WorldWideScience

Sample records for gene disrupts development

  1. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  2. A new type of gene-disruption cassette with a rescue gene for Pichia pastoris.

    Science.gov (United States)

    Shibui, Tatsuro; Hara, Hiroyoshi

    2017-09-01

    Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene-targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene-disruption system with a rescue gene using an inducible Cre/mutant-loxP system. With only short homology regions, the gene-disruption cassette of the system replaces its target-gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter-driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant-loxP sequences in the cassette is excised, leaving only the remaining mutant-loxP sequence in the genome, and consequently a target gene-disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color-change of the colonies. Then, the system was applied for knocking-out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene-targeting methods. All three gene-disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant-loxP system worked well to successfully isolate their knock-out mutants. This study identified a new gene-disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end-joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201-1208, 2017. © 2017 American Institute of Chemical Engineers.

  3. Conversion of homothallic yeast to heterothallism trough HO gene disruption

    CSIR Research Space (South Africa)

    Van Zyl, WH

    1993-04-01

    Full Text Available A simple method was developed for the conversion of homothallic Saccharomyces cerevisiae yeaststrains to heterothallism through HO gene disruption. An integrative ho:: neo disrupted allele was constructed by cloning a dominant selectable marker...

  4. Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase.

    Science.gov (United States)

    Pateau, Victoire; Razafimandimby, Bienvenue; Vandeputte, Patrick; Thornton, Christopher R; Guillemette, Thomas; Bouchara, Jean-Philippe; Giraud, Sandrine

    2018-02-01

    Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum. The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.

  5. Gene disruption in Salmonella typhimurim by modified λ Red disruption system.

    Science.gov (United States)

    Ahani Azari, A; Zahraei Salehi, T; Nayeri Fasaei, B; Alebouyeh, M

    2015-01-01

    There are many techniques to knock out directed genes in bacteria, some of which have been described in Salmonella species. In this study, a combination of SOEing PCR method and the λ Red disruption system were used to disrupt phoP gene in wild type and standard strains of Salmonella typhimurium. Three standards PCR and one fusion PCR reactions were performed to construct a linear DNA including upstream and downstream of phoP gene and Kanamycin cassette. As a template plasmid, we used pKD4 which carries kanamycin gene flanked by FRT (FLP recognition target) sites. The resulting construct was electroporated into prepared competent cells of S. typhimurium. The transformants colonies related to the standard strain appeared on the LB-Km-agar plates after incubation, but there was no colony on LB-Km-agar plates corresponding to the wild type strain. The failure in transformation of the wild type strain may be because of inflexibility of the λ Red disruption system in this strain or its unique restriction-modification system. However, by this construct we are able to generate phoP mutant in many of the Salmonella species due to high homology of the phoP gene which exists in different species.

  6. New Clox Systems for rapid and efficient gene disruption in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shahida Shahana

    Full Text Available Precise genome modification is essential for the molecular dissection of Candida albicans, and is yielding invaluable information about the roles of specific gene functions in this major fungal pathogen of humans. C. albicans is naturally diploid, unable to undergo meiosis, and utilizes a non-canonical genetic code. Hence, specialized tools have had to be developed for gene disruption in C. albicans that permit the deletion of both target alleles, and in some cases, the recycling of the Candida-specific selectable markers. Previously, we developed a tool based on the Cre recombinase, which recycles markers in C. albicans with 90-100% efficiency via site-specific recombination between loxP sites. Ironically, the utility of this system was hampered by the extreme efficiency of Cre, which prevented the construction in Escherichia coli of stable disruption cassettes carrying a methionine-regulatable CaMET3p-cre gene flanked by loxP sites. Therefore, we have significantly enhanced this system by engineering new Clox cassettes that carry a synthetic, intron-containing cre gene. The Clox kit facilitates efficient transformation and marker recycling, thereby simplifying and accelerating the process of gene disruption in C. albicans. Indeed, homozygous mutants can be generated and their markers resolved within two weeks. The Clox kit facilitates strategies involving single marker recycling or multi-marker gene disruption. Furthermore, it includes the dominant NAT1 marker, as well as URA3, HIS1 and ARG4 cassettes, thereby permitting the manipulation of clinical isolates as well as genetically marked strains of C. albicans. The accelerated gene disruption strategies afforded by this new Clox system are likely to have a profound impact on the speed with which C. albicans pathobiology can be dissected.

  7. The BDGP gene disruption project: Single transposon insertions associated with 40 percent of Drosophila genes

    Energy Technology Data Exchange (ETDEWEB)

    Bellen, Hugo J.; Levis, Robert W.; Liao, Guochun; He, Yuchun; Carlson, Joseph W.; Tsang, Garson; Evans-Holm, Martha; Hiesinger, P. Robin; Schulze, Karen L.; Rubin, Gerald M.; Hoskins, Roger A.; Spradling, Allan C.

    2004-01-13

    The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in more than 30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6,300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7,140 lines. It now includes individual lines predicted to disrupt 5,362 of the 13,666 currently annotated Drosophila genes (39 percent). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene mis-expression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

  8. Functional Analysis of an ATP-Binding Cassette Transporter Gene in Botrytis cinerea by Gene Disruption

    OpenAIRE

    Masami, NAKAJIMA; Junko, SUZUKI; Takehiko, HOSAKA; Tadaaki, HIBI; Katsumi, AKUTSU; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; Department of Agriculture and Environmental Biology, The University of Tokyo; School of Agriculture, Ibaraki University

    2001-01-01

    The BMR1 gene encoding an ABC transporter was cloned from Botrytis cinerea. To examine the function of BMR1 in B.cinerea, we isolated BMR1-deficient mutants after gene disruption. Disruption vector pBcDF4 was constructed by replacing the BMR1-coding region with a hygromycin B phosphotransferase gene(hph)cassette. The BMR1 disruptants had an increased sensitivity to polyoxin and iprobenfos. Polyoxin and iprobenfos, structurally unrelated compounds, may therefore be substrates of BMR1.

  9. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  10. SYBR safeTM efficiently replaces ethidium bromide in Aspergillus fumigatus gene disruption.

    Science.gov (United States)

    Canela, H M S; Takami, L A; Ferreira, M E S

    2017-02-08

    Invasive aspergillosis is a disease responsible for high mortality rates, caused mainly by Aspergillus fumigatus. The available drugs are limited and this disease continues to occur at an unacceptable frequency. Gene disruption is essential in the search for new drug targets. An efficient protocol for A. fumigatus gene disruption was described but it requires ethidium bromide, a genotoxic agent, for DNA staining. Therefore, the present study tested SYBR safe TM , a non-genotoxic DNA stain, in A. fumigatus gene disruption protocol. The chosen gene was cipC, which has already been disrupted successfully in our laboratory. A deletion cassette was constructed in Saccharomyces cerevisiae and used in A. fumigatus transformation. There was no statistical difference between the tested DNA stains. The success rate of S. cerevisiae transformation was 63.3% for ethidium bromide and 70% for SYBR safe TM . For A. fumigatus gene disruption, the success rate for ethidium bromide was 100 and 97% for SYBR safe TM . In conclusion, SYBR safe TM efficiently replaced ethidium bromide, making this dye a safe and efficient alternative for DNA staining in A. fumigatus gene disruption.

  11. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    Science.gov (United States)

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of

  12. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    Science.gov (United States)

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  13. Isolation of industrial strains of Aspergillus oryzae lacking ferrichrysin by disruption of the dffA gene.

    Science.gov (United States)

    Watanabe, Hisayuki; Hatakeyama, Makoto; Sakurai, Hiroshi; Uchimiya, Hirofumi; Sato, Toshitsugu

    2008-11-01

    Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.

  14. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.

    Science.gov (United States)

    Togawa, Yoichiro; Nunoshiba, Tatsuo; Hiratsu, Keiichiro

    2018-02-01

    Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.

  15. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  16. Functional evaluations of genes disrupted in patients with Tourette’s Disorder

    Directory of Open Access Journals (Sweden)

    Nawei eSun

    2016-02-01

    Full Text Available Tourette Disorder (TD is a highly heritable neurodevelopmental disorder with complex genetic architecture and unclear neuropathology. Disruptions of particular genes have been identified in subsets of TD patients. However, none of the findings has been replicated, probably due to the complex and heterogeneous genetic architecture of TD that involves both common and rare variants. To understand the etiology of TD, functional analyses are required to characterize the molecular and cellular consequences caused by mutations in candidate genes. Such molecular and cellular alterations may converge into common biological pathways underlying the heterogeneous genetic etiology of TD patients. Herein, we review specific genes implicated in TD etiology, discuss the functions of these genes in the mammalian central nervous system and the corresponding behavioral anomalies exhibited in animal models and, importantly, review functional analyses that can be performed to evaluate the role(s that the genetic disruptions might play in TD. Specifically, the functional assays include novel cell culture systems, genome editing techniques, bioinformatics approaches, transcriptomic analyses and genetically modified animal models applied or developed to study genes associated with TD or with other neurodevelopmental and neuropsychiatric disorders. By describing methods used to study diseases with genetic architecture similar to TD, we hope to develop a systematic framework for investigating the etiology of TD and related disorders.

  17. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  18. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  20. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  1. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    Science.gov (United States)

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  2. Gene expression disruptions of organism versus organ in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Daniel J Catron

    2008-08-01

    Full Text Available Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.

  3. Sites of disruption within E1 and E2 genes of HPV16 and association with cervical dysplasia.

    Science.gov (United States)

    Tsakogiannis, D; Gortsilas, P; Kyriakopoulou, Z; Ruether, I G A; Dimitriou, T G; Orfanoudakis, G; Markoulatos, P

    2015-11-01

    Integration of HPV16 DNA into the host chromosome usually disrupts the E1 and/or E2 genes. The present study investigated the disruption of E1, E2 genes in a total of eighty four HPV16-positive precancerous and cervical cancer specimens derived from Greek women (seventeen paraffin-embedded cervical biopsies and sixty seven Thin Prep samples). Complete E2 and E1 genes were amplified using three and nine overlapping primer sets respectively, in order to define the sites of disruption. Extensive mapping analysis revealed that disruption/deletion events within E2 gene occurred in high grade and cervical cancer samples (x(2) test, P disruption was documented among low grade cervical intraepithelial neoplasias. In addition, disruptions within the E1 gene occur both in high and low grade cervical intraepithelial neoplasia. This leads to the assumption that in low grade cervical intraepithelial neoplasias only E1 gene disruption was involved (Fisher's exact test, P disruption of E1 gene was located between nucleotides 1059 and 1323, while the most prevalent deleted region of the E2 gene was located between nucleotides 3172 and 3649 (E2 hinge region). Therefore, it is proposed that each population has its own profile of frequencies and sites of disruptions and extensive mapping analysis of E1 and E2 genes is mandatory in order to determine suitable markers for HPV16 DNA integration analysis in distinct populations. © 2015 Wiley Periodicals, Inc.

  4. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates.

    Science.gov (United States)

    Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M

    2018-04-01

    Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis

  5. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  6. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid.

    Science.gov (United States)

    Aboklaish, Ali F; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I; Spiller, O Brad

    2014-11-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Hansen, J.

    2000-01-01

    the GAP1 gene. This is caused by recombination between two Salmonella typuimurium hisG direct repeats embracing GAP1, and will result in a sub-population of gap1 cells. Such cells are selected on a medium containing D-histidine, and may subsequently be used for a second gene disruption. Hence, multiple...... flanked by short (60 bp) stretches of the gene in question. Through homologous recombination, the cassette will integrate into the target gene, which is thus replaced by GAP1, and mutants are selected for on minimal L-citrulline medium. When propagated under non-selective conditions, some cells will lose...... gene disruptions can be made fast, cheaply and easily in a gap1 strain, with two positive selection steps for each disruption. Copyright (C) 2000 John Wiley & Sons, Ltd....

  8. Genetic Disruption of the Sh3pxd2a Gene Reveals an Essential Role in Mouse Development and the Existence of a Novel Isoform of Tks5

    OpenAIRE

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulte...

  9. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus

    International Nuclear Information System (INIS)

    Dickerson, Sarah M.; Cunningham, Stephanie L.; Gore, Andrea C.

    2011-01-01

    Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA B receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation

  10. Application of the Disruption Predictor Feature Developer to developing a machine-portable disruption predictor

    Science.gov (United States)

    Parsons, Matthew; Tang, William; Feibush, Eliot

    2016-10-01

    Plasma disruptions pose a major threat to the operation of tokamaks which confine a large amount of stored energy. In order to effectively mitigate this damage it is necessary to predict an oncoming disruption with sufficient warning time to take mitigative action. Machine learning approaches to this problem have shown promise but require further developments to address (1) the need for machine-portable predictors and (2) the availability of multi-dimensional signal inputs. Here we demonstrate progress in these two areas by applying the Disruption Predictor Feature Developer to data from JET and NSTX, and discuss topics of focus for ongoing work in support of ITER. The author is also supported under the Fulbright U.S. Student Program as a graduate student in the department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign.

  11. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development

    International Nuclear Information System (INIS)

    Veldhoen, Nik; Skirrow, Rachel C.; Osachoff, Heather; Wigmore, Heidi; Clapson, David J.; Gunderson, Mark P.; Van Aggelen, Graham; Helbing, Caren C.

    2006-01-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) α and β, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10 -11 mol/g body weight 3,5,3'-triiodothyronine (T 3 ) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10 nM T 3 . Tadpoles pretreated with triclosan concentrations as low as 0.15 ± 0.03 μg/L for 4 days showed increased hindlimb development and a decrease in total body weight following T 3 administration. Triclosan exposure also resulted in decreased T 3 -mediated TRβ mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T 3 treatment whereas TRα and BTEB were unaffected. Triclosan alone altered thyroid hormone receptor α transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T 3 plus nominal concentrations of triclosan as low as 0.03 μg/L for 24 h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development

  12. 17α-Ethinylestradiol (EE2) treatment of wild roach (Rutilus rutilus) during early life development disrupts expression of genes directly involved in the feedback cycle of estrogen.

    Science.gov (United States)

    Nikoleris, Lina; Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-02-01

    Fish are more sensitive to introduced disturbances from synthetic endocrine disrupting compounds during early life phases compared with mature stages. 17α-Ethinylestradiol (EE2), which is the active compound in human oral contraceptives and hormone replacement therapies, is today ever present in the effluents from sewage treatment plants. EE2 targets and interacts with the endogenous biological systems of exposed vertebrates resulting in to large extents unknown short- and long-term effects. We investigated how EE2 exposure affects expression profiles of a large number of target genes during early life of roach (Rutilus rutilus). We exposed fertilized roach eggs collected from a lake in Southern Sweden to EE2 for 12weeks together with 1+-year-old roach in aquaria. We measured the gene expression of the estrogen receptor (esr)1/2a/2b, androgen receptor (ar), vitellogenin, cytochrome P450 (cyp)19a1a/1b in fertilized eggs; newly hatched larvae; 12-week-old fry; and juvenile wild roach (1+-year-old). Results shows that an EE2 concentration as low as 0.5ng/L significantly affects gene expression during early development. Gene expression responses vary both among life stages and molecular receptors. We also show that the gene profile of the estrogen feedback cycle to a large extent depends on the relationship between the three esr genes and the two cyp19a1 genes, which are all up-regulated with age. Results indicate that a disruption of the natural activity of the dominant esr gene could lead to detrimental biological effects if EE2 exposure occurs during development, even if this exposure occurred for only a short period. Copyright © 2015. Published by Elsevier Inc.

  13. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Beverly A. Karpinski

    2014-02-01

    Full Text Available We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS, a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V, glossopharyngeal (IX or vagus (X cranial nerves (CNs that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  14. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis.

    Science.gov (United States)

    Furuya, Tetsuya; Mu, Jianbing; Hayton, Karen; Liu, Anna; Duan, Junhui; Nkrumah, Louis; Joy, Deirdre A; Fidock, David A; Fujioka, Hisashi; Vaidya, Akhil B; Wellems, Thomas E; Su, Xin-zhuan

    2005-11-15

    A male gametocyte defect in the Plasmodium falciparum Dd2 parasite was previously discovered through the observation that all progeny clones in a Dd2 x HB3 genetic cross were the result of fertilization events between Dd2 female and HB3 male gametes. A determinant linked to the defect in Dd2 was subsequently mapped to an 800-kb segment on chromosome 12. Here, we report further mapping of the determinant to an 82-kb region and the identification of a candidate gene, P. falciparum male development gene 1 (pfmdv-1), that is expressed at a lower level in Dd2 compared with the wild-type normal male gametocyte-producing ancestor W2. Pfmdv-1 protein is sexual-stage specific and is located on the gametocyte plasma membrane, parasitophorous vacuole membrane, and the membranes of cleft-like structures within the erythrocyte. Disruption of pfmdv-1 results in a dramatic reduction in mature gametocytes, especially functional male gametocytes, with the majority of sexually committed parasites developmentally arrested at stage I. The pfmdv-1-knockout parasites show disturbed membrane structures, particularly multimembrane vesicles/tubes that likely derive from deformed cleft-like structures. Mosquito infectivity of the knockout parasites was also greatly reduced but not completely lost. The results suggest that pfmdv-1 plays a key role in gametocyte membrane formation and integrity.

  15. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Osachoff, Heather [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Wigmore, Heidi [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Clapson, David J. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Gunderson, Mark P. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Van Aggelen, Graham [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Helbing, Caren C. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada)]. E-mail: chelbing@uvic.ca

    2006-12-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) {alpha} and {beta}, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10{sup -11} mol/g body weight 3,5,3'-triiodothyronine (T{sub 3}) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10 nM T{sub 3}. Tadpoles pretreated with triclosan concentrations as low as 0.15 {+-} 0.03 {mu}g/L for 4 days showed increased hindlimb development and a decrease in total body weight following T{sub 3} administration. Triclosan exposure also resulted in decreased T{sub 3}-mediated TR{beta} mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T{sub 3} treatment whereas TR{alpha} and BTEB were unaffected. Triclosan alone altered thyroid hormone receptor {alpha} transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T{sub 3} plus nominal concentrations of triclosan as low as 0.03 {mu}g/L for 24 h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development.

  16. Disruption of the neurexin 1 gene is associated with schizophrenia

    DEFF Research Database (Denmark)

    Rujescu, Dan; Ingason, Andres; Cichon, Sven

    2009-01-01

    may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1...

  17. A constitutional translocation t(1;17(p36.2;q11.2 in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes.

    Directory of Open Access Journals (Sweden)

    Karl Vandepoele

    Full Text Available The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17(p36.2;q11.2 may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.

  18. Targeted disruption of the mouse Lipoma Preferred Partner gene

    International Nuclear Information System (INIS)

    Vervenne, Hilke B.V.K.; Crombez, Koen R.M.O.; Delvaux, Els L.; Janssens, Veerle; Ven, Wim J.M. van de; Petit, Marleen M.R.

    2009-01-01

    LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp -/- females. Fertility of Lpp -/- males was proven to be normal, however, females from Lpp -/- x Lpp -/- crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp -/- mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp -/- mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.

  19. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  20. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  1. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.

    Science.gov (United States)

    Johansen, Anne Katrine; Molenaar, Bas; Versteeg, Danielle; Leitoguinho, Ana Rita; Demkes, Charlotte; Spanjaard, Bastiaan; de Ruiter, Hesther; Akbari Moqadam, Farhad; Kooijman, Lieneke; Zentilin, Lorena; Giacca, Mauro; van Rooij, Eva

    2017-10-27

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)-based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized. To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice. We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6 , Sav1 , and Tbx20 , using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1 , which increased the editing efficiency. Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo. © 2017 American Heart Association, Inc.

  2. Efficient gene replacements in ku70 disruption strain of Aspergillus chevalieri var. intermedius

    Directory of Open Access Journals (Sweden)

    Qingqing Huang

    2017-01-01

    Full Text Available Aspergillus chevalieri var. intermedius is a dominant filamentous fungal species in Fuzhuan tea and is associated with the quality and health benefits of this tea. The sexual or asexual reproduction of this fungus depends on the osmotic pressure of the tea. Efforts to enhance the beneficial effects of A. chevalieri var. intermedius are hampered by difficulties in disrupting its genes. To address this issue, we identified the A. chevalieri var. intermedius homolog (Acku70 of human Ku70 and generated an Acku70 disruption strain (ΔAcku70, aiming to improve the gene replacement efficiency. ΔAcku70 grew at a slightly lower rate in vitro than the wild-type strain; however, the two strains exhibited similar sensitivity to temperature, osmotic pressure and the effects of ethyl methane sulphonate and H2O2. The replacement efficiency of veA and flbA dramatically increased in ΔAcku70 compared to that in the wild type. The efficiency of flbA replacement increased from 2.6% to 80%, whereas the frequency of veA disruption increased from 15.2% to 83.9% and from 30.8% to 86.8%. Thus, ΔAcku70 is suitable for use as a type strain for large-scale functional genomic analysis of A. chevalieri var. intermedius.

  3. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.

    OpenAIRE

    Spradling, A C; Stern, D M; Kiss, I; Roote, J; Laverty, T; Rubin, G M

    1995-01-01

    Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and a...

  4. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    Science.gov (United States)

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  5. Molecular breeding of the Mureka-non-forming sake koji mold from Aspergillus oryzae by the disruption of the mreA gene.

    Science.gov (United States)

    Kubodera, Takafumi; Yamashita, Nobuo; Nishimura, Akira

    2003-01-01

    Mureka-non-forming sake koji molds were constructed from an Aspergillus oryzae industrial strain by the disruption of the mreA gene using a host-vector system with the ptrA gene as a dominant selectable marker. All of the mreA gene disruptants obtained retained the advantages of the host strain in terms of the brewing characteristics, while their isoamyl alcohol oxidase (IAAOD) activities were significantly lower than that of the host strain. Sake brewing was successfully carried out using the koji prepared with the disruptants, followed by storage of the resultant non-pasteurized sake (nama-shu). The isovaleraldehyde (i-Val) concentration in the sake brewed the host strain increased rapidly and reached the threshold values for mureka, 1.8 ppm and 2.6 ppm after storage at 20 degrees C for 42 d and 63 d, respectively, while those of the disruptants were less than 0.5 ppm even after storage at 20 degrees C or 30 degrees C for 63 d. In the sensory evaluation of the sake stored at 20 degrees C or 30 degrees C for 63 d, all members of the panel recognized the strong mureka flavor of the sake brewed with the host strain, while they did not detect this flavor in the sake brewed with the disruptants. Thus, we concluded that the mreA gene disruptants can be used for the production of sake in which mureka is not formed.

  6. The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cary

    2017-10-01

    Full Text Available Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δhbx1 mutants did not produce conidiophores. The inability of Δhbx1 mutants to produce conidia was related to downregulation of brlA (bristle and abaA (abacus, regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  7. Putative effects of endocrine disrupters on pubertal development in the human

    DEFF Research Database (Denmark)

    Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E

    2002-01-01

    -called endocrine disrupters. Precocious puberty has been described in several case reports of accidental exposure to oestrogenic compounds in cosmetic products, food and pharmaceuticals. Local epidemics of premature thelarche have also been suggested to be linked to endocrine disrupters. Children adopted from...... developing countries to industrialized countries often develop precocious puberty. Not only precocious puberty, but also delayed puberty can, theoretically, be associated with exposure to endocrine disrupters. While it is very plausible that endocrine disrupters may disturb pubertal development...

  8. Simultaneous Disruption of Mouse ASIC1a, ASIC2 and ASIC3 Genes Enhances Cutaneous Mechanosensitivity

    Science.gov (United States)

    Kang, Sinyoung; Jang, Jun Ho; Price, Margaret P.; Gautam, Mamta; Benson, Christopher J.; Gong, Huiyu; Welsh, Michael J.; Brennan, Timothy J.

    2012-01-01

    Three observations have suggested that acid-sensing ion channels (ASICs) might be mammalian cutaneous mechanoreceptors; they are structurally related to Caenorhabditis elegans mechanoreceptors, they are localized in specialized cutaneous mechanosensory structures, and mechanical displacement generates an ASIC-dependent depolarization in some neurons. However, previous studies of mice bearing a single disrupted ASIC gene showed only subtle or no alterations in cutaneous mechanosensitivity. Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, we hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous mechanosensation. We found the opposite. In behavioral studies, mice with simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts, TKOs) showed increased paw withdrawal frequencies when mechanically stimulated with von Frey filaments. Moreover, in single-fiber nerve recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-mechanonociceptors of ASIC TKOs compared to wild-type mice. Responses of all other fiber types did not differ between the two genotypes. These data indicate that ASIC subunits influence cutaneous mechanosensitivity. However, it is unlikely that ASICs directly transduce mechanical stimuli. We speculate that physical and/or functional association of ASICs with other components of the mechanosensory transduction apparatus contributes to normal cutaneous mechanosensation. PMID:22506072

  9. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    Science.gov (United States)

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  10. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    Science.gov (United States)

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  11. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Meccariello, Angela; Monti, Simona Maria; Romanelli, Alessandra; Colonna, Rita; Primo, Pasquale; Inghilterra, Maria Grazia; Del Corsano, Giuseppe; Ramaglia, Antonio; Iazzetti, Giovanni; Chiarore, Antonia; Patti, Francesco; Heinze, Svenia D; Salvemini, Marco; Lindsay, Helen; Chiavacci, Elena; Burger, Alexa; Robinson, Mark D; Mosimann, Christian; Bopp, Daniel; Saccone, Giuseppe

    2017-08-30

    The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.

  12. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong; Yang, Jiang Ke; Lee, On On; Li, Tie Gang; Al-Suwailem, Abdulaziz M.; Danchin, Antoine; Qian, Pei-Yuan

    2011-01-01

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  14. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  15. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  16. Sex-specific gonadal and gene expression changes throughout development in fathead minnow

    Science.gov (United States)

    Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, none have characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker t...

  17. Putative effects of endocrine disrupters on pubertal development in the human

    DEFF Research Database (Denmark)

    Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E

    2002-01-01

    developing countries to industrialized countries often develop precocious puberty. Not only precocious puberty, but also delayed puberty can, theoretically, be associated with exposure to endocrine disrupters. While it is very plausible that endocrine disrupters may disturb pubertal development...

  18. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development.

    Science.gov (United States)

    Jiang, Jinhua; Wu, Shenggan; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping; Wu, Changxing

    2015-10-01

    Increasing evidence have suggested deleterious effects of carbendazim on reproduction, apoptosis, immunotoxicity and endocrine disruption in mice and rats, however, the developmental toxicity of carbendazim to aquatic organisms remains obscure. In the present study, we utilized zebrafish as an environmental monitoring model to characterize the effects of carbendazim on expression of genes related to oxidative stress, apoptosis, immunotoxicity and endocrine disruption during larval development. Different trends in gene expression were observed upon exposing the larvae to 4, 20, 100, and 500 μg/L carbendazim for 4 and 8d. The mRNA levels of catalase, glutathione peroxidase and manganese superoxide dismutase (CAT, GPX, and Mn/SOD) were up-regulated after exposure to different concentrations of carbendazim for 4 or 8d. The up-regulation of p53, Apaf1, Cas8 and the down-regulation of Bcl2, Mdm2, Cas3 in the apoptosis pathway, as well as the increased expression of cytokines and chemokines, including CXCL-C1C, CCL1, IL-1b, IFN, IL-8, and TNFα, suggested carbendazim might trigger apoptosis and immune response during zebrafish larval development. In addition, the alteration of mRNA expression of VTG, ERα, ERβ1, ERβ2, TRα, TRβ, Dio1, and Dio2 indicated the potential of carbendazim to induce endocrine disruption in zebrafish larvae. These data suggested that carbendazim could simultaneously induce multiple responses during zebrafish larval development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  20. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

    Science.gov (United States)

    Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry

    2018-03-23

    The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.

  1. TAD disruption as oncogenic driver.

    Science.gov (United States)

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Thyroid-disrupting chemicals and brain development: an update

    Directory of Open Access Journals (Sweden)

    Bilal B Mughal

    2018-04-01

    Full Text Available This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.

  3. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  4. EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Science.gov (United States)

    Tsai, Kevin; Thikmyanova, Nadezhda; Wojcechowskyj, Jason A.; Delecluse, Henri-Jacques; Lieberman, Paul M.

    2011-01-01

    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus. PMID:22102817

  5. Development of an ITER prototype disruption mitigation valve

    Energy Technology Data Exchange (ETDEWEB)

    Czymek, G., E-mail: g.czymek@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany); Giesen, B., E-mail: ingenieurbuero.giesen@gmx.de [IBG, Sibertstr. 22, D-52525 Heinsberg (Germany); Charl, A.; Panin, A.; Hiller, A.; Nicolai, D.; Neubauer, O.; Koslowski, H.R.; Sandri, N. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany)

    2015-10-15

    Highlights: • An ITER-DMV prototype for 100 bar, D = 80 mm, opening time 3.5 ms, is ready for fabrication. • The vacuum part is sealed against the working gas by stainless steel bellows for 110 bar. • The conical Laval gas outlet allows maximal mass flow rate. • The eddy current drive turn ratio was optimized for low tilting moment. • Polyimide is used for the head sealing, the decelerator and for the bearing of the guide tube. - Abstract: Disruptions in tokamaks seem to be unavoidable. Consequences of disruptions are (i) high heat loads on plasma-facing components, (ii) large forces on the vacuum vessel, and (iii) the generation of runaway electron beams. In ITER, the thermal energy of the plasma needs to be evenly distributed on the first wall in order to prevent melting, forces from vertical displacement events have to be minimized, and the generation of runaway electrons suppressed. Massive gas injection using fast valves is a concept for disruption mitigation which is presently being explored in many tokamaks. Fast disruption mitigation valves based on an electromagnetic eddy current drive have been developed in Jülich since the 1990s and models of various sizes have been built and are in operation in the TEXTOR, MAST, and JET tokamaks. A disruption mitigation valve for ITER is of necessity larger with an estimated injected gas volume of ∼20 kPa m{sup 3}[7] for runaway electron suppression and all materials used have to be resistant to much higher levels of neutron and gamma radiation than in existing tokamaks. During the last 5 years, the concept for an ITER prototype disruption mitigation valve has been developed up to the stage that a fully functional valve could be built and tested. Special emphasis was given to the development and functional testing of some critical items: (i) the injection chamber seal, (ii) the piston seal, (iii) the eddy current drive, and (iv) a braking mechanism to avoid too fast closure of the valve, which could damage

  6. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  7. Development of disruption thermal analysis code DREAM

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi [Kawasaki Heavy Industries Ltd., Kobe (Japan); Seki, Masahiro

    1989-07-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author).

