located on human chromosome 1q43 by Radiation Hybrid mapping method. It was proved that there was a putative predisposing gene for prostate cancer in this region, and that analogs of GGPP can inhibit the geranylgeranylation of p21rap protein in PC-3 prostate cancer cell lines. These facts suggest that GGPPS may be one of the candidate genes for prostate cancer.

  5. The promoter analysis of the human C17orf25 gene, a novel chromosome 17p13.3 gene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The human C17orf25 gene (Accession No. AF177342) is one of thirteen genes cloned from a regiondisplaying a high score of loss of heterozygosity within chromosome 17p13.3 in human hepatocellular car-cinoma in China[1]. To unveil the underlying mechanisms for the transcription regulation of this gene andunderstand its implication to the hepatocellular carcinogenesis, we looked into the relevant aspects by bothbioinformatic and experimental executions. We found: 1, The abundant expression of the C17orf25 genewas evident in all the cell lines and tissue samples tested, showing little hepatoma-selectivity; 2, Its tran-scription starts at a single site, locating at -60 from the translation initiation codon; 3, A 58 bp fragmentcontaining the transcription start, extending from -112 to -55, represents the minimal promoter; 4, Theconsensus sequence within this fragment recognized by SP1 contributes predominantly to the activity of theminimal promoter; 5, The bioinformatic analysis suggests that the C17orf25 gene may encode a protein inthe family of the glyoxalase. Our data has provided some deep insight into both function and regulation ofthe C17orf25 gene in the context of the normal liver and hepatocellular carcinoma.

  6. Chromosomal mapping of the structural gene coding for the mouse cell adhesion molecule uvomorulin

    Energy Technology Data Exchange (ETDEWEB)

    Eistetter, H.R.; Adolph, S.; Ringwald, M.; Simon-Chazottes, D.; Schuh, R.; Guenet, J.L.; Kemler, R. (Max-Planck-Gesellschaft, Tuebingen (West Germany))

    1988-05-01

    The gene coding for the mouse cell adhesion molecule uvomorulin has been mapped to chromosome 8. Uvomorulin cDNA clone F5H3 identified restriction fragment length polymorphisms in Southern blots of genomic DNA from mouse species Mus musculus domesticus and Mus spretus. By analyzing the segregation pattern of the gene in 75 offspring from an interspecific backcross a single genetic locus, Um, was defined on chromosome 8. Recombination frequency between Um and the co-segregating loci serum esterase 1 (Es-1) and tyrosine aminotransferase (Tat) places Um about 14 centimorgan (cM) distal to Es-1, and 5 cM proximal to Tat. In situ hybridization of uvomorulin ({sup 3}H)cDNA to mouse metaphase chromosomes located the Um locus close to the distal end of chromosome 8 (bands C3-E1). Since uvomorulin is evolutionarily highly conserved, its chromosomal assignment adds an important marker to the mouse genetic map.

  7. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  8. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression.

    Science.gov (United States)

    Ramírez, César A; Requena, José M; Puerta, Concepción J

    2013-07-06

    Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3' UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation. Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania

  9. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  10. Mammalian DNA ligase III: Molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingwen; Danehower, S.; Besterman, J.M.; Husain, I. [Glaxo Research Inst., Research Triangle Park, NC (United States)] [and others

    1995-10-01

    Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have recently purified DNA ligase II and DNA ligase III to near homogeneity from bovine liver and testis tissue, respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on the peptide sequences. The human DNA ligase III cDNA encodes a polypeptide of 862 amino acids, whose sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalytically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiquitously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA ligase I mRNA expression correlated with the contribution of proliferating supermatogonia cells to the testes, in agreement with the previously defined role of this enzyme in DNA replications. In contrast, elevated levels of DNA ligase III mRNA were observed in primary supermatocytes undergoing recombination prior to the first meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells. 62 refs., 7 figs.

  11. Chromosome abnormalities, mental retardation and the search for genes in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Blackwood, D H R; Thiagarajah, T; Malloy, P; Pickard, B S; Muir, W J

    2008-10-01

    Genetic factors contribute to schizophrenia and bipolar disorder, and linkage and association studies have been successful in identifying several candidate genes. However these genes explain only a very small part of the total population risk and the psychoses appear to be very heterogeneous with several models of genetic inheritance relevant to different groups of patients, including some cases caused by multiple common genetic variants, while others are single gene disorders. Studying chromosomal abnormalities is a useful strategy for identifying genes in illness, and patients with both mental retardation and psychosis form a special group where large chromosomal abnormalities detected by routine cytogenetic analysis are more prevalent than in patients with schizophrenia or bipolar disorder alone, or in the general population. Studying these patients provides valuable opportunities to identify genes contributing to psychoses. This review of the literature on large chromosomal rearrangements in patients with mental retardation and psychotic illness illustrates how schizophrenia and bipolar phenotypes are associated with a large number of different chromosomal disruptions. Recent genome wide association studies have identified an excess of small chromosomal deletions and duplications in schizophrenia, adding further support to the importance of chromosomal structural variation in psychotic illness. The genes GRIK4 and NPAS3, each associated with psychosis in patients with mental retardation are discussed to illustrate the value of rare cytogenetic events as a means to signpost neurobiological pathways of general importance for illness in the wider population.

  12. [From gene to disease; deletion of the DAZ-gene from the Y-chromosome in oligo- or azoospermia

    NARCIS (Netherlands)

    Tuerlings, J.H.A.M.; Hoefsloot, L.H.; Kremer, J.A.M.

    2001-01-01

    DAZ gene deletions at the azoospermia factor (AZF) locus on the Y chromosome, have been implicated as one of the major causes of idiopathic male subfertility. Deletions of the entire DAZ gene have been reported in azoospermia as well as in oligozoospermia. The DAZ gene encodes a RNA binding protein

  13. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    expression profiles between the microarray and real-time RT-PCR data. In situ hybridization revealed both expression level and cellular distribution of NNAT in retina. Finally, the chromosomal locations of 106 differentially expressed genes were also searched and one of these genes is associated with autosomal dominant cone or cone-rod dystrophy. The data from present study provide insights into understanding genetic programs during human retinal development and help identify additional retinal disease genes.

  14. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  15. Chromosomal and Extrachromosomal Instability of the cyclin D2 Gene is Induced by Myc Overexpression

    Directory of Open Access Journals (Sweden)

    Sabine Mai

    1999-08-01

    Full Text Available We examined the expression of cyclins D1, D2, D3, and E in mouse B-lymphocytic tumors. Cyclin D2 mRNA was consistently elevated in plasmacytomas, which characteristically contain Myc-activating chromosome translocations and constitutive c-Myc mRNA and protein expression. We examined the nature of cyclin D2 overexpression in plasmacytomas and other tumors. Human and mouse tumor cell lines that exhibited c-Myc dysregulation displayed instability of the cyclin D2 gene, detected by Southern blot, fluorescent in situ hybridization (FISH, and in extrachromosomal preparations (Hirt extracts. Cyclin D2 instability was not seen in cells with low levels of c-Myc protein. To unequivocally demonstrate a role of c-Myc in the instability of the cyclin D2 gene, a Myc-estrogen receptor chimera was activated in two mouse cell lines. After 3 to 4 days of Myc-ERTm activation, instability at the cyclin D2 locus was seen in the form of extrachromosomal elements, determined by FISH of metaphase and interphase nuclei and of purified extrachromosomal elements. At the same time points, Northern and Western blot analyses detected increased cyclin D2 mRNA and protein levels. These data suggest that Myc-induced genomic instability may contribute to neoplasia by increasing the levels of a cell cycle—regulating protein, cyclin D2, via intrachromosomal amplification of its gene or generation of extrachromosomal copies.

