WorldWideScience

Sample records for gene demethylation confers

  1. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  2. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  3. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases.

  4. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  5. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses

    Energy Technology Data Exchange (ETDEWEB)

    Palsamy, Periyasamy [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States); Ayaki, Masahiko [Shizuoka National Hospital, Saitama (Japan); Elanchezhian, Rajan [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States); Shinohara, Toshimichi, E-mail: tshinohara@unmc.edu [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer We found significant Keap1 promoter demethylation in diabetic cataractous lenses. Black-Right-Pointing-Pointer Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. Black-Right-Pointing-Pointer Elevated levels of Keap1 are known to decrease the levels of Nrf2. Black-Right-Pointing-Pointer Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is known that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2 Prime deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which

  6. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses

    International Nuclear Information System (INIS)

    Palsamy, Periyasamy; Ayaki, Masahiko; Elanchezhian, Rajan; Shinohara, Toshimichi

    2012-01-01

    Highlights: ► We found significant Keap1 promoter demethylation in diabetic cataractous lenses. ► Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. ► Elevated levels of Keap1 are known to decrease the levels of Nrf2. ► Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is known that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2′deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which then increases the targeting of Nrf2 for proteosomal degradation. Decreased Nrf2 activity represses the

  7. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes

    International Nuclear Information System (INIS)

    Zambrano, Pilar; Sandoval, Karina; Trejo-Becerril, Catalina; Chanona-Vilchis, Jose; Duenas-González, Alfonso; Segura-Pacheco, Blanca; Perez-Cardenas, Enrique; Cetina, Lucely; Revilla-Vazquez, Alma; Taja-Chayeb, Lucía; Chavez-Blanco, Alma; Angeles, Enrique; Cabrera, Gustavo

    2005-01-01

    The antihypertensive compound hydralazine is a known demethylating agent. This phase I study evaluated the tolerability and its effects upon DNA methylation and gene reactivation in patients with untreated cervical cancer. Hydralazine was administered to cohorts of 4 patients at the following dose levels: I) 50 mg/day, II) 75 mg/day, III) 100 mg/day and IV) 150 mg/day. Tumor biopsies and peripheral blood samples were taken the day before and after treatment. The genes APC, MGMT; ER, GSTP1, DAPK, RARβ, FHIT and p16 were evaluated pre and post-treatment for DNA promoter methylation and gene expression by MSP (Methylation-Specific PCR) and RT-PCR respectively in each of the tumor samples. Methylation of the imprinted H19 gene and the 'normally methylated' sequence clone 1.2 was also analyzed. Global DNA methylation was analyzed by capillary electrophoresis and cytosine extension assay. Toxicity was evaluated using the NCI Common Toxicity Criteria. Hydralazine was well tolerated. Toxicities were mild being the most common nausea, dizziness, fatigue, headache and palpitations. Overall, 70% of the pretreatment samples and all the patients had at least one methylated gene. Rates of demethylation at the different dose levels were as follows: 50 mg/day, 40%; 75 mg/day, 52%, 100 mg/day, 43%, and 150 mg/day, 32%. Gene expression analysis showed only 12 informative cases, of these 9 (75%) re-expressed the gene. There was neither change in the methylation status of H19 and clone 1.2 nor changes in global DNA methylation. Hydralazine at doses between 50 and 150 mg/day is well tolerated and effective to demethylate and reactivate the expression of tumor suppressor genes without affecting global DNA methylation

  8. Aerosol azacytidine inhibits orthotopic lung cancers in mice through Its DNA demethylation and gene reactivation effects.

    Directory of Open Access Journals (Sweden)

    Xuan Qiu

    Full Text Available We devised an aerosol based demethylation therapy to achieve therapeutic efficacy in premalignant or in situ lesions of lung cancer, without systemic toxicity. Optimum regimens of aerosolized azacytidine (Aza were designed and used in orthotopic human non-small cell lung cancer xenograft models. The therapeutic efficacy and toxicity of aerosol Aza were compared with intravenously administered Aza. We observed that 80% of the droplets of the aerosol Aza measured ∼0.1-5 microns, which resulted in deposition in the lower bronchial airways. An animal model that phenocopies field carcinogeneisis in humans was developed by intratracheal inoculation of the human lung cancer cells in mice, thus resulting in their distribution throughout the entire airway space. Aerosolized Aza significantly prolonged the survival of mice bearing endo-bronchial lung tumors. The aerosol treatment did not cause any detectable lung toxicity or systemic toxicity. A pre-pharmacokinetic study in mice demonstrated that lung deposition of aerosolized Aza was significantly higher than the intravenous route. Lung tumors were resected after aerosol treatment and the methylation levels of 24 promoters of tumor-suppresser genes related to lung cancer were analyzed. Aerosol Aza significantly reduced the methylation level in 9 of these promoters and reexpressed several genes tested. In conclusion, aerosol Aza at non-cytotoxic doses appears to be effective and results in DNA demethylation and tumor suppressor gene re-expression. The therapeutic index of aerosol Aza is >100-fold higher than that of intravenous Aza. These results provide a preclinical rationale for a phase I clinical trial of aerosol Aza to be initiated at our Institution.

  9. The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Directory of Open Access Journals (Sweden)

    Choi Sang-Wook

    2010-11-01

    Full Text Available Abstract Background The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with Helicobacter pylori (H. pylori and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements. Methods The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the H. pylori-negative gastric mucosa. Results The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the H. pylori-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the H. pylori-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner. Conclusions The overmethylated genes under the influence of retroelement methylation in the H. pylori-infected stomach are demethylated in the gastric cancers influenced by LOH.

  10. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. [Clinical Significance of ID4 Gene Mehtylation in Demethylation-Treated MDS Cell Line and 2 MDS Patients].

    Science.gov (United States)

    Kang, Hui-Yuan; Wang, Xin-Rong; Gao, Li; Wang, Wei; Li, Mian-Yang; Wang, Li-Li; Wang, Cheng-Bin; Yu, Li

    2015-04-01

    To evaluate significance of ID4 gene mehtylation in demethylating myelodysplastic syndrome(MDS) cell Line MUTZ1 and 2 patients with MDS. The methylation-specific PCR (MS-PCR) and reverse transcription-PCR (RT-PCR) were applied to identify the methylation status and gene expression of ID4 gene in MDS cell line MUTZ1, a patient with aplastic anemia(AA) and a donor with normal bone marrow (NBM). RT-PCR was applied to detect the ID4 gene expression status in MUTZ1 cell line treated with decitabine at 3 different concentrations. Then bisulfite sequencing PCR (BSP) was applied to detect ID4 gene methylation status in 2 MDS parients treated with decitabine. The MDS cell line MUTZ-1 displayed a complete methylation of ID4 gene promoter with little mRNA expression. Inversely, bone marrow of an AA patient and NBM showed complete unmethylation of this gene with intensity mRNA expression. With the increase of decitabine concentration, ID4 gene mRNA expression was more and more increased. After decitabine treatment, ID4 gene methylation-positive frequencies of both the 2 MDS patients were much more decreased than that of the first treatment. So, ID4 gene mRNA expression inhibited by promoter hypemethylation could be recovered by using demethylation medicine. ID4 as a new potential anti-oncogene suggests that its methylation may become a marker for selection and assessment of therapeutic schedules in patients with MDS.

  12. Demethylation of Circulating Estrogen Receptor Alpha Gene in Cerebral Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Hsiu-Fen Lin

    Full Text Available Estrogen is involved in neuron plasticity and can promote neuronal survival in stroke. Its actions are mostly exerted via estrogen receptor alpha (ERα. Previous animal studies have shown that ERα is upregulated by DNA demethylation following ischemic injury. This study investigated the methylation levels in the ERα promoter in the peripheral blood of ischemic stroke patients.The study included 201 ischemic stroke patients, and 217 age- and sex-comparable healthy controls. The quantitative methylation level in the 14 CpG sites of the ERα promoter was measured by pyrosequencing in each participant. Multivariate regression model was used to adjust for stroke traditional risk factors. Stroke subtypes and sex-specific analysis were also conducted.The results demonstrated that the stroke cases had a lower ERα methylation level than controls in all 14 CpG sites, and site 13 and site 14 had significant adjusted p-values of 0.035 and 0.026, respectively. Stroke subtypes analysis showed that large-artery atherosclerosis and cardio-embolic subtypes had significantly lower methylation levels than the healthy controls at CpG site 5, site 9, site 12, site 13 and site 14 with adjusted p = 0.039, 0.009, 0.025, 0.046 and 0.027 respectively. However, the methylation level for the patients with small vessel subtype was not significant. We combined the methylation data from the above five sites for further sex-specific analysis. The results showed that the significant association only existed in women (adjusted p = 0.011, but not in men (adjusted p = 0.300.Female stroke cases have lower ERα methylation levels than those in the controls, especially in large-artery and cardio-embolic stroke subtypes. The study implies that women suffering from ischemic stroke of specific subtype may undergo different protective mechanisms to reduce the brain injury.

  13. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  14. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sihui Li

    2018-04-01

    Full Text Available Summary: The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis. : Li et al. identify the arginine demethylase (RDM activity of JMJD1B, a known lysine demethylase (KDM. They reveal that JMJD1B actively mediates demethylation of histone markers H4R3me2s and H3K9me2 in hematopoietic stem/progenitor cells (HSPCs. Keywords: JMJD1B, KDM3B, PRMT5, arginine demethylase, histone, epigenetic programming, gene expression, hematopoiesis

  15. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  16. Isolation of cowpea genes conferring drought tolerance ...

    African Journals Online (AJOL)

    The main objective of this study was to identify and isolate the genes conferring drought tolerance in cowpea. A cDNA library enriched for cowpea genes expressed specifically during responses to drought was constructed. A procedure called suppression subtractive hybridisation (SSH) was successfully employed to obtain ...