  8. Development of disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi; Seki, Masahiro.

    1989-01-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author)

  9. Disruptive behavior scale for adolescents (DISBA): development and psychometric properties.

    Science.gov (United States)

    Karimy, Mahmood; Fakhri, Ahmad; Vali, Esmaeel; Vali, Farzaneh; Veiga, Feliciano H; Stein, L A R; Araban, Marzieh

    2018-01-01

    Growing evidence indicates that if disruptive behavior is left unidentified and untreated, a significant proportion of these problems will persist and may develop into problems linked with delinquency, substance abuse, and violence. Research is needed to develop valid and reliable measures of disruptive behavior to assist recognition and impact of treatments on disruptive behavior. The aim of this study was to develop and evaluate the psychometric properties of a scale for disruptive behavior in adolescents. Six hundred high school students (50% girls), ages ranged 15-18 years old, selected through multi stage random sampling. Psychometrics of the disruptive behavior scale for adolescents (DISBA) (Persian version) was assessed through content validity, explanatory factor analysis (EFA) using Varimax rotation and confirmatory factor analysis (CFA). The reliability of this scale was assessed via internal consistency and test-retest reliability. EFA revealed four factors accounting for 59% of observed variance. The final 29-item scale contained four factors: (1) aggressive school behavior, (2) classroom defiant behavior, (3) unimportance of school, and (4) defiance to school authorities. Furthermore, CFA produced a sufficient Goodness of Fit Index > 0.90. Test-retest and internal consistency reliabilities were acceptable at 0.85 and 0.89, respectively. The findings from this study suggest that the Iranian version of DISBA questionnaire has content validity. Further studies are needed to evaluate stronger psychometric properties for DISBA.

  10. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  11. ADHD and Disruptive behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents

    Directory of Open Access Journals (Sweden)

    Larsson Jan-Olov

    2008-04-01

    Full Text Available Abstract Background Pharmacological and genetic studies suggest the importance of the dopaminergic, serotonergic, and noradrenergic systems in the pathogenesis of Attention Deficit Hyperactivity Disorder (ADHD and Disruptive Behavior Disorder (DBD. We have, in a population-based sample, studied associations between dimensions of the ADHD/DBD phenotype and Monoamine Oxidase B (MAO-B activity in platelets and polymorphisms in two serotonergic genes: the Monoamine Oxidase A Variable Number of Tandem Repeats (MAO-A VNTR and the 5-Hydroxytryptamine Transporter gene-Linked Polymorphic Region (5-HTT LPR. Methods A population-based sample of twins, with an average age of 16 years, was assessed for ADHD/DBD with a clinical interview; Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL. Blood was drawn from 247 subjects and analyzed for platelet MAO-B activity and polymorphisms in the MAO-A and 5-HTT genes. Results We found an association in girls between low platelet MAO-B activity and symptoms of Oppositional Defiant Disorder (ODD. In girls, there was also an association between the heterozygote long/short 5-HTT LPR genotype and symptoms of conduct disorder. Furthermore the heterozygote 5-HTT LPR genotype in boys was found to be associated with symptoms of Conduct Disorder (CD. In boys, hemizygosity for the short MAO-A VNTR allele was associated with disruptive behavior. Conclusion Our study suggests that the serotonin system, in addition to the dopamine system, should be further investigated when studying genetic influences on the development of Disruptive Behavior Disorders.

  12. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1995-01-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed. (orig.)

  13. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1994-08-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized models (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed

  14. Globalisation reaches gene regulation: the case for vertebrate limb development.

    Science.gov (United States)

    Zuniga, Aimée

    2005-08-01

    Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.

  15. Cultured human peripheral blood mononuclear cells alter their gene expression when challenged with endocrine-disrupting chemicals

    International Nuclear Information System (INIS)

    Wens, B.; De Boever, P.; Verbeke, M.; Hollanders, K.; Schoeters, G.

    2013-01-01

    Endocrine disrupting chemicals (EDCs) have the potential to interfere with the hormonal system and may negatively influence human health. Microarray analysis was used in this study to investigate differential gene expression in human peripheral blood cells (PBMCs) after in vitro exposure to EDCs. PBMCs, isolated from blood samples of four male and four female healthy individuals, were exposed in vitro for 18 h to either a dioxin-like polychlorinated biphenyl (PCB126, 1 μM), a non-dioxin-like polychlorinated biphenyl (PCB153, 10 μM), a brominated flame retardant (BDE47, 10 μM), a perfluorinated alkyl acid (PFOA, 10 μM) or bisphenol (BPA, 10 μM). ANOVA analysis revealed a significant change in the expression of 862 genes as a result of EDC exposure. The gender of the donors did not affect gene expression. Hierarchical cluster analysis created three groups and clustered: (1) PCB126-exposed samples, (2) PCB153 and BDE47, (3) PFOA and BPA. The number of differentially expressed genes varied per compound and ranged from 60 to 192 when using fold change and multiplicity corrected p-value as filtering criteria. Exposure to PCB126 induced the AhR signaling pathway. BDE47 and PCB153 are known to disrupt thyroid metabolism and exposure influenced the expression of the nuclear receptors PPARγ and ESR2, respectively. BPA and PFOA did not induce significant changes in the expression of known nuclear receptors. Overall, each compound produced a unique gene expression signature affecting pathways and GO processes linked to metabolism and inflammation. Twenty-nine genes were significantly altered in expression under all experimental conditions. Six of these genes (HSD11B2, MMP11, ADIPOQ, CEL, DUSP9 and TUB) could be associated with obesity and metabolic syndrome. In conclusion, microarray analysis identified that PBMCs altered their gene expression response in vitro when challenged with EDCs. Our screening approach has identified a number of gene candidates that warrant

  16. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    International Nuclear Information System (INIS)

    Sandhu, Navdeep; Vijayan, Mathilakath M.

    2011-01-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  17. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  18. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    Science.gov (United States)

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  19. Time for a New Agenda: Organizational Development in a Changing world with much Disruption

    DEFF Research Database (Denmark)

    Sørensen, Henrik B.

    2017-01-01

    organizations neglect to support a disruptive strategy. By demonstrating the existence of another development path, this paper attempts, from a theoretical point of view, to give a new and a more nuanced perspective on organizational development in a disruptive world. This new path is supportive in a disruptive......Abstract – Traditional organizational theory tends to point out that organizational development follows a certain pattern where the structure of the company is said to become ever more bureaucratic. However, in a world where all companies and industries are faced with disruption, bureaucratic...... world. The aim of the paper is to answer the following research question: How can companies manage processes of organizational development and structures to avoid the bureaucracy and potential crises of the traditional approach in a disruptive world? This research question is important because...

  20. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Science.gov (United States)

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  1. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  2. Transposon-mediated random gene disruption with moderate halophilic bacteria and its application for halophilic bacterial siderophore analysis.

    Science.gov (United States)

    Matsui, Toru; Nishino, Tomohiko

    2016-12-01

    Analytical conditions using chromo azurol S was validated for quantification of siderophore in aqueous samples, followed by the characterization of siderophore derived from newly isolated moderately halophilic bacteria. Conditions with good linearity between the absorbance and the siderophore concentration were obtained at a siderophore concentration less than 20 µM, in the wavelength range between 630 and 660 nm with developing time for at least 2 h. Of the halophilic bacteria isolated from Tunisian soil, Halomonas sp., namely strain 21a was selected as siderophore producing halophiles. The strain produced siderophore significantly in the absence of iron in minimal medium. Siderophore-deficient mutant, namely IIa10, of the strain 21a was obtained from gene disruptant library constructed using transposon complex by electroporation. Genomic sequence analysis of the mutant IIa10 revealed that the transposon-inserted gene was TonB-dependent receptor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Effect of Family Disruption on Children's Personality Development: Evidence from British Longitudinal Data

    OpenAIRE

    Prevoo, Tyas; ter Weel, Bas

    2014-01-01

    This research documents the effects of different forms of family disruptions - measured by separation, divorce and death - on personality development of British children included in the 1970 British Cohort Study. There are statistically significant correlations between family disruptions prior to the age of 16 and personality development in early childhood. Parental divorce has the largest negative effect on a child's personality development. Family disruptions have smaller effects on persona...

  4. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Science.gov (United States)

    Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña

    2014-01-01

    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  5. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    Directory of Open Access Journals (Sweden)

    Pilar Cejudo-Martin

    Full Text Available Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.

  6. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  7. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.

    Science.gov (United States)

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-04-01

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore the use of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved in ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and increase the versatility of our knock-in system, we constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability. © 2017 Katoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Association between variations in the disrupted in schizophrenia 1 gene and schizophrenia: A meta-analysis.

    Science.gov (United States)

    Xu, Yiliang; Ren, Jun; Ye, Haihong

    2018-04-20

    Schizophrenia is a severe psychiatric disorder. Genetic and functional studies have strongly implicated the disrupted in schizophrenia 1 gene (DISC1) as a candidate susceptibility gene for schizophrenia. Moreover, recent association studies have indicated that several DISC1 single nucleotide polymorphisms (SNPs) are associated with schizophrenia. However, the association is hardly replicate in different ethnic group. Here, we performed a meta-analysis of the association between DISC1 SNPs and schizophrenia in which the samples were divided into subgroups according to ethnicity. Both rs3738401 and rs821616 showed not significantly association with schizophrenia in the Caucasian, Asian, Japanese or Han Chinese populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development.

    Science.gov (United States)

    Eckstrum, Kirsten S; Edwards, Whitney; Banerjee, Annesha; Wang, Wei; Flaws, Jodi A; Katzenellenbogen, John A; Kim, Sung Hoon; Raetzman, Lori T

    2018-01-01

    Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms. Copyright © 2018 Endocrine Society.

  11. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome

    OpenAIRE

    McIntyre, Rebecca E; Lakshminarasimhan Chavali, Pavithra; Ismail, Ozama; Carragher, Damian M; Sanchez-Andrade, Gabriela; Forment, Josep V; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A; Logan, Darren W

    2012-01-01

    Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm)...

  12. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    Science.gov (United States)

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  14. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  15. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B; Sanglard, D; Odds, F C; Hess, D; Monod, M; Schäfer, W; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  16. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy?

    DEFF Research Database (Denmark)

    Hartoft-Nielsen, Marie-Louise; Boas, Malene; Bliddal, Sofie

    2011-01-01

    Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals-endocrine disrupting chemicals (EDCs)-has been shown to cause almost...

  17. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy?

    Science.gov (United States)

    Hartoft-Nielsen, Marie-Louise; Boas, Malene; Bliddal, Sofie; Rasmussen, Åase Krogh; Main, Katharina; Feldt-Rasmussen, Ulla

    2011-01-01

    Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals—endocrine disrupting chemicals (EDCs)—has been shown to cause almost constant exposure of humans with possible harmful influence on health and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal neurodevelopment. This paper focuses on thyroid hormone influence on foetal development in relation to the chemicals suspected of thyroid disrupting properties with possible interactions with maternal thyroid homeostasis. Knowledge of the effects is expected to impact the general debate on the use of these chemicals. However, more studies are needed to elucidate the issue, since human studies are scarce. PMID:21918727

  18. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system.

    Science.gov (United States)

    Shariati, Laleh; Khanahmad, Hossein; Salehi, Mansoor; Hejazi, Zahra; Rahimmanesh, Ilnaz; Tabatabaiefar, Mohammad Amin; Modarressi, Mohammad Hossein

    2016-10-01

    β-thalassemia comprises a major group of human genetic disorders involving a decrease in or an end to the normal synthesis of the β-globin chains of hemoglobin. KLF1 is a key regulatory molecule involved in the γ- to β-globin gene switching process directly inducing the expression of the β-globin gene and indirectly repressing γ-globin. The present study aimed to investigate the ability of an engineered CRISPR/Cas9 system with respect to disrupting the KLF1 gene to inhibit the γ- to β-hemoglobin switching process in K562 cells. We targeted three sites on the KLF1 gene, two of which are upstream of codon 288 in exon 2 and the other site being in exon 3. The average indel percentage in the cells transfected with CRISPR a, b and c was approximately 24%. Relative quantification was performed for the assessment of γ-globin expression. The levels of γ-globin mRNA on day 5 of differentiation were 8.1-, 7.7- and 1.8-fold in the cells treated with CRISPR/Cas9 a, b and c, respectively,compared to untreated cells. The measurement of HbF expression levels confirmed the same results. The findings obtained in the present study support the induction of an indel mutation in the KLF1 gene leading to a null allele. As a result, the effect of KLF1 on the expression of BCL11A is decreased and its inhibitory effect on γ-globin gene expression is removed. Application of CRISPR technology to induce an indel in the KLF1 gene in adult erythroid progenitors may provide a method for activating fetal hemoglobin expression in individuals with β-thalassemia or sickle cell disease. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.

    Directory of Open Access Journals (Sweden)

    Keerthi Krishnan

    Full Text Available Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.

  20. Mining of biomarker genes from expressed sequence tags and differential display reverse transcriptase-polymerase chain reaction in the self-fertilizing fish, Kryptolebias marmoratus and their expression patterns in response to exposure to an endocrine-disrupting alkylphenol, bisphenol A.

    Science.gov (United States)

    Lee, Young-Mi; Rhee, Jae-Sung; Hwang, Dae-Sik; Kim, Il-Chan; Raisuddin, Sheikh; Lee, Jae-Seong

    2007-06-30

    Expressed sequence tags (ESTs) and differentially expressed cDNAs from the self-fertilizing fish, Kryptolebias marmoratus were mined to develop alternative biomarkers for endocrine-disrupting chemicals (EDCs). 1,577 K. marmoratus cDNA clones were randomly sequenced from the 5'-end. These clones corresponded to 1,518 and 1,519 genes in medaka dbEST and zebrafish dbEST, respectively. Of the matched genes, 197 and 115 genes obtained Unigene IDs in medaka dbEST and zebrafish dbEST, respectively. Many of the annotated genes are potential biomarkers for environmental stresses. In a differential display reverse transcriptase-polymerase chain reaction (DD RT-PCR) study, 56 differential expressed genes were obtained from fish liver exposed to bisphenol A. Of these, 16 genes were identified after BLAST search to GenBank, and the annotated genes were mainly involved in catalytic activity and binding. The expression patterns of these 16 genes were validated by real-time RT-PCR of liver tissue from fish exposed to bisphenol A. Our findings suggest that expression of these 16 genes is modulated by endocrine disrupting chemicals, and therefore that they are potential biomarkers for environmental stress including EDCs exposure.

  1. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice.

    Science.gov (United States)

    Smarr, Benjamin L; Grant, Azure D; Perez, Luz; Zucker, Irving; Kriegsfeld, Lance J

    2017-06-12

    Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.

  2. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  3. Screening by microarray analysis for genes that alter prostate development in C57BL/6J mice exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Ohsako, Seiichiroh; Lin, Tienmin; Peterson, R.E. [Wisconsin Univ. (United States); Suzuki, Junko S.; Wu, Qing; Tohyama, Chiharu [National Institute for Environmental Studies, Tsukuba (Japan); Takei, Teiji [Ministry of the Environment, Tokyo (Japan)

    2004-09-15

    The administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to pregnant rats and mice leads to a disruption of prostate development in the male offspring. Although it is not clear if this phenomenon occurs in human populations exposed to TCDD, the observed effect level is low among the various endpoints of TCDD developmental toxicity in animal studies. Clarification of the mechanism by which the effect is produced at the molecular level would help substantiate male reproductive toxicity caused by in utero TCDD exposure as a model for human health risk assessment. In both rats and mice, a critical window for TCDD disruption of prostate development in late pregnancy has been illustrated. The primary alteration in gene expression that presumably causes this phenomenon depends on the fetal aryl hydrocarbon receptor gene being expressed in the fetal urogenital sinus from which the outgrowth of prostatic buds occurs. In the male offspring of mice exposed to TCDD on gestation day 13 (GD 13), severe inhibitory developmental effects were found on ventral prostate development. These effects were significantly lower when in utero TCDD exposure occurred after GD 16 than GD 13. Upon administration of TCDD to the dam on GD 13, cytochrome P450 1A1 (CYP1A1) and CYP1B1 were induced in the urogenital complex of the male offspring on postnatal day 14. Thus, ''dioxin biomarker genes'' are responsive to in utero and lactational TCDD exposure during the neonatal stage of development. This suggests that key TCDD responsive genes involved in disrupting prostate development would be genes other than CYP1A1 and CYP1B1. In the present study we administered a single dose of TCDD to mouse dams during the critical window (GD 13 or GD 14) for impairing prostate development, or later during a less TCDD sensitive period (GD 17). Microarray techniques were then used to compare gene expression profiles of the fetus versus the urogenital sinus in order to identify genes

  4. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    Science.gov (United States)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Disruptive Innovation Patterns Driven by Mega-Projects: A Sustainable Development Pattern Case of China’s High-Speed Rail

    Directory of Open Access Journals (Sweden)

    Bingxiu Gui

    2018-04-01

    Full Text Available Sustainable development of mega-projects has drawn many concerns around the world. The theory of disruptive innovation in mega-projects is a typical sustainable development pattern but still lacks systematic understanding. This article takes China’s high-speed rail (CHSR project as an example to analyze the disruptive innovation pattern of mega-projects. First, this paper systematically traces the theories of disruptive innovation and summarizes the connotations of disruptive innovation. Simultaneously, from the historical development of several typical mega-projects in China, this paper summarizes the connotations of mega-projects. Based on two connotations, this paper summarizes the theoretical basis of disruptive innovation in mega-projects. Second, this paper takes the CHSR project as a case to analyze its innovation pattern from the analysis of the development process, operation mechanism and influence in sustainability; the disruptive innovation pattern is put forward afterward. Third, the discussion is drawn from the perspectives of the characteristics, scope of application and innovation environment of the disruptive innovation of CHSR. Last, the conclusions of this article are summarized.

  6. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  8. Norrie disease gene is distinct from the monoamine oxidase genes

    OpenAIRE

    Sims, Katherine B.; Ozelius, Laurie; Corey, Timothy; Rinehart, William B.; Liberfarb, Ruth; Haines, Jonathan; Chen, Wei Jane; Norio, Reijo; Sankila, Eeva; de la Chapelle, Albert; Murphy, Dennis L.; Gusella, James; Breakefield, Xandra O.

    1989-01-01

    The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and /or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in “classic” Norrie disease patients. Genomic DNA from these “nondelet...

  9. Disruption of the Acyl-CoA binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Marcher, Ann-Britt; Bloksgaard, Maria

    The acyl-CoA binding protein/diazepam binding inhibitor (ACBP/DBI) is an evolutionary conserved intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity. ACBP is thought to act as an acyl-CoA transporter, and in vitro analyses have indicated that ACBP can transport acyl......-CoA esters between different enzymatic systems. However, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice show decreased growth......) family, around the weaning period. As a result, the hepatic de novo cholesterogenesis is significantly decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP...

  10. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin

    2015-05-15

    One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.

  11. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    Science.gov (United States)

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  12. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Zhu, Lin; Nemoto, Takeshi; Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2012-01-01

    Proteolytic degradation is one of the serious bottlenecks limiting the yields of heterologous protein production by Aspergillus oryzae. In this study, we selected a tripeptidyl peptidase gene AosedD (AO090166000084) as a candidate potentially degrading the heterologous protein, and performed localization analysis of the fusion protein AoSedD-EGFP in A. oryzae. As a result, the AoSedD-EGFP was observed in the septa and cell walls as well as in the culture medium, suggesting that AoSedD is a secretory enzyme. An AosedD disruptant was constructed to investigate an effect of AoSedD on the production level of heterologous proteins and protease activity. Both of the total protease and tripeptidyl peptidase activities in the culture medium of the AosedD disruptant were decreased as compared to those of the control strain. The maximum yields of recombinant bovine chymosin (CHY) and human lysozyme (HLY) produced by the AosedD disruptants showed approximately 2.9- and 1.7-fold increases, respectively, as compared to their control strains. These results suggest that AoSedD is one of the major proteases involved in the proteolytic degradation of recombinant proteins in A. oryzae.

  13. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    Science.gov (United States)

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  14. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9.

    Science.gov (United States)

    Zhang, Xuemei; Li, Wenrong; Liu, Chenxi; Peng, Xinrong; Lin, Jiapeng; He, Sangang; Li, Xuejiao; Han, Bing; Zhang, Ning; Wu, Yangsheng; Chen, Lei; Wang, Liqin; MaYila; Huang, Juncheng; Liu, Mingjun

    2017-08-15

    Coat color is an important characteristic and economic trait in domestic sheep. Aiming at alteration of Chinese merino sheep coat color by genome manipulation, we disrupted sheep agouti signaling protein gene by CRISPR/Cas9. A total of seven indels were identified in 5 of 6 born lambs. Each targeted lamb happened at least two kinds of modifications, and targeted lambs with multiple modifications displayed variety of coat color patterns. Three lambs with 4 bp deletion showed badgerface with black body coat color in two lambs, and brown coat color with light ventral pigmentation in another one. The black-white spotted color was observed in two lambs with 2 bp deletion. Further analysis unraveled that modifications happened in one or more than two copies of ASIP gene, and moreover, the additional spontaneous mutations of D 9 and/or D 5 preceding the targeting modification could also involve the formation of coat color patterns. Taken together, the entanglement of ASIP modifications by CRISPR/Cas9, spontaneous D 9 /D 5 mutations, and ASIP gene duplications contributed to the variety of coat color patterns in targeted lambs.

  15. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae).

    Science.gov (United States)

    Zhang, Rui; Guo, Chunce; Zhang, Wengen; Wang, Peipei; Li, Lin; Duan, Xiaoshan; Du, Qinggao; Zhao, Liang; Shan, Hongyan; Hodges, Scott A; Kramer, Elena M; Ren, Yi; Kong, Hongzhi

    2013-03-26

    Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.

  16. Choroideremia gene product affects trophoblast development and vascularization in mouse extra-embryonic tissues.

    NARCIS (Netherlands)

    Shi, W.; Hurk, J.A.J.M. van den; Alamo-Bethencourt, V.; Mayer, W.; Winkens, H.J.; Ropers, H.H.; Cremers, F.P.M.; Fundele, R.

    2004-01-01

    Choroideremia (CHM) is a hereditary eye disease caused by mutations in the X-linked CHM gene. Disruption of the Chm gene in mice resulted in prenatal death of Chm-/Y males and Chm-/Chm+ females that had inherited the mutation from their mothers. Male chimeras and Chm+/Chm- females with paternal

  17. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    Directory of Open Access Journals (Sweden)

    Akihiko Muto

    2014-09-01

    Full Text Available Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS, the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb, knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  18. Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic.

    Science.gov (United States)

    Kunimoto, Koshi; Bayly, Roy D; Vladar, Eszter K; Vonderfecht, Tyson; Gallagher, Anna-Rachel; Axelrod, Jeffrey D

    2017-10-23

    Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability.

    Directory of Open Access Journals (Sweden)

    Mukesh K Dubey

    Full Text Available The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ(8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous

  20. Problem-Solving Test: Targeted Gene Disruption

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  1. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    Science.gov (United States)

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  2. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a β-catenin dependent pathway

    International Nuclear Information System (INIS)

    Pillai, Murali C.; Vines, Carol A.; Wikramanayake, Athula H.; Cherr, Gary

    2003-01-01

    Sea urchin (Lytechinus anemesis) embryos were used as an experimental system to investigate the mechanisms of the developmental toxicity of creosote, one of the most widely used wood preserving chemicals, as well as some of its polycyclic aromatic hydrocarbon (PAH) constituents (phenanthrene, fluoranthene, fluorene, pyrene and quinoline). Data suggest that creosote and PAHs affect axial development and patterning in sea urchin embryos by disrupting the regulation of β-catenin, a crucial transcriptional co-activator of specific target genes in the Wnt/wg signaling pathway. When ciliated blastula stage embryos were exposed to these compounds, they developed into exogastrulae with completely evaginated archentera, demonstrating that these chemicals disrupt axial development and patterning. This response occurred in a dose-dependent fashion, with the EC 50 of creosote for complete exogastrulation being 1.57 ppm, while the EC 50 s of the PAHs ranged from 0.41 ppm (2.0 μM) to 4.33 ppm (33.5 μM). Morphologically, the exogastrulae that developed from embryos exposed to creosote and PAHs appeared to be identical to those that resulted from exposure to lithium chloride, a classical agent known to induce vegetalization and exogastrulation in sea urchin embryos. Immunological studies using antibodies against β-catenin, a multi-functional protein known to be involved in cell-cell adhesion and cell fate specification during embryonic development, revealed high levels of nuclear accumulation of β-catenin by cells of creosote- and PAH-exposed embryos, irrespective of their positions in the developing embryo. Dissociated embryonic cells cultured in the presence of these agents rapidly responded in a similar fashion. Since β-catenin accumulation occurs in nuclei of several types of cancer cells, it is possible this may be a general mechanism by which PAHs affect a variety of different cell types

  3. Strategy development for anticipating and handling a disruptive technology.

    Science.gov (United States)

    Chan, Stephen

    2006-10-01

    The profession of radiology has greatly benefited from the introduction of new imaging technologies throughout its history. Therefore, it would seem reasonable for radiologists to believe that the emergence of a new imaging technology can generally be foreseen with sufficient advance notice to allow the appropriate levels of time, effort, and money to be devoted toward incorporating it into radiology practice. However, in his seminal work, Christiansen characterized a new form of technologic innovation, known as "disruptive technology," whose emergence often heralds the replacement of market leaders in an industry by competitors who are quicker in adopting and deploying the new technology. This article briefly describes the phenomenon of disruptive technology and addresses the challenges that organizations face in dealing with disruptive technology. The article raises 4 questions about the future of radiology: (1) Are health care and radiology vulnerable to disruptive technology? (2) What kinds of change may be in store for the radiology profession? (3) Can the radiology profession prepare itself to recognize and respond to a disruptive innovation among a group of new imaging technologies? and (4) How should a radiology organization decide whether to invest significant resources in a potentially disruptive technology? This article addresses these questions by reviewing key insights from leading "gurus" in the fields of competitive strategy and technology management and applying them to radiology. This illustrates how and why (despite past successes) the radiology profession may still have a blind spot in recognizing and handling disruptive technologies.

  4. Beware of memes in the interpretation of your results - lessons from gene-disrupted mice in fertilization research.

    Science.gov (United States)

    Okabe, Masaru

    2018-05-22

    For decades, researchers in the fertilization field reported various candidate factors involved in sperm-egg interaction through experiments using enzyme inhibitors and/or antibodies. However, almost all of these factors have been shown to be nonessential by gene disruption experiments. Recently, attention has focused on the low reproducibility of papers in many research fields. In this Review, I retrospectively revisit how fertilization factors were misinterpreted and led to wrong hypotheses in relation to the reportedly low reproducibility of scientific papers. © 2018 Federation of European Biochemical Societies.

  5. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Science.gov (United States)

    Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria

    2010-01-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151

  6. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  7. Endocrine disrupting compounds exposure and testis development in mammals

    Science.gov (United States)

    Egbowona, Biola F.; Mustapha, Olajide A.

    2011-01-01

    In the last few decades, there is substantial evidence that male reproductive function is deteriorating in humans and wildlife and this is associated with unintentional exposure to widely used synthetic chemicals. Subsequently, much has been done to show that certain chemicals in the environment adversely interfere with the developing fetal gonads of the laboratory animals. Some in vitro studies have demonstrated treatment-induced reproductive problems in offspring exposed to endocrine disrupting compounds (EDC) which are similar to those observed in wildlife and human population. Few EDC studies have demonstrated that there are certain periods of gestation when the developing fetus is highly sensitive and at risk of small endocrine changes. Similar observations have been made in the sewage sludge model, however, while animal studies have been insightful in providing valuable information about the range of effects that can be attributed to in utero exposure to EDCs, varying levels of maternal doses administered in different studies exaggerated extrapolation of these results to human. Thus the EDC concentration representative of fetal exposure levels is uncertain because of the complexities of its nature. So far, the level of fetal exposure can only be roughly estimated. There is substantial evidence from animal data to prove that EDCs can adversely affect reproductive development and function in male and more has accumulated on the mechanisms by which they exert their effects. This paper therefore, reviews previous studies to highlight the extent to which testis development can be disrupted during fetal life. PMID:29255381

  8. Development of an efficient real-time disruption predictor from scratch on JET and implications for ITER

    International Nuclear Information System (INIS)

    Dormido-Canto, S.; Ramírez, J.M.; Vega, J.; Moreno, R.; Pereira, A.; Murari, A.; López, J.M.

    2013-01-01

    Prediction of disruptions from scratch is an ITER-relevant topic. The first operations with the new ITER-like wall constitute a good opportunity to test the development of new predictors from scratch and the related methodologies. These methodologies have been based on the Advanced Predictor Of DISruptions (APODIS) architecture. APODIS is a real-time disruption predictor that is in operation in the JET real-time network. Balanced and unbalanced datasets are used to develop real-time predictors from scratch. The discharges are used in chronological order. Also, different criteria to decide when to re-train a predictor are discussed. The best results are obtained by applying a hybrid method (balanced/unbalanced datasets) for training and with the criterion of re-training after every missed alarm. The predictors are tested off-line with all the discharges (disruptive/non-disruptive) corresponding to the first three JET ITER-like wall campaigns. The results give a success rate of 93.8% and a false alarm rate of 2.8%. It should be considered that these results are obtained from models trained with no more than 42 disruptive discharges. (paper)

  9. Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Shoji Suzuki

    2017-01-01

    Full Text Available Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER. In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr- and arginine decarboxylase- (argD- deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.

  10. Playware ABC 2: a Disruptive Technology for Global Development

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2017-01-01

    , anytime. The paper gives examples of how playware becomes a disruptive technology for global development, for instance in the health sector. For instance, in Tanzania doctors and community-based rehabilitation workers are constructing and combining modular playware tiles to easily create the right kind......The Playware ABC concept is used to create solutions that are usable by all kinds of users and contexts in our globalized society. In this paper, the Playware ABC can be exemplified with the development of the modular interactive tiles for health prevention and rehabilitation of anybody, anywhere...