  16. Age-dependent chromosomal distribution of male-biased genes in Drosophila.

    Science.gov (United States)

    Zhang, Yong E; Vibranovski, Maria D; Krinsky, Benjamin H; Long, Manyuan

    2010-11-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.

  17. Age-dependent chromosomal distribution of male-biased genes in Drosophila

    Science.gov (United States)

    Zhang, Yong E.; Vibranovski, Maria D.; Krinsky, Benjamin H.; Long, Manyuan

    2010-01-01

    We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales. PMID:20798392

  18. Fine mapping of the human pentraxin gene region on chromosome 1q23

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, M.T.; Whitehead, A.S. [Univ. of Dublin (Ireland); Divane, A. [Univ. of Cambridge (United Kingdom)

    1996-12-31

    The 1q21 to 25 region of human chromosome 1 contains genes which encode proteins with immune- and inflammation-associated functions. These include the pentraxin genes, for C-reactive protein (CRP), serum amyloid P(SAP) protein (APCS), and a CRP pseudogene (CRPP1). The region of chromosome 1 containing this cluster is syntenic with distal mouse chromosome 1. We constructed an approximately 1.4 megabase yeast artificial chromosome (YAC) contig with the pentraxin genes at its core. This four-YAC contig includes other genes with immune functions including the FCER1A gene, which encodes the {alpha}-subunit of the IgE high-affinity Fc receptor and the 1F1-16 gene, an interferon-{gamma}-induced gene. In addition, it contains the histone H3F2 and H4F2 genes and the gene for erythroid {alpha}-spectrin (SPTA1). The gene order is cen.-SPTA1-H4F2-H3F2-1F1-16-CRP-CRPP1-APCS-FCERIA-tel. The contig thus consists of a cluster of genes whose products either have immunological importance, bind DNA, or both. 68 refs., 3 figs., 2 tabs.

  19. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  20. Chromosomal localization of the major ribosomal RNA genes in scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaoting; BAO Zhenmin; BI Ke; HU Jingjie; ZHANG Can; ZHANG Quanqi; HU Xiaoli

    2006-01-01

    The chromosomes of Chlamys farreri were analyzed by means of silver staining and fluorescence in situ hybridization ( FISH ) with 18S-28S rDNA probe. Probe was made by PCR amplification of a DNA fragment containing internal transcribed spacers ITS1 between 18S and 5.8S ribosomal RNA gene, ITS2 between 5.8S and 28S ribosomal RNA gene and 5.8S rRNA gene, and labeled by PCR incorporation of bio-16-dUTP. FISH signals were located on the short arm of subtelocentric chromosome 10. After silverstaining, nucleolus organizer regions (NORs) could be observed on the telomere of the short arm of chromosome 10. However,one metaphase spread displayed an additional silver spot on the short arm of subtelocentric chromosome 12.

  1. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    Science.gov (United States)

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  2. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    Directory of Open Access Journals (Sweden)

    Brenda Murdoch

    Full Text Available Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  3. Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart.

    Science.gov (United States)

    Andrée, B; Hillemann, T; Kessler-Icekson, G; Schmitt-John, T; Jockusch, H; Arnold, H H; Brand, T

    2000-07-15

    We identified a novel gene family in vertebrates which is preferentially expressed in developing and adult striated muscle. Three genes of the Popeye (POP) family were detected in human and mouse and two in chicken. Chromosomal mapping indicates that Pop1 and Pop3 genes are clustered on mouse chromosome 10, whereas Pop2 maps to mouse chromosome 16. We found evidence that POP1 and POP3 in chicken may also be linked and multiple transcript isoforms are generated from this locus. The POP genes encode proteins with three potential transmembrane domains that are conserved in all family members. Individual POP genes exhibit specific expression patterns during development and postnatally. Chicken POP3 and mouse Pop1 are first preferentially expressed in atrium and later also in the subepicardial compact layer of the ventricles. Chicken POP1 and mouse Pop2 are expressed in the entire heart except the outflow tract. All three Pop genes are expressed in heart and skeletal muscle of the adult mouse and lower in lung. Pop1 and Pop2 expression is upregulated in uterus of pregnant mice. Like the mouse genes, human POP genes are predominantly expressed in skeletal and cardiac muscle. The strong conservation of POP genes during evolution and their preferential expression in heart and skeletal muscle suggest that these novel proteins may have an important function in these tissues in vertebrates.

  4. Location of 45S Ribosomal Genes in Mitotic and Meiotic Chromosomes of Buthid Scorpions.

    Science.gov (United States)

    Mattos, Viviane Fagundes; Carvalho, Leonardo Sousa; Cella, Doralice Maria; Schneider, Marielle Cristina

    2014-09-01

    Buthid scorpions exhibit a high variability in diploid number within genera and even within species. Cytogenetically, Buthidae differs from other families of Scorpiones based on its low diploid numbers, holocentric chromosomes, and complex chromosomal chains, which form during meiosis. In this study, we analyzed the distribution of the 45S ribosomal DNA (rDNA) genes in the mitotic and meiotic chromosomes of seven buthid species belonging to the genera Rhopalurus and Tityus with the ultimate goal of elucidating the chromosome organization in these scorpions. The chromosome number ranged from 2n=6 to 2n=28. Despite the high variance in diploid number, all species examined carried their 45S rDNA sites in the terminal region of exactly two chromosomes. Analyses of meiotic cells revealed 45S rDNA clusters in the chromosomal chains of Rhopalurus agamemnon, Tityus bahiensis, Tityus confluens, and Tityus martinpaechi, or in bivalent-like configuration in Rhopalurus rochai, Tityus bahiensis, Tityus confluens, Tityus fasciolatus, and Tityus paraguayensis. In the species examined, the 45S rDNA sites colocalized with constitutive heterochromatin regions. In light of the high chromosome variability and maintenance of number and terminal position of 45S rDNA sites in buthids, the heterochromatin may act to conserve the integrity of the ribosomal genes.

  5. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  6. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.

    Science.gov (United States)

    Li, Runsheng; Ren, Xiaoliang; Bi, Yu; Ho, Vincy Wing Sze; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Lin, Tingting; Zhao, Yanmei; Miao, Long; Sarkies, Peter; Zhao, Zhongying

    2016-09-01

    Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.

  7. Gene expression throughout a vertebrate's embryogenesis

    Directory of Open Access Journals (Sweden)

    Hinton David E

    2011-02-01

    Full Text Available Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases. Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development.