  17. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    Science.gov (United States)

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    Science.gov (United States)

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fibronectin affects transient MMP2 gene expression through DNA demethylation changes in non-invasive breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Isabela T Pereira

    Full Text Available Metastasis accounts for more than 90% of cancer deaths. Cells from primary solid tumors may invade adjacent tissues and migrate to distant sites where they establish new colonies. The tumor microenvironment is now recognized as an important participant in the signaling that induces cancer cell migration. An essential process for metastasis is extracellular matrix (ECM degradation by metalloproteases (MMPs, which allows tumor cells to invade local tissues and to reach blood vessels. The members of this protein family include gelatinase A, or MMP-2, which is responsible for the degradation of type IV collagen, the most abundant component of the basal membrane, that separates epithelial cells in the stroma. It is known that fibronectin is capable of promoting the expression of MMP-2 in MCF7 breast cancer cells in culture. In addition, it was already shown that the MMP2 gene expression is regulated by epigenetic mechanisms. In this work, we showed that fibronectin was able to induce MMP2 expression by 30% decrease in its promoter methylation. In addition, a histone marker for an open chromatin conformation was significantly increased. These results indicate a new role for fibronectin in the communication between cancer cells and the ECM, promoting epigenetic modifications.

  20. Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes

    Czech Academy of Sciences Publication Activity Database

    Vlková, Veronika; Štěpánek, Ivan; Hrušková, Veronika; Šenigl, Filip; Mayerová, Veronika; Šrámek, Martin; Šímová, Jana; Bieblová, Jana; Indrová, Marie; Hejhal, Tomáš; Dérian, N.; Klatzmann, D.; Six, A.; Reiniš, Milan

    2014-01-01

    Roč. 5, č. 16 (2014), s. 6923-35 ISSN 1949-2553 R&D Projects: GA ČR GAP301/10/2174; GA MZd NT14461 EU Projects: European Commission(XE) 18933 - CLINIGENE Grant - others:French state funds within the Investissements d’Avenir program(FR) ANR-11-IDEX-0004-02 Institutional support: RVO:68378050 Keywords : IFNγ signalling pathway * DNA demethylation * tumour Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  1. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro

    NARCIS (Netherlands)

    Lirk, P.; Hollmann, M. W.; Fleischer, M.; Weber, N. C.; Fiegl, H.

    2014-01-01

    Lidocaine demethylates deoxyribonucleic acid (DNA) in breast cancer cells. This modification of epigenetic information may be of therapeutic relevance in the perioperative period, because a decrease in methylation can reactivate tumour suppressor genes and inhibit tumour growth. The objectives of

  2. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  3. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Tsuji-Takayama, Kazue; Inoue, Toshiya; Ijiri, Yoshihiro; Otani, Takeshi; Motoda, Ryuichi; Nakamura, Shuji; Orita, Kunzo

    2004-01-01

    The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes

  4. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  6. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    Science.gov (United States)

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  7. All-trans retinoic acid promotes TGF-β-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus.

    Directory of Open Access Journals (Sweden)

    Ling Lu

    Full Text Available It has been documented all-trans retinoic acid (atRA promotes the development of TGF-β-induced CD4(+Foxp3(+ regulatory T cells (iTreg that play a vital role in the prevention of autoimmune responses, however, molecular mechanisms involved remain elusive. Our objective, therefore, was to determine how atRA promotes the differentiation of iTregs.Addition of atRA to naïve CD4(+CD25(- cells stimulated with anti-CD3/CD28 antibodies in the presence of TGF-β not only increased Foxp3(+ iTreg differentiation, but maintained Foxp3 expression through apoptosis inhibition. atRA/TGF-β-treated CD4(+ cells developed complete anergy and displayed increased suppressive activity. Infusion of atRA/TGF-β-treated CD4(+ cells resulted in the greater effects on suppressing symptoms and protecting the survival of chronic GVHD mice with typical lupus-like syndromes than did CD4(+ cells treated with TGF-β alone. atRA did not significantly affect the phosphorylation levels of Smad2/3 and still promoted iTreg differentiation in CD4(+ cells isolated from Smad3 KO and Smad2 conditional KO mice. Conversely, atRA markedly increased ERK1/2 activation, and blockade of ERK1/2 signaling completely abolished the enhanced effects of atRA on Foxp3 expression. Moreover, atRA significantly increased histone methylation and acetylation within the promoter and conserved non-coding DNA sequence (CNS elements at the Foxp3 gene locus and the recruitment of phosphor-RNA polymerase II, while DNA methylation in the CNS3 was not significantly altered.We have identified the cellular and molecular mechanism(s by which atRA promotes the development and maintenance of iTregs. These results will help to enhance the quantity and quality of development of iTregs and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.

  8. Gadd45a promotes DNA demethylation through TDG

    OpenAIRE

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R.; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Sch?r, Primo; Xu, Guo-Liang

    2015-01-01

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)?initiated oxidative demethylation. The conn...

  9. Oxidative demethylation of monomethylmercury in sediments

    International Nuclear Information System (INIS)

    Oremland, R.S.

    1991-01-01

    Previous studies suggested that demethylation of monomethylmercury proceeds in nature by a simple organo-mercury lyase reaction resulting in the production of CH 4 and Hg 2+ , which is further reduced to Hg 0 . Addition of 14 CH 3 HgI to sediments resulted in the production of mainly 14 CO 2 and some 14 CH 4 . In the case of estuarine sediments, production of both these gases was only observed under anaerobiosis, and was totally inhibited by MoO 4 2- , which indicated the involvement of sulfate-reducing bacteria. In the case of anaerobic freshwater sediments, results with inhibitors indicated that both methanogens and sulfate reducers were involved in this oxidative demethylation. Aerobic incubation of estuarine sediments resulted in the production of only 14 CH 4 , indicating the importance of the organo-mercurial lyase reaction under this condition. However, in freshwater sediments, this reaction was not observed, and the oxidative demethylation reaction was predominant either under aerobic or anaerobic conditions. A methylotrophic methanogen (GS-16) was able to form traces of 14 CH 4 and 14 CO 2 from 14 CH 3 HgI, and some strains of sulfate-reducers formed traces of 14 CH 4 . Addition of methanol to anaerobic freshwater sediments partially inhibited production of 14 CH 4 and 14 CO 2 , but not CH 4 . These results suggest that oxidative demethylation proceeds by an established pathway for C-1 metabolism

  10. Demethylation of host-cell DNA at the site of avian retrovirus integration

    Czech Academy of Sciences Publication Activity Database

    Hejnar, Jiří; Elleder, Daniel; Hájková, P.; Walter, J.; Blažková, Jana; Svoboda, Jan

    2003-01-01

    Roč. 2003, č. 311 (2003), s. 641-648 ISSN 0006-291X Institutional research plan: CEZ:AV0Z5052915 Keywords : DNA methylation and demethylation * integration of retroviruses * gene silencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.836, year: 2003

  11. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    Science.gov (United States)

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  12. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine

    Directory of Open Access Journals (Sweden)

    Benitez-Bribiesca Luis

    2006-08-01

    Full Text Available Abstract Background The development of resistance to cytotoxic chemotherapy continues to be a major obstacle for successful anticancer therapy. It has been shown that cells exposed to toxic concentrations of commonly used cancer chemotherapy agents develop DNA hypermetylation. Hence, demethylating agents could play a role in overcoming drug resistance. Methods MCF-7 cells were rendered adriamycin-resistant by weekly treatment with adriamycin. Wild-type and the resulting MCF-7/Adr cells were analyzed for global DNA methylation. DNA methyltransferase activity and DNA methyltransferase (dnmt gene expression were also determined. MCF-7/Adr cells were then subjected to antisense targeting of dnmt1, -3a, and -b genes and to treatment with the DNA methylation inhibitor hydralazine to investigate whether DNA demethylation restores sensitivity to adriamycin. Results MCF-7/Adr cells exhibited the multi-drug resistant phenotype as demonstrated by adriamycin resistance, mdr1 gene over-expression, decreased intracellular accumulation of adriamycin, and cross-resistance to paclitaxel. The mdr phenotype was accompanied by global DNA hypermetylation, over-expression of dnmt genes, and increased DNA methyltransferase activity as compared with wild-type MCF-7 cells. DNA demethylation through antisense targeting of dnmts or hydralazine restored adriamycin sensitivity of MCF-7/Adr cells to a greater extent than verapamil, a known inhibitor of mdr protein, suggesting that DNA demethylation interferes with the epigenetic reprogramming that participates in the drug-resistant phenotype. Conclusion We provide evidence that DNA hypermethylation is at least partly responsible for development of the multidrug-resistant phenotype in the MCF-7/Adr model and that hydralazine, a known DNA demethylating agent, can revert the resistant phenotype.

  13. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion

    OpenAIRE

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M. L.; Sérandour, Aurélien A.; Carroll, Jason S.; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-01-01

    Dynamic demethylation of histone residues plays a crucial role in the regulation of gene expression. Lysine Specific Demethylase 1 (LSD1) can remove both transcriptionally permissive and repressive histone marks. How these activities are controlled is not clearly understood. Here, we show that the estrogen-related receptor α (ERRα) induces LSD1 to erase repressive marks in vitro. Through such a mechanism, LSD1 and ERRα commonly activate a set of transcriptional targets that include genes invo...

  14. Clinical infection control in gene therapy : A multidisciplinary conference

    NARCIS (Netherlands)

    Evans, ME; Jordan, CT; Chang, SMW; Conrad, C; Gerberding, JL; Kaufman, HL; Mayhall, CG; Nolta, JA; Pilaro, AM; Sullivan, S; Weber, DJ; Wivel, NA

    2000-01-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being

  15. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain

    Science.gov (United States)

    Gallego-Bartolomé, Javier; Gardiner, Jason; Liu, Wanlu; Papikian, Ashot; Ghoshal, Basudev; Kuo, Hsuan Yu; Zhao, Jenny Miao-Chi; Jacobsen, Steven E.

    2018-01-01

    DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF–TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF–TET1cd fusions, the SunTag–TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons. PMID:29444862

  16. Cell-based DNA demethylation detection system for screening of epigenetic drugs in 2D, 3D and xenograft models

    Czech Academy of Sciences Publication Activity Database

    Agrawal, K.; Das, V.; Otmar, Miroslav; Krečmerová, Marcela; Džubák, P.; Hajdúch, M.

    2015-01-01

    Roč. 14, Suppl 2 (2015), B72 ISSN 1535-7163. [AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. 05.11.2015-09.11.2015, Boston] R&D Projects: GA MPO(CZ) FR-TI4/625; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : demethylation * epigenetic drugs * fluorescence detection system Subject RIV: CC - Organic Chemistry

  17. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  18. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  19. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion

    Science.gov (United States)

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M. L.; Sérandour, Aurélien A.; Carroll, Jason S.; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-01-01

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion. PMID:28348226

  20. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion.