  11. Thyroid hormone disrupting chemicals and their influence on the developing rat brain

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad

    differentiation and proliferation, normal status of these hormones during early development is crucial, and in humans even moderate and transient reductions in maternal T4 levels during pregnancy, can adversely affect the child’s neurological development. In order to maintain correct levels of THs, the body...... is dependent on sufficient iodine intake but several substances in the environment may also affect thyroid status. These are called thyroid disrupting chemicals (TDCs), and they are xenobiotics that can change the levels of circulating THs. The TDCs are made up of a wide range of chemical structures...... and include industrial chemicals, pesticides and ingredients used in personal care products. A way of getting more insight into the causal relationship between exposure to endocrine disrupters, their effects on TH levels and subsequent adverse effects on brain development, is by investigating it in animal...

  12. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Lindsey C. Perkin

    2016-09-01

    Full Text Available Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  13. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.

  14. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  15. Maintenance of a genetic polymorphism with disruptive natural selection in stickleback.

    Science.gov (United States)

    Marchinko, Kerry B; Matthews, Blake; Arnegard, Matthew E; Rogers, Sean M; Schluter, Dolph

    2014-06-02

    The role of natural selection in the maintenance of genetic variation in wild populations remains a major problem in evolution. The influence of disruptive natural selection on genetic variation is especially interesting because it might lead to the evolution of assortative mating or dominance [1, 2]. In theory, variation can persist at a gene under disruptive natural selection, but the process is little studied and there are few examples [3, 4]. We report a stable polymorphism in the bony armor of threespine stickleback maintained with a deficit of heterozygotes at the major underlying gene, Ectodysplasin (Eda) [5]. The deficit vanishes at the embryo life stage only to re-emerge in adults, indicating that disruptive natural selection, rather than nonrandom mating, is the cause. The mechanism enabling long-term persistence of the polymorphism is unknown, but disruptive selection is predicted to be frequency dependent, favoring homozygous genotypes when they become rare. Further research on the ecological and evolutionary processes affecting individual genes will ultimately lead to a better understanding of the causes of genetic variation in populations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl phthalate (MEHP.

    Directory of Open Access Journals (Sweden)

    Wenhui Zhai

    Full Text Available Phthalates are extensively used as plasticizers in a variety of daily-life products, resulting in widespread distribution in aquatic environments. However, limited information is available on the endocrine disrupting effects of phthalates in aquatic organisms. The aim of the present study was to examine whether exposure to mono-(2-ethylhexyl phthalate (MEHP, the hydrolytic metabolite of di-(2-ethylhexyl phthalate (DEHP disrupts thyroid endocrine system in fish. In this study, zebrafish (Danio rerio embryos were exposed to different concentrations of MEHP (1.6, 8, 40, and 200 μg/L from 2 h post-fertilization (hpf to 168 hpf. The whole-body content of thyroid hormone and transcription of genes involved in the hypothalamic-pituitary-thyroid (HPT axis were examined. Treatment with MEHP significantly decreased whole-body T4 contents and increased whole-body T3 contents, indicating thyroid endocrine disruption. The upregulation of genes related to thyroid hormone metabolism (Dio2 and UGT1ab might be responsible for decreased T4 contents. Elevated gene transcription of Dio1 was also observed in this study, which might assist to degrade increased T3 contents. Exposure to MEHP also significantly induced transcription of genes involved in thyroid development (Nkx2.1 and Pax8 and thyroid hormone synthesis (TSHβ, NIS and TG. However, the genes encoding proteins involved in TH transport (transthyretin, TTR was transcriptionally significantly down-regulated after exposure to MEHP. Overall, these results demonstrate that acute exposure to MEHP alters whole-body contents of thyroid hormones in zebrafish embryos/larvae and changes the transcription of genes involved in the HPT axis, thus exerting thyroid endocrine toxicity.

  17. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Richter, Catherine A; Martyniuk, Christopher J; Annis, Mandy L; Brumbaugh, William G; Chasar, Lia C; Denslow, Nancy D; Tillitt, Donald E

    2014-07-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. Published by Elsevier Inc.

  18. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Richter, Catherine A.; Martyniuk, Christopher J.; Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.

  19. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  20. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  1. The relationship between circadian disruption and the development of metabolic syndrome and type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Karatsoreos IN

    2014-12-01

    Full Text Available Ilia N Karatsoreos Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA Abstract: Circadian (daily rhythms are pervasive in nature, and expressed in nearly every behavioral and physiological process. In mammals, circadian rhythms are regulated by the master brain clock in the suprachiasmatic nucleus of the hypothalamus that coordinates the activity of “peripheral” oscillators throughout the brain and body. While much progress has been made in understanding the basic functioning of the circadian clock at the level of genes, molecules, and cells, our understanding of how these clocks interact with complex systems is still in its infancy. Much recent work has focused on the role of circadian clocks in the etiology of disorders as diverse as cancer, diabetes, and obesity. Given the rapid rise in obesity, and the economic costs involved in treating its associated cardiometabolic disorders such as heart disease and diabetes mellitus, understanding the development of obesity and metabolic dysregulation is crucial. Significant epidemiological data indicate a role for circadian rhythms in metabolic disorders. Shift workers have a higher incidence of obesity and diabetes, and laboratory studies in humans show misaligning sleep and the circadian clock leads to hyperinsulinemia. In animal models, body-wide “clock gene” knockout mice are prone to obesity. Further, disrupting the circadian clock by manipulating the light–dark cycle can result in metabolic dysregulation and development of obesity. At the molecular level, elegant studies have shown that targeted disruption of the genetic circadian clock in the pancreas leads to diabetes, highlighting the fact that the circadian clock is directly coupled to metabolism at the cellular level. Keywords: glucose, metabolism, sleep, rhythms, obesity

  2. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kathleen M Gajewski

    2010-05-01

    Full Text Available The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM, we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F, effects on levels of transcripts of myosin heavy chain (mhc appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size.

  3. Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption.

    Science.gov (United States)

    Tang, Xu-Dong; Xu, Yi-Peng; Yu, Lin-Lin; Lang, Guo-Jun; Tian, Cai-Hong; Zhao, Jin-Fang; Zhang, Chuan-Xi

    2008-12-01

    A BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower. These results suggest that Bmvp80 is essential for normal budded virus production and nucleocapsid maturation, and is functionally divergent between baculovirus species.

  4. Disruption Warning Database Development and Exploratory Machine Learning Studies on Alcator C-Mod

    Science.gov (United States)

    Montes, Kevin; Rea, Cristina; Granetz, Robert

    2017-10-01

    A database of about 1800 shots from the 2015 campaign on the Alcator C-Mod tokamak is assembled, including disruptive and non-disruptive discharges. The database consists of 40 relevant plasma parameters with data taken from 160k time slices. In order to investigate the possibility of developing a robust disruption prediction algorithm that is tokamak-independent, we focused machine learning studies on a subset of dimensionless parameters such as βp, n /nG , etc. The Random Forests machine learning algorithm provides insight on the available data set by ranking the relative importance of the input features. Its application on the C-Mod database, however, reveals that virtually no one parameter has more importance than any other, and that its classification algorithm has a low rate of successfully predicted samples, as well as poor false positive and false negative rates. Comparing the analysis of this algorithm on the C-Mod database with its application to a similar database on DIII-D, we conclude that disruption prediction may not be feasible on C-Mod. This conclusion is supported by empirical observations that most C-Mod disruptions are caused by radiative collapse due to molybdenum from the first wall, which happens on just a 1-2ms timescale. Supported by the US Dept. of Energy under DE-FC02-99ER54512 and DE-FC02-04ER54698.

  5. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent for the ...... metabolising system using liver S9 mixtures or hepatic rat microsomes could be a convenient method for the incorporation of metabolic aspects into in vitro testing for endocrine disrupting effects.......BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent......, to be able to detect effects and predict mixture effects. In addition, a new hypothesis have emerge concerning a potential role of exposure to endocrine disrupting chemicals, and the development of obesity and obesity related diseases. AIM: This PhD project aimed to gain more information regarding...

  6. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  7. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism.

    Science.gov (United States)

    Li, Jinyang; Pan, Yuanyuan; Liu, Gang

    2013-12-01

    AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  9. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  10. Reduction of gibberellin by low temperature disrupts pollen development in rice.

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-04-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.

  11. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  12. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    Science.gov (United States)

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  13. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae

    Energy Technology Data Exchange (ETDEWEB)

    Birceanu, Oana; Servos, Mark R.; Vijayan, Mathilakath M., E-mail: matt.vijayan@ucalgary.ca

    2015-04-15

    Highlights: • BPA in eggs reduces growth and increases food conversion ratio in trout larvae. • BPA in eggs disrupts larval transcript abundance of genes involved in GH/IGF axis. • BPA in eggs disrupts thyroid hormone receptor mRNA levels. • BPA in eggs consistently suppressed IGF-1rb mRNA levels during early development. - Abstract: Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml{sup −1} BPA for 3 h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout.

  14. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae

    International Nuclear Information System (INIS)

    Birceanu, Oana; Servos, Mark R.; Vijayan, Mathilakath M.

    2015-01-01

    Highlights: • BPA in eggs reduces growth and increases food conversion ratio in trout larvae. • BPA in eggs disrupts larval transcript abundance of genes involved in GH/IGF axis. • BPA in eggs disrupts thyroid hormone receptor mRNA levels. • BPA in eggs consistently suppressed IGF-1rb mRNA levels during early development. - Abstract: Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml −1 BPA for 3 h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout

  15. Development of Disruptive Open Access Journals

    Science.gov (United States)

    Anderson, Terry; McConkey, Brigette

    2009-01-01

    Open access (OA) publication has emerged, with disruptive effects, as a major outlet for scholarly publication. OA publication is usually associated with on-line distribution and provides access to scholarly publications to anyone, anywhere--regardless of their ability to pay subscription fees or their association with an educational institution.…

  16. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy?

    DEFF Research Database (Denmark)

    Hartoft-Nielsen, Marie-Louise; Boas, Malene; Bliddal, Sofie

    2011-01-01

    Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals-endocrine disrupting chemicals (EDCs)-has been shown to cause almost...... constant exposure of humans with possible harmful influence on health and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal...

  17. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana.

    Science.gov (United States)

    Mottram, J C; McCready, B P; Brown, K G; Grant, K M

    1996-11-01

    The generation of homozygous null mutants for the crk1 Cdc2-Related Kinase of Leishmania mexicana was attempted using targeted gene disruption. Promastigote mutants heterozygous for crk1 were readily isolated with a hyg-targeting fragment, but attempts to create null mutants by second-round transfections with a bie-targeting fragment yielded two classes of mutant, neither of which was null. First, the transfected fragment formed an episome; second, the cloned transfectants were found to contain wild-type crk1 alleles as well as hyg and ble integrations. DNA-content analysis revealed that these mutants were triploid or tetraploid. Plasticity in chromosome number following targeting has been proposed as a means by which Leishmania avoids deletion of essential genes. These data support this theory and implicate crk1 as an essential gene, validating CRK1 as a potential drug target. L mexicana transfected with a Trypanosoma brucel homologue, tbcrk1, was shown to be viable in an immcrk1 null background, thus showing complementation of function between these trypanosomatid genes. The expression of crk1 was further manipulated by engineering a six-histidine tag at the C-terminus of the kinase, allowing purification of the active complex by affinity selection on Nl(2+)-nitriloacetic acid (NTA) agarose.

  18. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    Science.gov (United States)

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Synergistic Disruption of External Male Sex Organ Development by a Mixture of Four Antiandrogens

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Scholze, Martin; Dalgaard, Majken

    2009-01-01

    : Strikingly, the effect of combined exposure to the selected chemicals on malformations of external sex organs was synergistic, and the observed responses were greater than would be predicted from the toxicities of the individual chemicals. In relation to other hallmarks of disrupted male sexual development......, and a pharmaceutical, finasteride, on landmarks of male sexual development in the rat, including changes in anogenital distance, retained nipples, sex organ weights and malformations of genitalia. These chemicals were chosen because they disrupt androgen action according to differing mechanisms of action. Results...... in male offspring. Conclusions: Since unhindered androgen action is essential for human male development in foetal life, these findings are highly relevant to human risk assessment. Evaluations that ignore the possibility of combination effects may lead to considerable underestimations of risks associated...

  20. Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Fumagalli, Fabio; Desbonnet, Lieve; Perez-Branguli, Francesc; Moloney, Gerard; Loftus, Samim; O'Leary, Claire; Petit, Emilie; Cox, Rachel; Tighe, Orna; Clarke, Gerard; Lai, Donna; Harvey, Richard P; Cryan, John F; Mitchell, Kevin J; Dinan, Timothy G; Riva, Marco A; Waddington, John L

    2017-01-01

    Few studies have addressed likely gene × gene (ie, epistatic) interactions in mediating risk for schizophrenia. Using a preclinical genetic approach, we investigated whether simultaneous disruption of the risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) would produce a disease-relevant phenotypic profile different from that observed following disruption to either gene alone. NRG1 heterozygotes exhibited hyperactivity and disruption to prepulse inhibition, both reversed by antipsychotic treatment, and accompanied by reduced striatal dopamine D2 receptor protein expression, impaired social cognition, and altered glutamatergic synaptic protein expression in selected brain areas. Single gene DISC1 mutants demonstrated a disruption in social cognition and nest-building, altered brain 5-hydroxytryptamine levels and hippocampal ErbB4 expression, and decreased cortical expression of the schizophrenia-associated microRNA miR-29b. Co-disruption of DISC1 and NRG1, indicative of epistasis, evoked an impairment in sociability and enhanced self-grooming, accompanied by changes in hypothalamic oxytocin/vasopressin gene expression. The findings indicate specific behavioral correlates and underlying cellular pathways downstream of main effects of DNA variation in the schizophrenia-associated genes NRG1 and DISC1. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    Science.gov (United States)

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  2. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  3. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61 in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Loto Iris

    2012-10-01

    Full Text Available Abstract Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. Results In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase, was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. Conclusions These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.

  4. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  5. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  6. Targeted disruption of the Mn1 oncogene results in severe defects in development of membranous bones of the cranial skeleton.

    NARCIS (Netherlands)

    M.A. Meester-Smoor (Magda); M. Vermeij (Marcel); M.J. van Helmond (Marjolein); A.C. Molijn (Anco); K.H.M. van Wely (Karel); A.C. Hekman (Arnold); C. Vermey-Keers (Christl); P.H.J. Riegman (Peter); E.C. Zwarthoff (Ellen)

    2005-01-01

    textabstractFusion of the MN1 gene to TEL (ETV6) results in myeloid leukemia. The fusion protein combines the transcription activating domain of MN1 and the DNA binding domain of TEL and is thought to act as a deranged transcription factor. In addition, disruption of the large first exon of the MN1

  7. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  8. Disruption Physics and Mitigation on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Humphreys, D.A.; Kellman, A.G.

    2005-01-01

    The contributions of the DIII-D tokamak toward the understanding and control of disruptions are reviewed. Disruptions are found to be deterministic, and the underlying causes of disruption can therefore be predicted and avoided. With sufficiently rapid detection, possible damage from disruptions can be mitigated using an understanding of disruption phenomenology and plasma physics. Regimes of high β are readily available in DIII-D and provide access to relatively high energy density disruptions, despite DIII-D's moderate magnetic field and size. DIII-D, with all-graphite wall armor and wall conditioning between discharges, has proven highly resilient to the deleterious effects that disruptions can have on plasma operations. Simultaneously, exploitation and adaptation of DIII-D's extensive core and edge plasma diagnostic set have allowed for unique plasma measurements during disruptions. These measurements have tied into the development of several physical models used to understand aspects of disruptions, such as magnetohydrodynamic growth at the disruption onset, radiation energy balance through the thermal quench, and halo currents during the current quench. Based on this fundamental understanding, DIII-D has developed techniques to mitigate the harmful effects of disruptions by radiative dissipation of the plasma energy and extrapolated these techniques for possible use on larger devices like ITER

  9. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption.

    Directory of Open Access Journals (Sweden)

    Jana Husse

    Full Text Available Human and animal studies demonstrate that short sleep or poor sleep quality, e.g. in night shift workers, promote the development of obesity and diabetes. Effects of sleep disruption on glucose homeostasis and liver physiology are well documented. However, changes in adipokine levels after sleep disruption suggest that adipocytes might be another important peripheral target of sleep. Circadian clocks regulate metabolic homeostasis and clock disruption can result in obesity and the metabolic syndrome. The finding that sleep and clock disruption have very similar metabolic effects prompted us to ask whether the circadian clock machinery may mediate the metabolic consequences of sleep disruption. To test this we analyzed energy homeostasis and adipocyte transcriptome regulation in a mouse model of shift work, in which we prevented mice from sleeping during the first six hours of their normal inactive phase for five consecutive days (timed sleep restriction--TSR. We compared the effects of TSR between wild-type and Per1/2 double mutant mice with the prediction that the absence of a circadian clock in Per1/2 mutants would result in a blunted metabolic response to TSR. In wild-types, TSR induces significant transcriptional reprogramming of white adipose tissue, suggestive of increased lipogenesis, together with increased secretion of the adipokine leptin and increased food intake, hallmarks of obesity and associated leptin resistance. Some of these changes persist for at least one week after the end of TSR, indicating that even short episodes of sleep disruption can induce prolonged physiological impairments. In contrast, Per1/2 deficient mice show blunted effects of TSR on food intake, leptin levels and adipose transcription. We conclude that the absence of a functional clock in Per1/2 double mutants protects these mice from TSR-induced metabolic reprogramming, suggesting a role of the circadian timing system in regulating the physiological effects

  10. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  11. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    Science.gov (United States)

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  12. Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate

    Directory of Open Access Journals (Sweden)

    Priya Srikanth

    2015-09-01

    Full Text Available Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1 as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11 translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.

  13. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  14. Targeted Disruption of V600E-Mutant BRAF Gene by CRISPR-Cpf1

    Directory of Open Access Journals (Sweden)

    Meijia Yang

    2017-09-01

    Full Text Available BRAF-V600E (1799T > A is one of the most frequently reported driver mutations in multiple types of cancers, and patients with such mutations could benefit from selectively inactivating the mutant allele. Near this mutation site, there are two TTTN and one NGG protospacer-adjacent motifs (PAMs for Cpf1 and Cas9 CRISPR nucleases, respectively. The 1799T > A substitution also leads to the occurrence of a novel NGNG PAM for the EQR variant of Cas9. We examined the editing efficacy and selectivity of Cpf1, Cas9, and EQR variant to this mutation site. Only Cpf1 demonstrated robust activity to induce specific disruption of only mutant BRAF, not wild-type sequence. Cas9 recognized and cut both normal and mutant alleles, and no obvious gene editing events were observed using EQR variant. Our results support the potential applicability of Cpf1 in precision medicine through highly specific inactivation of many other gain-of-function mutations. Keywords: Cpf1, targeted therapy, BRAF V600E

  15. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Science.gov (United States)

    2011-01-01

    Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species. PMID:22070776

  16. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  17. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  18. Sexually Dimorphic Expression of Secreted Frizzled-Related (SFRP) Genes in the Developing Mouse Müllerian Duct

    Science.gov (United States)

    COX, SAM; SMITH, LEE; BOGANI, DEBORA; CHEESEMAN, MICHAEL; SIGGERS, PAM; GREENFIELD, ANDY

    2007-01-01

    In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development. PMID:16700072

  19. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  20. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Ayumi Matsumoto

    Full Text Available Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID, low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574-91 264 613 bp, which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.

  1. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder?

    Science.gov (United States)

    Moosa, Amer; Shu, Henry; Sarachana, Tewarit; Hu, Valerie W

    2017-10-23

    Recent research on the etiology of autism spectrum disorder (ASD) has shifted in part from a singular focus on genetic causes to the involvement of environmental factors and their gene interactions. This shift in focus is a result of the rapidly increasing prevalence of ASD coupled with the incomplete penetrance of this disorder in monozygotic twins. One such area of environmentally focused research is the association of exposures to endocrine disrupting compounds (EDCs) with elevated risk for ASD. EDCs are exogenous chemicals that can alter endogenous hormone activity and homeostasis, thus potentially disrupting the action of sex and other natural hormones at all stages of human development. Inasmuch as sex hormones play a fundamental role in brain development and sexual differentiation, exposure to EDCs in utero during critical stages of development can have lasting neurological and other physiological influences on the developing fetus and, ultimately, the child as well as adult. This review will focus on the possible contributions of EDCs to autism risk and pathogenesis by first discussing the influence of endogenous sex hormones on the autistic phenotype, followed by a review of documented human exposures to EDCs and associations with behaviors relevant to ASD. Mechanistic links between EDC exposures and aberrant neurodevelopment and behaviors are then considered, with emphasis on EDC-induced transcriptional profiles derived from animal and cellular studies. Finally, this review will discuss possible mechanisms through which EDC exposure can lead to persistent changes in gene expression and phenotype, which may in turn contribute to transgenerational inheritance of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Disruption Mitigation System Developments and Design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Barbier, Charlotte N. [ORNL; Bull, Nora D. [ORNL; Combs, Stephen Kirk [ORNL; Fisher, Paul W. [ORNL; Kiss, Gabor [ITER Organization, Cadarache, France; Ericson, Milton Nance [ORNL; Wilgen, John B. [ORNL; Maruyama, So [ITER Organization, Cadarache, France; Meitner, Steven J. [ORNL; Lyttle, Mark S. [ORNL; Rasmussen, David A. [ORNL; Carmichael, Justin R. [ORNL; Smith, Stephen Fulton [ORNL

    2015-09-01

    A disruption mitigation system (DMS) is under design for ITER to inject sufficient material deeply into the plasma for rapid plasma thermal shutdown and collisional suppression of any resulting runaway electrons. Progress on the development and design of both a shattered pellet injector (SPI) that produces large solid cryogenic pellets to provide reliable deep penetration of material and a fast opening high flow rate gas valve for massive gas injection (MGI) is presented. Cryogenic pellets of deuterium and neon up to 25 mm in size have been formed and accelerated with a prototype injector and a full scale prototype MGI valve is now in testing. Implications of the design with respect to response time and reliability at the proposed injector locations on ITER are discussed.

  3. Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

    Science.gov (United States)

    Crump, Douglas; Lean, David; Trudeau, Vance L

    2002-03-01

    We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic genes and disrupt tadpole growth patterns.

  4. Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus

    Science.gov (United States)

    Appelbe, Oliver K.; Bollman, Bryan; Attarwala, Ali; Triebes, Lindy A.; Muniz-Talavera, Hilmarie; Curry, Daniel J.; Schmidt, Jennifer V.

    2013-01-01

    SUMMARY Congenital hydrocephalus, the accumulation of excess cerebrospinal fluid (CSF) in the ventricles of the brain, affects one of every 1,000 children born today, making it one of the most common human developmental disorders. Genetic causes of hydrocephalus are poorly understood in humans, but animal models suggest a broad genetic program underlying the regulation of CSF balance. In this study, the random integration of a transgene into the mouse genome led to the development of an early onset and rapidly progressive hydrocephalus. Juvenile hydrocephalus transgenic mice (JhylacZ) inherit communicating hydrocephalus in an autosomal recessive fashion with dilation of the lateral ventricles observed as early as postnatal day 1.5. Ventricular dilation increases in severity over time, becoming fatal at 4-8 weeks of age. The ependymal cilia lining the lateral ventricles are morphologically abnormal and reduced in number in JhylacZ/lacZ brains, and ultrastructural analysis revealed disorganization of the expected 9+2 microtubule pattern. Rather, the majority of JhylacZ/lacZ cilia develop axonemes with 9+0 or 8+2 microtubule structures. Disruption of an unstudied gene, 4931429I11Rik (now named Jhy) appears to underlie the hydrocephalus of JhylacZ/lacZ mice, and the Jhy transcript and protein are decreased in JhylacZ/lacZ mice. Partial phenotypic rescue was achieved in JhylacZ/lacZ mice by the introduction of a bacterial artificial chromosome (BAC) carrying 60-70% of the JHY protein coding sequence. Jhy is evolutionarily conserved from humans to basal vertebrates, but the predicted JHY protein lacks identifiable functional domains. Ongoing studies are directed at uncovering the physiological function of JHY and its role in CSF homeostasis. PMID:23906841

  5. Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products.

    Science.gov (United States)

    Laich, Federico; Fierro, Francisco; Martin, Juan F

    2003-06-01

    The presence of some fungi on a variety of food products, like cheeses or cured meat products, is beneficial for the ripening of the product and for the development of specific flavour features. The utilization of these fungi as starters, which are inoculated normally as asexual spores on the food products at the beginning of the ripening process, is becoming a usual procedure in the food industry. The starter culture also prevents undesirable fungi or bacteria from growing on the product. Penicillium nalgiovense is the most frequently used starter for cured and fermented meat products, but the fact that this fungus can secrete penicillin to the meat product makes it important to get strains unable to synthesize this antibiotic. In this work we report that P. nalgiovense strains impaired in penicillin production can be obtained by disruption of the pcbAB gene (the first gene of the penicillin biosynthetic pathway). When applied as starter on cecina (a salted, smoke-cured beef meat product from the region of León, Spain), the pcbAB-disrupted strain showed no differences with respect to the parental penicillin-producing strain in its ability to colonize the meat pieces and to control their normal mycoflora. Both strains exerted a similar control on the presence of bacteria in cecina. A similar proportion of penicillin-sensitive and penicillin-resistant bacteria were isolated from pieces inoculated with the penicillin-producing or the non-producing P. nalgiovense strains. The decrease of the bacterial population on the surface of cecina seems to be due to the higher competition for nutrients as a consequence of the inoculation and development of the P. nalgiovense mycelium and not due to the production of penicillin by this fungus. Penicillin production was less affected than growth in a solid medium with high NaCl concentrations; this suggests that the high salt concentration present in cecina is not a limiting factor for penicillin production by P. nalgiovense.

  6. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  7. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Annaëlle Charrier

    2017-04-01

    Full Text Available In mammals, the circadian clocks network (central and peripheral oscillators controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder. However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders. First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  8. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  9. Effect of disruption of a cutinase gene (cutA) on virulence and tissue specificity of Fusarium solani f. sp. cucurbitae race 2 toward Cucurbita maxima and C. moschata.

    Science.gov (United States)

    Crowhurst, R N; Binnie, S J; Bowen, J K; Hawthorne, B T; Plummer, K M; Rees-George, J; Rikkerink, E H; Templeton, M D

    1997-04-01

    A 3.9-kb genomic DNA fragment from the cucurbit pathogen Fusarium solani f. sp. cucurbitae race 2 was cloned. Sequence analysis revealed an open reading frame of 690 nucleotides interrupted by a single 51-bp intron. The nucleotide and predicted amino acid sequences showed 92 and 98% identity, respectively, to those of the cutA gene of the pea pathogen F. solani f. sp. pisi. A gene replacement vector was constructed and used to generate cutA- mutants that were detected with a polymerase chain reaction (PCR) assay. Seventy-one cutA- mutants were identified among the 416 transformants screened. Vector integration was assessed by Southern analysis in 23 of these mutants. PCR and Southern analysis data showed the level of homologous integration was 14%. Disruption of the cutA locus in mutants was confirmed by RNA gel blot hybridization. Neither virulence on Cucurbita maxima cv. Delica at any of six different inoculum concentrations, nor pathogenicity on intact fruit of four different species or cultivars of cucurbit or hypocotyl tissue of C. maxima cv. Crown, was found to be affected by disruption of the cutA gene.

  10. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  11. Promotion of malignant phenotype after disruption of the three-dimensional structure of cultured spheroids from colorectal cancer.

    Science.gov (United States)

    Piulats, Jose M; Kondo, Jumpei; Endo, Hiroko; Ono, Hiromasa; Hagihara, Takeshi; Okuyama, Hiroaki; Nishizawa, Yasuko; Tomita, Yasuhiko; Ohue, Masayuki; Okita, Kouki; Oyama, Hidejiro; Bono, Hidemasa; Masuko, Takashi; Inoue, Masahiro

    2018-03-23

    Individual and small clusters of cancer cells may detach from the edges of a main tumor and invade vessels, which can act as the origin of metastasis; however, the mechanism for this phenomenon is not well understood. Using cancer tissue-originated spheroids, we studied whether disturbing the 3D architecture of cancer spheroids can provoke the reformation process and progression of malignancy. We developed a mechanical disruption method to achieve homogenous disruption of the spheroids while maintaining cell-cell contact. After the disruption, 9 spheroid lines from 9 patient samples reformed within a few hours, and 3 of the 9 lines exhibited accelerated spheroid growth. Marker expression, spheroid forming capacity, and tumorigenesis indicated that stemness increased after spheroid disruption. In addition, the spheroid forming capacity increased in 6 of 11 spheroid lines. The disruption signature determined by gene expression profiling supported the incidence of remodeling and predicted the prognosis of patients with colorectal cancer. Furthermore, WNT and HER3 signaling were increased in the reformed spheroids, and suppression of these signaling pathways attenuated the increased proliferation and stemness after the disruption. Overall, the disruption and subsequent reformation of cancer spheroids promoted malignancy-related phenotypes through the activation of the WNT and ERBB pathways.