  8. Agronomic performance, chromosomal stability and resistance to velvetbean caterpillar of transgenic soybean expressing cry1Ac gene Performance agronômica, estabilidade cromossômica e resistência à lagarta-da-soja em soja transgênica que expressa o gene cry1Ac

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-07-01

    Full Text Available The objective of this work was to analyze the agronomic performance and chromosomal stability of transgenic homozygous progenies of soybean [Glycine max (L. Merrill.], and to confirm the resistance of these plants against Anticarsia gemmatalis. Eleven progenies expressing cry1Ac, hpt and gusA genes were evaluated for agronomic characteristics in relation to the nontransformed parent IAS 5 cultivar. Cytogenetical analysis was carried out on transgenic and nontransgenic plants. Two out of the 11 transgenic progenies were also evaluated, in vitro and in vivo, for resistance to A. gemmatalis. Two negative controls were used in resistance bioassays: a transgenic homozygous line, containing only the gusA reporter gene, and nontransgenic 'IAS 5' plants. The presence of cry1Ac transgene affected neither the development nor the yield of plants. Cytogenetical analysis showed that transgenic plants presented normal karyotype. In detached-leaf bioassay, cry1Ac plants exhibited complete efficacy against A. gemmatalis, whereas negative controls were significantly damaged. Whole-plant feeding assay confirmed a very high protection of cry1Ac against velvetbean caterpillar, while nontransgenic 'IAS 5' plants and homozygous gusA line exhibited 56.5 and 71.5% defoliation, respectively. The presence of cry1Ac transgene doesn't affect the majority of agronomic traits (including yield of soybean and grants high protection against A. gemmatalis.O objetivo deste trabalho foi analisar a performance agronômica e a estabilidade cromossômica de progênies transgênicas homozigotas de soja [Glycine max (L. Merrill.], e confirmar a resistência dessas plantas a Anticarsia gemmatalis. Onze progênies com expressão dos genes cry1Ac, hpt e gusA foram avaliadas quanto às características agronômicas, em relação à cultivar parental IAS 5 não transformada. Análises citogenéticas foram realizadas em plantas transgênicas e não transgênicas. Duas das 11 prog

  9. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle

    Science.gov (United States)

    Iwasaki, Osamu; Corcoran, Christopher J.; Noma, Ken-ichi

    2016-01-01

    Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle. PMID:26704981

  10. Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data

    Directory of Open Access Journals (Sweden)

    Grossmann Alex

    2005-06-01

    Full Text Available Abstract Background Although the organisation of the bacterial chromosome is an area of active research, little is known yet on that subject. The difficulty lies in the fact that the system is dynamic and difficult to observe directly. The advent of massive hybridisation techniques opens the way to further studies of the chromosomal structure because the genes that are co-expressed, as identified by microarray experiments, probably share some spatial relationship. The use of several independent sets of gene expression data should make it possible to obtain an exhaustive view of the genes co-expression and thus a more accurate image of the structure of the chromosome. Results For both Bacillus subtilis and Escherichia coli the co-expression of genes varies as a function of the distance between the genes along the chromosome. The long-range correlations are surprising: the changes in the level of expression of any gene are correlated (positively or negatively to the changes in the expression level of other genes located at well-defined long-range distances. This property is true for all the genes, regardless of their localisation on the chromosome. We also found short-range correlations, which suggest that the location of these co-expressed genes corresponds to DNA turns on the nucleoid surface (14–16 genes. Conclusion The long-range correlations do not correspond to the domains so far identified in the nucleoid. We explain our results by a model of the nucleoid solenoid structure based on two types of spirals (short and long. The long spirals are uncoiled expressed DNA while the short ones correspond to coiled unexpressed DNA.

  11. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ)

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro (Akita Univ. School of Medicine, Akita (Japan)); Wang, Yimin; Takata, Mizuho; Minoshima, Shinsei; Shimizu, Nobuyoshi; Miura, Masayuki; Uyemura, Keiichi (Keio Univ. School of Medicine, Tokyo (Japan))

    1993-09-01

    The authors describe the cloning, characterization, and chromosomal mapping of the human myelin protein zero (MPZ) gene (a structural protein of myelin and an adhesive glycoprotein of the immunoglobulin superfamily). The gene is about 7 kb long and consists of six exons corresponding of the functional domains. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box), two CAAT boxes, and a single defined transcription initiation site detected by the primer extension method. The gene for human MPZ was assigned to chromosome 1q22-q23 by spot blot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. The localization of the MPZ gene coincides with the locus for Charcot-Marie-Tooth disease type 1B, determined by linkage analysis. 20 refs., 3 figs., 1 tab.

  12. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3

    Energy Technology Data Exchange (ETDEWEB)

    Haiming Chen; Lalioti, M.D.; Perrin, G.; Antonarakis, S.E. [Univ. of Geneva Medical School (Switzerland)] [and others

    1996-07-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-binding cassette transporter gene family and is homologous to Drosophila w (and to 2 genes from other species) and to a lesser extent to Drosophila brown (bw) and scarlet (st) genes that are all involved in the transport of eye pigment precursor molecules. A DNA polymorphism with 62% heterozygosity due to variation of a poly (T) region in the 3{prime} UTR of the hW has been identified and used for the incorporation of this gene to the genetic map of chromosome 21. The hW is located at 21q22.3 between DNA markers D21S212 and D21S49 in a P1 clone that also contains marker BCEI. The gene is expressed at various levels in many human tissues. The contributions of this gene to the Down syndrome phenotypes, to human eye color, and to the resulting phenotypes of null or missense mutations are presently unknown. 56 refs., 8 figs., 1 tab.

  13. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  14. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  15. Establishing a Markerless Genetic Exchange System for Methanosarcina mazei Strain Gö1 for Constructing Chromosomal Mutants of Small RNA Genes

    Directory of Open Access Journals (Sweden)

    Claudia Ehlers

    2011-01-01

    Full Text Available A markerless genetic exchange system was successfully established in Methanosarcina mazei strain Gö1 using the hpt gene coding for hypoxanthine phosphoribosyltransferase. First, a chromosomal deletion mutant of the hpt gene was generated conferring resistance to the purine analog 8-aza-2,6-diaminopurine (8-ADP. The nonreplicating allelic exchange vector (pRS345 carrying the pac-resistance cassette for direct selection of chromosomal integration, and the hpt gene for counterselection was introduced into this strain. By a pop-in and ultimately pop-out event of the plasmid from the chromosome, allelic exchange is enabled. Using this system, we successfully generated a M. mazei deletion mutant of the gene encoding the regulatory non-coding RNA sRNA154. Characterizing M. mazei Δ154 under nitrogen limiting conditions demonstrated differential expression of at least three cytoplasmic proteins and reduced growth strongly arguing for a prominent role of sRNA154 in regulation of nitrogen fixation by posttranscriptional regulation.

  16. Porcine gamma-synuclein: molecular cloning, expression analysis, chromosomal localization and functional expression

    DEFF Research Database (Denmark)

    Frandsen, Pernille Munk; Madsen, Lone Bruhn; Bendixen, Christian

    2009-01-01

    which shows a high similarity to bovine (90%), human (87%) and mouse (83%) γ-synuclein. A genomic clone containing the entire porcine SNCG gene was isolated and its genomic organization determined. The gene is composed of five exons, the general structure being observed to be very similar...... reports the cloning and characterization of the porcine (Sus scrofa) γ-synuclein cDNA (SNCG). The SNCG cDNA was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The porcine SNCG cDNA codes for a protein of 126 amino acids...... to that of the human SNCG gene. Expression analysis by quantitative real-time RT-PCR revealed the presence of SNCG transcripts in all examined organs and tissues. Differential expression was observed, with very high levels of SNCG mRNA in fat tissue and high expression levels in spleen, cerebellum, frontal cortex...