    Science.gov (United States)

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M L; Sérandour, Aurélien A; Carroll, Jason S; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-04-11

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.

  1. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  2. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  3. Early de novo DNA methylation and prolonged demethylation in the muscle lineage.

    Science.gov (United States)

    Tsumagari, Koji; Baribault, Carl; Terragni, Jolyon; Varley, Katherine E; Gertz, Jason; Pradhan, Sirharsa; Badoo, Melody; Crain, Charlene M; Song, Lingyun; Crawford, Gregory E; Myers, Richard M; Lacey, Michelle; Ehrlich, Melanie

    2013-03-01

    Myogenic cell cultures derived from muscle biopsies are excellent models for human cell differentiation. We report the first comprehensive analysis of myogenesis-specific DNA hyper- and hypo-methylation throughout the genome for human muscle progenitor cells (both myoblasts and myotubes) and skeletal muscle tissue vs. 30 non-muscle samples using reduced representation bisulfite sequencing. We also focused on four genes with extensive hyper- or hypo-methylation in the muscle lineage (PAX3, TBX1, MYH7B/MIR499 and OBSCN) to compare DNA methylation, DNaseI hypersensitivity, histone modification, and CTCF binding profiles. We found that myogenic hypermethylation was strongly associated with homeobox or T-box genes and muscle hypomethylation with contractile fiber genes. Nonetheless, there was no simple relationship between differential gene expression and myogenic differential methylation, rather only for subsets of these genes, such as contractile fiber genes. Skeletal muscle retained ~30% of the hypomethylated sites but only ~3% of hypermethylated sites seen in myogenic progenitor cells. By enzymatic assays, skeletal muscle was 2-fold enriched globally in genomic 5-hydroxymethylcytosine (5-hmC) vs. myoblasts or myotubes and was the only sample type enriched in 5-hmC at tested myogenic hypermethylated sites in PAX3/CCDC140 andTBX1. TET1 and TET2 RNAs, which are involved in generation of 5-hmC and DNA demethylation, were strongly upregulated in myoblasts and myotubes. Our findings implicate de novo methylation predominantly before the myoblast stage and demethylation before and after the myotube stage in control of transcription and co-transcriptional RNA processing. They also suggest that, in muscle, TET1 or TET2 are involved in active demethylation and in formation of stable 5-hmC residues.

  4. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  5. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    OpenAIRE

    Jiongjiong Li; Jizhi Zhang; Shifeng Zhang; Qiang Gao; Jianzhang Li; Wei Zhang

    2017-01-01

    Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL) reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance) and Fourier transform infrared (FT-IR) spectroscopy to determine the deme...

  6. Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders.

    Science.gov (United States)

    Smith, Milo R; Glicksberg, Benjamin S; Li, Li; Chen, Rong; Morishita, Hirofumi; Dudley, Joel T

    2018-01-01

    High and increasing prevalence of neurodevelopmental disorders place enormous personal and economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by the environment. If these critical periods are disrupted, development of normal brain function can be permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of neurodevelopmental disease.

  7. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  8. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  10. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  11. In silico design and functional assessment of semisynthetic genes that confer tolerance to phosphinothricin

    Directory of Open Access Journals (Sweden)

    Jenny Paola Jiménez

    2016-07-01

    Full Text Available Herbicide tolerance is one of the features most used in GM crops, which has shown positive results for farmers and the environment. The starting point is the development of expression cassettes that express the characteristic of interest, they are initially constructed by standard molecular biology techniques. Currently, by bioinformatics and synthetic biology tools, it is possible to design and test the construct in silico, and then hire their synthesis. This approach allows optimizing expression by modifying the codon usage. In this work there were designed and evaluated semi-synthetic versions of genes in Nicotiana benthamiana, these genes confer tolerance to the herbicide phosphinothricin. It was made an analysis of freedom to operate in order to ensure that the designed constructs not violate intellectual property in Colombia. There were obtained two expression cassettes with freedom to operate, which express versions of the bar gene.

  12. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  13. Impact of DNA demethylation of the G0S2 gene on the transcription of G0S2 in squamous lung cancer cell lines with or without nuclear receptor agonists

    International Nuclear Information System (INIS)

    Kusakabe, Masashi; Watanabe, Kousuke; Emoto, Noriko; Aki, Naomi; Kage, Hidenori; Nagase, Takahide; Nakajima, Jun; Yatomi, Yutaka; Ohishi, Nobuya; Takai, Daiya

    2009-01-01

    We recently identified that DNA methylation of the G0S2 gene was significantly more frequent in squamous lung cancer than in non-squamous lung cancer. However, the significance of G0S2 methylation levels on cancer cells is not yet known. We investigated the effect of G0S2 methylation levels on cell growth, mRNA expression, and chromatin structure using squamous lung cancer cell lines and normal human bronchial epithelial cells. DNA methylation and mRNA expression of G0S2 were inversely correlated, and in one of the squamous lung cancer cell lines, LC-1 sq, G0S2 was completely methylated and suppressed. Overexpression of G0S2 in LC-1 sq did not show growth arrest or apoptosis. The G0S2 gene has been reported to be a target gene of all-trans retinoic acid and peroxisome proliferator-activated receptor agonists. We treated LC-1 sq with 5-Aza-2'-deoxycytidine, Trichostatin A, all-trans retinoic acid, Wy 14643, or Pioglitazone either alone or in combination. Only 5-Aza-2'-deoxycytidine restored mRNA expression of G0S2. Chromatin immunoprecipitation revealed that histone H3 lysine 9 was methylated regardless of DNA methylation or mRNA expression. In summary, mRNA expression of G0S2 was regulated mainly by DNA methylation in squamous lung cancer cell lines. When the G0S2 gene was methylated, nuclear receptor agonists could not restore mRNA expression of G0S2 and did not show any additive effect on mRNA expression of G0S2 even after the treatment with 5-Aza-2'-deoxycytidine.

  14. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. A dominant control region from the human β-globin locus conferring integration site-independent gene expression.

    NARCIS (Netherlands)

    D. Talbot; P. Collis; M. Antoniou (Michael); M. Vidal; F.G. Grosveld (Frank); D.R. Greaves (David)

    1989-01-01

    textabstractThe regulatory elements that determine the expression pattern of a number of eukaryotic genes expressed specifically in certain tissues have been defined and studied in detail. In general, however, the expression conferred by these elements on genes reintroduced into the genomes of cell

  16. Demethylation of arsenic limits its volatilization in fungi

    International Nuclear Information System (INIS)

    Su, Shiming; Zeng, Xibai; Feng, Qiufen; Bai, Lingyu; Zhang, Lili; Jiang, Sheng; Li, Aiguo; Duan, Ran; Wang, Xiurong; Wu, Cuixia; Wang, Yanan

    2015-01-01

    Arsenic (As) biomethylation is increasingly being regarded as a promising method to volatize As from the environment; however, the As volatilization efficiency of most microorganisms is low. Here, the speciation transformation of dimethylarsinic acid (DMA) as an important methylation intermediate in the cells of Fusarium oxysporum CZ-8F1, Penicillium janthinellum SM-12F4, and Trichoderma asperellum SM-12F1 were investigated. These fungal strains have been certified to volatilize As from As-loaded environment. In situ X-ray absorption near edge structure (XANES) indicated that demethylation of DMA with methylarsonic acid (MMA), arsenate [As(V)], and arsenite [As(III)] as intermediates or products occurred in fungal cells after exposure to DMA for 15 days. 36.7–55.7% of the original DMA could lose one or two methyl groups and be changed into MMA or inorganic As. Chromatographic separation of the cell lysates also supported these findings. Thus it comes that demethylation might be a remarkable internal factor limiting As volatilization efficiency. - Highlights: • XAS and chromatographic separation were used to study the speciation change of DMA. • DMA demethylation with MMA, As(V), and As(III) as products occurred in fungal cells. • Demethylation might be responsible for the limited volatilization efficiency of As. - Demethylation might be responsible for the limited methylation efficiency of As

  17. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    Science.gov (United States)

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  18. Biochemistry and occurrence of O-demethylation in plant metabolism

    Directory of Open Access Journals (Sweden)

    Jillian Hagel

    2010-07-01

    Full Text Available Demethylases play a pivitol role in numerous biological processes from covalent histone modification and DNA repair to specialized metabolism in plants and microorganisms. Enzymes that catalyze O- and N-demethylation include 2-oxoglutarate (2OG/Fe(II-dependent dioxygenases, cytochromes P450, Rieske-domain proteins and flavin adenine dinucleotide (FAD-dependent oxidases. Proposed mechanisms for demethylation by 2OG/Fe(II-dependent enzymes involve hydroxylation at the O- or N-linked methyl group followed by formaldehyde elimination. Members of this enzyme family catalyze a wide variety of reactions in diverse plant metabolic pathways. Recently, we showed that 2OG/Fe(II-dependent dioxygenases catalyze the unique O-demethylation steps of morphine biosynthesis in opium poppy, which provides a rational basis for the widespread occurrence of demethylases in benzylisoquinoline alkaloid metabolism.

  19. A dominant control region from the human β-globin locus conferring integration site-independent gene expression.

    OpenAIRE

    Talbot, D.; Collis, P.; Antoniou, Michael; Vidal, M.; Grosveld, Frank; Greaves, David

    1989-01-01

    textabstractThe regulatory elements that determine the expression pattern of a number of eukaryotic genes expressed specifically in certain tissues have been defined and studied in detail. In general, however, the expression conferred by these elements on genes reintroduced into the genomes of cell lines and transgenic animals has turned out to be at a low level relative to that of endogenous genes, and influenced by the chromosomal site of insertion of the exogenous construct. We have previo...