  12. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    International Nuclear Information System (INIS)

    Liu Jie; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-01-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17β-hydroxysteroid dehydrogenase-7 (HSD17β7; involved in estradiol production) and decreased expression of HSD17β5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood

  13. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    Science.gov (United States)

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  14. Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain

    Directory of Open Access Journals (Sweden)

    Akihide Takeuchi

    2018-05-01

    Full Text Available Summary: Genes specifically expressed in neurons contain members with extended long introns. Longer genes present a problem with respect to fulfilment of gene length transcription, and evidence suggests that dysregulation of long genes is a mechanism underlying neurodegenerative and psychiatric disorders. Here, we report the discovery that RNA-binding protein Sfpq is a critical factor for maintaining transcriptional elongation of long genes. We demonstrate that Sfpq co-transcriptionally binds to long introns and is required for sustaining long-gene transcription by RNA polymerase II through mediating the interaction of cyclin-dependent kinase 9 with the elongation complex. Phenotypically, Sfpq disruption caused neuronal apoptosis in developing mouse brains. Expression analysis of Sfpq-regulated genes revealed specific downregulation of developmentally essential neuronal genes longer than 100 kb in Sfpq-disrupted brains; those genes are enriched in associations with neurodegenerative and psychiatric diseases. The identified molecular machinery yields directions for targeted investigations of the association between long-gene transcriptopathy and neuronal diseases. : It has been a long-standing question how mammalian neuronal cells achieve full gene length transcription of extra-long genes. Takeuchi et al. show that RNA-binding protein Sfpq sustains long-gene transcription through Pol II-CTD activation. Loss of Sfpq caused long-gene transcriptopathy, which could be the cause of neurodegenerative and psychiatric disorders. Keywords: RNA-binding protein, transcriptional regulation, RNA polymerase II, cyclin-dependent kinase 9, RBP/transcript-dependent elongation, long-gene transcriptotherapy, neuronal development, neurological and psychiatric diseases, long-gene diseases, long genopathies

  15. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  16. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  17. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Science.gov (United States)

    Seiler, Christoph; Gebhart, Nichole; Zhang, Yong; Shinton, Susan A; Li, Yue-sheng; Ross, Nicola L; Liu, Xingjun; Li, Qin; Bilbee, Alison N; Varshney, Gaurav K; LaFave, Matthew C; Burgess, Shawn M; Balciuniene, Jorune; Balciunas, Darius; Hardy, Richard R; Kappes, Dietmar J; Wiest, David L; Rhodes, Jennifer

    2015-01-01

    Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain) genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP) during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  18. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Christoph Seiler

    Full Text Available Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  19. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome.

    Science.gov (United States)

    McIntyre, Rebecca E; Lakshminarasimhan Chavali, Pavithra; Ismail, Ozama; Carragher, Damian M; Sanchez-Andrade, Gabriela; Forment, Josep V; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A; Logan, Darren W; Arends, Mark J; Tsang, Stephen H; Mahajan, Vinit B; Scudamore, Cheryl L; White, Jacqueline K; Jackson, Stephen P; Gergely, Fanni; Adams, David J

    2012-01-01

    Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm)) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm) embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm) embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.

  20. Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome

    Science.gov (United States)

    McIntyre, Rebecca E.; Lakshminarasimhan Chavali, Pavithra; Forment, Josep V.; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A.; Logan, Darren W.; Arends, Mark J.; Tsang, Stephen H.; Mahajan, Vinit B.; Scudamore, Cheryl L.; White, Jacqueline K.; Jackson, Stephen P.; Gergely, Fanni; Adams, David J.

    2012-01-01

    Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpjtm/tm) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpjtm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpjtm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome. PMID:23166506

  1. Structured Literature Review of digital disruption literature

    DEFF Research Database (Denmark)

    Vesti, Helle; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2018-01-01

    Digital disruption is a term/phenomenon frequently appearing in innovation management literature. However, no academic consensus exists as to what it entails; conceptual nor theoretical. We use the SLR-method (Structured Literature Review) to investigate digital disruption literature. A SLR......-study conducted in 2017 revealed some useful information on how disruption and digital disruption literature has developed over a specific period. However, this study was less representative of papers addressing digital disruption; which is the in-depth subject of this paper. To accommodate this, we intend...... to conduct a similar SLR-study assembling a body literature having digital disruption as the only common denominator...

  2. Prioritizing genes associated with prostate cancer development

    International Nuclear Information System (INIS)

    Gorlov, Ivan P; Logothetis, Christopher J; Sircar, Kanishka; Zhao, Hongya; Maity, Sankar N; Navone, Nora M; Gorlova, Olga Y; Troncoso, Patricia; Pettaway, Curtis A; Byun, Jin Young

    2010-01-01

    The genetic control of prostate cancer development is poorly understood. Large numbers of gene-expression datasets on different aspects of prostate tumorigenesis are available. We used these data to identify and prioritize candidate genes associated with the development of prostate cancer and bone metastases. Our working hypothesis was that combining meta-analyses on different but overlapping steps of prostate tumorigenesis will improve identification of genes associated with prostate cancer development. A Z score-based meta-analysis of gene-expression data was used to identify candidate genes associated with prostate cancer development. To put together different datasets, we conducted a meta-analysis on 3 levels that follow the natural history of prostate cancer development. For experimental verification of candidates, we used in silico validation as well as in-house gene-expression data. Genes with experimental evidence of an association with prostate cancer development were overrepresented among our top candidates. The meta-analysis also identified a considerable number of novel candidate genes with no published evidence of a role in prostate cancer development. Functional annotation identified cytoskeleton, cell adhesion, extracellular matrix, and cell motility as the top functions associated with prostate cancer development. We identified 10 genes--CDC2, CCNA2, IGF1, EGR1, SRF, CTGF, CCL2, CAV1, SMAD4, and AURKA--that form hubs of the interaction network and therefore are likely to be primary drivers of prostate cancer development. By using this large 3-level meta-analysis of the gene-expression data to identify candidate genes associated with prostate cancer development, we have generated a list of candidate genes that may be a useful resource for researchers studying the molecular mechanisms underlying prostate cancer development

  3. Norrie disease gene is distinct from the monoamine oxidase genes.

    Science.gov (United States)

    Sims, K B; Ozelius, L; Corey, T; Rinehart, W B; Liberfarb, R; Haines, J; Chen, W J; Norio, R; Sankila, E; de la Chapelle, A

    1989-09-01

    The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and/or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in "classic" Norrie disease patients. Genomic DNA from these "nondeletion" Norrie disease patients did not show rearrangements at the MAOA or DXS7 loci. Normal levels of MAO-A activities, as well as normal amounts and size of the MAO-A mRNA, were observed in cultured skin fibroblasts from these patients, and MAO-B activity in their platelets was normal. Catecholamine metabolites evaluated in plasma and urine were in the control range. Thus, although some atypical Norrie disease patients lack both MAO-A and MAO-B activities, MAO does not appear to be an etiologic factor in classic Norrie disease.

  4. First disruption studies and simulations in view of the development of the DEMO Physics Basis

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Roma (Italy); Maddaluno, G. [ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Roma (Italy); Villone, F. [University of Cassino Consorzio CREATE, Cassino (Italy); Albanese, R. [University Federico II Consorzio CREATE, Naples (Italy); Barbato, L. [University of Cassino Consorzio CREATE, Cassino (Italy); Crisanti, F. [ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Roma (Italy); Mastrostefano, S. [University of Cassino Consorzio CREATE, Cassino (Italy); Mazzuca, R. [ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Roma (Italy); Palmaccio, R. [University of Cassino Consorzio CREATE, Cassino (Italy); Rubinacci, G.; Ventre, S. [University Federico II Consorzio CREATE, Naples (Italy); Wenninger, R. [IPP, Garching (Germany); EFDA, Garching (Germany)

    2015-10-15

    Highlights: • The prediction of disruption features and loads is essential in the design of DEMO. • Different disruptions need to be simulated to evaluate the EM and thermal loads. • Extrapolation of the thermal quench duration to DEMO gives values from 0.8 to 1.1 ms. • Extrapolation of the current quench duration to DEMO gives values from 47 to 107 ms. • First CarMa0NL simulations points out the effect of large 3D conductive structures. - Abstract: In the development of the DEMO Physics Basis an important role is played by the prediction of the plasma disruption features and by the evaluation of the electro-magnetic (EM) and thermal loads associated with these events. Indeed, the kind and number of foreseen plasma disruptions drive the development of the DEMO operation scenarios and the design of vessel and in-vessel components. To characterize a plausible macroscopic plasma dynamics during these events, we will carry out an extrapolation from present-day machines of the main parameters characterizing the disruptions: thermal and current quench time, evolution of plasma current, β and l{sub i}, safety factor limits, halo current fraction and width, radiated heat fraction. In particular, we will focus on extrapolations for the thermal and current quench characteristic times, due to their importance for the subsequent simulations aimed at the evaluation of the EM and thermal loads. The different options for DEMO design will be taken into account and the possible range of variation of the parameters will be estimated. The 2D axysimmetric MAXFEA and the 3D CarMa0NL codes will be used to evaluate the effects of the induced currents and the EM loads during a disruptive event and to analyze the various design options obtained by the PROCESS code. The results of these simulations, modeled as worst expected events, will be used as input for the system level analysis and design of the vessel and relevant in-vessel components. First simulations with CarMa0NL code

  5. Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb.

    Science.gov (United States)

    Neufeld, Stanley J; Wang, Fan; Cobb, John

    2014-11-01

    The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb. Copyright © 2014 by the Genetics Society of America.

  6. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    Science.gov (United States)

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  7. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization

    Directory of Open Access Journals (Sweden)

    McDonald Karen

    2011-08-01

    Full Text Available Abstract Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.

  8. Cytotoxic effects induced by interferon-ω gene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    Science.gov (United States)

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  10. Disruption of the APC gene by t(5;7) translocation in a Turcot family.

    Science.gov (United States)

    Sahnane, Nora; Bernasconi, Barbara; Carnevali, Ileana; Furlan, Daniela; Viel, Alessandra; Sessa, Fausto; Tibiletti, Maria Grazia

    2016-03-01

    Turcot syndrome (TS) refers to the combination of colorectal polyps and primary tumours of the central nervous system. TS is a heterogeneous genetic condition due to APC and/or mismatch repair germline mutations. When APC is involved the vast majority of mutations are truncating, but in approximately 20%-30% of patients with familial polyposis no germline mutation can be found. A 30-year-old Caucasian woman with a positive pedigree for TS was referred to our Genetic Counselling Service. She was negative for APC and MUTYH but showed a reciprocal balanced translocation t(5;7)(q22;p15) at chromosome analysis. FISH analysis using specific BAC probes demonstrated that 5q22 breakpoint disrupted the APC gene. Transcript analysis by MLPA and digital PCR revealed that the cytogenetic rearrangement involving the 3' end of the APC gene caused a defective expression of a truncated transcript. This result allowed cytogenetic analysis to be offered to all the other family members and segregation analysis clearly demonstrated that all the carriers were affected, whereas non-carriers did not have the polyposis. A cytogenetic approach permitted the identification of the mutation-causing disease in this family, and the segregation analysis together with the transcript study supported the pathogenetic role of this mutation. Karyotype analysis was used as a predictive test in all members of this family. This family suggests that clinically positive TS and FAP cases, which test negative with standard molecular analysis, could be easily and cost-effectively resolved by a classical and molecular cytogenetic approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure

    Directory of Open Access Journals (Sweden)

    Stoll Doris

    2008-08-01

    Full Text Available Abstract Background The cysteine and glycine rich protein 2 (CRP2 encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. Results A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central. A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as β-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. Conclusion We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.

  12. Improved gene expression signature of testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Leffers, Henrik; Lothe, Ragnhild A

    2007-01-01

    on global gene expression in testicular CIS have been previously published. We have merged the two data sets on CIS samples (n = 6) and identified the shared gene expression signature in relation to expression in normal testis. Among the top-20 highest expressed genes, one-third was transcription factors...... development' were significantly altered and could collectively affect cellular pathways like the WNT signalling cascade, which thus may be disrupted in testicular CIS. The merged CIS data from two different microarray platforms, to our knowledge, provide the most precise CIS gene expression signature to date....

  13. Endocrine disruptors in female reproductive tract development and carcinogenesis

    OpenAIRE

    Ma, Liang

    2009-01-01

    Growing concerns over endocrine disrupting chemicals (EDCs) and their effects on human fetal development and adult health have promoted research into the underlying molecular mechanisms of endocrine disruption. Gene targeting technology has allowed insight into the genetic pathways governing reproductive tract development and how exposure to EDCs during a critical developmental window can alter reproductive tract development, potentially forming the basis for adult diseases. This review prima...

  14. Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7

    International Nuclear Information System (INIS)

    Zhuang Huidong; Zhang Xiaodong

    2013-01-01

    In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected. (magnetically confined plasma)

  15. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease

    Energy Technology Data Exchange (ETDEWEB)

    Proia, R.L.; Yamanaka, S.; Johnson, M.D. [and others

    1994-09-01

    Tay-Sachs disease, the prototype of the G{sub M2} gangliosidoses, is a catastrophic neurodegenerative disorder of infancy. The disease is caused by mutations in the HEXA gene resulting in an absence of the lysosomal enzyme, {beta}-hexosaminidase A. As consequence of the enzyme deficiency, G{sub M2} ganglioside accumulates progressively, beginning early in fetal life, to excessive amounts in the central nervous system (CNS). Rapid mental and motor deterioration starting in the first year of life leads to death by 2 to 4 years of age. Through the targeted disruption of the Hexa gene in embryonic stem cells, we have produced mice with biochemical and neuropathologic features of Tay-Sachs disease. The mutant mice exhibited less than 1% of normal {beta}-hexosaminidase A activity and accumulated G{sub M2} ganglioside in their CNS in an age-dependent manner. The accumulated ganglioside was stored in neurons as membranous cytoplasmic bodies characteristically found in the neurons of Tay-Sachs disease patients. At three to five months of age the mutant mice showed no apparent defects in motor or memory function. These {beta}-hexosaminidase A deficient mice should be useful for devising strategies to introduce functional enzymes and genes into the CNS. This model may also be valuable for studying the biochemical and pathologic changes occurring during the course of the disease.

  16. Immunocytochemistry and fluorescence imaging efficiently identify individual neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures.

    Science.gov (United States)

    Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-01

    CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.

  17. Msx homeobox gene family and craniofacial development.

    Science.gov (United States)

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  18. Disruption of the Candida albicans TPS1 Gene Encoding Trehalose-6-Phosphate Synthase Impairs Formation of Hyphae and Decreases Infectivity†

    Science.gov (United States)

    Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos

    1998-01-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  19. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol

    International Nuclear Information System (INIS)

    Frizzell, Caroline; Ndossi, Doreen; Kalayou, Shewit; Eriksen, Gunnar S.; Verhaegen, Steven; Sørlie, Morten; Elliott, Christopher T.; Ropstad, Erik; Connolly, Lisa

    2013-01-01

    Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression

  20. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol

    Energy Technology Data Exchange (ETDEWEB)

    Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Ndossi, Doreen [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Sokoine University of Agriculture, Morogoro (Tanzania, United Republic of); Kalayou, Shewit [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Mekelle University College of Veterinary Medicine, Mekelle (Ethiopia); Eriksen, Gunnar S. [Norwegian Veterinary Institute, Oslo (Norway); Verhaegen, Steven [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Sørlie, Morten [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås (Norway); Elliott, Christopher T. [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Ropstad, Erik [Section of Experimental Biomedicine, Norwegian School of Veterinary Science, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2013-08-15

    Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression.

  1. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  2. Endocrine-disrupting chemicals and obesity development in humans: A review

    DEFF Research Database (Denmark)

    Tang-Péronard, Jeanett; Andersen, Helle Raun; Jensen, Tina Kold

    2011-01-01

    This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans...... dibenzofurans found either associations with weight gain or an increase in waist circumference, or no association. The one study investigating relations with bisphenol A found no association. Studies investigating prenatal exposure indicated that exposure in utero may cause permanent physiological changes...

  3. Feature extraction for improved disruption prediction analysis at JET

    International Nuclear Information System (INIS)

    Ratta, G. A.; Vega, J.; Murari, A.; Johnson, M.

    2008-01-01

    Disruptions are major instabilities and remain one of the main problems in tokomaks. Using Joint European Torus database, a disruption predictor is developed by computational methods including supervised learning techniques. The main objectives of the work are to develop accurate automatic classifiers, to test their performances, and to determine how much in advance of the disruption they can operate with acceptable reliability.

  4. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome.

    Directory of Open Access Journals (Sweden)

    Rebecca E McIntyre

    Full Text Available Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4, which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.

  5. Development of a one-step gene knock-out and knock-in method for metabolic engineering of Aureobasidium pullulans.

    Science.gov (United States)

    Guo, Jian; Wang, Yuanhua; Li, Baozhong; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-06-10

    Aureobasidium pullulans is an increasingly attractive host for bio-production of pullulan, heavy oil, polymalic acid, and a large spectrum of extracellular enzymes. To date, genetic manipulation of A. pullulans mainly relies on time-consuming conventional restriction enzyme digestion and ligation methods. In this study, we present a one-step homologous recombination-based method for rapid genetic manipulation in A. pullulans. Overlaps measuring >40bp length and 10μg DNA segments for homologous recombination provided maximum benefits to transformation of A. pullulans. This optimized method was successfully applied to PKSIII gene (encodes polyketide synthase) knock-out and gltP gene (encodes glycolipid transfer protein) knock-in. After disruption of PKSIII gene, secretion of melanin decreased slightly. The melanin purified from disruptant showed lower reducing capacity compared with that of the parent strain, leading to a decrease in exopolysaccharide production. Knock-in of gltP gene resulted in at least 4.68-fold increase in heavy oil production depending on the carbon source used, indicating that gltP can regulate heavy oil synthesis in A. pullulans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment

    International Nuclear Information System (INIS)

    Hou, Jie; Li, Li; Wu, Ning; Su, Yujing; Lin, Wang; Li, Guangyu; Gu, Zemao

    2016-01-01

    Microcystin-LR (MC-LR) has been found to cause reproductive and developmental impairments as well as to disrupt sex hormone homeostasis of fish during acute and sub-chronic toxic experiments. However, fish in natural environments are continuously exposed to MC-LR throughout their entire life cycle as opposed to short-term exposure. Here, we tested the hypothesis that the mechanism by which MC-LR harms female fish reproduction and development within natural water bodies is through interference of the reproductive endocrine system. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30 μg/L MC-LR for 90 d until reaching sexual maturity. Female zebrafish were selected, and the changes in growth and developmental indicators, ovarian ultrastructure as well as the levels of gonadal steroid hormones and vitellogenin (VTG) were examined along with the transcription of related genes in the hypothalamic–pituitary–gonadal–liver axis (HPGL-axis). The results showed for the first time, a life cycle exposure to MC-LR caused growth inhibition, decreased ovary weight and ovarian ultra-pathological lesions. Decreased ovarian testosterone levels indicated that MC-LR disrupted sex steroid hormone balance. Significantly up-regulated transcription of brain FSHβ and LHβ along with ovarian ERα, FSHR and LHR suggested positive feedback regulation in the HPGL-axis was induced as a compensatory mechanism for MC-LR damage. It was also noted that ovarian VTG content and hepatic ERα and VTG1 expression were all down-regulated, which might be responsible for reduced vitellus storage noted in our histological observations. Our findings indicate that a life cycle exposure to MC-LR impairs the development and reproduction of female zebrafish by disrupting the transcription of related HPGL-axis genes, suggesting that MC-LR has potential adverse effects on fish reproduction and thus population dynamics in MCs-contaminated aquatic

  7. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines.

    Science.gov (United States)

    Ben-Daniel, Bat-Hen; Bar-Zvi, Dudy; Tsror Lahkim, Leah

    2012-02-01

    Colletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality. We explored the role of secreted pectate lyase (PL), a cell wall-degrading enzyme, in the aggressiveness of C. coccodes. In vitro-cultivated highly aggressive isolates secreted immunologically detectable PL levels 6 h after transfer to secondary medium versus 12 h for mildly aggressive isolates, suggesting that secreted PL is a virulence factor. The gene encoding PL, CcpelA, was cloned and used for the genetic manipulation of highly (US-41 and Si-72) and mildly (Si-60) aggressive isolates. CcpelA gene-disrupted mutants showed reduced aggressiveness towards tomato fruits and impaired PL secretion and extracellular activity. Conversely, overexpression of CcpelA in the Si-60 isolate increased its aggressiveness and PL secretion. Comparison of CcpelA cloned from isolates US-41 and Si-60 revealed that both encode identical proteins, but differ in their promoters. Bioinformatics analysis for cis-acting elements suggested that the promoters of the US-41 and Si-60 isolates contain one and no AreA-binding site (GATA box), respectively. AreA has been suggested to be involved in fungal aggressiveness; therefore, CcpelA may be a key virulence factor in C. coccodes pathogenicity, and the differences in isolate aggressiveness might result from promoter activity. Quantitative reverse transcriptase-polymerase chain reaction analyses confirmed the higher level of CcpelA transcript in isolate US-41 versus Si-60. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  8. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Teng; Lai, Lidan [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China); Hu, Jia [Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi (China); Guo, Meijun; Li, Mo; Zhang, Lu; Zhong, Chengxue; Yang, Bei; Wu, Lei; Zhang, Dalei; Tang, Min [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China); Kuang, Haibin, E-mail: kuanghaibin@ncu.edu.cn [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China)

    2015-10-30

    Highlights: • The influence of DEHP on the development of placenta was investigated. • DEHP disrupts the growth and development of placenta. • DEHP disrupts the formation of labyrinth vascularization. • DEHP inhibits the proliferation of ectoplacental cone and placenta. • DEHP induces the apoptosis of placenta via activated MAPK signaling pathway. - Abstract: Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and widely dispersed in the environment. DEHP exposure reduces embryo implantations, increases embryonic loss, and decreases fetal body weights. However, no detailed information is available about the effect of DEHP on the placentation during pregnancy. Thus, our aim was to explore the effect of DEHP on the growth and development of placenta in vivo. Mice were administered DEHP by gavages at 125, 250, 500 mg/kg/day from gestational days (GD) 1 until sacrifice. Results showed that DEHP treatment significantly reduced the weight of placenta at GD 13. Histopathologically, in DEHP-treated group, the ectoplacental cones significantly became smaller at GD9, and total area of placenta and area of spongiotrophoblast were significantly reduced at GD 13. Expression levels of Ascl2, Esx1 and Fosl1 mRNA dramatically decreased in DEHP-treated placenta at GD 13. DEHP administration disrupted labyrinth vascularization of placentas, and inhibited proliferation and induced apoptosis of placenta by the activation of caspase-3 and -8, up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein at GD 13. In conclusion, these results suggest that adverse pregnancy outcomes including low birth-weight and pregnancy loss exposed to DEHP are possibly mediated, at least in part, via the suppression of placental growth and development.

  9. Real-time disruption handling at ASDEX upgrade

    International Nuclear Information System (INIS)

    Zehetbauer, Th.; Pautasso, G.; Tichmann, C.; Egorov, S.; Lorenz, A.; Mertens, V.; Neu, G.; Raupp, G.; Treutterer, W.; Zasche, D.

    2001-01-01

    A neural network for prediction of disruptions has been developed at ASDEX Upgrade with the goal to mitigate or avoid these. The novel idea is to compute the remaining time-to-disruption to indicate the stability level of the discharge. The neural network has been specified, trained and then implemented within the real-time plasma control system. The current version of the system terminates the discharge with an impurity pellet when the computed time-to-disruption falls below a threshold of 80 ms. Routine operation shows that disruptions are recognized reliably. Vessel currents and forces are considerably reduced. The system will be enhanced to avoid disruptions with a soft landing initiated in time

  10. Disruption studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.

    2002-01-01

    Disruption generate large thermal and mechanical stresses on the tokamak components. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/ predictive methods must be developed further. The study of disruptions on ASDEX Upgrade is focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon and learning to avoid it or to predict its occurrence (with neural networks, for example) and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows to dimension or reinforce the machine components to withstand these loads and to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions. (author)

  11. Detecting the effects of environmentally relevant concentrations of thyroid hormone disrupting compounds on amphibian development

    NARCIS (Netherlands)

    Gutleb, A.C.

    2006-01-01

    Persistent organic pollutants such as PCBs have been hypothesized to contribute to the observed global decline of amphibian populations. Thyroid hormone (TH) disruption is one of the possible mechanisms for effects of xenobiotics on amphibian development. In addition to the important functions

  12. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    Science.gov (United States)

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  13. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  14. Endocrine Disrupters: the new players able to affect the epigenome.

    Directory of Open Access Journals (Sweden)

    Lavinia eCasati

    2015-06-01

    Full Text Available Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include both heritable changes in gene activity and expression but also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. These changes might be produced mostly by the early life environment and might affect health influencing the susceptibility to develop diseases, from cancer to mental disorder, during the entire life span. The most studied environmental influences acting on epigenome are diet, infections, wasting, child care, smoking and environmental pollutants, in particular endocrine disrupters (EDs. These are environmental xenobiotics able to interfere with the normal development of the male and female reproductive systems of wildlife, of experimental animals and possibly of humans, disrupting the normal reproductive functions. Data from literature indicate that EDs can act at different levels of epigenetic control, in some cases transgenerationally, in particular when the exposure to these compounds occurs during the prenatal and earliest period of life. Some of the best characterized EDs will be considered in this review. Among the EDs, vinclozolin (VZ and methoxychlor (MXC promote epigenetic transgenerational effects. Polychlorinated biphenils (PCBs, the most widespread environmental EDs, affect histone post-translational modifications in a dimorphic way, possibly as the result of an alteration of gene expression of the enzymes involved in histone modification, as the demethylase Jarid1b, an enzyme also involved in regulating the interaction of androgens with their receptor.

  15. Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice1[W][OPEN

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-01-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change. PMID:24569847

  16. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism.

    Directory of Open Access Journals (Sweden)

    Xiling Liu

    2016-09-01

    Full Text Available Cognitive defects in autism spectrum disorder (ASD include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans.

  17. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism

    Science.gov (United States)

    Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp

    2016-01-01

    Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936

  18. Is the Mobile Phone a Disruptive Technology? A Partial Review of Evidence from Developing Countries

    NARCIS (Netherlands)

    Columbus, Simon

    2012-01-01

    The authors of this chapter provide an inter-disciplinary review of studies on economic impacts of mobile telephony in developing countries, giving particular attention to the disruptive potential of the technology and its associated social practices. Four major areas of impact are identified: the

  19. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  20. Endocrine Disrupting Chemicals and Disease Susceptibility

    Science.gov (United States)

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  1. Thyroid effects of endocrine disrupting chemicals.

    Science.gov (United States)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-05-22

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert thyroid effects through a variety of mechanisms of action, and some animal experiments and in vitro studies have focused on elucidating the mode of action of specific chemical compounds. Long-term human studies on effects of environmental chemicals on thyroid related outcomes such as growth and development are still lacking. The human exposure scenario with life long exposure to a vast mixture of chemicals in low doses and the large physiological variation in thyroid hormone levels between individuals render human studies very difficult. However, there is now reasonably firm evidence that PCBs have thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Erosion of newly developed CFCs and Be under disruption heat loads

    Science.gov (United States)

    Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-10-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.

  3. Erosion of newly developed CFCs and Be under disruption heat loads

    International Nuclear Information System (INIS)

    Nakamura, K.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-01-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4 C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J-EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 x 3 mm 2 . As a result, the protuberances of the heated area of Be were observed under the lower heat flux. (orig.)

  4. Ecdysone receptor agonism leading to lethal molting disruption in arthropods: Review and adverse outcome pathway development

    Science.gov (United States)

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, s...

  5. Airline Disruption Management - Perspectives, Experiences and Outlook

    DEFF Research Database (Denmark)

    Kohl, Niklas; Larsen, Allan; Larsen, Jesper

    2007-01-01

    Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused...... part we report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented....... by for example severe weather, technical problems and crew sickness. Thus, the field of Airline Disruption Management has emerged within the past few years. The increased focus on cutting cost at the major airlines has intensified the interest in the development of new and cost efficient methods to handle...

  6. Airline Disruption Management - Perspectives, Experiences and Outlook

    DEFF Research Database (Denmark)

    Kohl, Niklas; Larsen, Allan; Larsen, Jesper

    2004-01-01

    Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused...... report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented....... by for example severe weather, technical problems and crew sickness. Thus, the field of Airline Disruption Management has emerged within the past few years. The increased focus on cutting cost at the major airlines has intensified the interest in the development of new and cost e cient methods to handle airline...

  7. Disruptive technologies and networking in telecom industries

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Hartington, Simon

    in the telecommunication industry and finds significant similarities between the industry development and the literature on disruptive technology, which finds that incumbent companies are not able to react in a successful way when disruptions occur in their industry. By studying how the telecommunication industry...

  8. Potent Nematicidal Activity and New Hybrid Metabolite Production by Disruption of a Cytochrome P450 Gene Involved in the Biosynthesis of Morphological Regulatory Arthrosporols in Nematode-Trapping Fungus Arthrobotrys oligospora.

    Science.gov (United States)

    Song, Tian-Yang; Xu, Zi-Fei; Chen, Yong-Hong; Ding, Qiu-Yan; Sun, Yu-Rong; Miao, Yang; Zhang, Ke-Qin; Niu, Xue-Mei

    2017-05-24

    Types of polyketide synthase-terpenoid synthase (PKS-TPS) hybrid metabolites, including arthrosporols with significant morphological regulatory activity, have been elucidated from nematode-trapping fungus Arthrobotrys oligospora. A previous study suggested that the gene cluster AOL_s00215 in A. oligospora was involved in the production of arthrosporols. Here, we report that disruption of one cytochrome P450 monooxygenase gene AOL_s00215g280 in the cluster resulted in significant phenotypic difference and much aerial hyphae. A further bioassay indicated that the mutant showed a dramatic decrease in the conidial formation but developed numerous traps and killed 85% nematodes within 6 h in contact with prey, in sharp contrast to the wild-type strain with no obvious response. Chemical investigation revealed huge accumulation of three new PKS-TPS epoxycyclohexone derivatives with different oxygenated patterns around the epoxycyclohexone moiety and the absence of arthrosporols in the cultural broth of the mutant ΔAOL_s00215g280. These findings suggested that a study on the biosynthetic pathway for morphological regulatory metabolites in nematode-trapping fungus would provide an efficient way to develop new fungal biocontrol agents.

  9. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  10. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  11. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  12. The Need for Mobile Application Development in IS Curricula: An Innovation and Disruptive Technologies Perspective

    Science.gov (United States)

    Babb, Jeffry S., Jr.; Abdullat, Amjad

    2012-01-01

    Disruptive technologies, such as mobile applications development, will always present a dilemma for Information Systems educators as dominant paradigms in our environment will tend to favor the existing sustaining technologies that we have become known for in our discipline. In light of this friction, we share our approach in investigating and…

  13. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available . To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH...