  17. Isolation, characterization, and chromosomal mapping of the human Nkx6.1 gene (NKX6A), a new pancreatic islet homeobox gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi; Permutt, M.A.; Veile, R. [Washington Univ. School of Medicine, St. Louis, MO (United States)] [and others

    1997-03-01

    Nkx6.1 (gene symbol NKX6A), a new member of the NK homeobox gene family, was recently identified in rodent pancreatic islet 13-cell lines. The pattern of expression suggested that this gene product might be important for control of islet development and/or regulation of insulin biosynthesis. We now report cloning of human NKX6A, characterization of its genomic structure, and its chromosomal localization. The predicted protein of human NKX6A contained 367 amino acids and had 97% identity to the hamster protein. The highly conserved NK decapeptide and homeodomain regions were identical between human and hamster, suggesting functional importance of these domains. The coding region spanned approximately 4.8 kb and was composed of three exons. The gene was localized to four CEPH {open_quotes}B{close_quotes} yeast artificial chromosome clones (914B4, 951G9, 981D6, and 847133), and a nearby polymorphic marker (D4S1538) on chromosome 4 was identified <1270 kb from the gene. Using fluorescence in situ hybridization, we also determined that NKX6A maps to 4q21.2-q22. 11 refs., 2 figs.

  18. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  19. Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.

    Science.gov (United States)

    Delgado, Claudia Leticia Rodríguez; Waters, Paul D; Gilbert, Clément; Robinson, Terence J; Graves, Jennifer A Marshall

    2009-01-01

    All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)-a representative of Afrotheria, a basal endemic clade of African mammals-and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system.

  20. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  1. Noise in eukaryotic gene expression

    Science.gov (United States)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  2. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    Science.gov (United States)

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  3. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  4. High occurrence of functional new chimeric genes in survey of rice chromosome 3 short arm genome sequences.

    Science.gov (United States)

    Zhang, Chengjun; Wang, Jun; Marowsky, Nicholas C; Long, Manyuan; Wing, Rod A; Fan, Chuanzhu

    2013-01-01

    In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa's Chr3s. Among the 28 new genes, two recently duplicated segments contained eight genes. Fourteen of the 28 new genes consist of chimeric gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing, and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice's broad diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation.

  5. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse.

    Science.gov (United States)

    Yamauchi, Yasuhiro; Riel, Jonathan M; Stoytcheva, Zoia; Ward, Monika A

    2014-01-03

    The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.

  6. Genes for resistance to stripe rust on chromosome 2B and their application in wheat breeding

    Institute of Scientific and Technical Information of China (English)

    Peigao Luo; Xueyun Hu; Huaiyu Zhang; Zhenglong Ren

    2009-01-01

    Stripe rust,caused by Puccinia striiformis f.sp.tritici,is one of the most damaging diseases of wheat worldwide.Growing resistant cultivars is the most economic and environmental friendly way to control the disease.There are many resistance genes to stripe rust located on wheat chromosome 2B.Here,we propose a strategy to construct the recombinant wheat chromosome 2B with multiple resistances to stripe rust by making crosses between wheat lines or cultivars carrying Yr genes and using marker-assisted selection,based on the reported information about resistance spectrum,chromosomal location,and linked markers of the genes.Pyramiding the resistance genes on 2B would afford a valuable strategy to control the disease by cultivating varieties with durable resistance.The possibility,efficiency,and prospect of the suggested strategy are reviewed in the paper.

  7. A resistance-like gene identified by EST mapping and its association with a QTL controlling Fusarium head blight infection on wheat chromosome 3BS.

    Science.gov (United States)

    Shen, Xiaorong; Francki, Michael G; Ohm, Herbert W

    2006-06-01

    Fusarium head blight (FHB) is a major disease in the wheat growing regions of the world. A quantitative trait locus (QTL) on the short arm of chromosome 3B controls much of the variation for resistance. The cloning of candidate disease-resistance genes for FHB QTLs on chromosome 3B can provide further elucidation of the mechanisms that control resistance. However, rearrangements and divergence during plant genome evolution often hampers the identification of sequences with similarity to known disease-resistance genes. This study focuses on the use of wheat expressed sequence tags (ESTs) that map to the region on chromosome 3B containing the QTL for FHB resistance and low-stringency BLAST searching to identify sequences with similarity to known disease-resistance genes. One EST rich with leucine repeats and low similarity to a protein kinase domain of the barley Rpg1 gene was identified. Genetic mapping using a Ning894037 x Alondra recombinant inbred (RI) population showed that this EST mapped to the QTL on the short arm of chromosome 3B and may represent a portion of a newly diverged gene contributing to FHB resistance. The EST is a new marker suitable for marker-assisted selection and provides a starting point to begin map-based cloning for chromosome walking and investigate new diverged genes at this locus.

  8. Characterization and mapping to human chromosome 8q24.3 of Ly-6-related gene 9804 encoding an apparent homologue of mouse TSA-1.

    Science.gov (United States)

    Shan, X; Bourdeau, A; Rhoton, A; Wells, D E; Cohen, E H; Landgraf, B E; Palfree, R G

    1998-01-01

    The 9804 gene, which encodes a human Ly-6 protein most similar to mouse differentiation Ag TSA-1/Sca-2, has also been called RIG-E. Like mouse TSA-1, it has a broad tissue distribution with varied expression levels in normal human tissues and tumor cell lines. Like some members of the murine Ly-6 family, the 9804 gene is responsive to IFNs, particularly IFN-alpha. Overlapping genomic fragments spanning the 9804 gene (5543 bp) have been isolated and characterized. The gene organization is analogous to that of known mouse Ly-6 genes. The first exon, 2296 bp upstream from exon II, is entirely untranslated. The three coding exons (II, III, and IV) are separated by short introns of 321 and 131 bp, respectively. Primers were developed for specific amplification of 9804 gene fragments. Screening of human-hamster somatic cell hybrids and yeast artificial chromosomes (YACs) indicated that the gene is distal to c-Myc, located in the q arm of human chromosome 8. No positives were detected from the Centre d'Etude du Polymorphisme Humain mega-YAC A or B panels, nor from bacterial artificial chromosome libraries; two positive cosmids (c101F1 and c157F6) were isolated from a human chromosome 8 cosmid library (LA08NC01). Fluorescence in situ hybridization of metaphase spreads of chromosome 8, containing hybrid cell line 706-B6 clone 17 (CL-17) with cosmid c101F1, placed the 9804 gene close to the telomere at 8q24.3. This mapping is significant, since the region shares a homology with a portion of mouse chromosome 15, which extends into band E where Ly-6 genes reside. Moreover, the gene encoding E48, the homologue of mouse Ly-6 molecule ThB, has also been mapped to 8q24.

  9. Chromosome engineering for alien gene introgression in wheat: Progress and prospective

    Science.gov (United States)

    Chromosome engineering is a useful strategy for introgression of desirable genes from wild relatives into cultivated wheat. However, it has been a challenge to transfer a small amount of alien chromatin containing the gene of interest from one genome to another non-homologous genome through classic...