  20. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  1. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Spatial control of protein phosphatase 2A (de)methylation

    International Nuclear Information System (INIS)

    Longin, Sari; Zwaenepoel, Karen; Martens, Ellen; Louis, Justin V.; Rondelez, Evelien; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Reversible methylation of the protein phosphatase 2A catalytic subunit (PP2A C ) is an important regulatory mechanism playing a crucial role in the selective recruitment of regulatory B subunits. Here, we investigated the subcellular localization of leucine carboxyl methyltransferase (LCMT1) and protein phosphatase methylesterase (PME-1), the two enzymes catalyzing this process. The results show that PME-1 is predominantly localized in the nucleus and harbors a functional nuclear localization signal, whereas LCMT1 is underrepresented in the nucleus and mainly localizes to the cytoplasm, Golgi region and late endosomes. Indirect immunofluorescence with methylation-sensitive anti-PP2A C antibodies revealed a good correlation with the methylation status of PP2A C , demethylated PP2A C being substantially nuclear. Throughout mitosis, demethylated PP2A C is associated with the mitotic spindle and during cytokinesis with the cleavage furrow. Overexpression of PME-1, but not of an inactive mutant, results in increased demethylation of PP2A C in the nucleus, whereas overexpression of a cytoplasmic PME-1 mutant lacking the NLS results in increased demethylation in the cytoplasm-in all cases, however, without any obvious functional consequences. PME-1 associates with an inactive PP2A population, regardless of its esterase activity or localization. We propose that stabilization of this inactive, nuclear PP2A pool is a major in vivo function of PME-1

  3. A New Synthetic Route to Dihydrobenzopyran Via Tandem Demethylation Cyclisation

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2000-06-01

    Full Text Available A tandem demethylation-cyclisation reaction resulting in the formation of pyran rings using AlCl3/EtSH reagent under mild reaction conditions is reported. X-ray diffraction studies on the intermediate support the suggested mechanism.

  4. Agrobacterium mediated transformation of brassica juncea (l.) czern with chitinase gene conferring resistance against fungal infections

    International Nuclear Information System (INIS)

    Ahmad, B.; Ambreen, S.; Khan, I.

    2015-01-01

    Brassica juncea (Czern and Coss., L.) is an important oilseed crop. Since it is attacked by several bacterial and fungal diseases, therefore, we developed an easy and simple protocol for the regeneration and transformation of B. juncea variety RAYA ANMOL to give rise to transgenic plants conferring resistance against various fungal diseases. The transformation was carried out using Agrobacterium with Chitinase gene. This gene was isolated from Streptomyces griseus HUT6037. We used two types of explants for transformation i.e. hypocotyls and cotyledons. Only hypocotyls explants showed good results regarding callus initiation. Different hormonal concentrations were applied i.e. BAP 2, 4 and 6 mgL-1 and NAA 0.1, 0.2 and 0.3 mgL-1. However, high transformation efficiency was observed by supplementing the medium with combination of 2 mgL-1 BAP and 0.2 mgL-1 for initiation of callus. Similarly 10 mgL-1 kanamycin and 200 mgL-1 cefotaxime also proved successful for the selection of transformed callus. In order to confirm the presence of transgenic callus Polymerase chain reaction was performed using specific primers for Chitinase gene. (author)

  5. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  6. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  7. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2017-07-01

    builds on our recent discovery of a novel class of RNAs, the DiRs or DNMT1-interacting RNAs, involved in cell type-specific DNA methylation patterns...causes leading to aberrant DNA methylation remain elusive. This proposal builds on our recent discovery of a novel class of RNAs, the DiRs or DNMT1...remains unknown. Our hypothesis is that the saRNAs might be acting as DiRs-mimicking molecules, and we will investigate whether saRNAs induce

  8. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Ohms, Stephen J. [ACRF Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Shannon, Frances M. [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); The University of Canberra, ACT 2602 (Australia); Sun, Chao, E-mail: sunchao2775@163.com [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Fan, Jun Y., E-mail: jun.fan@anu.edu.au [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  9. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    International Nuclear Information System (INIS)

    Li, Yan; Ohms, Stephen J.; Shannon, Frances M.; Sun, Chao; Fan, Jun Y.

    2012-01-01

    Highlights: ► DNA methylation is dynamic and flexible and changes rapidly upon cell activation. ► DNA methylation controls the inducible gene expression in a given cell type. ► Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  10. Candidate gene analysis and identification of TRAP and SSR markers linked to the Or5 gene, which confers sunflower resistance to race E of broomrape (Orobanche cumana Wallr.)

    Science.gov (United States)

    Sunflower broomrape (Orobanche cumana Wallr.) is a root holoparasitic angiosperm considered as being one of the major constraints for sunflower production in Mediterranean areas. Breeding for resistance has been crucial for protecting sunflowers from broomrape damage. The Or5 gene, which confers re...

  11. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    LENUS (Irish Health Repository)

    Vacic, Vladimir

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.

  12. Stable knockdown of PASG enhances DNA demethylation but does not accelerate cellular senescence in TIG-7 human fibroblasts.

    Science.gov (United States)

    Suzuki, Toshikazu; Farrar, Jason E; Yegnasubramanian, Srinivasan; Zahed, Muhammed; Suzuki, Nobuo; Arceci, Robert J

    2008-09-01

    Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while downregulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells.

  13. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  14. DNA demethylation upregulated Nrf2 expression in Alzheimer's disease cellular model

    Directory of Open Access Journals (Sweden)

    Huimin eCao

    2016-01-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (Nrf2 is an important transcription factor in the defense against oxidative stress. Cumulative evidence has shown that oxidative stress plays a key role in the pathogenesis of Alzheimer's disease (AD. Previous animal and clinical studies had observed decreased expression of Nrf2 in AD. However, the underlying regulation mechanisms of Nrf2 in AD remain unclear. Here, we used the DNA methyltransferases (Dnmts inhibitor 5-aza-2′-deoxycytidine (5-Aza to test whether Nrf2 expression was regulated by methylation in N2a cells characterizing by expressing human Swedish mutant amyloid precursor protein (N2a/APPswe. We found 5-Aza treatment increased Nrf2 at both mRNA and protein levels via down-regulating the expression of Dnmts and DNA demethylation. In addition, 5-Aza mediated upregulation of Nrf2 expression was concomitant with increased nuclear translocation of Nrf2 and higher expression of Nrf2 downstream target gene NAD(PH:quinone oxidoreductas (NQO1. Our study showed that DNA demethylation promoted the Nrf2 cell signaling pathway, which may enhance the antioxidant system against AD development.

  15. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars

    OpenAIRE

    Montes, Maria Jesus; Andrés, María Fe; Sin, E.; Lopez Braña, Isidoro; Martín-Sánchez, J.A.; Romero, M.D.; Delibes Castro, Angeles

    2008-01-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereal crops that can cause severe yield losses in wheat (Triticum aestivum). Differential host–nematode interactions occur in wheat cultivars carrying different CCN resistance (Cre) genes. The objective of this study was to determine the CCN resistance conferred by the Cre7 gene from Aegilops triuncialis in a 42-chromosome introgression line and to assess the effects of the Cre1, Cre3, Cre4, and Cre8 genes present in A...

  16. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2'-deoxycytidine results in increased tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Christopher A Hamm

    Full Text Available Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.

  17. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    Science.gov (United States)

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  19. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    Science.gov (United States)

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  20. ERRα protein is stabilized by LSD1 in a demethylation-independent manner.

    Directory of Open Access Journals (Sweden)

    Julie Carnesecchi

    Full Text Available The LSD1 histone demethylase is highly expressed in breast tumors where it constitutes a factor of poor prognosis and promotes traits of cancer aggressiveness such as cell invasiveness. Recent work has shown that the Estrogen-Related Receptor α (ERRα induces LSD1 to demethylate the Lys 9 of histone H3. This results in the transcriptional activation of a number of common target genes, several of which being involved in cellular invasion. High expression of ERRα protein is also a factor of poor prognosis in breast tumors. Here we show that, independently of its demethylase activities, LSD1 protects ERRα from ubiquitination, resulting in overexpression of the latter protein. Our data also suggests that the elevation of LSD1 mRNA and protein in breast cancer (as compared to normal tissue may be a key event to increase ERRα protein, independently of its corresponding mRNA.

  1. ERRα protein is stabilized by LSD1 in a demethylation-independent manner.

    Science.gov (United States)

    Carnesecchi, Julie; Cerutti, Catherine; Vanacker, Jean-Marc; Forcet, Christelle

    2017-01-01

    The LSD1 histone demethylase is highly expressed in breast tumors where it constitutes a factor of poor prognosis and promotes traits of cancer aggressiveness such as cell invasiveness. Recent work has shown that the Estrogen-Related Receptor α (ERRα) induces LSD1 to demethylate the Lys 9 of histone H3. This results in the transcriptional activation of a number of common target genes, several of which being involved in cellular invasion. High expression of ERRα protein is also a factor of poor prognosis in breast tumors. Here we show that, independently of its demethylase activities, LSD1 protects ERRα from ubiquitination, resulting in overexpression of the latter protein. Our data also suggests that the elevation of LSD1 mRNA and protein in breast cancer (as compared to normal tissue) may be a key event to increase ERRα protein, independently of its corresponding mRNA.

  2. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation

    International Nuclear Information System (INIS)

    Lawrence, Paul; Conderino, Joseph S.; Rieder, Elizabeth

    2014-01-01

    Previously, RNA helicase A (RHA) re-localization from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells was shown to coincide with loss of RHA methylated arginine residues at its C-terminus. The potential interaction between RHA and Jumonji C-domain (JmjC) protein 6 (JMJD6) arginine demethylase in infected cells was investigated. Treatment with N-oxalylglycine (NOG) inhibitor of JmjC demethylases prevented FMDV-induced RHA demethylation and re-localization, and also decreased viral protein synthesis and virus titers. Physical interaction between JMJD6 and RHA was demonstrated via reciprocal co-immunoprecipitation, where RHA preferentially bound JMJD6 monomers. Nuclear efflux of demethylated RHA (DM-RHA) coincided with nuclear influx of JMJD6, which was not observed using another picornavirus. A modified biochemical assay demonstrated JMJD6 induced dose-dependent demethylation of RHA and two RHA-derived isoforms, which could be inhibited by NOG. We propose a role for JMJD6 in RHA demethylation stimulated by FMDV, that appears to facilitate virus replication. - Highlights: • We examined the role of JMJD6 in FMDV-induced RHA demethylation process. • Using an arginine demethylation assay showed that JMJD6 is involved in RHA demethylation. • A demethylases inhibitor reduced cytoplasmic accumulation of RHA and FMDV titers

  3. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Paul; Conderino, Joseph S.; Rieder, Elizabeth, E-mail: elizabeth.rieder@ars.usda.gov

    2014-03-15

    Previously, RNA helicase A (RHA) re-localization from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells was shown to coincide with loss of RHA methylated arginine residues at its C-terminus. The potential interaction between RHA and Jumonji C-domain (JmjC) protein 6 (JMJD6) arginine demethylase in infected cells was investigated. Treatment with N-oxalylglycine (NOG) inhibitor of JmjC demethylases prevented FMDV-induced RHA demethylation and re-localization, and also decreased viral protein synthesis and virus titers. Physical interaction between JMJD6 and RHA was demonstrated via reciprocal co-immunoprecipitation, where RHA preferentially bound JMJD6 monomers. Nuclear efflux of demethylated RHA (DM-RHA) coincided with nuclear influx of JMJD6, which was not observed using another picornavirus. A modified biochemical assay demonstrated JMJD6 induced dose-dependent demethylation of RHA and two RHA-derived isoforms, which could be inhibited by NOG. We propose a role for JMJD6 in RHA demethylation stimulated by FMDV, that appears to facilitate virus replication. - Highlights: • We examined the role of JMJD6 in FMDV-induced RHA demethylation process. • Using an arginine demethylation assay showed that JMJD6 is involved in RHA demethylation. • A demethylases inhibitor reduced cytoplasmic accumulation of RHA and FMDV titers.