  14. Disruption of var2csa gene impairs placental malaria associated adhesion phenotype.

    Directory of Open Access Journals (Sweden)

    Nicola K Viebig

    Full Text Available Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE to chondroitin sulfate A (CSA present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1 family is the predominant parasite ligand mediating CSA binding. However, experimental evidence suggests that other host receptors, such as hyaluronic acid (HA and the neonatal Fc receptor, may also support placental binding. Here we used parasites in which var2csa was genetically disrupted to evaluate the contribution of these receptors to placental sequestration and to identify additional adhesion receptors that may be involved in pregnancy-associated malaria. By comparison to the wild-type parasites, the FCR3delta var2csa mutants could not be selected for HA adhesion, indicating that var2csa is not only essential for IE cytoadhesion to the placental receptor CSA, but also to HA. However, further studies using different pure sources of HA revealed that the previously observed binding results from CSA contamination in the bovine vitreous humor HA preparation. To identify CSA-independent placental interactions, FCR3delta var2csa mutant parasites were selected for adhesion to the human placental trophoblastic BeWo cell line. BeWo selected parasites revealed a multi-phenotypic adhesion population expressing multiple var genes. However, these parasites did not cytoadhere specifically to the syncytiotrophoblast lining of placental cryosections and were not recognized by sera from malaria-exposed women in a parity dependent manner, indicating that the surface molecules present on the surface of the BeWo selected population are not specifically expressed during the course of pregnancy-associated malaria. Taken

  15. Molecular Biology at the Cutting Edge: A Review on CRISPR/CAS9 Gene Editing for Undergraduates

    Science.gov (United States)

    Thurtle-Schmidt, Deborah M.; Lo, Te-Wen

    2018-01-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing…

  16. Structured Literature Review of disruptive innovation theory within the digital domain

    DEFF Research Database (Denmark)

    Vesti, Helle; Nielsen, Christian; Rosenstand, Claus Andreas Foss

    2017-01-01

    The area of interest is disruption is the digital domain. The research questions are: How has the disruption and digital disruption literature developed over time? What is the research focus into disruption regarding the digital domain and how has this changed over time? Which methods are being...... utilized in research regarding disruption and digital disruption? Where are the key contributors to disruption in general and in digital disruption? Is there a future for digital disruption research? The method is a Structured Literature Review (SLR). The contribution is the results of an analysis of 95...... publications within the field of disruption in the digital domain and disruptive innovation theory in general. Works of twelve practitioners and 83 academics are investigated....

  17. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  18. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  19. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    Science.gov (United States)

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  20. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    Science.gov (United States)

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Childhood trajectories of anxiousness and disruptiveness as predictors of suicide attempts.

    Science.gov (United States)

    Brezo, Jelena; Barker, Edward D; Paris, Joel; Hébert, Martine; Vitaro, Frank; Tremblay, Richard E; Turecki, Gustavo

    2008-11-01

    To investigate the association of childhood trajectories of anxiousness and disruptiveness with suicide attempts in early adulthood. Prospective cohort study. Public francophone schools in Quebec, Canada, from the 1986 to 1988 school years. Of 4,488 French Canadian children attending kindergarten, a representative group of 1,001 boys and 999 girls was chosen for follow-up. Of these, 1,144 individuals participated in the study during early adulthood. Suicide attempt histories by early adulthood, adjusted odds ratios (ORs) associated with membership in high- vs low-risk trajectories of anxiousness and disruptiveness, moderation (by sex), and mediation (by adolescent Axis I disorders). We observed 4 distinct developmental profiles of anxiousness and disruptiveness and a frequent co-occurrence of similar levels of these traits. In contrast to anxiousness trajectories (OR = 1.60; 95% confidence interval, 1.00-2.65), disruptiveness (OR = 1.80; 95% confidence interval, 1.03-3.13) and joint (OR = 1.88; 95% confidence interval, 1.05-3.37) trajectories made statistically significant contributions to suicide attempts. We found no support for mediation by adolescent anxiety/mood or disruptive disorders. Sex, however, moderated the effect of joint trajectories, increasing the risk of suicide attempts in women (OR = 3.60; Wald chi(2) = 10.93; P anxious and disruptive traits as children. Anxious-disruptive girls and disruptive boys appear to be more likely than their peers to attempt suicide by early adulthood. Preventive efforts will require more research into the possible mechanisms behind this early sex difference, ie, gene-environment interplays and nonpsychiatric mediators.

  2. The long and the short of it: Gene and environment interactions during early cortical development and consequences for long-term neurological disease

    Directory of Open Access Journals (Sweden)

    Helen eStolp

    2012-06-01

    Full Text Available Cortical development is a complex amalgamation of proliferation, migration, differentiation and circuit formation. These processes follow defined timescales and are controlled by a combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible these processes are and whether the developing brain has the capacity to recover from disruptions to normal cortical development. What is clear is that there are a number of cognitive disorders or conditions that are elicited as a result of disrupted cortical development, although it may take a long time for the full pathophysiology of the conditions to be realised clinically. The critical window for the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential for a complex interplay between genes and environment. While there have been extended investigations into the genetic basis of a number of neurological disorders, limited definitive associations have been discovered. Many environmental factors, including inflammation and stress, have been linked to neurodevelopmental disorders, and it may be that a better understanding of the interplay between genes and environment will speed progress in this field. In particular, the development of the brain needs to be considered in the context of the whole materno-foetal unit as the degree of the metabolic, endocrine or inflammatory responses, for example, will greatly influence the environment in which the brain develops. This review will emphasize the importance of extending neurodevelopmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and to maternal and foetal immune response. These combined investigations are more likely to reveal genetic and environmental factors that influence the different stages of neuronal development and potentially lead to the better understanding of the aetiology of neurological disorders such as autism, epilepsy, cerebral palsy and

  3. PARK2, a Large Common Fragile Site Gene, is Part of a Stress Response Network in Normal Cells That is Disrupted During the Development of Ovarian Cancer

    National Research Council Canada - National Science Library

    Smith, David I; Zhu, Yu

    2007-01-01

    .... The central two questions that we want to address with this work are what role does inactivation of Parkin and other large CFS genes play in the development of ovarian cancer and whether these genes...

  4. Disruption Management in Passenger Railway Transportation

    DEFF Research Database (Denmark)

    Jespersen-Groth, Julie; Potthoff, Daniel; Clausen, Jens

    This paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss...... the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an overview of the existing literature and we present some details of the specific situations at DSB S-tog and NS....... These are the railway operators in the suburban area of Copenhagen, Denmark, and on the main railway lines in the Netherlands, respectively. Since not much research has been carried out yet on Operations Research models for disruption management in the railway context, models and techniques that have been developed...

  5. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas, especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation, sucrose metabolism (upregulation, and starch biosynthesis (upregulation. In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70 was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  6. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    Science.gov (United States)

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  7. Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

    DEFF Research Database (Denmark)

    Mandrup, Karen Riiber; Johansson, Hanna Katarina Lilith; Boberg, Julie

    2015-01-01

    Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams were exposed during gestation and lactation to mixtures...

  8. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  9. Disruptions and Their Mitigation in TEXTOR

    International Nuclear Information System (INIS)

    Finken, K.H.; Jaspers, R.; Kraemer-Flecken, A.; Savtchkov, A.; Lehnen, M.; Waidmann, G.

    2005-01-01

    Disruptions remain a major concern for tokamak devices, particularly for large machines. The critical issues are the induced (halo) currents and the resulting forces, the excessive heating of exposed surfaces by the instantaneous power release, and the possible occurrence of highly energetic runaway electrons. The key topics of the investigations on TEXTOR in the recent years concerned (a) the power deposition pattern recorded by a fast infrared scanner, (b) the runaway generation measured by synchrotron radiation in the infrared spectral region, (c) method development for 'healing' discharges that are going to disrupt, and (d) massive gas puffing for mitigating the adverse effects of disruptions

  10. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice

    OpenAIRE

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S.; Gores, Gregory J.; Wu, Hong; Gao, Bin

    2006-01-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from ...

  12. An assessment of disruption erosion in ITER environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1994-01-01

    The behavior of divertor materials during a major disruption in ITER is very important for the successful and reliable operation of the reactor. Erosion of material surfaces due to the thermal energy dump can severely limit the lifetime of the plasma facing components therefore degrading reactor economic feasibility. A comprehensive numerical model recently developed is used in this analysis in which all major physical processes taking place during plasma-material interactions are included. Models to account for material thermal evolution, plasma-vapor interaction physics, and models for hydrodynamic radiation transport in the developed vapor cloud are implemented in a self-consistent manner to realistically assess the disruption damage. The extent of the self-protection from the developed vapor cloud in front of the incoming plasma particles is critically important in determining the overall disruption lifetime. The aim of this study is to estimate the divertor lifetime for a range of reactor conditions. Candidate materials such as beryllium and graphite are both considered in this analysis. The dependence of the divertor disruption lifetime on the characteristics of plasma-vapor interaction zone for incident plasma ions and electrons is analyzed and discussed. The effect of uncertainties in reactor disruption conditions on the overall divertor erosion lifetime is also analyzed

  13. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  14. A Short-term In vivo Screen using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation.

    Science.gov (United States)

    This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be ...

  15. Disruption modeling in support of ITER

    International Nuclear Information System (INIS)

    Bandyopadhyay, I.

    2015-01-01

    Plasma current disruptions and Vertical Displacement Events (VDEs) are one of the major concerns in any tokamak as they lead to large electromagnetic forces to tokamak first wall components and vacuum vessel. Their occurrence also means disruption to steady state operations of tokamaks. Thus future fusion reactors like ITER must ensure that disruptions and VDEs are minimized. However, since there is still finite probability of their occurrence, one must be able to characterize disruptions and VDEs and able to predict, for example, the plasma current quench time and halo current amplitude, which mainly determine the magnitude of the electromagnetic forces. There is a concerted effort globally to understand and predict plasma and halo current evolution during disruption in tokamaks through MHD simulations. Even though Disruption and VDEs are often 3D MHD perturbations in nature, presently they are mostly simulated using 2D axisymmetric MHD codes like the Tokamak Simulation Code (TSC) and DINA. These codes are also extensively benchmarked against experimental data in present day tokamaks to improve these models and their ability to predict these events in ITER. More detailed 3D models like M3D are only recently being developed, but they are yet to be benchmarked against experiments, as also they are massively computationally exhaustive

  16. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  17. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes

    International Nuclear Information System (INIS)

    Han, Longzhe; Itoh, Kyoko; Yaoi, Takeshi; Moriwaki, Sanzo; Kato, Shingo; Nakamura, Keiko; Fushiki, Shinji

    2011-01-01

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection

  18. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  19. Fiscal 2000 research and development of technologies for intelligent infrastructure creation and utilization. Development of high-precision screening assay system for endocrine disrupting chemicals and construction of database; 2000 nendo chiteki kiban sose riyo gijutsu kenkyu kaihatsu. Naibunpi kakuran busshitsu no koseido screening shiken hoho no kaihatsu oyobi data kiban seibi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is carried out for the establishment of a system for assaying endocrine disruption now presenting itself as a hazard and for the application of the assay system to important chemicals and chemicals under development for the detection of presence of endocrine disrupting action in them. In this fiscal year, for the establishment of a reporter-gene assay system, cell characteristics were clarified through the determination of the expression sequence of the produced cell, the determination of the stable conservation period of the cell, and the study of the sustenance of activity. Studies were conducted, targeted at the stable supply of cells usable for high-throughput screening. Basic data were collected for the Hershberger assay being developed by OECD (Organization for Economic Cooperation and Development) and for the repeated administration test method for assaying thyroid hormone action by use of pubertal rats. For the assay of impact on environmental organisms, moreover, basic data were collected for the establishment of testing methods using fishes and amphibians. (NEDO)

  20. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies

    DEFF Research Database (Denmark)

    Kim, Hyung-Goo; Kim, Hyun-Taek; Leach, Natalia T

    2012-01-01

    development, and suppression of the latter led to both craniofacial abnormalities and neuronal apoptosis. Along with lysine-specific demethylase 1 (LSD1), PHF21A, also known as BHC80, is a component of the BRAF-histone deacetylase complex that represses target-gene transcription. In lymphoblastoid cell lines...... from two translocation subjects in whom PHF21A was directly disrupted by the respective breakpoints, we observed derepression of the neuronal gene SCN3A and reduced LSD1 occupancy at the SCN3A promoter, supporting a direct functional consequence of PHF21A haploinsufficiency on transcriptional...

  1. Disruption of Zebrafish Follicle-Stimulating Hormone Receptor (fshr) But Not Luteinizing Hormone Receptor (lhcgr) Gene by TALEN Leads to Failed Follicle Activation in Females Followed by Sexual Reversal to Males.

    Science.gov (United States)

    Zhang, Zhiwei; Lau, Shuk-Wa; Zhang, Lingling; Ge, Wei

    2015-10-01

    Gonadotropins are primary hormones that control vertebrate reproduction. In a recent study, we analyzed the impacts of FSH and LH on zebrafish reproduction by disrupting FSH and LH-β genes (fshb and lhb) using transcription activator-like effector nuclease (TALEN) technology. Using the same approach, we successfully deleted FSH and LH receptor genes (fshr and lhcgr) in the present study. In contrast to the deficiency of its cognate ligand FSH, the fshr-deficient females showed a complete failure of follicle activation with all ovarian follicles arrested at the primary growth-previtellogenic transition, which is the marker for puberty onset in females. Interestingly, after blockade at the primary growth stage for varying times, all females reversed to males, and all these males were fertile. In fshr-deficient males, spermatogenesis was normal in adults, but the initiation of spermatogenesis in juveniles was retarded. In contrast to fshr, the deletion of the lhcgr gene alone caused no obvious phenotypes in both males and females; however, double mutation of fshr and lhcgr resulted in infertile males. In summary, our results in the present study showed that Fshr was indispensable to folliculogenesis and the disruption of the fshr gene resulted in a complete failure of follicle activation followed by masculinization into males. In contrast, lhcgr does not seem to be essential to zebrafish reproduction in both males and females. Neither Fshr nor Lhcgr deficiency could phenocopy the deficiency of their cognate ligands FSH and LH, which is likely due to the fact that Fshr can be activated by both FSH and LH in the zebrafish.

  2. Disruption of the novel gene fad104 causes rapid postnatal death and attenuation of cell proliferation, adhesion, spreading and migration

    International Nuclear Information System (INIS)

    Nishizuka, Makoto; Kishimoto, Keishi; Kato, Ayumi; Ikawa, Masahito; Okabe, Masaru; Sato, Ryuichiro; Niida, Hiroyuki; Nakanishi, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration

  3. Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila

    Directory of Open Access Journals (Sweden)

    Yeh Hsiao-Fong

    2011-06-01

    Full Text Available Abstract Background The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs during external sensory (ES organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. Results From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs. In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(splmβ are target genes of the Notch pathway in DV boundary formation and

  4. Disruption studies on ASDEX upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Egorov, S.; Finken, K.H.

    2003-01-01

    Disruptions generate large thermal and mechanical stresses on the tokamak components and are occasionally responsible for damages to the machine. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/predictive methods must be developed further. Disruption studies on ASDEX Upgrade are focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon in order to learn to avoid it or to predict its occurrence and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows, firstly, to dimension or reinforce the machine components to withstand these loads and, secondly, to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions, i.e. thermal loads, mechanical forces and runaways with injection of impurity pellets or gas. This paper is focused on most recent results concerning points, i.e. on the analysis of the degree of asymmetry of the forces and on the use of impurity puff for mitigation

  5. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    Science.gov (United States)

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  6. BUSINESS MODEL PATTERNS FOR DISRUPTIVE TECHNOLOGIES

    OpenAIRE

    BENJAMIN AMSHOFF; CHRISTIAN DÜLME; JULIAN ECHTERFELD; JÜRGEN GAUSEMEIER

    2015-01-01

    Companies nowadays face a myriad of business opportunities as a direct consequence of manifold disruptive technology developments. As a basic characteristic, disruptive technologies lead to a severe shift in value-creation networks giving rise to new market segments. One of the key challenges is to anticipate the business logics within these nascent and formerly unknown markets. Business model patterns promise to tackle this challenge. They can be interpreted as proven business model elements...

  7. SDS, a structural disruption score for assessment of missense variant deleteriousness

    Directory of Open Access Journals (Sweden)

    Thanawadee ePreeprem

    2014-04-01

    Full Text Available We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites.The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation.

  8. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    Science.gov (United States)

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  9. Disruptive Innovation in Chinese and Indian Businesses

    DEFF Research Database (Denmark)

    markets, has made these emerging economies fertile ground for developing and applying disruptive innovations. A novel mix of key attributes distinctive from those of established technologies or business models, disruptive innovations are typically inferior, yet affordable and "good-enough" products...... or services, which originate in lower-end market segments, but later move up to compete with those provided by incumbent firms. This book sheds new light on disruptive innovations both from and for the bottom of the pyramid in China and India, from the point of view of local entrepreneurs and international...... firms seeking to operate their businesses there. It covers both the theoretical and practical implications of disruptive innovation using conceptual frameworks alongside detailed case studies, whilst also providing a comparison of conditions and strategic options in India and China. Further, unlike...

  10. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  11. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    Directory of Open Access Journals (Sweden)

    Keith S. K. Fong

    2016-05-01

    Full Text Available Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1, co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.

  12. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    In Sun Hwang

    2016-06-01

    Full Text Available Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 , which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

  13. Identification of GLI Mutations in Patients With Hirschsprung Disease That Disrupt Enteric Nervous System Development in Mice.

    Science.gov (United States)

    Liu, Jessica Ai-Jia; Lai, Frank Pui-Ling; Gui, Hong-Sheng; Sham, Mai-Har; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Hui, Chi-Chung; Ngan, Elly Sau-Wai

    2015-12-01

    Hirschsprung disease is characterized by a deficit in enteric neurons, which are derived from neural crest cells (NCCs). Aberrant hedgehog signaling disrupts NCC differentiation and might cause Hirschsprung disease. We performed genetic analyses to determine whether hedgehog signaling is involved in pathogenesis. We performed deep-target sequencing of DNA from 20 patients with Hirschsprung disease (16 men, 4 women), and 20 individuals without (controls), and searched for mutation(s) in GLI1, GLI2, GLI3, SUFU, and SOX10. Biological effects of GLI mutations were tested in luciferase reporter assays using HeLa or neuroblastoma cell lines. Development of the enteric nervous system was studied in Sufu(f/f), Gli3(Δ699), Wnt1-Cre, and Sox10(NGFP) mice using immunohistochemical and whole-mount staining procedures to quantify enteric neurons and glia and analyze axon fasciculation, respectively. NCC migration was studied using time-lapse imaging. We identified 3 mutations in GLI in 5 patients with Hirschsprung disease but no controls; all lead to increased transcription of SOX10 in cell lines. SUFU, GLI, and SOX10 form a regulatory loop that controls the neuronal vs glial lineages and migration of NCCs. Sufu mutants mice had high Gli activity, due to loss of Sufu, disrupting the regulatory loop and migration of enteric NCCs, leading to defective axonal fasciculation, delayed gut colonization, or intestinal hypoganglionosis. The ratio of enteric neurons to glia correlated inversely with Gli activity. We identified mutations that increase GLI activity in patients with Hirschsprung disease. Disruption of the SUFU-GLI-SOX10 regulatory loop disrupts migration of NCCs and development of the enteric nervous system in mice. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    OpenAIRE

    Albers, Sonja-Verena; Driessen, Arnold J. M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. ac...

  15. A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants.

    Science.gov (United States)

    Viljoen, Albertus; Gutiérrez, Ana Victoria; Dupont, Christian; Ghigo, Eric; Kremer, Laurent

    2018-01-01

    Little is known about the disease-causing genetic determinants that are used by Mycobacterium abscessus , increasingly acknowledged as an important emerging pathogen, notably in cystic fibrosis. The presence or absence of surface exposed glycopeptidolipids (GPL) conditions the smooth (S) or rough (R) M. abscessus subsp. abscessus ( M. abscessus ) variants, respectively, which are characterized by distinct infective programs. However, only a handful of successful gene knock-out and conditional mutants have been reported in M. abscessus , testifying that genetic manipulation of this mycobacterium is difficult. To facilitate gene disruption and generation of conditional mutants in M. abscessus , we have designed a one-step single cross-over system that allows the rapid and simple generation of such mutants. Cloning of as small as 300 bp of the target gene allows for efficient homologous recombination to occur without additional exogenous recombination-promoting factors. The presence of tdTomato on the plasmids allows easily sifting out the large background of mutants spontaneously resistant to antibiotics. Using this strategy in the S genetic background and the target gene mmpL4a , necessary for GPL synthesis and transport, nearly 100% of red fluorescent clones exhibited a rough morphotype and lost GPL on the surface, suggesting that most red fluorescent colonies obtained after transformation incorporated the plasmid through homologous recombination into the chromosome. This system was further exploited to generate another strain with reduced GPL levels to explore how the presence of these cell wall-associated glycolipids influences M. abscessus hydrophobicity as well as virulence in the zebrafish model of infection. This mutant exhibited a more pronounced killing phenotype in zebrafish embryos compared to its S progenitor and this effect correlated with the production of abscesses in the central nervous system. Overall, these results suggest that the near

  16. Energetics of LMFBR core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1979-01-01

    In general, in the design of fast reactor systems, containment design margins are specified by investigating the response of the containment to core disruptive accidents. The results of these analyses are then translated into criteria which the designers must meet. Currently, uniform and agreed upon criteria are lacking, and in this time while they are being developed, the designer should be aware of the considerations which go into the particular criteria he must work with, and participate in their development. This paper gives an overview of the current state of the art in assessing core disruptive accidents and the design implications of this process. (orig.)

  17. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    Science.gov (United States)

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. FOXN1: a master regulator gene of thymic epithelial development programme

    Directory of Open Access Journals (Sweden)

    Rosa eRomano

    2013-07-01

    Full Text Available T cell ontogeny is a sophisticated process, which takes place within the thymus through a series of well-defined discrete stages. The process requires a proper lympho-stromal interaction. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs drive T cell differentiation, education and selection processes, while the thymocyte-dependent signals allow TECs to maturate and provide an appropriate thymic microenvironment. Alterations in genes implicated in thymus organogenesis, including Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1 and Six1, affect this well-orchestrated process, leading to disruption of thymic architecture. Of note, in both human and mice, the primordial TECs are yet unable to fully support T cell development and only after the transcriptional activation of the Forkhead-box n1 (FOXN1 gene in the thymic epithelium this essential function is acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis in the postnatal thymus. An inborn null mutation in FOXN1 leads to Nude/SCID phenotype in mouse, rat and humans. In Foxn1-/- nude animals, initial formation of the primordial organ is arrested and the primordium is not colonized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp, eyebrows, and eyelashes, nail dystrophy and a severe T cell immunodeficiency, inherited as an autosomal recessive disorder. Aim of this review is to summarize all the scientific information so far available to better characterize the pivotal role of the master regulator FOXN1 transcription factor in the TEC lineage specifications and functionality.

  19. CUMULATIVE DEVELOPMENTAL EFFECTS OF ENDOCRINE DISRUPTERS: SYNERGY OR ADDITIVITY?

    Science.gov (United States)

    Exposure to chemicals with hormonal activity during critical developmental periods can disrupt reproductive function and development. Within the last decade, several classes of pesticides and toxic substances have been shown to disrupt differentiation of the male rat reproductive...

  20. HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development

    Directory of Open Access Journals (Sweden)

    Yunsik Kang

    2017-06-01

    Full Text Available We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs. Administration of HDAC inhibitors (HDACi, like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells.

  1. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome.

    Science.gov (United States)

    Albers, Sonja-Verena; Driessen, Arnold J M

    2008-12-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  2. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption.

    Directory of Open Access Journals (Sweden)

    Michelle Lajko

    Full Text Available Bronchopulmonary dysplasia (BPD is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD. The retinal phenotype of this model, which we termed hyperoxia-induced proliferative retinopathy (HIPR, shows severe disruption of retinal vasculature and loss of vascular patterning, disorganized intra-retinal angiogenesis, inflammation and retinal detachment. Neonatal mice were subjected to 75% oxygen exposure from postnatal day (P0 to P14 to model BPD, then allowed to recover in room air for 1 (P15, 7 (P21, or 14 days (P28. We quantified retinal thickness, protein levels of HIF-1α, NOX2, and VEGF, and examined the cellular locations of these proteins by immunohistochemistry. We examined the retinal blood vessel integrity and inflammatory markers, including macrophages (F4/80 and lymphocytes (CD45R. Compared to controls, normal retinal vascular development was severely disrupted and replaced by a disorganized sheet of intra-retinal angiogenesis in the HIPR mice. At all time-points, HIPR showed persistent hyaloidal vasculature and a significantly thinner central retina compared to controls. HIF-1α protein levels were increased at P15, while VEGF levels continued to increase until P21. Intra-retinal fibrinogen was observed at P21 followed by sub-retinal deposition in at P28. Inflammatory lymphocytes and macrophages were observed at P21 and P28, respectively. This model presents a severe phenotype of disrupted retinal vascular development, intra-retinal angiogenesis inflammation and retinal detachment.

  3. Exposure of maternal mice to cis-bifenthrin enantioselectively disrupts the transcription of genes related to testosterone synthesis in male offspring.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Sun, Xueqing; Ye, Yang; Xu, Minjie; Wang, Jianai; Chen, Shaoping; Fu, Zhengwei

    2013-12-01

    The commercial bifenthrin (BF) contains two cis isomers. In the present study, a dose of 15mg/kg of 1R-cis-BF or 1S-cis-BF was orally administered for 3 weeks to female mice before or during pregnancy. Then, the expression of steroidogenesis related genes which were considered as effective biomarkers of endocrine disruption were analyzed in the male offspring. Maternal exposure to 1S-cis-BF during pregnancy significantly reduced the mRNA levels of peripheral benzodiazepine receptor (PBR) and steroidogenic acute regulatory protein (StAR) in the testes of 3- or 6-week old male offspring. In addition, a significant decrease of cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α) was also observed in the testes of 6-week old male offspring when dams were treated with 1S-cis-BF during pregnancy but not before pregnancy. Moreover, the scavenger receptor class B type 1 (SRB1) and cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) decreased significantly in the testes of 6-week old male offspring when dams were treated with 1S-cis-BF during and before pregnancy. Thus, oral administration of the maternal mice to cis-BF for 3 weeks, particularly during pregnancy, resulted in endocrine disruption in the male offspring, with the 1S-cis-BF causing more significant alterations than the 1R-cis-BF form. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.

    Science.gov (United States)

    Kawano, Yusuke; Ohtsu, Iwao; Takumi, Kazuhiro; Tamakoshi, Ai; Nonaka, Gen; Funahashi, Eri; Ihara, Masaki; Takagi, Hiroshi

    2015-02-01

    Using in silico analysis, the yciW gene of Escherichia coli was identified as a novel L-cysteine regulon that may be regulated by the transcriptional activator CysB for sulfur metabolic genes. We found that overexpression of yciW conferred tolerance to L-cysteine, but disruption of yciW increased L-cysteine production in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Interpreting Disruption Prediction Models to Improve Plasma Control

    Science.gov (United States)

    Parsons, Matthew

    2017-10-01

    In order for the tokamak to be a feasible design for a fusion reactor, it is necessary to minimize damage to the machine caused by plasma disruptions. Accurately predicting disruptions is a critical capability for triggering any mitigative actions, and a modest amount of attention has been given to efforts that employ machine learning techniques to make these predictions. By monitoring diagnostic signals during a discharge, such predictive models look for signs that the plasma is about to disrupt. Typically these predictive models are interpreted simply to give a `yes' or `no' response as to whether a disruption is approaching. However, it is possible to extract further information from these models to indicate which input signals are more strongly correlated with the plasma approaching a disruption. If highly accurate predictive models can be developed, this information could be used in plasma control schemes to make better decisions about disruption avoidance. This work was supported by a Grant from the 2016-2017 Fulbright U.S. Student Program, administered by the Franco-American Fulbright Commission in France.

  6. Cost Consequences of a Port-Related Supply Chain Disruption

    OpenAIRE

    Hui Shan LOH; Vinh Van THAI

    2015-01-01

    Port functionality is a significant and important aspect of cargo transportation. Previous studies have identified a list of port-related supply chain disruption threats and developed a management model that seeks to address these threats. This paper adds value to these related studies by comparing four consequences of an example of these threats: (1) avoidance of disruption, (2) mitigation of disruption, (3) deviation of transportation plan and (4) delays and deviation of transportation plan...

  7. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  8. Longitudinal association between marital disruption and child BMI and obesity.

    Science.gov (United States)

    Arkes, Jeremy

    2012-08-01

    This research examines whether family disruptions (i.e., divorces and separation) contribute to children's weight problems. The sample consists of 7,299 observations for 2,333 children, aged 5-14, over the 1986-2006 period, from a US representative sample from the Child and Young Adult Survey accompanying the National Longitudinal Survey of Youth (NLSY). The study uses individual-fixed-effects models in a longitudinal framework to compare children's BMI and weight problems before and after a disruption. Furthermore, besides doing a before-after comparison for children, the study also estimates the effects at various periods relative to the disruption in order to examine whether children are affected before the disruption and whether any effects change as time passes from the disruption, as some effects may be temporary or slow to develop. Despite having a larger sample than the previous studies, the results provide no evidence that, on average, children's BMI and BMI percentile scores (measured with continuous outcomes) are affected before the disruption, after the disruption, and as time passes from the disruption, relative to a baseline period a few years before the disruption. However, children experiencing a family disruption do have an increased risk of obesity (having a BMI percentile score of 95 or higher) in the two years leading up to the disruption as well as after the disruption, and as time passes from the disruption.