  10. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  11. A breast cancer meta-analysis of two expression measures of chromosomal instability reveals a relationship with younger age at diagnosis and high risk histopathological variables

    DEFF Research Database (Denmark)

    Endesfelder, David; McGranahan, Nicholas; Birkbak, Nicolai Juul;

    2011-01-01

    . In a breast cancer meta-analysis of 2423 patients we examine the relationship between clinicopathological parameters and two distinct chromosomal instability gene expression signatures in order to address whether younger age at diagnosis is associated with increased tumour genome instability. We find that CIN......, assessed by the two independently derived CIN expression signatures, is significantly associated with increased tumour size, ER negative or HER2 positive disease, higher tumour grade and younger age at diagnosis in ER negative breast cancer. These data support the hypothesis that chromosomal instability...

  12. Polymorphic cis- and trans-regulation of human gene expression.

    Directory of Open Access Journals (Sweden)

    Vivian G Cheung

    Full Text Available Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

  13. Exogenous phage recombinase-independent inactivation of chromosomal genes in Yersinia enterocolitica.

    Science.gov (United States)

    Dhar, Mahesh S; Kumar, Pradeep; Virdi, Jugsharan S

    2013-11-01

    Characterization of newly identified genes is necessary to understand their functions. Phenotypic characterization of isogenic mutants provides good understanding of the functions of the genes in wild type strains. In the present study, we report the use of linear dsDNA as a substrate for homologous recombination in Yersinia enterocolitica. A double-stranded linear recombinant DNA (LRD) containing an antibiotic resistance gene flanked by homologous regions to the target gene was created. Transformation of this LRD into Y. enterocolitica led to the replacement of targeted loci with antibiotic resistance gene. Using this strategy, two chromosomal genes namely urease C (ureC) and hemophore A (hasA) were disrupted in three strains of Y. enterocolitica. These recombinations were independent of the EPR functions. This is the first report of EPR-independent inactivation of chromosomal genes in Y. enterocolitica strains.

  14. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis.

  15. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  16. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-08-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system.

  17. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T;

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "...

  18. Thermal evolution of gene expression profiles in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Beltran Sergi

    2007-03-01

    Full Text Available Abstract Background Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays. Results A total of 306 (6.6% cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C, also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh. On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments. Conclusion Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to

  19. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  20. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Pallant, A.; Eskenazi, A.; Frelinger, J.G. (Univ. of Rochester Medical Center, NY (USA)); Mattei, M.G. (Hopital d' Enfants de la Timone, Marseille (France)); Fournier, R.E.K. (Fred Hutchinson Cancer Research Center, Seattle, WA (USA)); Carlsson, S.R.; Fukuda, M. (La Jolla Center Research Foundation, CA (USA))

    1989-02-01

    The authors describe the isolation and characterization of cDNA clones encoding human leukosialin, a major sialoglycoprotein of human leukocytes. Leukosialin is very closely related or identical to the sialophorin molecule, which is involved in T-cell proliferation and whose expression is altered in Wiskott-Aldrich syndrome (WAS), an X-chromosome-linked immunodeficiency disease. Using a rabbit antiserum to leukosialin, a cDNA clone was isolated from a {lambda}gt11 cDNA library constructed from human peripheral blood cells. The {lambda}gt11 clone was used to isolate longer cDNA clones that correspond to the entire coding sequence of leukosialin. DNA sequence analysis reveals three domains in the predicted mature protein. The extracellular domain is enriched for Ser, Thr, and Pro and contains four contiguous 18-amino acid repeats. The transmembrane and intracellular domains of the human leukosialin molecule are highly homologous to the rat W3/13 molecule. RNA gel blot analysis reveals two polyadenylylated species of 2.3 and 8 kilobases. Southern blot analysis suggests that human leukosialin is a single-copy gene. Analysis of monochromosomal cell hybrids indicates that the leukosialin gene is not X chromosome linked and in situ hybridization shows leukosialin is located on chromosome 16. These findings demonstrate that the primary mutation in WAS is not a defect in the structural gene for leukosialin.

  1. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  2. Gene expression as a function of TP53 status; Genexpression in Abhaengigkeit vom TP53 Status

    Energy Technology Data Exchange (ETDEWEB)

    Wrona, A.; Zschenker, O.; Dikomey, E.; Borgmann, K. [Institut fuer Biophysik und Strahlenbiologie, Universitaetsklinikum Eppendorf Hamburg (Germany)

    2004-07-01

    The goal of the present study was to determine the influence of TP53 on gene expression following radiation exposure and whether this has an effect on the occurrence of chromosome aberrations. [German] Ziel dieser Untersuchung war es, festzustellen, welchen Einfluss TP53 auf die Expression von Genen nach Bestrahlung hat und ob sich dies auf die Bildung von Chromosomenaberrationen auswirkt. (orig.)

  3. Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements.

    Science.gov (United States)

    Peters, Sander A; Datema, Erwin; Szinay, Dóra; van Staveren, Marjo J; Schijlen, Elio G W M; van Haarst, Jan C; Hesselink, Thamara; Abma-Henkens, Marleen H C; Bai, Yuling; de Jong, Hans; Stiekema, Willem J; Klein Lankhorst, René M; van Ham, Roeland C H J

    2009-06-01

    We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).

  4. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  5. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  6. Cytosolic phospholipase A{sub 2} gene in human and rat: Chromosomal localization and polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Tay, A.; Simon, J.S.; Jacob, H.J. [Univ. of Toronto (Canada)] [and others

    1995-03-01

    The authors report the chromosomal localization and a simple sequence repeat (SSR) in the cytosolic phospholipase A{sub 2} (cPLA{sub 2}) gene in both human and rat. A (CA){sub 18} repeat in the promoter of the rat gene was determined to exhibit length polymorphism when analyzed using the polymerase chain reaction (PCR) in 19 different inbred rat strains. Genotyping for this marker in 234 F{sub 2} progeny of a SHRXBN intercross mapped the gene to rat chromosome 13. Using a PCR strategy, a fragment of the promoter for the human gene was isolated, and a (CA){sub 18} repeat was identified. Since this marker displayed a low heterozygosity index, they also identified a mononucleotide repeat in the promoter for cPLA{sub 2} that displayed a polymorphism information content value of 0.76. The human gene was mapped using fluorescence in situ hybridization (FISH) to chromosome 1q25. Of interest, the gene encoding the enzyme prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2), which acts on the arachidonic acid product of cPLA{sub 2}, was previously localized to this same chromosomal region, raising the possibility of coordinate regulation. Identification of intragenic markers may facilitate studies of polymorphic variants of these genes as candidates for disorders in which perturbations of the eicosanoid cascade may play a role. 20 refs., 3 figs., 2 tabs.

  7. The gene for calcium-modulating cyclophilin ligand (CAMLG) is located on human Chromosome 5q23 and a syntenic region of mouse chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Bram, R.J.; Valentine, V.; Shapiro, D.N. [St. Jude Children`s Research Hospital, Memphis, TN (United States)]|[Univ. of Tennessee, Memphis, TN (United States)] [and others

    1996-01-15

    The CAMLG gene encodes a novel cyclophilin B-binding protein called calcium-modulating cyclophilin ligand, which appears to be involved in the regulation of calcium signaling in T lymphocytes and other cells. The murine homolog, Caml, was localized by interspecific backcross analysis in the middle of chromosome 13. By fluorescence in situ hybridization, this gene was localized to human chromosome 5 in a region (q23) known to be syntenic to mouse chromosome 13. These results provide further evidence supporting the extensive homology between human chromosome 5q and mouse chromosome 13. In addition, the results will provide a basis for further evaluation of cytogenetic anomalies that may contribute to inherited defects in calcium signaling or immune system function. 15 refs., 2 figs.