  4. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabrizio [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Lainez, Guillermo [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Limones-Herrero, Daniel [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Coloma, M. Dolores; Escobar, Javier [Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain); Jiménez, M. Consuelo [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Miranda, Miguel A., E-mail: mmiranda@qim.upv.es [Instituto de Tecnología Química UPV-CSIC/Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); and others

    2016-12-15

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  5. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites

    International Nuclear Information System (INIS)

    Palumbo, Fabrizio; Garcia-Lainez, Guillermo; Limones-Herrero, Daniel; Coloma, M. Dolores; Escobar, Javier; Jiménez, M. Consuelo; Miranda, Miguel A.

    2016-01-01

    Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore to the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis.

  6. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  7. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  8. Risk-Conferring Glutamatergic Genes and Brain Glutamate Plus Glutamine in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Juan R. Bustillo

    2017-06-01

    Full Text Available BackgroundThe proton magnetic resonance spectroscopy (1H-MRS signals from glutamate (or the combined glutamate and glutamine signal—Glx have been found to be greater in various brain regions in people with schizophrenia. Recently, the Psychiatric Genetics Consortium reported that several common single-nucleotide polymorphisms (SNPs in glutamate-related genes confer increased risk of schizophrenia. Here, we examined the relationship between presence of these risk polymorphisms and brain Glx levels in schizophrenia.Methods1H-MRS imaging data from an axial, supraventricular tissue slab were acquired in 56 schizophrenia patients and 67 healthy subjects. Glx was measured in gray matter (GM and white matter (WM regions. The genetic data included six polymorphisms genotyped across an Illumina 5M SNP array. Only three of six glutamate as well as calcium-related SNPs were available for examination. These included three glutamate-related polymorphisms (rs10520163 in CLCN3, rs12704290 in GRM3, and rs12325245 in SLC38A7, and three calcium signaling polymorphisms (rs1339227 in RIMS1, rs7893279 in CACNB2, and rs2007044 in CACNA1C. Summary risk scores for the three glutamate and the three calcium polymorphisms were calculated.ResultsGlx levels in GM positively correlated with glutamate-related genetic risk score but only in younger (≤36 years schizophrenia patients (p = 0.01. Glx levels did not correlate with calcium risk scores. Glx was higher in the schizophrenia group compared to levels in controls in GM and WM regardless of age (p < 0.001.ConclusionElevations in brain Glx are in part, related to common allelic variants of glutamate-related genes known to increase the risk for schizophrenia. Since the glutamate risk scores did not differ between groups, some other genetic or environmental factors likely interact with the variability in glutamate-related risk SNPs to contribute to an increase in brain Glx early in the illness.

  9. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    Science.gov (United States)

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  10. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Wang Hehe

    2012-08-01

    Full Text Available Abstract Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad and susceptible (‘Sloan’ genotypes. There were 1025 single nucleotide polymorphisms (SNPs in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for

  11. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers.

    Science.gov (United States)

    Kim, Suk-Man; Sohn, Jae-Keun

    2005-08-31

    This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

  12. Functional and structural analysis of the DNA sequence conferring glucocorticoid inducibility to the mouse mammary tumor virus gene

    International Nuclear Information System (INIS)

    Skroch, P.

    1987-05-01

    In the first part of my thesis I show that the DNA element conferring glucocorticoid inducibility to the Mouse Mammary Tumor Virus (HRE) has enhancer properties. It activates a heterologous promoter - that of the β-globin gene, independently of distance, position and orientation. These properties however have to be regarded in relation to the remaining regulatory elements of the activated gene as the recombinants between HRE and the TK gene have demonstrated. In the second part of my thesis I investigated the biological significance of certain sequence motifs of the HRE, which are remarkable by their interaction with transacting factors or sequence homologies with other regulatory DNA elements. I could confirm the generally postulated modular structure of enhancers for the HRE and bring the relevance of the single subdomains for the function of the element into relationship. (orig.) [de

  13. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Science.gov (United States)

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  14. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    Directory of Open Access Journals (Sweden)

    Jiongjiong Li

    2017-09-01

    Full Text Available Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance and Fourier transform infrared (FT-IR spectroscopy to determine the demethylation mechanism. With the demethylation of lignin, the methoxyl group content decreased from 1.93 m mol/g to 1.09 m mol/g, and the phenolic hydroxyl group content increased from 0.56 m mol/g to 0.82 m mol/g. These results revealed that methoxyl groups were attacked by SO32−, and some methoxyl groups were converted to phenolic hydroxyl groups by a nucleophilic substitution reaction, generating DL with high reactivity. The chemical properties of lignin-based phenolic resins were studied by 13C-NMR and FT-IR spectroscopy, and their physical properties were also investigated. The results indicated that lignin-based phenolic resins exhibited faster curing rate and shorter gel time. In addition, the bonding strength increased from 0.92 MPa to 1.07 MPa, and the formaldehyde emission decreased from 0.58 mg/L to 0.22 mg/L after lignin demethylated at the optimum condition.

  15. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  16. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  17. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers

    NARCIS (Netherlands)

    Gorguet, B.J.M.; Schipper, E.H.; Heusden, van A.W.; Lindhout, P.

    2006-01-01

    Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order

  18. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    Science.gov (United States)

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  19. Synergistic Cytotoxic Effect of L-Asparaginase Combined with Decitabine as a Demethylating Agent in Pediatric T-ALL, with Specific Epigenetic Signature

    Directory of Open Access Journals (Sweden)

    Salvatore Serravalle

    2016-01-01

    Full Text Available T-Acute Lymphoblastic Leukemia (T-ALL remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients’ outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to ASNS expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of ASNS gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with ASNS expression. Then we demonstrated that the ASNS expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the ASNS gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the ASNS gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low ASNS expression due to hypermethylation of the ASNS promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher ASNS expression.

  20. Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.

    Science.gov (United States)

    Matern, Andreas; Pedrolli, Danielle; Großhennig, Stephanie; Johansson, Jörgen; Mack, Matthias

    2016-12-01

    The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are produced by the bacteria Streptomyces davawensis and Streptomyces cinnabarinus Riboflavin analogs have the potential to be used as broad-spectrum antibiotics, and we therefore studied the metabolism of riboflavin (vitamin B 2 ), RoF, and AF in the human pathogen Listeria monocytogenes, a bacterium which is a riboflavin auxotroph. We show that the L. monocytogenes protein Lmo1945 is responsible for the uptake of riboflavin, RoF, and AF. Following import, these flavins are phosphorylated/adenylylated by the bifunctional flavokinase/flavin adenine dinucleotide (FAD) synthetase Lmo1329 and adenylylated by the unique FAD synthetase Lmo0728, the first monofunctional FAD synthetase to be described in bacteria. Lmo1329 generates the cofactors flavin mononucleotide (FMN) and FAD, whereas Lmo0728 produces FAD only. The combined activities of Lmo1329 and Lmo0728 are responsible for the intracellular formation of the toxic cofactor analogs roseoflavin mononucleotide (RoFMN), roseoflavin adenine dinucleotide (RoFAD), 8-demethyl-8-aminoriboflavin mononucleotide (AFMN), and 8-demethyl-8-aminoriboflavin adenine dinucleotide (AFAD). In vivo reporter gene assays and in vitro transcription/translation experiments show that the L. monocytogenes FMN riboswitch Rli96, which controls expression of the riboflavin transport gene lmo1945, is negatively affected by riboflavin/FMN and RoF/RoFMN but not by AF/AFMN. Treatment of L. monocytogenes with RoF or AF leads to drastically reduced FMN/FAD levels. We suggest that the reduced flavin cofactor levels in combination with concomitant synthesis of inactive cofactor analogs (RoFMN, RoFAD, AFMN, and AFAD) explain why RoF and AF contribute to antibiotic activity in L. monocytogenes IMPORTANCE: The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are small molecules which are produced by Streptomyces davawensis and Streptomyces cinnabarinus

  1. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  2. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    Science.gov (United States)

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Inês Milagre

    2017-01-01

    Full Text Available Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.

  5. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation.

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P; Caudy, Amy A; Meneghini, Marc D

    2016-11-29

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2's impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.

  6. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P.; Caudy, Amy A.; Meneghini, Marc D.

    2016-01-01

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation. PMID:27897198

  7. An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance

    Directory of Open Access Journals (Sweden)

    Pileggi Marcos

    2001-01-01

    Full Text Available An efficient method for constructing transgenic lettuce cultivars by Agrobacterium tumefaciens was described by Torres et al., 1993. In the present work, an improvement of the above procedure is described and applied to transform the cultivar Grand Rapids with a mutated P5CS gene. The major modifications were concerned with turning more practical the transformation and regeneration protocols. Also we tried to improve transformation steps by increasing injured area in explants and prolonging co-cultivation with Agrobacteria (in larger concentration. A more significant selective pressure was used against non-transformed plants and bacteria. In these work we were concerned to obtain T1 and T2 seeds. The P5CS gene codes for a delta¹-pyrroline-5-carboxylate synthetase, a bifunctional enzyme that catalyzes two steps of proline biosynthesis in plants (Zhang et al., 1995; Peng et al., 1996, while the mutated gene is insensitive to feedback inhibition by proline. The potential benefit of this gene is to confer water stress resistance (drought, salt, cold due to increased intracellular levels of proline that works like an osmoprotectant. In this work could obtain and characterize transgenic lettuce lineages which are resistant to freezing temperature.