  9. Heterodyne ECE diagnostic in the mode detection and disruption avoidance at TEXTOR

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.; Finken, K.H.; Larue, H.; Udintsev, V.S.; TEXTOR - team

    2003-01-01

    Disruptions cause major concerns for the operation of tokamaks. During disruption large forces act on the tokamak vessel and its interior parts. The huge amount of plasma energy deposited on the first wall components within one millisecond causes serious damage. Therefore disruptions should be avoided. One way to avoid disruptions is the operation of a tokamak in a regime which is easy to handle from the control point of view. However, the operation in the advanced scenarios or improved confinement modes is very complicated and even small deviation in one of the control parameters can cause a disruption. In this cases a method should be available to detect the disruption in advance and mitigate or even better avoid the energy quench by appropriate means. At TEXTOR we developed a method to detect the disruption precursor. The module is integrated in the plasma control system. The detection method was tested at TEXTOR for (i) combination with tangential neutral beam injection to increase the toroidal rotation profile and to tear apart the m = 2 disruption precursor by a steep rotation gradient across the island (ii) gas puff experiments with He used to mitigate the disruption effects specially to suppress the generation of the runaway electrons. The paper demonstrates the possibility to detect disruptions precursors and to avoid disruptions using two ECE-channels out of the standard electron temperature diagnostic. The system demonstrated its reliability during the last month of TEXTOR operation. The injection of co- as well as counter neutral beam to avoid the disruption was successful tested and a detailed analysis of the mode development is presented. The measured rotation profiles show the development of a step in the toroidal velocity in the vicinity of the q = 2 surface which prevents the plasma from a disruption. Furthermore detailed analysis of the frequency development of the m = 2 mode could explain the observed sudden increase in the mode frequency

  10. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  11. Prediction of density limit disruptions on the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Wang, S Y; Chen, Z Y; Huang, D W; Tong, R H; Yan, W; Wei, Y N; Ma, T K; Zhang, M; Zhuang, G

    2016-01-01

    Disruption mitigation is essential for the next generation of tokamaks. The prediction of plasma disruption is the key to disruption mitigation. A neural network combining eight input signals has been developed to predict the density limit disruptions on the J-TEXT tokamak. An optimized training method has been proposed which has improved the prediction performance. The network obtained has been tested on 64 disruption shots and 205 non-disruption shots. A successful alarm rate of 82.8% with a false alarm rate of 12.3% can be achieved at 4.8 ms prior to the current spike of the disruption. It indicates that more physical parameters than the current physical scaling should be considered for predicting the density limit. It was also found that the critical density for disruption can be predicted several tens of milliseconds in advance in most cases. Furthermore, if the network is used for real-time density feedback control, more than 95% of the density limit disruptions can be avoided by setting a proper threshold. (paper)

  12. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    International Nuclear Information System (INIS)

    Tu, Wenqing; Xu, Chao; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-01-01

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T 4 ) and triiodothyronine (T 3 ) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid hormone

  13. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenqing [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Bin; Lin, Chunmian [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wu, Yongming [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Liu, Weiping [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-15

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid

  14. Disruption of CTCF at the miR-125b1 locus in gynecological cancers

    International Nuclear Information System (INIS)

    Soto-Reyes, Ernesto; Herrera, Luis A; González-Barrios, Rodrigo; Cisneros-Soberanis, Fernanda; Herrera-Goepfert, Roberto; Pérez, Víctor; Cantú, David; Prada, Diddier; Castro, Clementina; Recillas-Targa, Félix

    2012-01-01

    In cancer cells, transcriptional gene silencing has been associated with genetic and epigenetic defects. The disruption of DNA methylation patterns and covalent histone marks has been associated with cancer development. Until recently, microRNA (miRNA) gene silencing was not well understood. In particular, miR-125b1 has been suggested to be an miRNA with tumor suppressor activity, and it has been shown to be deregulated in various human cancers. In the present study, we evaluated the DNA methylation at the CpG island proximal to the transcription start site of miR-125b1 in cancer cell lines as well as in normal tissues and gynecological tumor samples. In addition, we analyzed the association of CTCF and covalent histone modifications at the miR-125b1 locus. To assess the DNA methylation status of the miR-125b1, genomic DNA was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. The miR-125b1 gene expression was analyzed by qRT-PCR using U6 as a control for constitutive gene expression. CTCF repressive histone marks abundance was evaluated by chromatin immunoprecipitation assays. The disruption of CTCF in breast cancer cells correlated with the incorporation of repressive histone marks such H3K9me3 and H3K27me3 as well as with aberrant DNA methylation patterns. To determine the effect of DNA methylation at the CpG island of miR-125b1 on the expression of this gene, we performed a qRT-PCR assay. We observed a significant reduction on the expression of miR-125b1 in cancer cells in comparison with controls, suggesting that DNA methylation at the CpG island might reduce miR-125b1 expression. These effects were observed in other gynecological cancers, including ovarian and cervical tumors. A reduction of miR-125b1 expression in cancers, correlated with methylation, repressive histone marks and loss of CTCF binding at the promoter region

  15. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    Directory of Open Access Journals (Sweden)

    Sonja-Verena Albers

    2008-01-01

    Full Text Available The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  16. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B.

    1996-01-01

    The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch...... cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid Delta mig1 strain exhibited an even more...... stringent glucose control of maltose metabolism than the corresponding wild-type strain, which could be explained by a more rigid catabolite inactivation of maltose permease, affecting the uptake of maltose. Growth on the glucose-sucrose mixture showed that the polyploid Delta mig1 strain was relieved...

  17. Study of runaway current generation following disruptions in KSTAR

    International Nuclear Information System (INIS)

    Chen, Z Y; Kim, W C; Yu, Y W; England, A C; Yoo, J W; Hahn, S H; Yoon, S W; Lee, K D; Oh, Y K; Kwak, J G; Kwon, M

    2013-01-01

    The high fraction of runaway current conversion following disruptions has an important effect on the first wall for next-generation tokamaks. Because of the potentially severe consequences of a large full current runaway beam on the first wall in an unmitigated disruption, runaway suppression is given a high priority. The behavior of runaway currents both in spontaneous disruptions and in D 2 massive gas injection (MGI) shutdown experiments is investigated in the KSTAR tokamak. The experiments in KSTAR show that the toroidal magnetic field threshold, B T >2 T, for runaway generation is not absolute. A high fraction of runaway current conversion following spontaneous disruptions is observed at a much lower toroidal magnetic field of B T = 1.3 T. A dedicated fast valve for high-pressure gas injection with 39.7 bar is developed for the study of disruptions. A study of runaway current parameters shows that the conversion efficiency of pre-disruptive plasma currents into runaway current can reach over 80% both in spontaneous disruptions and in D 2 MGI shutdown experiments in KSTAR. (paper)

  18. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  19. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development

    OpenAIRE

    Tian, X; Diaz, FJ

    2013-01-01

    Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3–5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 tr...

  20. Frequency-based time-series gene expression recomposition using PRIISM

    Directory of Open Access Journals (Sweden)

    Rosa Bruce A

    2012-06-01

    Full Text Available Abstract Background Circadian rhythm pathways influence the expression patterns of as much as 31% of the Arabidopsis genome through complicated interaction pathways, and have been found to be significantly disrupted by biotic and abiotic stress treatments, complicating treatment-response gene discovery methods due to clock pattern mismatches in the fold change-based statistics. The PRIISM (Pattern Recomposition for the Isolation of Independent Signals in Microarray data algorithm outlined in this paper is designed to separate pattern changes induced by different forces, including treatment-response pathways and circadian clock rhythm disruptions. Results Using the Fourier transform, high-resolution time-series microarray data is projected to the frequency domain. By identifying the clock frequency range from the core circadian clock genes, we separate the frequency spectrum to different sections containing treatment-frequency (representing up- or down-regulation by an adaptive treatment response, clock-frequency (representing the circadian clock-disruption response and noise-frequency components. Then, we project the components’ spectra back to the expression domain to reconstruct isolated, independent gene expression patterns representing the effects of the different influences. By applying PRIISM on a high-resolution time-series Arabidopsis microarray dataset under a cold treatment, we systematically evaluated our method using maximum fold change and principal component analyses. The results of this study showed that the ranked treatment-frequency fold change results produce fewer false positives than the original methodology, and the 26-hour timepoint in our dataset was the best statistic for distinguishing the most known cold-response genes. In addition, six novel cold-response genes were discovered. PRIISM also provides gene expression data which represents only circadian clock influences, and may be useful for circadian clock studies

  1. Disruption of the thyroid system by the thyroid-disrupting compound Aroclor 1254 in juvenile Japanese flounder (Paralichthys olivaceus.

    Directory of Open Access Journals (Sweden)

    Yifei Dong

    Full Text Available Polychlorinated biphenyls (PCBs are a group of persistent organochlorine compounds that have the potential to disrupt the homeostasis of thyroid hormones (THs in fish, particularly juveniles. In this study, thyroid histology, plasma TH levels, and iodothyronine deiodinase (IDs, including ID1, ID2, and ID3 gene expression patterns were examined in juvenile Japanese flounder (Paralichthys olivaceus following 25- and 50-day waterborne exposure to environmentally relevant concentrations of a commercial PCB mixture, Aroclor 1254 (10, 100, and 1000 ng/L with two-thirds of the test solutions renewed daily. The results showed that exposure to Aroclor 1254 for 50 d increased follicular cell height, colloid depletion, and hyperplasia. In particular, hypothyroidism, which was induced by the administration of 1000 ng/L Aroclor 1254, significantly decreased plasma TT4, TT3, and FT3 levels. Profiles of the changes in mRNA expression levels of IDs were observed in the liver and kidney after 25 and 50 d PCB exposure, which might be associated with a reduction in plasma THs levels. The expression level of ID2 mRNA in the liver exhibited a dose-dependent increase, indicating that this ID isotype might serve as sensitive and stable indicator for thyroid-disrupting chemical (TDC exposure. Overall, our study confirmed that environmentally relevant concentrations of Aroclor 1254 cause significant thyroid disruption, with juvenile Japanese flounder being suitable candidates for use in TDC studies.

  2. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  3. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    (vii) 'integrated' modelling of disruptions and fast shutdown and of the ensuing effects. In each instance, the presentation within a given topical area progresses from a summary of present experimental and theoretical understanding to how this understanding projects or extrapolates to an ITER class reactor regime tokamak. Examples of extrapolations to the specific ITER design concept developed during the course of the ITER EDA are given, and assessments of the degree of adequacy of present understanding are also provided. In areas where present understanding is identified to be less than fully adequate, areas in which continuing or new research is needed are identified. (author)

  4. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  5. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  6. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  7. Sleep Disruption at Home As an Independent Risk Factor for Postoperative Delirium.

    Science.gov (United States)

    Todd, Oliver M; Gelrich, Lisa; MacLullich, Alasdair M; Driessen, Martin; Thomas, Christine; Kreisel, Stefan H

    2017-05-01

    To determine whether sleep disruption at home or in hospital is an independent risk factor for postoperative delirium in older adults undergoing elective surgery. Prospective cohort study. German teaching hospital. Individuals aged 65 and older undergoing elective arthroplasty (N = 101). Preoperative questionnaires were used to assess sleep disruption at home (Pittsburgh Sleep Quality Index). Actigraphy was used to objectively measure sleep disruption in the hospital before and after surgery. Delirium was assessed daily after surgery using the Confusion Assessment Method and, if there was uncertainty, validated according to International Classification of Diseases, Tenth Revision (ICD-10), criteria. Twenty-seven participants developed postoperative delirium. Those with sleep disruption at home were 3.26 times as likely to develop postoperative delirium as those without (95% confidence interval (CI) = 1.34-7.92, P = .009). Participants with sleep disruption in hospital were 1.21 times as likely to develop postoperative delirium as those without (95% CI = 1.03-1.41, P = .02). When adjusting for other variables, risk remained significant for sleep disruption at home (risk ratio (RR) = 3.90, 95% CI = 2.14-7.11, P delirium than those without. Sleep disruption in the hospital may further heighten this risk. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  9. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans

    NARCIS (Netherlands)

    Kovacs, Akos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene

  10. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  11. A Production Model for Deteriorating Inventory Items with Production Disruptions

    OpenAIRE

    Yong He; Ju He

    2010-01-01

    Disruption management has recently become an active area of research. In this study, an extension is made to consider the fact that some products may deteriorate during storage. A production-inventory model for deteriorating items with production disruptions is developed. Then the optimal production and inventory plans are provided, so that the manufacturer can reduce the loss caused by disruptions. Finally, a numerical example is used to illustrate the model.

  12. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  13. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  14. Disruption of the neurexin 1 gene is associated with schizophrenia.

    NARCIS (Netherlands)

    Rujescu, D.; Ingason, A.; Cichon, S.; Pietilainen, O.P.H.; Barnes, M.R.; Toulopoulou, T.; Picchioni, M.; Vassos, E.; Ettinger, U.; Bramon, E.; Murray, R.; Ruggeri, M.; Tosato, S.; Bonetto, C.; Steinberg, S.; Sigurdsson, E.; Sigmundsson, T.; Petursson, H.; Gylfason, A; Olason, P.; Hardarsson, G.; Jonsdottir, G.A.; Gustafsson, O.; Fossdal, R.; Giegling, I.; Moller, H.J.; Hartmann, A.M.; Hoffmann, P.; Crombie, C.; Fraser, G.; Walker, N.; Lonnqvist, J.; Suvisaari, J.; Tuulio-Henriksson, A.; Djurovic, S.; Melle, I.; Andreassen, O.A.; Hansen, T.; Werge, T.; Kiemeney, L.A.L.M.; Franke, B.; Veltman, J.A.; Buizer-Voskamp, J.E.; Sabatti, C.; Ophoff, R.A.; Rietschel, M.; Nothen, Markus; Stefansson, K.; Peltonen, L.; St Clair, D.; Stefansson, H.; Collier, D.A.

    2009-01-01

    Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from

  15. Disruption of the neurexin 1 gene is associated with schizophrenia

    NARCIS (Netherlands)

    Rujescu, Dan; Ingason, Andres; Cichon, Sven; Pietilainen, Olli P. H.; Barnes, Michael R.; Toulopoulou, Timothea; Picchioni, Marco; Vassos, Evangelos; Ettinger, Ulrich; Bramon, Elvira; Murray, Robin; Ruggeri, Mirella; Tosato, Sarah; Bonetto, Chiara; Steinberg, Stacy; Sigurdsson, Engilbert; Sigmundsson, Thordur; Petursson, Hannes; Gylfason, Arnaldur; Olason, Pall I.; Hardarsson, Gudmundur; Jonsdottir, Gudrun A.; Gustafsson, Omar; Fossdal, Ragnheidur; Giegling, Ina; Moeller, Hans-Jurgen; Hartmann, Annette M.; Hoffmann, Per; Crombie, Caroline; Fraser, Gillian; Walker, Nicholas; Lonnqvist, Jouko; Suvisaari, Jaana; Tuulio-Henriksson, Annamari; Djurovic, Srdjan; Melle, Ingrid; Andreassen, Ole A.; Hansen, Thomas; Werge, Thomas; Kiemeney, Lambertus A.; Franke, Barbara; Veltman, Joris; Buizer-Voskamp, Jacobine E.; Sabatti, Chiara; Ophoff, Roel A.; Rietschel, Marcella; Noehen, Markus M.; Stefansson, Kari; Peltonen, Leena; St Clair, David

    2009-01-01

    Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from

  16. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis.

    Science.gov (United States)

    Soler, Cédric; Taylor, Michael V

    2009-07-01

    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  17. Effects of alachlor on the early development and induction of estrogen-responsive genes in Medaka, Oryzias latipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Ryu, J.; Park, S.Y.; Choi, K.; Jeon, S.H.; Na, J.G.; Rhee, D.G. [National Inst. of Environmental Research, Incheon (Korea)

    2004-09-15

    Alachlor is an acetanilide herbicide used to control annual grasses and weeds in field corn, soybeans, and peanuts. It is a selective systemic herbicide, absorbed by germinating shoots and by roots. Although the specific pathways are not exactly understood, the acetanilide herbicides apparently interfere with several physiological processes including biosynthesis of lipids, proteins and flavonoids. These herbicides are widely used in agriculture and are commonly detected in surface water and groundwater. Alachlor has a relatively low acute toxicity, however, repeated exposure has been reported to cause hepatotoxicity, irreversible uveal degeneration and tumour formation in some animals. Besides alachlor is one of the herbicides reported to have endocrine disrupting effects. 2,4-D, 2,4,5-T, amitrole and atrazine also belong to these types of herbicides. Alachlor is a strongly suspected endocrine disruptor in that it is listed by EPA and the World Wildlife Fund [WWF] as a potential endocrine disrupting chemical. Many mammalian and aquatic toxicological studies with alachlor were performed under the conditions of acute, subacute and chronic experiment. However, not many studies using fish have been carried out with the purpose of screening and testing of endocrine disrupting effects of alachlor. The purpose of this study was to determine the effects of alachlor on the early morphological development of medaka (Oryzias latipes). Embryonic growth, deformation and hatching success were determined to see the effects of this chemical. Also, we tried to measure the estrogenic activity of alachlor using the ELISA and RT-PCR methods. By using these techniques, we evaluated the induction of the estrogen-responsive genes, vitellogenin (precursor of yolk protein) and choriogenin (precursor of egg envelope protein) in male medaka exposed to alachlor.

  18. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  19. Nance-Horan syndrome in females due to a balanced X;1 translocation that disrupts the NHS gene: Familial case report and review of the literature.

    Science.gov (United States)

    Gómez-Laguna, Laura; Martínez-Herrera, Alejandro; Reyes-de la Rosa, Alejandra Del Pilar; García-Delgado, Constanza; Nieto-Martínez, Karem; Fernández-Ramírez, Fernando; Valderrama-Atayupanqui, Tania Yanet; Morales-Jiménez, Ariadna Berenice; Villa-Morales, Judith; Kofman, Susana; Cervantes, Alicia; Morán-Barroso, Verónica Fabiola

    2018-01-01

    The Nance-Horan syndrome is an X-linked disorder characterized by congenital cataract, facial features, microcornea, microphthalmia, and dental anomalies; most of the cases are due to NHS gene mutations on Xp22.13. Heterozygous carrier females generally present less severe features, and up to 30% of the affected males have intellectual disability. We describe two patients, mother and daughter, manifesting Nance-Horan syndrome. The cytogenetic and molecular analyses demonstrated a 46,X,t(X;1)(p22.13;q22) karyotype in each of them. No copy-number genomic imbalances were detected by high-density microarray analysis. The mother had a preferential inactivation of the normal X chromosome; expression analysis did not detect any mRNA isoform of NHS. This is the first report of Nance-Horan syndrome due to a skewed X chromosome inactivation resulting from a balanced translocation t(X;1) that disrupts the NHS gene expression, with important implications for clinical presentation and genetic counseling.

  20. Schizophrenia, vitamin D, and brain development.

    Science.gov (United States)

    Mackay-Sim, Alan; Féron, François; Eyles, Darryl; Burne, Thomas; McGrath, John

    2004-01-01

    Schizophrenia research is invigorated at present by the recent discovery of several plausible candidate susceptibility genes identified from genetic linkage and gene expression studies of brains from persons with schizophrenia. It is a current challenge to reconcile this gathering evidence for specific candidate susceptibility genes with the "neurodevelopmental hypothesis," which posits that schizophrenia arises from gene-environment interactions that disrupt brain development. We make the case here that schizophrenia may result not from numerous genes of small effect, but a few genes of transcriptional regulation acting during brain development. In particular we propose that low vitamin D during brain development interacts with susceptibility genes to alter the trajectory of brain development, probably by epigenetic regulation that alters gene expression throughout adult life. Vitamin D is an attractive "environmental" candidate because it appears to explain several key epidemiological features of schizophrenia. Vitamin D is an attractive "genetic" candidate because its nuclear hormone receptor regulates gene expression and nervous system development. The polygenic quality of schizophrenia, with linkage to many genes of small effect, maybe brought together via this "vitamin D hypothesis." We also discuss the possibility of a broader set of environmental and genetic factors interacting via the nuclear hormone receptors to affect the development of the brain leading to schizophrenia.

  1. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    Science.gov (United States)

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Comprehensive model for disruption erosion in a reactor environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1995-01-01

    A comprehensive disruption erosion model which takes into account the interplay of major physical processes during plasma-material interaction has been developed. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed. ((orig.))

  4. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF

    Directory of Open Access Journals (Sweden)

    Tianle Tang

    2015-10-01

    Full Text Available Bisphenol AF (BPAF is extensively used as a raw material in industry, resulting in its widespread distribution in the aqueous environment. However, the effect of BPAF on the hypothalamic-pituitary-thyroidal (HPT axis remains unknown. For elucidating the disruptive effects of BPAF on thyroid function and expression of the representative genes along the HPT axis in zebrafish (Danio rerio embryos, whole-body total 3,3′,5-triiodothyronine (TT3, total 3,5,3′,5′-tetraiodothyronine (TT4, free 3,3′,5-triiodothyronine (FT3 and free 3,5,3′,5′-tetraiodothyronine (FT4 levels were examined following 168 h post-fertilization exposure to different BPAF concentrations (0, 5, 50 and 500 μg/L. The results showed that whole-body TT3, TT4, FT3 and FT4 contents decreased significantly with the BPAF treatment, indicating an endocrine disruption of thyroid. The expression of thyroid-stimulating hormone-β and thyroglobulin genes increased after exposing to 50 μg/L BPAF in seven-day-old larvae. The expressions of thyronine deiodinases type 1, type 2 and transthyretin mRNAs were also significantly up-regulated, which were possibly associated with a deterioration of thyroid function. However, slc5a5 gene transcription was significantly down-regulated at 50 μg/L and 500 μg/L BPAF exposure. Furthermore, trα and trβ genes were down-regulated transcriptionally after BPAF exposure. It demonstrates that BPAF exposure triggered thyroid endocrine toxicity by altering the whole-body contents of thyroid hormones and changing the transcription of the genes involved in the HPT axis in zebrafish larvae.

  6. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  7. A model for obesity and gigantism due to disruption of the Ankrd26 gene.

    Science.gov (United States)

    Bera, Tapan K; Liu, Xiu-Fen; Yamada, Masanori; Gavrilova, Oksana; Mezey, Eva; Tessarollo, Lino; Anver, Miriam; Hahn, Yoonsoo; Lee, Byungkook; Pastan, Ira

    2008-01-08

    Obesity is a major health hazard that is caused by a combination of genetic and behavioral factors. Several models of obesity have been described in mice that have defects in the production of peptide hormones, in the function of cell membrane receptors, or in a transcription factor required for neuronal cell development. We have been investigating the function of a family of genes (POTE and ANKRD26) that encode proteins that are associated with the inner aspect of the cell membrane and that contain both ankyrin repeats and spectrin helices, motifs known to interact with signaling proteins in the cell. To assess the function of ANKRD26, we prepared a mutant mouse with partial inactivation of the Ankrd26 gene. We find that the homozygous mutant mice develop extreme obesity, insulin resistance, and an increase in body size. The obesity is associated with hyperphagia with no reduction in energy expenditure and activity. The Ankrd26 protein is expressed in the arcuate and ventromedial nuclei within the hypothalamus and in the ependyma and the circumventricular organs that act as an interface between the peripheral circulation and the brain. In the enlarged hearts of the mutant mice, the levels of both phospho-Akt and mTOR were elevated. These results show that alterations in an unidentified gene can lead to obesity and identify a molecular target for the treatment of obesity.

  8. Symposium on disruptive instabilities at Garching

    International Nuclear Information System (INIS)

    Lackner, K.

    1979-01-01

    The phenomenon of disruptive instabilities was investigated with a special care at the IPP at Garching. After lectures and panel sessions it appears suitable, to subdivide the disruptive phenomena into four classes: 1. The internal disruption (the socalled saw-tooth oscillators). 2. the socalled reconnection disruptions. 3. The large disruptions. 4. The small disruptions. The four appearance forms of the phenomena are briefly explained. (GG) [de

  9. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  10. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    Science.gov (United States)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  11. Cost Consequences of a Port-Related Supply Chain Disruption

    Directory of Open Access Journals (Sweden)

    Hui Shan LOH

    2015-09-01

    Full Text Available Port functionality is a significant and important aspect of cargo transportation. Previous studies have identified a list of port-related supply chain disruption threats and developed a management model that seeks to address these threats. This paper adds value to these related studies by comparing four consequences of an example of these threats: (1 avoidance of disruption, (2 mitigation of disruption, (3 deviation of transportation plan and (4 delays and deviation of transportation plan. The impact of these consequences is simulated in a case study using data from a chemical manufacturer based in Singapore. This paper quantitatively measures the impact of a port-related threat on supply chains and thus highlights the importance of port-related supply chain disruption management.

  12. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    David Israeli, David Tanne, Dianne Daniels, David Last, Ran Shneor, David Guez, Efrat Landau, Yiftach Roth, Aharon Ocherashvilli, Mati Bakon, Chen Hoffman, Amit Weinberg, Talila Volk, Yael Mardor

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  13. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  14. Tumor RNA disruption predicts survival benefit from breast cancer chemotherapy.

    Science.gov (United States)

    Parissenti, Amadeo M; Guo, Baoqing; Pritzker, Laura B; Pritzker, Kenneth P H; Wang, Xiaohui; Zhu, Mu; Shepherd, Lois E; Trudeau, Maureen E

    2015-08-01

    In a prior substudy of the CAN-NCIC-MA.22 clinical trial (ClinicalTrials.gov identifier NCT00066443), we observed that neoadjuvant chemotherapy reduced tumor RNA integrity in breast cancer patients, a phenomenon we term "RNA disruption." The purpose of the current study was to assess in the full patient cohort the relationship between mid-treatment tumor RNA disruption and both pCR post-treatment and, subsequently, disease-free survival (DFS) up to 108 months post-treatment. To meet these objectives, we developed the RNA disruption assay (RDA) to quantify RNA disruption and stratify it into 3 response zones of clinical importance. Zone 1 is a level of RNA disruption inadequate for pathologic complete response (pCR); Zone 2 is an intermediate level, while Zone 3 has high RNA disruption. The same RNA disruption cut points developed for pCR response were then utilized for DFS. Tumor RDA identified >fourfold more chemotherapy non-responders than did clinical response by calipers. pCR responders were clustered in RDA Zone 3, irrespective of tumor subtype. DFS was about 2-fold greater for patients with tumors in Zone 3 compared to Zone 1 patients. Kaplan-Meier survival curves corroborated these findings that high tumor RNA disruption was associated with increased DFS. DFS values for patients in zone 3 that did not achieve a pCR were similar to that of pCR recipients across tumor subtypes, including patients with hormone receptor positive tumors that seldom achieve a pCR. RDA appears superior to pCR as a chemotherapy response biomarker, supporting the prospect of its use in response-guided chemotherapy.

  15. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  16. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  17. Technology-enhanced program for child disruptive behavior disorders: development and pilot randomized control trial.

    Science.gov (United States)

    Jones, Deborah J; Forehand, Rex; Cuellar, Jessica; Parent, Justin; Honeycutt, Amanda; Khavjou, Olga; Gonzalez, Michelle; Anton, Margaret; Newey, Greg A

    2014-01-01

    Early onset disruptive behavior disorders are overrepresented in low-income families; yet these families are less likely to engage in behavioral parent training (BPT) than other groups. This project aimed to develop and pilot test a technology-enhanced version of one evidence-based BPT program, Helping the Noncompliant Child (HNC). The aim was to increase engagement of low-income families and, in turn, child behavior outcomes, with potential cost-savings associated with greater treatment efficiency. Low-income families of 3- to 8-year-old children with clinically significant disruptive behaviors were randomized to and completed standard HNC (n = 8) or Technology-Enhanced HNC (TE-HNC; n = 7). On average, caregivers were 37 years old; 87% were female, and 80% worked at least part-time. More than half (53%) of the youth were boys; the average age of the sample was 5.67 years. All families received the standard HNC program; however, TE-HNC also included the following smartphone enhancements: (a) skills video series, (b) brief daily surveys, (c) text message reminders, (d) video recording home practice, and (e) midweek video calls. TE-HNC yielded larger effect sizes than HNC for all engagement outcomes. Both groups yielded clinically significant improvements in disruptive behavior; however, findings suggest that the greater program engagement associated with TE-HNC boosted child treatment outcome. Further evidence for the boost afforded by the technology is revealed in family responses to postassessment interviews. Finally, cost analysis suggests that TE-HNC families also required fewer sessions than HNC families to complete the program, an efficiency that did not compromise family satisfaction. TE-HNC shows promise as an innovative approach to engaging low-income families in BPT with potential cost-savings and, therefore, merits further investigation on a larger scale.

  18. Monocrotophos, an organophosphorus insecticide, disrupts the expression of HpNetrin and its receptor neogenin during early development in the sea urchin (Hemicentrotus pulcherrimus).

    Science.gov (United States)

    Zhang, Xiaona; Xu, Lei; Tian, Hua; Wang, Cuicui; Wang, Wei; Ru, Shaoguo

    2017-09-01

    Netrins, chemotropic guidance cues, can guide the extension of serotonergic axons by binding to netrin receptors during neural development. However, little is known about whether disruption of netrin signaling is involved in the mechanisms by which organophosphorus pesticides affect serotonergic nervous system (SNS) development. In this study, we evaluated the effects of the pesticide monocrotophos (MCP) on the expression patterns of HpNetrin and its receptor neogenin as well as on the intracellular calcium ion (Ca 2+ ) levels in Hemicentrotus pulcherrimus (sea urchin) by exposing fertilized embryos to 0, 0.01, 0.10, and 1.00mg/L MCP. The results showed that MCP disrupted HpNetrin and neogenin expression at different developmental stages in H. pulcherrimus and that Ca 2+ appeared to be involved in the MCP-induced developmental neurotoxicity. Specifically, the lower concentrations of MCP elevated HpNetrin and neogenin transcription, resulting in higher intracellular Ca 2+ levels during the early developmental stages in the sea urchin; this may affect netrin-directed cell migration/axon extension and subsequently disrupt serotonergic axon branching and synapse formation. In contrast, 1.00mg/L MCP exhibited an inhibitory effect on HpNetrin and neogenin transcription. This finding implies that the regulatory roles of these factors may be diminished during early development, thereby causing developmental defects in the sea urchin. Collectively, our results provide a basis for exploring the involvement of netrin and neogenin in the organophosphate-induced disruption of the SNS during development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Linear MHD stability analysis of post-disruption plasmas in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany); Huijsmans, G. T. A. [ITER Organization (France); Aleynikov, P. [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  20. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  1. Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis).