  8. Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes.

    Science.gov (United States)

    Zhu, Yichun; Zheng, Minghuan; Song, Dongli; Ye, Ling; Wang, Xiangdong

    2015-09-28

    Telocytes (TCs) are suggested as a new type of interstitial cells with specific telopodes. Our previous study evidenced that TCs differed from fibroblasts and stem cells at the aspect of gene expression profiles. The present study aims to search the characters and patterns of chromosome X genes of TC-specific or TC-dominated gene profiles and fingerprints, investigate the network of principle genes, and explore potential functional association. We compared gene expression profiles in chromosome X of pulmonary TCs with mesenchymal stem cells (MSC), fibroblasts (Fb), alveolar type II cells (ATII), airway basal cells (ABC), proximal airway cells (PAC), CD8(+) T cells come from bronchial lymph nodes (T-BL), or CD8(+) T cells from lungs (T-L) by global analyses, and selected the genes which were consistently up or down regulated (>1 fold) in TCs compared to other cells as TC-specific genes. The functional and characteristic networks were identified and compared by bioinformatics tools. We selected 31 chromosome X genes as the TC-specific or dominated genes, among which 8 up-regulated (Flna, Msn, Cfp, Col4a5, Mum1l1, Rnf128, Syn1, and Srpx2) and 23 down-regulated (Abcb7, Atf1, Ddx26b, Drp2, Fam122b, Gyk, Irak1, Lamp2, Mecp2, Ndufb11, Ogt, Pdha1, Pola1, Rab9, Rbmx2, Rhox9, Thoc2, Vbp1, Dkc1, Nkrf, Piga, Tmlhe and Tsr2), as compared with other cells. Our data suggested that gene expressions of chromosome X in TCs are different with those in other cells in the lung tissue. According to the selected TC-specific genes, we infer that pulmonary TCs function as modulators which may enhance cellular growth and migration, resist senescence, protect cells from external stress, regulate immune responses, participate in tissue remodeling and repair, regulate neural function, and promote vessel formation.

  9. Chromosomal localization of a novel retinoic acid induced gene RA28 and the protein distribution of its encoded protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gene RA28 is a retinoic acid induced novel gene isolated in our laboratory previously. All-trans retinoic acid (ATRA) was used to induce lung adenocarcinoma cell line GLC-82, and RA28 was obtained by subtractive hybridization. Green fluorescent protein (GFP) has emerged as a unique tool for examining introcellular phenomena in living cells. GFP possesses an intrinsic fluorescence at 488 nm that does not require other co-factors. In this report, an eukaryotic expression plasmid pEGFP-C1-RA28 was constructed and transfected with parental cell line GLC-82 to analyze protein expression and its distribution in living cells. Moreover, radiation hybrid (RH) technique was used to localize RA28 to the chromosome. The results show that gene RA28 is mapped to the chromosome 19q13.1 region, its encoded protein is distributed on cell membrane. All the results further demonstrate that GFP and RH techniques are accurate, fast, repetitive, and will be powerful methods for investigating the gene and protein localization.

  10. Structural comparison and chromosomal localization of the human and mouse IL-13 genes

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, A.N.J.; Sato, A.; Doyle, E.L.; Zurawski, G. (DNAX Research Institute of Cellular and Molecular Biology, Palo Alto, CA (United States)); Li, X.; Milatovich, A.; Francke, U. (Stanford Univ. Medical School, CA (United States)); Largaespada, D.A.; Copeland, N.G.; Jenkins, N.A. (National Cancer Institute, Frederick, MD (United States))

    1993-06-15

    The genomic structure of the recently described cytokine IL-13 has been determined for both human and mouse genes. The nucleotide sequence of a 4.6-kb DNA segment of the human gene is described. The human IL-13 gene (IL 13) occurs as a single copy in the haploid genome and maps to human chromosome 5. A 4.3-kb DNA fragment of the mouse IL-13 gene (Il 13) has been sequenced and found to occur as a single copy, mapping to mouse chromosome 11. Intrachromosomal mapping studies revealed that both genes contain four exons and three introns and show a high degree of sequence identify throughout their length. Potential recognition sequences for transcription factors that are present in the 5'-flanking region and are conserved between both genes include IFN-responsive elements, binding sites for AP-1, AP-2, and AP-3, an NF-lL 6 site, and a TATA-like sequence. Both genes map to chromosomal locations adjacent to genes encoding other cytokines, including IL-3, GM-CSF, IL-5, and IL-4 suggesting that IL-13 is another member of this cytokine gene family that may have arisen by gene duplication. 26 refs., 5 figs., 3 tabs.

  11. Function of the sex chromosomes in mammalian fertility.

    Science.gov (United States)

    Heard, Edith; Turner, James

    2011-10-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities.

  12. Hyperexpression of the X chromosome in both sexes results in extensive female bias of X-linked genes in the flour beetle.

    Science.gov (United States)

    Prince, Eldon G; Kirkland, Donna; Demuth, Jeffery P

    2010-07-12

    A genome's ability to produce two separate sexually dimorphic phenotypes is an intriguing biological mystery. Microarray-based studies of a handful of model systems suggest that much of the mystery can be explained by sex-biased gene expression evolved in response to sexually antagonistic selection. We present the first whole-genome study of sex-biased expression in the red flour beetle, Tribolium castaneum. Tribolium is a model for the largest eukaryotic order, Coleoptera, and we show that in whole-body adults, approximately 20% of the transcriptome is differentially regulated between the sexes. Among T. castaneum, Drosophila melanogaster, and Anopheles gambiae, we identify 416 1:1:1 orthologs with conserved sex-biased expression. Overrepresented functional categories among sex-biased genes are primarily those involved in gamete production and development. The genomic distribution of sex-biased genes in T. castaneum is distinctly nonrandom, with the strongest deficit of male-biased genes on the X chromosome (9 of 793) of any species studied to date. Tribolium also shows a significant enrichment of X-linked female-biased genes (408 of 793). Our analyses suggest that the extensive female bias of Tribolium X chromosome gene expression is due to hyperexpression of X-linked genes in both males and females. We propose that the overexpression of X chromosomes in females is an evolutionary side effect of the need to dosage compensate in males and that mechanisms to reduce female X chromosome gene expression to autosomal levels are sufficient but imperfect.

  13. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1995-08-10

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  14. Increased expression of p73Deltaex2 transcript in uveal melanoma with loss of chromosome 1p.