  8. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  9. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  10. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  11. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  12. Genomic Evidence of Chemotrophic Metabolisms in Deep-Dwelling Chloroflexi Conferred by Ancient Horizontal Gene Transfer Events

    Science.gov (United States)

    Momper, L. M.; Magnabosco, C.; Amend, J.; Osburn, M. R.; Fournier, G. P.

    2017-12-01

    The marine and terrestrial subsurface biospheres represent quite likely the largest reservoirs for life on Earth, directly impacting surface processes and global cycles throughout Earth's history. In the deep subsurface biosphere (DSB) organic carbon and energy are often extremely scarce. However, archaea and bacteria are able to persist in the DSB to at least 3.5 km below surface [1]. Understanding how they persist, and by what metabolisms they subsist, are key questions in this biosphere. To address these questions we investigated 5 global DSB environments: one legacy mine in South Dakota, USA, 3 mines in South Africa and marine fluids circulating beneath the Juan de Fuca Ridge. Boreholes within these mines provided access to fluids buried beneath the earth's surface and sampled depths down to 3.1 km. Geochemical data were collected concomitantly with DNA for metagenomic sequencing. We examined genomes of the ancient and deeply branching Chloroflexi for metabolic capabilities and interrogated the geochemical drivers behind those metabolisms with in situ thermodynamic modeling of reaction energetics. In total, 23 Chloroflexi genomes were identified and analyzed from the 5 subsurface sites. Genes for nitrate reduction (nar) and sulfite reduction (dsr) were found in many of the South Africa Chloroflexi but were absent from genomes collected in South Dakota. Indeed, nitrate reduction was among the most energetically favorable reactions in South African fluids (10-14 kJ cell-1 sec -1 per mol of reactant) and sulfur reduction with Fe2+ or H2 was also exergonic [2]. Conversely, genes for nitrite and nitrous oxide reduction (nrf, nir and nos) were found in genomes collected in South Dakota and Juan de Fuca, but not South Africa. We examined the origin of genes conferring these metabolisms in the Chloroflexi genomes. We discovered evidence for horizontal gene transfer (HGT) for all of these putative metabolisms. Retention of these genes in Chloroflexi lineages indicates

  13. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo

    Directory of Open Access Journals (Sweden)

    Ana Paula Matoso Teixeira

    2008-01-01

    Full Text Available Brazil produced 330,000 metric tons of melons in 2005, principally in the Northeast region where one of the most important melon pathogens is the powdery mildew fungus Podosphaera xanthii. The disease is controlled mainly by incorporating single dominant resistance genes into commercial hybrids. We report on linkage analysis of the Pm-1 resistance gene, introgressed from the AF125Pm-1 Cantalupensis Charentais-type breeding line into the yellow-fleshed melon (Group Inodorus breeding line AF426-S by backcrossing to produce the resistant line AF426-R, and the amplified fragment length polymorphism (AFLP marker M75/H35_155 reported to be polymorphic between AF426-S and AF426-R. Segregation analysis of M75/H35_155 using a backcross population of 143 plants derived from [AF426-R x AF426-S] x AF426-S and screened for resistance to P. xanthii race 1 produced a recombination frequency of 4.9%, indicating close linkage between M75/H35_155 and Pm-1. Using the same segregating population, the M75/H35_155 marker had previously been reported to be distantly linked to Prv¹, a gene conferring resistance to papaya ringspot virus-type W. Since M75/H35_155 is linked to Prv¹ at a distance of 40.9 cM it is possible that Pm-1 and Prv¹ are also linked.

  14. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  15. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances

    Directory of Open Access Journals (Sweden)

    Xiatian eWang

    2015-08-01

    Full Text Available The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled ten unigenes from expressed sequence tags (ESTs of wheat and designated them as TaWRKY44–TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA, H2O2 and gibberellin (GA. The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC, soluble sugar, proline and superoxide dismutase (SOD content, as well as higher activities of catalase (CAT and peroxidase (POD, but less ion leakage (IL, lower contents of malondialdehyde (MDA, and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression.

  16. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    Science.gov (United States)

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.

  17. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  18. Production of transgenic brassica juncea with the synthetic chitinase gene (nic) conferring resistance to alternaria brassicicola

    International Nuclear Information System (INIS)

    Munir, I.; Hussan, W.; Kazi, M.; Mian, A.

    2016-01-01

    Brassica juncea is an important oil seed crop throughout the world. The demand and cultivation of oil seed crops has gained importance due to rapid increase in world population and industrialization. Fungal diseases pose a great threat to Brassica productivity worldwide. Absence of resistance genes against fungal infection within crossable germplasms of this crop necessitates deployment of genetic engineering approaches to produce transgenic plants with resistance against fungal infections. In the current study, hypocotyls and cotyledons of Brassica juncea, used as explants, were transformed with Agrobacterium tumefacien strain EHA101 harboring binary vector pEKB/NIC containing synthetic chitinase gene (NIC), an antifungal gene under the control of cauliflower mosaic virus promoter (CaMV35S). Bar genes and nptII gene were used as selectable markers. Presence of chitinase gene in trangenic lines was confirmed by PCR and southern blotting analysis. Effect of the extracted proteins from non-transgenic and transgenic lines was observed on the growth of Alternaria brassicicola, a common disease causing pathogen in brassica crop. In comparison to non-transgenic control lines, the leaf tissue extracts of the transgenic lines showed considerable resistance and antifungal activity against A. brassicicola. The antifungal activity in transgenic lines was observed as corresponding to the transgene copy number. (author)

  19. Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer.

    Science.gov (United States)

    Sun, Ming-Zhong; Ju, Hui-Xiang; Zhou, Zhong-Wei; Jin, Hao; Zhu, Rong

    2014-01-01

    Defects in DNA mismatch repair genes like MSH2 and MLH1 confer increased risk of cancers. Here, single nucleotide polymorphisms (SNPs) in MSH2 and MLH1 were investigated for their potential contribution to the risk of esophageal cancer. This study recruited 614 participants from Affiliated Yancheng Hospital, School of Medicine, Southeast University, of which 289 were patients with esophageal cancer, and the remainder was healthy individuals who served as a control group. Two SNPs, MSH2 c.2063T>G and MLH1 IVS14-19A>G, were genotyped using PCR-RFLP. Statistical analysis was performed using chi-square test and logistic regression analysis. Carriers of the MSH2 c.2063G allele were at significantly higher risk for esophageal cancer compared to individuals with the TT genotype [OR = 3.36, 95% confidence interval (CI): 1.18-11.03]. The MLH1 IVS14-19A>G allele also conferred significantly increased (1.70-fold) for esophageal cancer compared to the AA genotype (OR = 1.70, 95% CI: 1.13-5.06). Further, the variant alleles interacted such that individuals with the susceptible genotypes at both MSH2 and MLH1 had a significantly exacerbated risk for esophageal cancer (OR = 12.38, 95% CI: 3.09-63.11). In brief, SNPs in the DNA mismatch repair genes MSH2 and MLH1 increase the risk of esophageal cancer. Molecular investigations are needed to uncover the mechanism behind their interaction effect.

  20. The GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population.

    Science.gov (United States)

    Chen, Jianhua; Wang, Meng; Waheed Khan, Raja Amjad; He, Kuanjun; Wang, Qingzhong; Li, Zhiqiang; Shen, Jiawei; Song, Zhijian; Li, Wenjin; Wen, Zujia; Jiang, Yiwen; Xu, Yifeng; Shi, Yongyong; Ji, Weidong

    2015-10-01

    Glycogen synthease kinase-3B is a key gene encoding a protein kinase which is abundant in brain, and is involved in signal transduction cascades of neuronal cell development and energy metabolism. Previous researches proposed GSK3B as a potential region for schizophrenia. To validate the susceptibility of GSK3B to major depressive disorder, and to investigate the overlapping risk conferred by GSK3B for mental disorders, we performed a large-scale case-control study, analyzed 6 tag single nucleotide polymorphisms using TaqMan® technology in 1,045 major depressive disorder patients, 1,235 schizophrenia patients and 1,235 normal controls of Han Chinese origin. We found rs334535 (Pallele=2.79E-03, Pgenotype=5.00E-03, OR=1.429) and rs2199503 (Pallele=0.020, Pgenotype= 0.040, OR=1.157) showed association with major depressive disorder before Bonferroni correction. rs6771023 (adjusted Pallele=1.64E-03, adjusted Pgenotype=6.00E-03, OR=0.701) and rs2199503 (adjusted Pallele=0.001, adjusted Pgenotype=0.002, OR=1.251) showed significant association with schizophrenia after Bonferroni correction. rs2199503 (adjusted Pallele=1.70E-03, adjusted Pgenotype=0.006, OR=1.208) remained to be significant in the combined cases of major depressive disorder and schizophrenia after Bonferroni correction. Further validations of our findings in samples with larger scale are suggested, and functional genomic study is needed to elucidate the role of GSK3B in signal pathway and psychiatric disorders. Our results provide evidence that the GSK3B gene could be a promising region which contains genetic risk for both major depressive disorder and schizophrenia in the Han Chinese population. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references. Copyright © 2015. Published by Elsevier B.V.

  1. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  2. Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus.

    Science.gov (United States)

    Ferreira, Juan José; Campa, Ana; Pérez-Vega, Elena; Rodríguez-Suárez, Cristina; Giraldez, Ramón

    2012-03-01

    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled

  3. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    Science.gov (United States)

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  4. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists

    International Nuclear Information System (INIS)

    Mossman, David; Kim, Kyu-Tae; Scott, Rodney J

    2010-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. Aberrant epigenetic gene silencing in tumours is a frequent event, yet the factors which dictate which genes are targeted for inactivation are unknown. DNA methylation and histone acetylation can be modified with the chemical agents 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) respectively. The aim of this study was to analyse de-methylation and re-methylation and its affect on gene expression in colorectal cancer cell lines treated with 5-aza-dC alone and in combination with TSA. We also sought to identify methylation patterns associated with long term reactivation of previously silenced genes. Colorectal cancer cell lines were treated with 5-aza-dC, with and without TSA, to analyse global methylation decreases by High Performance Liquid Chromatography (HPLC). Re-methylation was observed with removal of drug treatments. Expression arrays identified silenced genes with differing patterns of expression after treatment, such as short term reactivation or long term reactivation. Sodium bisulfite sequencing was performed on the CpG island associated with these genes and expression was verified with real time PCR. Treatment with 5-aza-dC was found to affect genomic methylation and to a lesser extent gene specific methylation. Reactivated genes which remained expressed 10 days post 5-aza-dC treatment featured hypomethylated CpG sites adjacent to the transcription start site (TSS). In contrast, genes with uniformly hypermethylated CpG islands were only temporarily reactivated. These results imply that 5-aza-dC induces strong de-methylation of the genome and initiates reactivation of transcriptionally inactive genes, but this does not require gene associated CpG island de-methylation to occur. In addition, for three of our selected genes, hypomethylation at the TSS of an epigenetically silenced gene is associated with the long term reversion of

  5. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    Science.gov (United States)

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  6. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Everlyne M'mbone Muleke

    2017-07-01

    Full Text Available Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3′H is intronless and anthocyanin biosynthesis genes (ABGs bear asymmetrical exons, except RsSAM. Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS, and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3′H1. Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through

  7. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Mingzhu Dou

    2016-12-01

    Full Text Available Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.