    Science.gov (United States)

    Ortega, Encarnación; Martínez-García, Pedro J; Dicenta, Federico; Egea, José

    2010-06-01

    A homozygous self-compatible almond, originated from self-fertilization of a self-compatible genotype and producing a reasonable yield following open pollination, exhibited a very high fruit drop rate when self-pollinated. To investigate whether fruit dropping in this individual is related to an abnormal development of the embryo sac following self-fertilization, histological sections of ovaries from self and cross-pollinated flowers were observed by light microscopy. Additionally, the presence of pollen tubes in the ovary and fruit set were determined for both types of pollination. Despite pollen tubes reached the ovary after both pollinations, differences in embryo sac and endosperm development after fertilization were found. Thus, while for cross-fertilized ovules a pro-embryo and an endosperm with abundant nuclei were generally observed, most self-fertilized ovules remained in a previous developmental stage in which the embryo sac was not elongated and endosperm nuclei were absent. Although 30 days after pollination fruit set was similar for both pollination types, at 60 days it was significantly reduced for self-pollination. These results provide evidence that the high fruit drop in this genotype is the consequence of a disrupted development of the endosperm, what could be an expression of its high level of inbreeding.

  2. Improvements in disruption prediction at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aledda, R., E-mail: raffaele.aledda@diee.unica.it; Cannas, B., E-mail: cannas@diee.unica.it; Fanni, A., E-mail: fanni@diee.unica.it; Pau, A., E-mail: alessandro.pau@diee.unica.it; Sias, G., E-mail: giuliana.sias@diee.unica.it

    2015-10-15

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  3. Improvements in disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Pau, A.; Sias, G.

    2015-01-01

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  4. Maternal Characteristics Predicting Young Girls’ Disruptive Behavior

    Science.gov (United States)

    van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf

    2011-01-01

    Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls’ disruptive behavior. The current study used five waves of parent and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate Generalized Estimating Equation (GEE) analyses indicated that European American race, mother’s prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls’ disruptive behavior, providing support for the timing and focus of the prevention of girls’ disruptive behavior. PMID:21391016

  5. Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Vidhi Gaur

    2016-09-01

    Full Text Available Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.

  6. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  7. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  8. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    International Nuclear Information System (INIS)

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.; Chin, Suyin P.; Snow, Elizabeth T.

    2014-01-01

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  9. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States); Barnett, Joey V. [Department of Pharmacology, Vanderbilt Medical University, Nashville, TN (United States); Camenisch, Todd D., E-mail: camenisch@pharmacy.arizona.edu [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children' s Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States)

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme.

  10. User's manual for DSTAR MOD1: A comprehensive tokamak disruption code

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jardin, S.J.

    1986-01-01

    A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces that can occur during major tokamak plasma disruptions. The DSTAR code development effort has been accomplished by coupling a recently developed free boundary tokamak plasma transport computational model with other models developed to predict impurity transport and radiation, and the electromagnetic and thermal dynamic response of vacuum vessel components. The combined model, DSTAR, is a unique tool for predicting the consequences of tokamak disruptions. This informal report discusses the sequence of events of a resistive disruption, models developed to predict plasma transport and electromagnetic field evolution, the growth of the stochastic region of the plasma, the transport and nonequilibrium ionization/emitted radiation of the ablated vacuum vessel material, the vacuum vessel thermal and magnetic response, and user input and code output

  11. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  12. Summary report for ITER Task - T226B: Evaluation of ITER disruption erosion

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-02-01

    The behavior of divertor materials during a major disruption in a tokamak reactor is very important to successful and reliable operation of the device. Erosion of material surfaces due to a thermal energy dump can severely limit the lifetimes of plasma-facing components and thus diminish the reactor's economic feasibility. A comprehensive numerical model has been developed and used in this analysis, which includes all major physical processes taking place during plasma/material interactions. Models to account for material thermal evolution, plasma/vapor interaction physics, and models for hydrodynamic radiation transport in the developed vapor cloud above the exposed surface are implemented in a self-consistent manner to realistically assess disruption damage. The extent of self-protection from the developed vapor cloud in front of the incoming plasma particles is critically important in determining the overall disruption lifetime. Models to study detailed effects of the strong magnetic field on the behavior of the vapor cloud and on the net erosion rate have also been developed and analyzed. Candidate materials such as beryllium and carbon are considered in this analysis. The dependence of divertor disruption lifetime on disruption physics and reactor conditions is analyzed and discussed. In addition, material erosion from melting of plasma-facing components during a tokamak disruption is also a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are also modeled and evaluated

  13. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    Science.gov (United States)

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  14. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  15. CE: Telehealth: a case study in disruptive innovation.

    Science.gov (United States)

    Grady, Janet

    2014-04-01

    Technologic advances in health care have often outpaced our ability to integrate the technology efficiently, establish best practices for its use, and develop policies to regulate and evaluate its effectiveness. However, these may be insufficient reasons to put the brakes on innovation-particularly those "disruptive innovations" that challenge the status quo and have the potential to produce better outcomes in a number of important areas. This article discusses the concept of disruptive innovation and highlights data supporting its necessity within health care in general and nursing in particular. Focusing on telehealth as a case study in disruptive innovation, the author provides examples of its application and reviews literature that examines its effectiveness in both nursing practice and education.

  16. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  17. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  18. Cell disruption and lipid extraction for microalgal biorefineries: A review.

    Science.gov (United States)

    Lee, Soo Youn; Cho, Jun Muk; Chang, Yong Keun; Oh, You-Kwan

    2017-11-01

    The microalgae-based biorefinement process has attracted much attention from academic and industrial researchers attracted to its biofuel, food and nutraceutical applications. In this paper, recent developments in cell-disruption and lipid-extraction methods, focusing on four biotechnologically important microalgal species (namely, Chlamydomonas, Haematococcus, Chlorella, and Nannochloropsis spp.), are reviewed. The structural diversity and rigidity of microalgal cell walls complicate the development of efficient downstream processing methods for cell-disruption and subsequent recovery of intracellular lipid and pigment components. Various mechanical, chemical and biological cell-disruption methods are discussed in detail and compared based on microalgal species and status (wet/dried), scale, energy consumption, efficiency, solvent extraction, and synergistic combinations. The challenges and prospects of the downstream processes for the future development of eco-friendly and economical microalgal biorefineries also are outlined herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  20. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  1. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption.

    Science.gov (United States)

    Schiller, Viktoria; Zhang, Xiaowei; Hecker, Markus; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina

    2014-10-01

    A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative

  2. Monitoring-induced disruption in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D

    2013-10-01

    It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Disruptive Intelligence - How to gather Information to deal with disruptive innovations

    NARCIS (Netherlands)

    Vriens, D.J.; Solberg Søilen, K.

    2014-01-01

    Disruptive innovations are innovations that have the capacity to transform a whole business into one with products that are more accessible and affordable (cf. Christensen et al. 2009). As Christensen et al. argue no business is immune to such disruptive innovations. If these authors are right, it

  4. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Amos O. Abolaji

    2015-08-01

    Full Text Available The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM and 4-Vinylcyclohexene diepoxide (VCD are the two downstream metabolites of 4-vinylcyclohexene (VCH, an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST activity in the flies exposed to VCM and VCD (p<0.05. These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1, kelch-like erythroid-derived cap-n-collar (CNC homology (ECH-associated protein 1 (Keap-1, mitogen activated protein kinase 2 (MAPK-2, catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1 and thioredoxin reductase 1 (TrxR-1 (p<0.05. VCM and VCD inhibited acetylcholinesterase (AChE and delta aminolevulinic acid dehydratase (δ-ALA D activities in the flies (p<0.05. Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.

  5. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis.

    Science.gov (United States)

    Duarte, Tiago L; Caldas, Carolina; Santos, Ana G; Silva-Gomes, Sandro; Santos-Gonçalves, Andreia; Martins, Maria João; Porto, Graça; Lopes, José Manuel

    2017-04-01

    In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe -/- mice (an established model of human HFE-hemochromatosis). Wild-type, Nrf2 -/- , Hfe -/- and double knockout (Hfe/Nrf2 -/- ) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Despite the parenchymal iron accumulation, Hfe -/- mice presented no liver injury. The combination of iron overload (Hfe -/- ) and defective antioxidant defences (Nrf2 -/- ) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe -/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects

    Science.gov (United States)

    Nie, Xuguang; Deng, Chu-xia; Wang, Qin; Jiao, Kai

    2008-01-01

    TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development. PMID:18334251

  7. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures

    International Nuclear Information System (INIS)

    Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A.; Monteiro, Sandra M.

    2016-01-01

    Highlights: • Apoptosis in females is avoided by anti-apoptotic pathways and in males is essential to the “juvenile ovary” failure. • BIRC5 is central to the regulation of zebrafish spermatogenesis. • EE2 did not change sex ratios, but Fadrozole induced masculinization with a significant increase in male proportion. • The few females identified after exposure to Fadrozole may have avoided sex reversal by increasing anti-apoptotic proteins. • EE2 increased the pro-apoptotic genes/proteins in males, promoting gonad differentiation. - Abstract: Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE_2, 4 ng/L) and fadrozole (Fad, 50 μg/L) from 2 h to 35 days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and −6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the “juvenile ovary” development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in

  8. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures

    Energy Technology Data Exchange (ETDEWEB)

    Luzio, Ana, E-mail: aluzio@utad.pt [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Matos, Manuela [University of Lisbon, Faculty of Sciences, BioISI– Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon (Portugal); Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Santos, Dércia [Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Fontaínhas-Fernandes, António A.; Monteiro, Sandra M. [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); and others

    2016-08-15

    Highlights: • Apoptosis in females is avoided by anti-apoptotic pathways and in males is essential to the “juvenile ovary” failure. • BIRC5 is central to the regulation of zebrafish spermatogenesis. • EE2 did not change sex ratios, but Fadrozole induced masculinization with a significant increase in male proportion. • The few females identified after exposure to Fadrozole may have avoided sex reversal by increasing anti-apoptotic proteins. • EE2 increased the pro-apoptotic genes/proteins in males, promoting gonad differentiation. - Abstract: Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE{sub 2}, 4 ng/L) and fadrozole (Fad, 50 μg/L) from 2 h to 35 days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and −6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the “juvenile ovary” development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved

  9. Cloning, characterization and targeting of the mouse HEXA gene

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  10. Girls' disruptive behavior and its relationship to family functioning: A review

    NARCIS (Netherlands)

    Kroneman, L.M.; Loeber, R.; Hipwell, A.E.; Koot, H.M.

    2009-01-01

    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework.

  11. Childhood family disruption and adult height: is there a mediating role of puberty?

    OpenAIRE

    Sheppard, P; Garcia, JR; Sear, R

    2015-01-01

    BACKGROUND AND OBJECTIVES: Childhood family background is known to be associated with child growth and development, including the onset of puberty, but less is known about the influence of childhood family disruption on outcomes in later life. Given the associations between early family disruption and childhood development, we predicted that there may be long-term health-relevant consequences of childhood disruption. METHODOLOGY: Using data from a large U.S. interview sample (n=16,207), we te...

  12. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism.

    Science.gov (United States)

    Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima

    2012-07-01

    Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.

  13. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; El-Khayat, Hamed A; Eid, Ola M; Saba, Soliman; Farag, Mona K; Saleem, Sahar N; Gaber, Khaled R

    2015-05-01

    The term fetal brain disruption sequence (FBDS) was coined to describe a number of sporadic conditions caused by numerous external disruptive events presenting with variable imaging findings. However, rare familial occurrences have been reported. We describe five patients (two sib pairs and one sporadic) with congenital severe microcephaly, seizures, and profound intellectual disability. Brain magnetic resonance imaging (MRI) revealed unique and uniform picture of underdeveloped cerebral hemispheres with increased extraxial CSF, abnormal gyral pattern (polymicrogyria-like lesions in two sibs and lissencephaly in the others), loss of white matter, dysplastic ventricles, hypogenesis of corpus callosum, and hypoplasia of the brainstem, but hypoplastic cerebellum in one. Fetal magnetic resonance imaging (FMRI) of two patients showed the same developmental brain malformations in utero. These imaging findings are in accordance with arrested brain development rather than disruption. Molecular analysis excluded mutations in potentially related genes such as NDE1, MKL2, OCLN, and JAM3. These unique clinical and imaging findings were described before among familial reports with FBDS. However, our patients represent a recognizable phenotype of developmental brain malformations, that is, apparently distinguishable from either familial microhydranencephaly or microlissencephaly that were collectively termed FBDS. Thus, the use of the umbrella term FBDS is no longer helpful. Accordingly, we propose the term fetal brain arrest to distinguish them from other familial patients diagnosed as FBDS. The presence of five affected patients from three unrelated consanguineous families suggests an autosomal-recessive mode of inheritance. The spectrum of fetal brain disruption sequence is reviewed. © 2015 Wiley Periodicals, Inc.

  14. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  15. Developing strategies for detection of gene doping.

    Science.gov (United States)

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. (c) 2008 John Wiley & Sons, Ltd.

  16. Politisk disruption

    DEFF Research Database (Denmark)

    Tække, Jesper

    2018-01-01

    Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på.......Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på....

  17. Disruptive innovation in health care delivery: a framework for business-model innovation.

    Science.gov (United States)

    Hwang, Jason; Christensen, Clayton M

    2008-01-01

    Disruptive innovation has brought affordability and convenience to customers in a variety of industries. However, health care remains expensive and inaccessible to many because of the lack of business-model innovation. This paper explains the theory of disruptive innovation and describes how disruptive technologies must be matched with innovative business models. The authors present a framework for categorizing and developing business models in health care, followed by a discussion of some of the reasons why disruptive innovation in health care delivery has been slow.

  18. Reclosing of field lines and disruptive instability in tokamaks

    International Nuclear Information System (INIS)

    Kadomtsev, B.B.

    The mechanism of field line reclosing is proposed as the most natural explanation of disruptive instability in tokamaks. This mechanism adequately accounts for the internal disruptive instability, assuming that only mode m = 1 develops. It is extended to the presence of two or several modes. When there is a large number of allowed modes, one can speak of free reclosing, which leads to a force-free magnetic field in a diffusion discharge. In a tokamak, B/sub Z/ much greater than B/sub theta/, free reclosing leads to a uniform distribution of the current over the column cross section and to ejection of part of the poloidal flux beyond the confines of the diaphragm. It may be stated that the disruptive instability in a tokamak is an MHD activity that flares up for a short time and is permanently present in a diffusion column. The geometry of magnetic surfaces during reclosing has been analyzed, and qualitative arguments are given to show that disruptive instability begins to develop as a result of the interaction of the mode m = 2 with the inner mode m = 1

  19. Reclosing of field lines and disruptive instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B.

    1976-07-01

    The mechanism of field line reclosing is proposed as the most natural explanation of disruptive instability in tokamaks. This mechanism adequately accounts for the internal disruptive instability, assuming that only mode m = 1 develops. It is extended to the presence of two or several modes. When there is a large number of allowed modes, one can speak of free reclosing, which leads to a force-free magnetic field in a diffusion discharge. In a tokamak, B/sub Z/ much greater than B/sub theta/, free reclosing leads to a uniform distribution of the current over the column cross section and to ejection of part of the poloidal flux beyond the confines of the diaphragm. It may be stated that the disruptive instability in a tokamak is an MHD activity that flares up for a short time and is permanently present in a diffusion column. The geometry of magnetic surfaces during reclosing has been analyzed, and qualitative arguments are given to show that disruptive instability begins to develop as a result of the interaction of the mode m = 2 with the inner mode m = 1.

  20. Towards a Disruptive Digital Platform Model

    DEFF Research Database (Denmark)

    Kazan, Erol

    that digital platforms leverage on three strategic design elements (i.e., business, architecture, and technology design) to create supportive conditions for facilitating disruption. To shed light on disruptive digital platforms, I opted for payment platforms as my empirical context and unit of analysis......Digital platforms are layered modular information technology architectures that support disruption. Digital platforms are particularly disruptive, as they facilitate the quick release of digital innovations that may replace established innovations. Yet, despite their support for disruption, we have...... not fully understood how such digital platforms can be strategically designed and configured to facilitate disruption. To that end, this thesis endeavors to unravel disruptive digital platforms from the supply perspective that are grounded on strategic digital platform design elements. I suggest...

  1. Integrated Industry: Disruptive Development for Business Models and Management Systems: Vortrag gehalten auf der Business Economics Conference. Konferenz der Bosch AG, 9. Juli 2015, Gerlingen

    OpenAIRE

    Bauernhansl, Thomas

    2015-01-01

    Der Vortrag "Integrated Industry: Disruptive Development for Business Models and Management Systems" behandelt folgende Themenkomplexe: - Die digitale Welt von heute und morgen - Aufbau von Eco-Systems - Design disruptiver Geschäftsmodelle - XaaS-Concept - Everything as a Service - Digitalisierung von Geschäftsmodellen - Kernthesen für Wertschöpfungsmodelle der Zukunft - Big Data - Neue Architekturen - Industrie 4.0 - Disruptive Geschäftsmodelle

  2. The renin-angiotensin system in kidney development

    DEFF Research Database (Denmark)

    Jensen, B L; Stubbe, J; Madsen, K

    2004-01-01

    Recent data from studies in rodents with targeted gene disruption and pharmacological antagonists have shown that the renin-angiotensin-aldosterone system (RAAS) and cyclooxygenase type-2 (COX-2) are necessary for late stages of kidney development. The present review summarizes data on the develo......Recent data from studies in rodents with targeted gene disruption and pharmacological antagonists have shown that the renin-angiotensin-aldosterone system (RAAS) and cyclooxygenase type-2 (COX-2) are necessary for late stages of kidney development. The present review summarizes data...... on the developmental changes of RAAS and COX-2 and the pathways by which they are activated; their possible interplay and the mechanisms by which they affect kidney development. Intrarenal and circulating renin and angiotensin II (ANG II) are stimulated at birth in most mammals. In rats, renin and ANG II stay...... glucocorticoid concentration and by a low NaCl intake. Studies with selective inhibitors of COX-2 and COX-2 null mice show that COX-2 activity stimulates renin secretion from JG-cells during postnatal kidney development and that lack of COX-2 activity leads to pathological change in cortical architecture...

  3. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, María M; Toft, Gunnar; Jensen, Morten S

    2011-01-01

    Sex hormones closely regulate development of the male genital organs during fetal life. The hypothesis that xenobiotics may disrupt endogenous hormonal signalling has received considerable scientific attention, but human evidence is scarce.......Sex hormones closely regulate development of the male genital organs during fetal life. The hypothesis that xenobiotics may disrupt endogenous hormonal signalling has received considerable scientific attention, but human evidence is scarce....

  4. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  5. PARK2, a Large Common Fragile Site Gene, is Part of a Stress Response Network in Normal Cells that is Disrupted During the Development of Ovarian Cancer

    National Research Council Canada - National Science Library

    Smith, David I

    2005-01-01

    .... The central two questions that we want to address with this work are what role does the inactivation of Parkin play in the development of ovarian cancer and whether this gene functions as part...

  6. Evidence for association between Disrupted-in-schizophrenia 1 (DISC1 gene polymorphisms and autism in Chinese Han population: a family-based association study

    Directory of Open Access Journals (Sweden)

    Ruan Yan

    2011-05-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. Methods We genotyped seven tag single nucleotide polymorphisms (SNPs in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT and Haploview software. Results We found three SNPs showed significant associations with autism (rs4366301: G > C, Z = 2.872, p = 0.004; rs11585959: T > C, Z = 2.199, p = 0.028; rs6668845: A > G, Z = 2.326, p = 0.02. After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism.

  7. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  8. OUTSOURCING NEW PRODUCT DEVELOPMENT FOSTERED BY DISRUPTIVE TECHNOLOGICAL INNOVATION

    DEFF Research Database (Denmark)

    CANTONE, LUIGI; TESTA, PIERPAOLO; HOLLENSEN, SVEND

    2018-01-01

    is that of aircraft industry. Therefore, this article discusses the findings of an empirical research that explores an embedded and in-depth longitudinal case study, namely, the Boeing 787-8 programme (the first model of the B787 Dreamliner programme). This new aircraft is a disruptive technology product innovation...... outsourcing strategies related to the Boeing 787 Dreamliner programme. The research question that we aim to answer is: which strategic dimensions in a decision-making model are able to extensively and thoroughly address the outsourcing decisions relating to NPD activities given the hypothesis...

  9. Making CVE Work: A Focused Approach Based on Process Disruption

    Directory of Open Access Journals (Sweden)

    J.M. Berger

    2016-05-01

    Full Text Available One of the biggest barriers to designing a comprehensive Countering Violent Extremism (CVE programme is defining its scope. This paper argues for a narrow approach, focusing on disengagement and the disruption of recruitment. The author develops a simplified model of radicalisation and the concurrent terrorist recruitment process, proposing concrete themes for disruptive intervention and messaging. After analysing case studies of disengagement, the author offers recommendations for specific action to accomplish CVE goals by disrupting recruitment processes and deploying targeted messaging within the framework of the correlated models.

  10. A Literature Review On Multimodal Freight Transportation Planning Under Disruptions

    Science.gov (United States)

    Rosyida, E. E.; Santosa, B.; Pujawan, I. N.

    2018-04-01

    This paper reviews publication that focuses on multimodal freight transportation planning under disruptions. In this paper, disruptions are specified by the level of the disruptions occurs and the scope of its effect. This becomes an important distinction since the cause and effect that may occur at different levels. The failure to make this distinction has implications for how we understand and manage. The reviewed papers include those that develop framework, model, and technical procedure for freight transportation. Finally, we provide an outlook of future research directions on the domain of transportation planning.

  11. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1992-09-01

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  12. Disrupting the Industry with Play

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2016-01-01

    or two ago. This is significantly disrupting the industry in several market sectors. This paper describes the components of the playware and embodied artificial intelligence research that has led to disruption in the industrial robotics sector, and which points to the next disruption of the health care...

  13. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

    OpenAIRE

    James, Christopher N.; Horn, Patrick J.; Case, Charlene R.; Gidda, Satinder K.; Zhang, Daiyuan; Mullen, Robert T.; Dyer, John M.; Anderson, Richard G. W.; Chapman, Kent D.

    2010-01-01

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common...

  14. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects

    DEFF Research Database (Denmark)

    Zhu, Xiaorong; Zhou, An; Dey, Arunangsu

    2002-01-01

    vertebrates and invertebrates. Disruption of the gene-encoding mouse PC1/3 has now been accomplished and results in a syndrome of severe postnatal growth impairment and multiple defects in processing many hormone precursors, including hypothalamic growth hormone-releasing hormone (GHRH), pituitary...

  15. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. On the avalanche generation of runaway electrons during tokamak disruptions

    International Nuclear Information System (INIS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-01-01

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model

  17. Interpersonal relatedness and self-definition in normal and disrupted personality development: retrospect and prospect.

    Science.gov (United States)

    Luyten, Patrick; Blatt, Sidney J

    2013-04-01

    Two-polarities models of personality propose that personality development evolves through a dialectic synergistic interaction between two fundamental developmental psychological processes across the life span-the development of interpersonal relatedness on the one hand and of self-definition on the other. This article offers a broad review of extant research concerning these models, discusses their implications for psychology and psychiatry, and addresses future research perspectives deriving from these models. We first consider the implications of findings in this area for clinical research and practice. This is followed by a discussion of emerging research findings concerning the role of developmental, cross-cultural, evolutionary, and neurobiological factors influencing the development of these two fundamental personality dimensions. Taken together, this body of research suggests that theoretical formulations that focus on interpersonal relatedness and self-definition as central coordinates in personality development and psychopathology provide a comprehensive conceptual paradigm for future research in psychology and psychiatry exploring the interactions among neurobiological, psychological, and sociocultural factors in adaptive and disrupted personality development across the life span.

  18. Isolation of fungal homokaryotic lines from heterokaryotic transformants by sonic disruption of mycelia.

    Science.gov (United States)

    Bashi, Zafer Dallal; Khachatourians, George; Hegedus, Dwayne Daniel

    2010-01-01

    Fungal hyphae--and in some cases, spores--are multi-nucleate. During genetic transformation of these spores or mycelia, only one nucleus generally receives the transferred T-DNA generating heterokaryotic colonies. Characterization of genetic changes, such as the effects of gene disruption in the transformants, requires purified homokaryotic lines. Hyphal tip transfer has conventionally been used to isolate homokaryons. We developed an alternative method for purification of fungal homokaryons from transformed heterokaryotic lines of Sclerotinia sclerotiorum. Ultrasound pulses were used to generate bi-septate, unicellular hyphal fragments that regenerate under selection to produce homokaryotic lines that can be easily identified using colony PCR. This technique facilitates the purification of transformed lines, which allows for routine genome manipulation, and should be adaptable for other filamentous fungi.

  19. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  20. Disrupt mig vel: Fire gode råd om disruption

    DEFF Research Database (Denmark)

    Rydén, Pernille; Ringberg, Torsten; Østergaard Jacobsen, Per

    2017-01-01

    Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed.......Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed....

  1. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  2. Genome-wide analysis of E. coli cell-gene interactions.

    Science.gov (United States)

    Cardinale, S; Cambray, G

    2017-11-23

    The pursuit of standardization and reliability in synthetic biology has achieved, in recent years, a number of advances in the design of more predictable genetic parts for biological circuits. However, even with the development of high-throughput screening methods and whole-cell models, it is still not possible to predict reliably how a synthetic genetic construct interacts with all cellular endogenous systems. This study presents a genome-wide analysis of how the expression of synthetic genes is affected by systematic perturbations of cellular functions. We found that most perturbations modulate expression indirectly through an effect on cell size, putting forward the existence of a generic Size-Expression interaction in the model prokaryote Escherichia coli. The Size-Expression interaction was quantified by inserting a dual fluorescent reporter gene construct into each of the 3822 single-gene deletion strains comprised in the KEIO collection. Cellular size was measured for single cells via flow cytometry. Regression analyses were used to discriminate between expression-specific and gene-specific effects. Functions of the deleted genes broadly mapped onto three systems with distinct primary influence on the Size-Expression map. Perturbations in the Division and Biosynthesis (DB) system led to a large-cell and high-expression phenotype. In contrast, disruptions of the Membrane and Motility (MM) system caused small-cell and low-expression phenotypes. The Energy, Protein synthesis and Ribosome (EPR) system was predominantly associated with smaller cells and positive feedback on ribosome function. Feedback between cell growth and gene expression is widespread across cell systems. Even though most gene disruptions proximally affect one component of the Size-Expression interaction, the effect therefore ultimately propagates to both. More specifically, we describe the dual impact of growth on cell size and gene expression through cell division and ribosomal content

  3. Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers

    Science.gov (United States)

    Zhu, Haijing; Niu, Yiyuan; Ma, Baohua; Yu, Honghao; Lei, Anmin; Yan, Hailong; Shen, Qiaoyan; Shi, Lei; Zhao, Xiaoe; Hua, Jinlian; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2016-01-01

    Precision genetic engineering accelerates the genetic improvement of livestock for agriculture and biomedicine. We have recently reported our success in producing gene-modified goats using the CRISPR/Cas9 system through microinjection of Cas9 mRNA and sgRNAs targeting the MSTN and FGF5 genes in goat embryos. By investigating the influence of gene modification on the phenotypes of Cas9-mediated goats, we herein demonstrate that the utility of this approach involving the disruption of FGF5 results in increased number of second hair follicles and enhanced fiber length in Cas9-mediated goats, suggesting more cashmere will be produced. The effects of genome modifications were characterized using H&E and immunohistochemistry staining, quantitative PCR, and western blotting techniques. These results indicated that the gene modifications induced by the disruption of FGF5 had occurred at the morphological and genetic levels. We further show that the knockout alleles were likely capable of germline transmission, which is essential for goat population expansion. These results provide sufficient evidences of the merit of using the CRISPR/Cas9 approach for the generation of gene-modified goats displaying the corresponding mutant phenotypes. PMID:27755602

  4. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  5. Sleep disruption in chronic rhinosinusitis.

    Science.gov (United States)

    Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali

    2017-05-01

    Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.

  6. Weighing Efficiency-Robustness in Supply Chain Disruption by Multi-Objective Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Tong Shu

    2016-03-01

    Full Text Available This paper investigates various supply chain disruptions in terms of scenario planning, including node disruption and chain disruption; namely, disruptions in distribution centers and disruptions between manufacturing centers and distribution centers. Meanwhile, it also focuses on the simultaneous disruption on one node or a number of nodes, simultaneous disruption in one chain or a number of chains and the corresponding mathematical models and exemplification in relation to numerous manufacturing centers and diverse products. Robustness of the design of the supply chain network is examined by weighing efficiency against robustness during supply chain disruptions. Efficiency is represented by operating cost; robustness is indicated by the expected disruption cost and the weighing issue is calculated by the multi-objective firefly algorithm for consistency in the results. It has been shown that the total cost achieved by the optimal target function is lower than that at the most effective time of supply chains. In other words, the decrease of expected disruption cost by improving robustness in supply chains is greater than the increase of operating cost by reducing efficiency, thus leading to cost advantage. Consequently, by approximating the Pareto Front Chart of weighing between efficiency and robustness, enterprises can choose appropriate efficiency and robustness for their longer-term development.

  7. Determinants of Service Innovation in Academic Libraries through the Lens of Disruptive Innovation

    Science.gov (United States)

    Yeh, Shea-Tinn; Walter, Zhiping

    2016-01-01

    With the development of digital technologies, various disruptive innovations have emerged that are gradually replacing academic libraries in the information-seeking process. As academic libraries become less relevant to their users, it is imperative that they develop strategies to respond to disruption. We highlight the fact that the service…

  8. Endotherapy is effective for pancreatic ductal disruption: A dual center experience.

    Science.gov (United States)

    Das, Rohit; Papachristou, Georgios I; Slivka, Adam; Easler, Jeffrey J; Chennat, Jennifer; Malin, Jessica; Herman, Justin B; Laique, Sobia N; Hayat, Umar; Ooi, Yinn Shaung; Rabinovitz, Mordechai; Yadav, Dhiraj; Siddiqui, Ali A

    2016-01-01

    Pancreatic duct (PD) disruptions occur as a result of different etiologies and can be managed medically, endoscopically, or surgically. The aim of this study was to provide an evaluation on the efficacy of endotherapy for treatment of PD disruption in a large cohort of patients and identify factors that predict successful treatment outcome. We retrospectively evaluated consecutive patients who underwent endoscopic retrograde pancreatography (ERP) for transpapillary pancreatic stent placement for PD disruption from 2008 to 2013 at two tertiary referral institutions. PD disruption was defined as extravasation of contrast from the pancreatic duct as seen on ERP. Therapeutic success was defined by resolution of PD leak on ERP, clinical, and/or imaging evaluation. We evaluated 107 patients (58% male, mean age 53 years) with PD disruption. Etiologies of PD disruption were acute pancreatitis (36%), post-operative (31%), chronic pancreatitis (29%), and trauma (4%). PD disruption was successfully bridged by a stent in 45 (44%) patients. Two patients developed post-sphincterotomy bleeding, two had stent migration, and two patients died as a result of post-ERP related complications. Placement of a PD stent was successful in 103/107 (96%) patients. Therapeutic success was achieved in 80/107 (75%) patients. Non-acute pancreatitis etiologies and absence of complete duct disruption were independent predictors of therapeutic success. Endoscopic therapy using a transpapillary stent for PD disruption is safe and effective. Absence of complete duct disruption and non-AP etiologies determine a favorable endoscopic outcome. Published by Elsevier India Pvt Ltd.