    Science.gov (United States)

    Kilic, Emine; Brüggenwirth, Hennie T; Meier, Marit; Naus, Nicole C; Beverloo, H Berna; Meijerink, Jules P; Luyten, Gre P; de Klein, Annelies

    2008-06-01

    The loss of chromosome 1p and chromosome 3 is associated with metastatic disease and decreased survival of uveal melanoma (UM) patients. The p53 homologues, p73 and p63, are located on chromosomes 1p and 3q, respectively. Both are able to activate p53 target genes, resulting in growth arrest, apoptosis and differentiation. N-terminally truncated isoforms of these genes may act as dominant negative inhibitors of wild-type p53 and transactivating activity. Although, p53 is frequently involved in several malignancies it does not play a major role in UM. Altered expression has been reported for both p63 and p73 in various malignancies. In this study, fluorescent in-situ hybridization was performed to identify gains or losses of p63 and p73 loci in UM. The expression of the different p63 and p73 isoforms was evaluated by reverse transcriptase PCR followed by Southern blot analysis. Furthermore, the expression pattern of the various DeltaTAp73 transcripts was analysed in seven primary UMs and 11 UM-derived cell lines using isoform-specific real-time PCR. Our results indicated that the isoform p73Deltaex2/3 was abundantly expressed and a relative loss of the p73 locus was associated with the upregulation of p73Deltaex2 and TAp73 transcripts. N-terminal transactivation forms of both p73 and p63 were observed in primary and metastasis-derived cell lines, as well as in primary melanomas, but in only one of the cell lines a DeltaNp63 mRNA transcript was observed. Our data suggest a potential function of p73 deletion transcripts in UM progression.

  15. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  16. Adenosine diphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping.

    Science.gov (United States)

    Ainsworth, C; Hosein, F; Tarvis, M; Weir, F; Burrell, M; Devos, K M; Gale, M D

    1995-01-01

    A full-length cDNA clone representing the large (shrunken-2) subunit of ADP-glucose pyrophosphorylase (AGP; EC 2.7.7.27) has been isolated from a cDNA library prepared from developing grain of hexaploid wheat (Triticum aestivum L., cv. Chinese Spring). The 2084-bp cDNA insert contains an open reading frame of 1566 nucleotides and primer-extension analysis indicated that the 5' end is 10 nucleotides shorter than the mRNA. The deduced protein contains 522 amino acids (57.8 kDa) and includes a putative transit peptide of 62 amino acids (6.5 kDa). The similarity of the deduced protein to the small subunit of AGP and to other AGP genes from plants and microorganisms is discussed. Northern hybridisation shows that the Agp1 genes (encoding the small subunit in the wheat endosperm) and the Agp2 genes (encoding the large subunit in the wheat endosperm) are differentially expressed in the wheat grain. Transcripts from both gene sets accumulate to high levels in the endosperm during grain development with the majority of the expression in the endopsperm rather than the embryo and pericarp layers. Although enzyme activity is detected in developing grains prior to 10 d post anthesis, only the Agp1 genes are active at this time (the Agp2 genes are not expressed until 10 d post anthesis). The possibility that the enzyme expressed during early grain development is a homotetramer of small subunits is discussed. The Agp1 and Agp2 genes are arranged as triplicate sets of single-copy homoeoloci in wheat. The Agp2 genes are located on the long arms of chromosomes 1A, 1B and 1D, about 80 cM from the centromere. The Agp1 genes have been mapped to a position just distal to the centromere on the long arms of chromosomes 7A, 7B and 7D.

  17. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster.

    Science.gov (United States)

    Deng, Xinxian; Hiatt, Joseph B; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, LaDeana W; Schlesinger, Felix; Davis, Carrie A; Reinke, Valerie J; Gingeras, Thomas R; Shendure, Jay; Waterston, Robert H; Oliver, Brian; Lieb, Jason D; Disteche, Christine M

    2011-10-23

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

  18. Signal transduction pathways that regulate CAB gene expression. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.

    1993-12-31

    We have completed the initial genetic and phenotypic characterization of several classes of new mutants that affect CAB gene expression. The doc mutants (for dark overexpression of cab) are characterized by elevated levels of CAB gene expression in the dark; however, unlike the previously isolated de-etiolated mutants (also isolated in my lab), the doc mutants still appear etiolated. The doc alleles define 3 loci, each of which maps to a separate chromosome. The details of the mutant isolation scheme and the genetic and phenotypic description of these new mutants are described. The second class of mutants, the gun mutants (for genomes uncoupled) show accumulation of CAB mRNA in the absence of chloroplast gene expression and development. Thus, the normally tightly coordinated expression between the chloroplast and nuclear genes that encode chloroplast-destined proteins has been uncoupled. We have shown that the Arabidopsis HY3 locus encodes the type B phytochrome apoprotein gene and have characterized the phenotypes of null hy3 alleles to ascertain a role for this phytochrome in Arabidopsis development. We have also isolated and characterized a number of alleles of the phytochrome A gene.

  19. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Evert van den Broek

    Full Text Available Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA and structural variants (SVs. Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC and to determine the clinical relevance of recurrent breakpoint genes.Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases.In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR 3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis.We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC.

  20. From amplification to gene in thyroid cancer: A high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.N.; Gonsky, R.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States). Cedars-Sinai Research Inst.; Knauf, J.A.; Fagin, J.A. [Univ. of Cincinnati, OH (United States). Div. of Endocrinology/Metabolism; Wang, M.; Lai, E.H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Pharmacology; Chissoe, S. [Washington Univ. School of Medicine, St. Louis, MO (United States). Genome Sequencing

    1998-08-01

    Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. The authors now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. They used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3--6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKC{epsilon}), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKC{epsilon} as a previously unmapped candidate gene involved in thyroid tumorigenesis.

  1. Macronuclear genome structure of the ciliate Nyctotherus ovalis: Single-gene chromosomes and tiny introns

    Directory of Open Access Journals (Sweden)

    Landweber Laura F

    2008-12-01

    Full Text Available Abstract Background Nyctotherus ovalis is a single-celled eukaryote that has hydrogen-producing mitochondria and lives in the hindgut of cockroaches. Like all members of the ciliate taxon, it has two types of nuclei, a micronucleus and a macronucleus. N. ovalis generates its macronuclear chromosomes by forming polytene chromosomes that subsequently develop into macronuclear chromosomes by DNA elimination and rearrangement. Results We examined the structure of these gene-sized macronuclear chromosomes in N. ovalis. We determined the telomeres, subtelomeric regions, UTRs, coding regions and introns by sequencing a large set of macronuclear DNA sequences (4,242 and cDNAs (5,484 and comparing them with each other. The telomeres consist of repeats CCC(AAAACCCCn, similar to those in spirotrichous ciliates such as Euplotes, Sterkiella (Oxytricha and Stylonychia. Per sequenced chromosome we found evidence for either a single protein-coding gene, a single tRNA, or the complete ribosomal RNAs cluster. Hence the chromosomes appear to encode single transcripts. In the short subtelomeric regions we identified a few overrepresented motifs that could be involved in gene regulation, but there is no consensus polyadenylation site. The introns are short (21–29 nucleotides, and a significant fraction (1/3 of the tiny introns is conserved in the distantly related ciliate Paramecium tetraurelia. As has been observed in P. tetraurelia, the N. ovalis introns tend to contain in-frame stop codons or have a length that is not dividable by three. This pattern causes premature termination of mRNA translation in the event of intron retention, and potentially degradation of unspliced mRNAs by the nonsense-mediated mRNA decay pathway. Conclusion The combination of short leaders, tiny introns and single genes leads to very minimal macronuclear chromosomes. The smallest we identified contained only 150 nucleotides.