  8. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  9. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  10. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Wu, Min; Liu, Huanlong; Han, Guomin; Cai, Ronghao; Pan, Feng; Xiang, Yan

    2017-09-15

    The WRKY family are transcription factors, involved in plant development, and response to biotic and abiotic stresses. Moso bamboo is an important bamboo that has high ecological, economic and cultural value and is widely distributed in the south of China. In this study, we performed a genome-wide identification of WRKY members in moso bamboo and identified 89 members. By comparative analysis in six grass genomes, we found the WRKY gene family may have experienced or be experiencing purifying selection. Based on relative expression levels among WRKY IIc members under three abiotic stresses, PeWRKY83 functioned as a transcription factor and was selected for detailed analysis. The transgenic Arabidopsis of PeWRKY83 showed superior physiological properties compared with the WT under salt stress. Overexpression plants were less sensitive to ABA at both germination and postgermination stages and accumulated more endogenous ABA under salt stress conditions. Further studies demonstrated that overexpression of PeWRKY83 could regulate the expression of some ABA biosynthesis genes (AtAAO3, AtNCED2, AtNCED3), signaling genes (AtABI1, AtPP2CA) and responsive genes (AtRD29A, AtRD29B, AtABF1) under salt stress. Together, these results suggested that PeWRKY83 functions as a novel WRKY-related TF which plays a positive role in salt tolerance by regulating stress-induced ABA synthesis.

  11. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  12. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  13. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  14. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  15. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica).

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Zhang, Chaoxian; Wei, Shouhui; Huang, Zhaofeng; Chen, Jinyi; Wang, Xu

    2015-10-01

    Field-evolved resistance of goosegrass to glyphosate is due to double or single mutation in EPSPS , or amplification of EPSPS leads to increased transcription and protein levels. Glyphosate has been used widely in the south of China. The high selection pressure from glyphosate use has led to the evolution of resistance to glyphosate in weeds. We investigated the molecular mechanisms of three recently discovered glyphosate-resistant Eleusine indica populations (R1, R2 and R3). The results showed that R1 and R2 had double Thr102Ile and Pro106Ser mutation and a single mutation of Pro106Leu in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, respectively. Escherichia coli containing the mutated EPSPS genes was tolerant to glyphosate. EPSPS activity in R1 and R2 plants was higher than in the sensitive plants. There was no amino acid substitution in EPSPS gene in R3. However, expression of EPSPS in R3 plants was higher than in glyphosate-susceptible (S) population (13.8-fold) after glyphosate treatment. EPSPS enzyme activity in both R3 and S plants was inhibited by glyphosate, while shikimate accumulation in R3 was significantly lower than for the S population. Further analysis revealed that the genome of R3 contained 28.3-fold more copies of the EPSPS gene than that of susceptible population. EPSPS expression was positively correlated with copy number of EPSPS. In conclusion, mutation of the EPSPS gene and increased EPSPS expression are part of the molecular mechanisms of resistance to glyphosate in Eleusine indica.

  16. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis.

    Science.gov (United States)

    Park, Dong-Soo; Lee, Sang-Kyu; Lee, Jong-Hee; Song, Min-Young; Song, Song-Yi; Kwak, Do-Yeon; Yeo, Un-Sang; Jeon, Nam-Soo; Park, Soo-Kwon; Yi, Gihwan; Song, You-Chun; Nam, Min-Hee; Ku, Yeon-Chung; Jeon, Jong-Seong

    2007-08-01

    The development of rice varieties (Oryza sativa L.) that are resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) is an important objective in current breeding programs. In this study, we generated 132 BC(5)F(5) near-isogenic rice lines (NILs) by five backcrosses of Samgangbyeo, a BPH resistant indica variety carrying the Bph1 locus, with Nagdongbyeo, a BPH susceptible japonica variety. To identify genes that confer BPH resistance, we employed representational difference analysis (RDA) to detect transcripts that were exclusively expressed in one of our BPH resistant NIL, SNBC61, during insect feeding. The chromosomal mapping of the RDA clones that we subsequently isolated revealed that they are located in close proximity either to known quantitative trait loci or to an introgressed SSR marker from the BPH resistant donor parent Samgangbyeo. Genomic DNA gel-blot analysis further revealed that loci of all RDA clones in SNBC61 correspond to the alleles of Samgangbyeo. Most of the RDA clones were found to be exclusively expressed in SNBC61 and could be assigned to functional groups involved in plant defense. These RDA clones therefore represent candidate defense genes for BPH resistance.

  17. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Kester, Henri; Liu, Yi

    2007-01-01

    A number of hormones and growth factors stimulate gene expression by promoting the phosphorylation of CREB (P-CREB), thereby enhancing its association with the histone acetylase paralogs p300 and CBP (CBP/p300). Relative to cAMP, stress signals trigger comparable amounts of CREB phosphorylation...... to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE......-mediated transcription in cells exposed to stress signals. Taken together, these results indicate that TORC2 is one of the long sought after cofactors that mediates the differential effects of cAMP and stress pathways on CREB target gene expression....

  18. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    OpenAIRE

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-pro...

  19. FCRL3 gene polymorphisms confer autoimmunity risk for allergic rhinitis in a Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Zheng Gu

    Full Text Available Heredity and environmental exposures may contribute to a predisposition to allergic rhinitis (AR. Autoimmunity may also involve into this pathologic process. FCRL3 (Fc receptor-like 3 gene, a novel immunoregulatory gene, has recently been reported to play a role in autoimmune diseases.This study was performed to evaluate the potential association of FCRL3 polymorphisms with AR in a Chinese Han population.Five single-nucleotide polymorphisms of FCRL3, rs945635, rs3761959, rs7522061, rs10489678 and rs7528684 were genotyped in 540 AR patients and 600 healthy controls using a PCR-restriction fragment length polymorphism assay. Allele, genotype and haplotype frequencies were compared between patients and controls using the χ2 test. The online software platform SHEsis was used to analyze their haplotypes.This study identified three strong risk SNPs rs7528684, rs10489678, rs7522061 and one weak risk SNP rs945635 of FCRL3 in Chinese Han AR patients. For rs7528684, a significantly increased prevalence of the AA genotype and A allele in AR patients was recorded. The frequency of the GG genotype and G allele of rs10489678 was markedly higher in AR patients than those in controls. For rs7522061, a higher frequency of the TT genotype, and a lower frequency of the CT genotype were found in AR patients. Concerning rs945635, a lower frequency of the CC genotype, and a higher frequency of G allele were observed in AR patients. According to the analysis of the three strong positive SNPs, the haplotype of AGT increased significantly in AR cases (AR = 38.8%, Controls = 24.3%, P = 8.29 × 10(-14, OR [95% CI] 1.978 [1.652~2.368].This study found a significant association between the SNPs in FCRL3 gene and AR in Chinese Han patients. The results suggest these gene polymorphisms might be the autoimmunity risk for AR.

  20. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects

    OpenAIRE

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F

    2015-01-01

    Background Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. Results A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and express...

  1. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity.

    Science.gov (United States)

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development.

  2. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  4. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-05-11

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  5. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  6. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    Science.gov (United States)

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Stereoselectivity of the demethylation of nicotine piperidine homologues by Nicotiana plumbaginifolia cell suspension cultures.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Molinié, Roland; Roscher, Albrecht; Felpin, François-Xavier; Gillet, Françoise; Lebreton, Jacques; Mesnard, François; Robins, Richard J

    2005-08-01

    The metabolism of (R,S)-N-methylanabasine and (R,S)-N-methylanatabine has been studied in a cell suspension culture of Nicotiana plumbaginifolia. Both substrates are effectively demethylated, anabasine or anatabine, respectively, accumulating in the medium. Similarly, there is strong stereoselectivity for the (R)-isomers of both substrates. The kinetics of metabolism of (R,S)-N-methylanabasine differ significantly from those of nicotine in that no further degradation of the initial demethylation product occurs. (R,S)-N-Methylanatabine, however, shows kinetics closer to those of nicotine, with loss of alkaloid from the system. Further more, (R,S)-N-methylanabasine does not diminish (S)-nicotine demethylation, indicating a lack of competition. However, the metabolism of (S)-nicotine is affected by the presence of (R,S)-N-methylanabasine. Hence, the demethylation of the piperidine homologues of nicotine is seen to be similar but not identical to that of the pyridine analogues. The implications of these different metabolic profiles in relation to the demethylation activity are discussed.

  8. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  9. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS using chemogenomics

    Directory of Open Access Journals (Sweden)

    Jaime Maria DLA

    2012-06-01

    Full Text Available Abstract Background Chitosan oligosaccharide (COS, a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP, homozygous deletion (HOP, and multicopy suppression (MSP profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms, membrane functions (e.g. signalling, transport and targeting, membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane

  10. Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia

    Directory of Open Access Journals (Sweden)

    Tim D.D. Somerville

    2018-01-01

    Full Text Available The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML, ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.