  9. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas

    DEFF Research Database (Denmark)

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo

    2017-01-01

    and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95...

  10. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals.

    Science.gov (United States)

    Sargis, Robert M

    2015-01-01

    The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.

  11. Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development

    Science.gov (United States)

    Giera, Stefanie; Bansal, Ruby; Ortiz-Toro, Theresa M.; Taub, Daniel G.

    2011-01-01

    Polychlorinated biphenyls (PCB) are industrial chemicals linked to developmental deficits that may be caused in part by disrupting thyroid hormone (TH) action by either reducing serum TH or interacting directly with the TH receptor (TR). Individual PCB congeners can activate the TR in vitro when the metabolic enzyme cytochrome P4501A1 (CYP1A1) is induced, suggesting that specific PCB metabolites act as TR agonists. To test this hypothesis in vivo, we compared two combinations of PCB congeners that either activate the TR (PCB 105 and 118) or not (PCB 138 and 153) in the presence or absence of a PCB congener (PCB 126) that induces CYP1A1 in vitro. Aroclor 1254 was used as a positive control, and a group treated with propylthiouracil was included to characterize the effects of low serum TH. We monitored the effects on TH signaling in several peripheral tissues by measuring the mRNA expression of well-known TH-response genes in these tissues. Aroclor 1254 and its component PCB 105/118/126 reduced total T4 to the same extent as that of propylthiouracil but increased the expression of some TH target genes in liver. This effect was strongly correlated with CYP1A1 expression supporting the hypothesis that metabolism is necessary. Effects were gene and tissue specific, indicating that tissue-specific metabolism is an important component of PCB disruption of TH action and that PCB metabolites interact in complex ways with the TR. These are essential mechanisms to consider when evaluating the health risks of contaminant exposures, for both PCB and other polycyclic compounds known to interact with nuclear hormone receptors. PMID:21540284

  12. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  13. Coordination of Supply Chain with a Dominant Retailer under Demand Disruptions

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-01-01

    Full Text Available We develop a coordination model of a one-manufacturer multi-retailers supply chain with a dominant retailer. We consider the impact of a dominant retailer on the market retail price and his sales promotion opportunity and examine how the manufacturer can coordinate such a supply chain by revenue-sharing contract after demand disruptions. We address the following important research questions in this paper. (i How do we design an appropriate revenue-sharing contract to coordinate the supply chain with a dominant retailer without demand disruptions? (ii When demand is disrupted with variations in market scale and price sensitive coefficient, can the original contract still be valid? (iii How do the demand disruptions affect the coordination mechanism under different disruption scenarios and how should the new contract change? Finally, we generate important insights by both analytical and numerical examples.

  14. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  15. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  16. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans▿ †

    Science.gov (United States)

    Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    2010-01-01

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555

  17. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  18. Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides

    DEFF Research Database (Denmark)

    Hass, Ulla; Boberg, Julie; Christiansen, Sofie

    2012-01-01

    The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase...... and cumulative intake, because of the potentially serious impact of mixed exposure on development and reproduction in humans....

  19. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  20. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Directory of Open Access Journals (Sweden)

    Jintao Xu

    2016-07-01

    Full Text Available Anti-tumor necrosis factor alpha (anti-TNF-α therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance.

  1. Disruption avoidance by means of electron cyclotron waves

    International Nuclear Information System (INIS)

    Esposito, B; Granucci, G; Nowak, S; Lazzaro, E; Maraschek, M; Giannone, L; Gude, A; Igochine, V; McDermott, R; Poli, E; Reich, M; Sommer, F; Stober, J; Suttrop, W; Treutterer, W; Zohm, H

    2011-01-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, I p = 0.6 MA, B t = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power ≤1.7 MW (H-mode NBI-heated plasmas, P NBI ∼ 7.5 MW, I p = 1 MA, B t = 2.1 T, q 95 ∼ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ' H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  2. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant.

    Science.gov (United States)

    Bonawitz, Nicholas D; Kim, Jeong Im; Tobimatsu, Yuki; Ciesielski, Peter N; Anderson, Nickolas A; Ximenes, Eduardo; Maeda, Junko; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2014-05-15

    Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.

  3. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    Science.gov (United States)

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  4. The representation of heart development in the gene ontology.

    Science.gov (United States)

    Khodiyar, Varsha K; Hill, David P; Howe, Doug; Berardini, Tanya Z; Tweedie, Susan; Talmud, Philippa J; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C

    2011-06-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. Copyright © 2011

  5. The Representation of Heart Development in the Gene Ontology

    Science.gov (United States)

    Khodiyar, Varsha K.; Hill, David P.; Howe, Doug; Berardini, Tanya Z.; Tweedie, Susan; Talmud, Philippa J.; Breckenridge, Ross; Bhattarcharya, Shoumo; Riley, Paul; Scambler, Peter; Lovering, Ruth C.

    2012-01-01

    An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development and aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area. PMID:21419760

  6. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Ø Jensen, Erik; Marcker, Kjeld A

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  7. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Rodenhiser, David I.

    2006-01-01

    Exposures to environmental carcinogens and unhealthy lifestyle choices increase the incidence of breast cancer. One such compound, benzo(a)pyrene (BaP), leads to covalent DNA modifications and the deregulation of gene expression. To date, these mechanisms of BaP-induced carcinogenesis are poorly understood, particularly in the case of breast cancer. We tested the effects of BaP exposure on cellular growth dynamics and DNA methylation in four breast cancer cell lines since disruptions in DNA methylation lead to deregulated gene expression and the loss of genomic integrity. We observed robust time- and concentration-dependent loss of proliferation, S phase and G2M accumulation and apoptosis in p53 positive MCF-7 and T47-D cells. We observed minimal responses in p53 negative HCC-1086 and MDA MB 231 cells. Furthermore, BaP increased p53 levels in both p53 positive cell lines, as well as p21 levels in MCF-7 cells, an effect that was prevented by the p53-specific inhibitor pifithrin-α. No changes in global levels of DNA methylation levels induced by BaP were detected by the methyl acceptor assay (MAA) in any cell line, however, methylation profiling by AIMS (amplification of intermethylated sites) analysis showed dynamic, sequence-specific hypo- and hypermethylation events in all cell lines. We also identified BaP-induced hypomethylation events at a number of genomic repeats. Our data confirm the p53-specific disruption of the cell cycle as well as the disruption of DNA methylation as a consequence of BaP treatment, thus reinforcing the link between environmental exposures, DNA methylation and breast cancer

  8. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  9. Identifying Disruptive Technologies in Design: Horizon Scanning in the Early Stages of Design

    DEFF Research Database (Denmark)

    Ernstsen, Sidsel Katrine; Thuesen, Christian; Larsen, Laurids Rolighed

    Technology development is accelerating, driving disruption. Design is seen as key differentiator in creating innovative offerings but few design methods consider future technologies explicitly. In this article, we explore how a foresight method, namely horizon scanning, may be applied in a design...... context to anticipate disruption of construction. By means of a 3-step horizon scan, we identify 133 potentially disruptive technologies from across industries. We find that when preparing for disruption, design may benefit from the future-oriented and technology-focused features of horizon scanning....

  10. Sleep and circadian rhythm disruption in neuropsychiatric illness.

    Science.gov (United States)

    Jagannath, Aarti; Peirson, Stuart N; Foster, Russell G

    2013-10-01

    Sleep and circadian rhythm disruption (SCRD) is a common feature in many neuropsychiatric diseases including schizophrenia, bipolar disorder and depression. Although the precise mechanisms remain unclear, recent evidence suggests that this comorbidity is not simply a product of medication or an absence of social routine, but instead reflects commonly affected underlying pathways and mechanisms. For example, several genes intimately involved in the generation and regulation of circadian rhythms and sleep have been linked to psychiatric illness. Further, several genes linked to mental illness have recently been shown to also play a role in normal sleep and circadian behaviour. Here we describe some of the emerging common mechanisms that link circadian rhythms, sleep and SCRD in severe mental illnesses. A deeper understanding of these links will provide not only a greater understanding of disease mechanisms, but also holds the promise of novel avenues for therapeutic intervention. Copyright © 2013. Published by Elsevier Ltd.

  11. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo.

    Science.gov (United States)

    Majidi, Asia; Nikkhah, Maryam; Sadeghian, Faranak; Hosseinkhani, Saman

    2016-10-01

    In last decades great efforts have been devoted to the study of development of recombinant peptide based vectors that consist of biological motifs with potential applications in gene therapy. Recombinant Biomimetic Chimeric Vectors (rBCVs) are biopolymeric nanocarriers that are designed to mimic viral features to overcome the cellular obstacles in gene transferring pathway into cell nucleus. In this research, we designed and genetically engineered three novel rBCVs with similar sequences that differed in motifs arrangement and motif abundance: MPG-2H1, 2TMPG-2H1 and 2RMPG-2H1. The MPG as a famous amphipathic cell penetrating peptide is the main segment of these constructs which was studied for the first time in association with truncated histone H1 DNA condensing motif. Through the performance of several physicochemical and biological assays, the rBCVs were remarkably examined regarding transfection efficiency. The main objective of this study is focused on the importance of motif design in transfection efficiency of rBCVs on one hand, and the assessment of correlation between structural features and functionality of motifs on the other hand. The results revealed that all three kinds of rBCVs/pDNA nanoparticles with average sizes of 200nm could overwhelm the cellular obstacles associated with gene transfer, and lead to efficient gene delivery. Furthermore, no significant toxicity was perceived and efficient endosome disruptive activity was obtained. It is noteworthy to say among three mentioned constructs 2RMPG-2H1 showed the highest transfection efficiency. Overall the peptide based vectors hold great promise as a nontoxic and effective gene carrier in vitro and in vivo, besides the rational design possibility as the most vital advantages over the other non-viral gene delivery vectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?

    Science.gov (United States)

    Rémy, B; Plener, L; Elias, M; Daudé, D; Chabrière, E

    2016-11-01

    Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed. Copyright © 2016 Académie Nationale de Pharmacie. All rights reserved.

  13. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  14. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  15. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    Science.gov (United States)

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  16. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  17. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    Science.gov (United States)

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  19. Modeling plasma/material interactions during a tokamak disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1994-10-01

    Disruptions in tokamak reactors are still of serious concern and present a potential obstacle for successful operation and reliable design. Erosion of plasma-facing materials due to thermal energy dump during a disruption can severely limit the lifetime of these components, therefore diminishing the economic feasibility of the reactor. A comprehensive disruption erosion model which takes into account the interplay of major physical processes during plasma-material interaction has been developed. The initial burst of energy delivered to facing-material surfaces from direct impact of plasma particles causes sudden ablation of these materials. As a result, a vapor cloud is formed in front of the incident plasma particles. Shortly thereafter, the plasma particles are stopped in the vapor cloud, heating and ionizing it. The energy transmitted to the material surfaces is then dominated by photon radiation. It is the dynamics and the evolution of this vapor cloud that finally determines the net erosion rate and, consequently, the component lifetime. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics, and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed

  20. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  1. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  2. Adaptive high learning rate probabilistic disruption predictors from scratch for the next generation of tokamaks

    Science.gov (United States)

    Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.; Pereira, A.; Acero, A.; Contributors, JET-EFDA

    2014-12-01

    The development of accurate real-time disruption predictors is a pre-requisite to any mitigation action. Present theoretical models of disruptions do not reliably cope with the disruption issues. This article deals with data-driven predictors and a review of existing machine learning techniques, from both physics and engineering points of view, is provided. All these methods need large training datasets to develop successful predictors. However, ITER or DEMO cannot wait for hundreds of disruptions to have a reliable predictor. So far, the attempts to extrapolate predictors between different tokamaks have not shown satisfactory results. In addition, it is not clear how valid this approach can be between present devices and ITER/DEMO, due to the differences in their respective scales and possibly underlying physics. Therefore, this article analyses the requirements to create adaptive predictors from scratch to learn from the data of an individual machine from the beginning of operation. A particular algorithm based on probabilistic classifiers has been developed and it has been applied to the database of the three first ITER-like wall campaigns of JET (1036 non-disruptive and 201 disruptive discharges). The predictions start from the first disruption and only 12 re-trainings have been necessary as a consequence of missing 12 disruptions only. Almost 10 000 different predictors have been developed (they differ in their features) and after the chronological analysis of the 1237 discharges, the predictors recognize 94% of all disruptions with an average warning time (AWT) of 654 ms. This percentage corresponds to the sum of tardy detections (11%), valid alarms (76%) and premature alarms (7%). The false alarm rate is 4%. If only valid alarms are considered, the AWT is 244 ms and the standard deviation is 205 ms. The average probability interval about the reliability and accuracy of all the individual predictions is 0.811 ± 0.189.

  3. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment.

    Science.gov (United States)

    Hou, Jie; Li, Li; Wu, Ning; Su, Yujing; Lin, Wang; Li, Guangyu; Gu, Zemao

    2016-01-01

    Microcystin-LR (MC-LR) has been found to cause reproductive and developmental impairments as well as to disrupt sex hormone homeostasis of fish during acute and sub-chronic toxic experiments. However, fish in natural environments are continuously exposed to MC-LR throughout their entire life cycle as opposed to short-term exposure. Here, we tested the hypothesis that the mechanism by which MC-LR harms female fish reproduction and development within natural water bodies is through interference of the reproductive endocrine system. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30 μg/L MC-LR for 90 d until reaching sexual maturity. Female zebrafish were selected, and the changes in growth and developmental indicators, ovarian ultrastructure as well as the levels of gonadal steroid hormones and vitellogenin (VTG) were examined along with the transcription of related genes in the hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). The results showed for the first time, a life cycle exposure to MC-LR caused growth inhibition, decreased ovary weight and ovarian ultra-pathological lesions. Decreased ovarian testosterone levels indicated that MC-LR disrupted sex steroid hormone balance. Significantly up-regulated transcription of brain FSHβ and LHβ along with ovarian ERα, FSHR and LHR suggested positive feedback regulation in the HPGL-axis was induced as a compensatory mechanism for MC-LR damage. It was also noted that ovarian VTG content and hepatic ERα and VTG1 expression were all down-regulated, which might be responsible for reduced vitellus storage noted in our histological observations. Our findings indicate that a life cycle exposure to MC-LR impairs the development and reproduction of female zebrafish by disrupting the transcription of related HPGL-axis genes, suggesting that MC-LR has potential adverse effects on fish reproduction and thus population dynamics in MCs-contaminated aquatic environment

  4. High trait anxiety: a challenge for disrupting fear memory reconsolidation.

    Science.gov (United States)

    Soeter, Marieke; Kindt, Merel

    2013-01-01

    Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation--n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.

  5. FY 1998 results of the intellectual basement project using functions of private companies (venture promotion type basement creation R and D project). Development of endocrine disrupter testing method and development of environmental assessment method; 1998 nendo naibunpi kakuran busshitsu ni taisuru shiken hoho kaihatsu oyobi eikyo hyoka shuho kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of assessing the risk in relation to endocrine disrupting chemicals, the following were conducted: development of testing/assessment method for endocrine disrupting chemicals, survey of the actual exposure assessment, development of measuring method for the concentration in the environment. In the development of the testing method, the following were carried out: development of a high-throughput screening method for evaluating endocrine disrupting chemicals; as screening testing method using mammals, uterotrophic assay, Hershberger assay using castrated male rats, thyroid hormone assay in pubertal rats, enhanced OECD 407 test guideline for 28-day toxicity test; study on yeast two-hybrid assay for endocrine disrupter; sex-reversal assay for suspected endocrine disrupting chemicals using S-rR strain medaka. In the development of exposure assessment method, estrogenic potency of individual nonylphenol congeners isolated from technical mixtures; determination of endocrine disrupters and related chemicals from industry and nature origin in river water and sediment; research for the flow of industrial origin chemicals; reconstruction of pollution history of chemicals using sediment cores. (NEDO)

  6. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Macejova Dana

    2016-07-01

    Full Text Available Retinoic acid (RA, an active form of vitamin A, regulates the embryonic development, male and female reproduction and induces important effects on the cell development, proliferation, and differentiation. These effects are mediated by the retinoid (RAR and rexinoid nuclear receptors (RXR, which are considered to be a ligand-activated, DNA-binding, trans-acting, and transcription-modulating proteins, involved in a general molecular mechanism responsible for the transcriptional responses in target genes. Organotin compounds are typical environmental contaminants and suspected endocrine disrupting substances. They may affect processes of reproductive system in mammals, predominantly via nuclear receptor signaling pathways. Triorganotins, such as tributyltin chloride (TBTCl and triphenyltin chloride (TPTCl, are capable to bind to RXR molecules, and thus represent potent agonists of RXR subtypes of nuclear receptors not sharing any structural characteristics with endogenous ligands of nuclear receptors. Th is article summarizes selected effects of biologically active retinoids and rexinoids on both male and female reproduction and also deals with the effects of organotin compounds evoking endocrine disrupting actions in reproduction.

  7. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.

    Science.gov (United States)

    Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf

    2005-06-01

    Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.

  8. GAIA - A New Approach To Decision Making on Climate Disruption Issues

    Science.gov (United States)

    Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction

    2011-12-01

    GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.

  9. Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene ?

    OpenAIRE

    Linhares, Nat?lia D.; Svartman, Marta; Salgado, Mauro Ivan; Rodrigues, Tatiane C.; da Costa, Silvia S.; Rosenberg, Carla; Valadares, Eug?nia R.

    2013-01-01

    Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and tha...

  10. The role of friends' disruptive behavior in the development of children's tobacco experimentation: results from a preventive

    NARCIS (Netherlands)

    van Lier, P.A.C.; Huizink, A.C.; Vuijk, P.J.

    2011-01-01

    Having friends who engage in disruptive behavior in childhood may be a risk factor for childhood tobacco experimentation. This study tested the role of friends' disruptive behavior as a mediator of the effects of a classroom based intervention on children's tobacco experimentation. 433 Children (52%

  11. The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene-environment interaction (GxE) in schizophrenia.

    Science.gov (United States)

    Le Strat, Yann; Ramoz, Nicolas; Gorwood, Philip

    2009-05-01

    Schizophrenia is a multifactorial disease characterized by a high heritability. Several candidate genes have been suggested, with the strongest evidences for genes encoding dystrobrevin binding protein 1 (DTNBP1), neuregulin 1 (NRG1), neuregulin 1 receptor (ERBB4) and disrupted in schizophrenia 1 (DISC1), as well as several neurotrophic factors. These genes are involved in neuronal plasticity and play also a role in adult neurogenesis. Therefore, the genetic basis of schizophrenia could involve different factors more or less specifically required for neuroplasticity, including the synapse maturation, potentiation and plasticity as well as neurogenesis. Following the model of Knudson in tumors, we propose a two-hit hypothesis of schizophrenia. In this model of gene-environment interaction, a variant in a gene related to neurogenesis is transmitted to the descent (first hit), and, secondarily, an environmental factor occurs during the development of the central nervous system (second hit). Both of these vulnerability and trigger factors are probably necessary to generate a deficit in neurogenesis and therefore to cause schizophrenia. The literature supporting this gene x environment hypothesis is reviewed, with emphasis on some molecular pathways, raising the possibility to propose more specific molecular medicine.

  12. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    Science.gov (United States)

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  13. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    Science.gov (United States)

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  14. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3.

    Science.gov (United States)

    Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M

    2017-05-15

    Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of

  15. FY 1999 Industrial science and technology research and development project. Report on the results of research and development of the technologies for genome informatics (Acceleration of analysis of green mold transcription control information); 1999 nendo genome infomatics gijutsu kenkyu kaihatsu seika hokokusho. Koji kabi no tensha seigyo joho no kaiseki kasokuka nado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A total of 49 budding yeast transcription factor disruptants and one conditional transcription over expression strain are produced, to elucidate the gene regulation networks using the gene expression profile data, and to measure the systematic and high-quality gene expression profiles using the Affymetrix's GeneChip system. The program is also developed for accurately predicting the base sequences which regulate expression of given gene groups, based on the uniqueness of the upstream sequences. The analysis with the aid of the program predicts 8 gene expression regulation sequences, which are considered to be novel, from the gene groups of retarded expression by the transcription factor disruptants. The time course gene expression data are produced from the transcription factor SW14 conditional over expression strain. The analysis of the data indicates that the analysis of the subtracted genes using the gene expression profiles from the wild type strain is useful for clarifying the effects of the derived transcription factor over expression. (NEDO)

  16. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  17. Disruptive innovation as an entrepreneurial process

    NARCIS (Netherlands)

    Chandra, Y.; Yang, S.-J.S.; Singh, P.; Prajogo, D.; O'Neill, P.; Rahman, S.

    2008-01-01

    Research on conditions and causal mechanisms that influence disruptive innovation has been relatively unexplored in the extant research in disruptive innovation. By re-conceptualizing disruptive innovation as an entrepreneurial process at product, firm and industry levels, this paper draws on

  18. Automatic location of disruption times in JET

    Science.gov (United States)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  19. Automatic location of disruption times in JET.

    Science.gov (United States)

    Moreno, R; Vega, J; Murari, A

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  20. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    . However, incumbent sources engaged in capability reconfiguration to accommodate disruption improve search efforts in disruptive technologies. The paper concludes that the value of external sources is contingent on more than their knowledge. Specifically, interdependence of sources in search gives rise...... to influence from individual strategic interests on the outcomes. More generally, this points to the need for understanding the two-way influence of sources, rather than viewing external search as one-way knowledge accessing....

  1. A computational model predicting disruption of blood vessel development.

    Directory of Open Access Journals (Sweden)

    Nicole Kleinstreuer

    2013-04-01

    Full Text Available Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis and remodeling (angiogenesis come from a variety of biological pathways linked to endothelial cell (EC behavior, extracellular matrix (ECM remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/ modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a

  2. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis

    Science.gov (United States)

    Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.

    2010-01-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  3. Study of runaway electron generation during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynar, J.; Popovichev, S.; Luna, E. de La; Andersson, F.

    2006-01-01

    Extensive analysis of disruptions in JET has helped advance the understanding of trends of disruption-generated runaway electrons. Tomographic reconstruction of the soft x-ray emission has made possible a detailed observation of the magnetic flux geometry evolution during disruptions. With the aid of soft and hard x-ray diagnostics runaway electrons have been detected at the very beginning of disruptions. A study of runaway electron parameters has shown that an approximate upper bound for the conversion efficiency of pre-disruptive plasma currents into runaways is about 60% over a wide range of plasma currents in JET. Runaway generation has been simulated with a test particle model in order to verify the results of experimental data analysis and to obtain the background for extrapolation of the existing results onto larger devices such as ITER. It was found that close agreement between the modelling results and experimental data could be achieved if in the calculations the post-disruption plasma electron temperature was assumed equal to 10 eV and if the plasma column geometry evolution is taken into account in calculations. The experimental trends and numerical simulations show that runaway electrons are a critical issue for ITER and, therefore, the development of mitigation methods, which suppress runaway generation, is an essential task

  4. Disruptive behaviour in the perioperative setting: a contemporary review.

    Science.gov (United States)

    Villafranca, Alexander; Hamlin, Colin; Enns, Stephanie; Jacobsohn, Eric

    2017-02-01

    Disruptive behaviour, which we define as behaviour that does not show others an adequate level of respect and causes victims or witnesses to feel threatened, is a concern in the operating room. This review summarizes the current literature on disruptive behaviour as it applies to the perioperative domain. Searches of MEDLINE ® , Scopus™, and Google books identified articles and monographs of interest, with backreferencing used as a supplemental strategy. Much of the data comes from studies outside the operating room and has significant methodological limitations. Disruptive behaviour has intrapersonal, interpersonal, and organizational causes. While fewer than 10% of clinicians display disruptive behaviour, up to 98% of clinicians report witnessing disruptive behaviour in the last year, 70% report being treated with incivility, and 36% report being bullied. This type of conduct can have many negative ramifications for clinicians, students, and institutions. Although the evidence regarding patient outcomes is primarily based on clinician perceptions, anecdotes, and expert opinion, this evidence supports the contention of an increase in morbidity and mortality. The plausible mechanism for this increase is social undermining of teamwork, communication, clinical decision-making, and technical performance. The behavioural responses of those who are exposed to such conduct can positively or adversely moderate the consequences of disruptive behaviour. All operating room professions are involved, with the rank order (from high to low) being surgeons, nurses, anesthesiologists, and "others". The optimal approaches to the prevention and management of disruptive behaviour are uncertain, but they include preventative and professional development courses, training in soft skills and teamwork, institutional efforts to optimize the workplace, clinician contracts outlining the clinician's (and institution's) responsibilities, institutional policies that are monitored and

  5. Pursuing minimally disruptive medicine: disruption from illness and health care-related demands is correlated with patient capacity.

    Science.gov (United States)

    Boehmer, Kasey R; Shippee, Nathan D; Beebe, Timothy J; Montori, Victor M

    2016-06-01

    Chronic conditions burden patients with illness and treatments. We know little about the disruption of life by the work of dialysis in relation to the resources patients can mobilize, that is, their capacity, to deal with such demands. We sought to determine the disruption of life by dialysis and its relation to patient capacity to cope. We administered a survey to 137 patients on dialysis at an academic medical center. We captured disruption from illness and treatment, and physical, mental, personal, social, financial, and environmental aspects of patient capacity using validated scales. Covariates included number of prescriptions, hours spent on health care, existence of dependents, age, sex, and income level. On average, patients reported levels of capacity and disruption comparable to published levels. In multivariate regression models, limited physical, financial, and mental capacity were significantly associated with greater disruption. Patients in the top quartile of disruption had lower-than-expected physical, financial, and mental capacity. Our sample generally had capacity comparable to other populations and may be able to meet the demands imposed by treatment. Those with reduced physical, financial, and mental capacity reported higher disruption and represent a vulnerable group that may benefit from innovations in minimally disruptive medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures.

    Directory of Open Access Journals (Sweden)

    Eglantine Heude

    Full Text Available The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.

  7. The dlx5a/dlx6a Genes Play Essential Roles in the Early Development of Zebrafish Median Fin and Pectoral Structures

    Science.gov (United States)

    Heude, Églantine; Shaikho, Sarah; Ekker, Marc

    2014-01-01

    The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution. PMID:24858471

  8. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    Science.gov (United States)

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in

  9. Exogenous retinoic acid induces digit reduction in opossums (Monodelphis domestica) by disrupting cell death and proliferation, and apical ectodermal ridge and zone of polarizing activity function.

    Science.gov (United States)

    Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E

    2015-03-01

    Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.

  10. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes

    Directory of Open Access Journals (Sweden)

    Tanurdzic Milos

    2004-04-01

    Full Text Available Abstract Background Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. Results Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ and uroporphyrin dehydrogenase (CrUrod genes also produced the expected mutant phenotypes. Conclusion A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.

  11. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  12. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    Science.gov (United States)

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  13. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    Science.gov (United States)

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  14. Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex.

    Science.gov (United States)

    Hiruta, Chizue; Ogino, Yukiko; Sakuma, Tetsushi; Toyota, Kenji; Miyagawa, Shinichi; Yamamoto, Takashi; Iguchi, Taisen

    2014-11-18

    The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.

  15. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    Science.gov (United States)

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  16. The gene identification problem: An overview for developers

    Energy Technology Data Exchange (ETDEWEB)

    Fickett, J.W.

    1995-03-27

    The gene identification problem is the problem of interpreting nucleotide sequences by computer, in order to provide tentative annotation on the location, structure, and functional class of protein-coding genes. This problem is of self-evident importance, and is far from being fully solved, particularly for higher eukaryotes, Thus it is not surprising that the number of algorithm and software developers working in this area is rapidly increasing. The present paper is an overview of the field, with an emphasis on eukaryotes, for such developers.

  17. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  18. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption.

    Science.gov (United States)

    Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan

    2016-03-01

    Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

  19. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates

    International Nuclear Information System (INIS)

    Slotkin, Theodore A.

    2004-01-01

    Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants

  20. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior.

    Science.gov (United States)

    Schaufler, Jörg; Ronovsky, Marianne; Savalli, Giorgia; Cabatic, Maureen; Sartori, Simone B; Singewald, Nicolas; Pollak, Daniela D

    2016-01-01

    Disturbances of circadian rhythms are a key symptom of mood and anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) - commonly used antidepressant drugs - also modulate aspects of circadian rhythmicity. However, their potential to restore circadian disturbances in depression remains to be investigated. The effects of the SSRI fluoxetine on genetically based, depression-related circadian disruptions at the behavioral and molecular level were examined using mice selectively bred for high anxiety-related and co-segregating depression-like behavior (HAB) and normal anxiety/depression behavior mice (NAB). The length of the circadian period was increased in fluoxetine-treated HAB as compared to NAB mice while the number of activity bouts and light-induced entrainment were comparable. No difference in hippocampal Cry2 expression, previously reported to be dysbalanced in untreated HAB mice, was observed, while Per2 and Per3 mRNA levels were higher in HAB mice under fluoxetine treatment. The present findings provide evidence that fluoxetine treatment normalizes disrupted circadian locomotor activity and clock gene expression in a genetic mouse model of high trait anxiety and depression. An interaction between the molecular mechanisms mediating the antidepressant response to fluoxetine and the endogenous regulation of circadian rhythms in genetically based mood and anxiety disorders is proposed.