  2. CHROMOSOME 3 MAY HARBOR MULTIPLE TUMOR SUPPRESSOR GENES ASSOCIATED WITH PRIMARY GLIOBLASTOMA MULTIFORME

    Institute of Scientific and Technical Information of China (English)

    胡杰; 江澄川; 吴浩强; 彭颂先; 唐婉君; 陈商群

    2002-01-01

    Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24(27 and at loci D3S1569 (35.3%) on 3q22(23 and D3S1289 (33.3%) on 3p14.1(14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24(27 and at loci D3S1569 on 3q22(23 and D3S1289 on 3p14.1(14.3 are potential sites for novel tumor suppressor genes associated with GBM.

  3. Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia

    Institute of Scientific and Technical Information of China (English)

    Peter J Stahl; Anna N Mielnik; Christopher E Barbieri; Peter N Schlegel; Darius A Paduch

    2012-01-01

    Maturation arrest (MA) refers to failure of germ cell development leading to clinical nonobstructive azoospermia.Although the azoospermic factor (AZF) region of the human Y chromosome is clearly implicated in some cases,thus far very little is known about which individual Y-chromosome genes are important for complete male germ cell development.We sought to identify single genes on the Y chromosome that may be implicated in the pathogenesis of nonobstructive azoospermia associated with MA in the American population.Genotype-phenotype analysis of 132 men with Y-chromosome microdeletions was performed.Protein-coding genes associated with MA were identified by visual analysis of a genotype-phenotype map.Genes associated with MA were selected as those genes within a segment of the Y chromosome that,when completely or partially deleted,were always associated with MA and absence of retrievable testicular sperm.Expression of each identified gene transcript was then measured with quantitative RT-PCR in testicular tissue from separate cohorts of patients with idiopathic MA and obstructive azoospermia.Ten candidate genes for association with MA were identified within an 8.4-Mb segment of the Y chromosome overlapping the AZFb region,CDY2 and HSFYwere the only identified genes for which differences in expression were observed between the MA and obstructive azoospermia cohorts.Men with obstructive azoospermia had 12-fold higher relative expression of CDY2 transcript (1.33±0.40 vs.0.11±0.04; P=0.0003) and 16-fold higher expression of HSFY transcript (0.78±0.32 vs.0.05±0.02; P=0.0005) compared to men with MA.CDY2 and HSFY were also underexpressed in patients with Sertoli cell only syndrome.These data indicate that CDY2 and HSFY are located within a segment of the Y chromosome that is important for sperm maturation,and am underexpressed in testicular tissue derived from men with MA.These observations suggest that impairments in CDY2 or HSFY expression could be implicated in the

  4. Fusion of the FUS and CREB3L2 genes in a supernumerary ring chromosome in low-grade fibromyxoid sarcoma.

    Science.gov (United States)

    Bartuma, Hammurabi; Möller, Emely; Collin, Anna; Domanski, Henryk A; Von Steyern, Fredrik Vult; Mandahl, Nils; Mertens, Fredrik

    2010-06-01

    Low-grade fibromyxoid sarcoma (LGFMS) is a rare, low-grade malignant soft tissue tumor that is often mistaken for either benign or more malignant tumor types. Commonly, this tumor affects young adults and typically arises in the deep proximal extremities or trunk with frequent recurrences and can metastasize to the lungs many years later. Most cases have a recurrent balanced translocation involving chromosomes 7 and 16, t(7;16)(q32-34;p11), which leads to the fusion of the FUS and CREB3L2 genes. However, supernumerary ring chromosomes have been identified in a subset of FUS/CREB3L2-positive LGFMS, but it has not yet been formally demonstrated that such ring chromosomes harbor the FUS/CREB3L2 fusion gene. Here, we report the genetic findings of a supernumerary ring chromosome from an LGFMS from a 77-year-old man. Chromosome banding analysis revealed a supernumerary ring chromosome, and further studies with fluorescence in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR) showed that the ring contained material from chromosomes 7 and 16, that the FUS gene was present in two rearranged copies, and that it expressed the FUS/CREB3L2 fusion gene. Moreover, an assessment of previously reported cases showed that tumors with ring chromosomes relapsed more often than tumors with a balanced t(7;16), suggesting that ring formation in LGFMS is correlated with tumor progression. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Obesity in BSB mice is correlated with expression of genes foriron homeostasis and leptin

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.; Boffelli,Dario; Lee, Eric; Fisler, Janis S.; Krauss, Ronald M.; Warden, Craig H.

    2003-04-01

    Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genes differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.

  6. No excess gene movement is detected off the avian or lepidopteran Z chromosome.

    Science.gov (United States)

    Toups, Melissa A; Pease, James B; Hahn, Matthew W

    2011-01-01

    Most of our knowledge of sex-chromosome evolution comes from male heterogametic (XX/XY) taxa. With the genome sequencing of multiple female heterogametic (ZZ/ZW) taxa, we can now ask whether there are patterns of evolution common to both sex chromosome systems. In all XX/XY systems examined to date, there is an excess of testis-biased retrogenes moving from the X chromosome to the autosomes, which is hypothesized to result from either sexually antagonistic selection or escape from meiotic sex chromosome inactivation (MSCI). We examined RNA-mediated (retrotransposed) and DNA-mediated gene movement in two independently evolved ZZ/ZW systems, birds (chicken and zebra finch) and lepidopterans (silkworm). Even with sexually antagonistic selection likely operating in both taxa and MSCI having been identified in the chicken, we find no evidence for an excess of genes moving from the Z chromosome to the autosomes in either lineage. We detected no excess for either RNA- or DNA-mediated duplicates, across a range of approaches and methods. We offer some potential explanations for this difference between XX/XY and ZZ/ZW sex chromosome systems, but further work is needed to distinguish among these hypotheses. Regardless of the root causes, we have identified an additional, potentially inherent, difference between XX/XY and ZZ/ZW systems.

  7. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  8. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    Directory of Open Access Journals (Sweden)

    Martins Cesar

    2010-01-01

    Full Text Available Abstract Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s occurring in 39.6% of the analyzed individuals (both male and female were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.

  9. Chromosomal localization of the human apolipoprotein B gene and detection of homologous RNA in monkey intestine

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, S.S.; Disteche, C.; Motulsky, A.G.; Lebo, R.V.; Kan, Y.W.

    1986-01-01

    A cDNA clone of the human apolipoprotein B-100 was used as a hybridization probe to detect homologous sequences in both flow-sorted and in situ metaphase chromosomes. The results indicate that the gene encoding this protein is on the distal end of the short arm of chromosome 2 (2p23-2p24). RNA isolated from monkey small intestine contained sequences (6.5 and 18 kilobases) homologous to the cDNA of apolipoprotein B-100. These results are consistent with the hypothesis that one gene codes for both the intestinal (B-48) and the hepatic (B-100) forms.

  10. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    Science.gov (United States)

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  11. X-linkage is not a general inhibitor of tissue-specific gene expression in Drosophila melanogaster.

    Science.gov (United States)

    Argyridou, E; Huylmans, A K; Königer, A; Parsch, J

    2017-07-01

    As a consequence of its difference in copy number between males and females, the X <