  11. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  12. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  13. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

    Science.gov (United States)

    Kermicle, Jerry L

    2006-01-01

    Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

  14. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Guangshun Zheng

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1 gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  15. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  16. Overexpression of yeast ArDH gene in chloroplasts confers salinity tolerance in plants (abstract)

    International Nuclear Information System (INIS)

    Khan, M.S.; Kanwal, B.; Khalid, A.M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    Water stress due to salinity and drought is the main limiting factor for plant growth, productivity and quality. A common response to water deficit is the accumulation of osmoprotectants such as sugars and amino acids. In yeast, arabitol dehydrogenase is found responsible for the production of arabitol from ribulose-5-phosphate. All plants synthesize ribulose-5-phosphate via pentose pathway in chloroplasts.. Therefore, osmotolerance of the plants could be enhanced through metabolic engineering of chloroplasts by introducing ArDH gene into the plastome, which is responsible for the conversion of ribulose-5- phosphate to arabitol. Here we report high-level expression of arabitol dehydrogenase (ArDH) in chloroplasts. Homoplasmic transgenic plants were recovered on spectinomycin-containing regeneration medium. Transformed tobacco plants survived whereas non-transformed were severely stressed or killed when two weeks old seedlings were exposed to NaCl (up to 400 mM), suggesting a role for arabitol in salt tolerance. Seedlings survived up to five weeks on medium containing high salt concentrations (350-400 mM). Nevertheless, seedlings remained green and grew normal on concentrations up to 350 mM NaCl for several weeks. Hypothesis that membranes are protected under stress conditions due to the arabitol accumulation in chloroplasts, seedlings were grown in liquid medium containing polyethylene glycol (PEG, up to 6%). Seedlings were tolerant to 6% PEG, suggesting that ArDH enzyme protects membranes integrity under stress. Therefore, it is concluded that ArDH gene could be expressed in crop plants to withstand abiotic stresses. (author)

  17. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    Science.gov (United States)

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  19. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    Science.gov (United States)

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  20. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Xiaomin Deng

    Full Text Available Calcineurin B-like protein-interacting protein kinases (CIPKs have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV, abscisic acid (ABA and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+/Na(+ ratios and Ca(2+ content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT and peroxidase (POD under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS homeostasis.

  1. A TagSNP in SIRT1 gene confers susceptibility to myocardial infarction in a Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    Full Text Available SIRT1 exerts protective effects against endothelial cells dysfunction, inflammation and atherosclerosis, indicating an important role on myocardial infarction (MI pathogenesis. Nonetheless, the effects of SIRT1 variants on MI risk remain poorly understood. Here we aimed to investigate the influence of SIRT1 polymorphisms on individual susceptibility to MI. Genotyping of three tagSNPs (rs7069102, rs3818292 and rs4746720 in SIRT1 gene was performed in a Chinese Han population, consisting of 287 MI cases and 654 control subjects. In a logistic regression analysis, we found that G allele of rs7069102 had increased MI risk with odds ratio (OR of 1.57 [95% confidence interval (CI = 1.15-2.16, Bonferroni corrected P (Pc = 0.015] after adjustment for conventional risk factors compared to C allele. Similarly, the combined CG/GG genotypes was associated with the increased MI risk (OR = 1.64, 95% CI = 1.14-2.35, Pc = 0.021 compared to the CC genotype. Further stratified analysis revealed a more significant association with MI risk among younger subjects (≤ 55 years old. Consistent with these results, the haplotype rs7069102G-rs3818292A-rs4746720T containing the rs7069102 G allele was also associated with the increased MI risk (OR = 1.41, 95% CI = 1.09-1.84, Pc = 0.040. However, we did not detect any association of rs3818292 and rs4746720 with MI risk. Our study provides the first evidence that the tagSNP rs7069102 and haplotype rs7069102G-rs3818292A-rs4746720T in SIRT1 gene confer susceptibility to MI in the Chinese Han population.

  2. Mutation at codon 442 in the rpoB gene of Mycobacterium leprae does not confer resistance to rifampicin.

    Science.gov (United States)

    Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb

    2016-03-01

    Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.

  3. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  4. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation

    International Nuclear Information System (INIS)

    Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

    1991-01-01

    The biogeochemical cycling of mercury has received considerable attention because of the toxicity of methylmercury, its bioaccumulation in biota, and its biomagnification in aquatic food chains. The formation of methylmercury is mediated primarily by microorganisms. Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14 CH 3 HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominated estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demthylation were mainly 14 CO 2 as well as lesser amounts of 14 CH 4 . Acetogenic activity resulted in fixation of some 14 CO 2 produced from 14 CH 3 HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14 CH 4 , while aerobic demethylation in freshwater sediments produced small amounts of both 14 CH 4 and 14 CO 2 . Two species of Desulfovibrio produced only traces of 14 CH 4 from 14 CH 3 HgI, while a culture of a methylotrophic methanogen formed traces of 14 CO 2 and 14 CH 4 when grown on trimethylamine in the presence of the 14 CH 3 HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates

  5. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion.

    Science.gov (United States)

    McQuaid, Robyn J; McInnis, Opal A; Matheson, Kimberly; Anisman, Hymie

    2015-08-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social stressor. The current investigation, conducted among 128 white female undergraduate students, demonstrated that relative to individuals with AA genotype, G carriers were more emotionally sensitive (lower self-esteem) in response to social ostracism promoted through an on-line ball tossing game (Cyberball). Furthermore, GG individuals also exhibited altered blood pressure and cortisol levels following rejection, effects not apparent among A carriers. The data support the view that the presence of the G allele not only promotes prosocial behaviors but also favors sensitivity to a negative social stressor. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    Science.gov (United States)

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  7. Variants of Interleukin-22 Gene Confer Predisposition to Autoimmune Thyroid Disease

    Directory of Open Access Journals (Sweden)

    Rong-hua Song

    2017-01-01

    Full Text Available As there are no previous studies on the interleukin-22 (IL-22 variants in autoimmune thyroid disease (AITD, the present study aimed to explore the association between polymorphisms of IL-22 and the predisposition to AITD. The study had 975 AITD patients, including 639 Graves’ disease (GD and 336 Hashimoto’s thyroiditis (HT individuals and 851 healthy cohorts. Ligase detection reaction (LDR and direct sequencing method were used for genotyping the IL-22 gene polymorphisms at rs2046068, rs2227478, rs2227485, rs11611206, and rs1179251. In comparison to female controls, genotype CC of rs1179251 was increased in the female AITD patients. Alleles C at rs2046068, C at rs2227478, and C at rs1179251 linked to the susceptibility of HT males. Genotype CC in rs1179251 was higher in male HT. Variants at rs2046068, rs2227478, and rs1179251 were associated with the AITD teenagers. Besides, genotype GG in rs11611206 was correlated with thyroid-associated ophthalmopathy (TAO. Moreover, allele G at rs11611206 was associated with decreased risk for TAO by 28.9%. Similarly, genotype CC of rs1179251 and genotype GG of rs11611206 were associated with Graves’ ophthalmopathy (GO. Allele G in rs11611206 increased people with HT towards the predisposition of hypothyroidism. In conclusion, genetic variants of IL-22 are associated with the occurrence of AITD.

  8. Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Svati H Shah

    2009-01-01

    Full Text Available Neuropeptide Y (NPY is a strong candidate gene for coronary artery disease (CAD. We have previously identified genetic linkage to familial CAD in the genomic region of NPY. We performed follow-up genetic, biostatistical, and functional analysis of NPY in early-onset CAD. In familial CAD (GENECARD, N = 420 families, we found increased microsatellite linkage to chromosome 7p14 (OSA LOD = 4.2, p = 0.004 in 97 earliest age-of-onset families. Tagged NPY SNPs demonstrated linkage to CAD of a 6-SNP block (LOD = 1.58-2.72, family-based association of this block with CAD (p = 0.02, and stronger linkage to CAD in the earliest age-of-onset families. Association of this 6-SNP block with CAD was validated in: (a 556 non-familial early-onset CAD cases and 256 controls (OR 1.46-1.65, p = 0.01-0.05, showing stronger association in youngest cases (OR 1.84-2.20, p = 0.0004-0.09; and (b GENECARD probands versus non-familial controls (OR 1.79-2.06, p = 0.003-0.02. A promoter SNP (rs16147 within this 6-SNP block was associated with higher plasma NPY levels (p = 0.04. To assess a causal role of NPY in atherosclerosis, we applied the NPY1-receptor-antagonist BIBP-3226 adventitially to endothelium-denuded carotid arteries of apolipoprotein E-deficient mice; treatment reduced atherosclerotic neointimal area by 50% (p = 0.03. Thus, NPY variants associate with atherosclerosis in two independent datasets (with strong age-of-onset effects and show allele-specific expression with NPY levels, while NPY receptor antagonism reduces atherosclerosis in mice. We conclude that NPY contributes to atherosclerosis pathogenesis.

  9. The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population.

    Science.gov (United States)

    Wang, Meng; Chen, Jianhua; He, Kuanjun; Wang, Qingzhong; Li, Zhiqiang; Shen, Jiawei; Wen, Zujia; Song, Zhijian; Xu, Yifeng; Shi, Yongyong

    2015-10-01

    NVL (nuclear VCP (valosin containing protein)/p97-Like), a member of the AAA-ATPase (ATPases associated with various cellular activities) family, encodes a novel hTERT (human telomerase reverse transcriptase)-interacting protein NVL2 which is a telomerase component essential for holoenzyme assembly. Previous researches have reported the impacts of telomerase activity on mental illness and the potential association between NVL and major depressive disorder. To validate the susceptibility of NVL to major depressive disorder, and to investigate the overlapping risk conferred by NVL for both major depressive disorder and schizophrenia, we analyzed 9 tag single nucleotide polymorphisms (tag SNPs) using TaqMan® technology, in 1045 major depressive disorder patients, 1235 schizophrenia patients and 1235 normal controls of Han Chinese origin. We found that rs10916583 (P(allele) = 0.020, P(genotype) = 0.028, OR = 1.156) and rs16846649 (adjusted P(allele) = 0.014, P(genotype) = 0.007, OR = 0.718) were associated with major depressive disorder, while rs10916583 (adjusted P(allele) = 1.08E-02, OR = 1.213), rs16846649 (adjusted P(allele) = 7.40E-06, adjusted P(genotype) = 8.07E-05, OR = 0.598) and rs10799541 (adjusted P(allele) = 8.10E-03, adjusted P(genotype) = 0.049, OR= 0.826) showed statistically significant association with schizophrenia after Bonferroni correction. Furthermore, rs10916583 (adjusted P(allele) = 9.00E-03, adjusted P(genotype) = 3.15E-02, OR = 1.187) and rs16846649 (adjusted P(allele) = 8.92E-06, adjusted P(genotype) = 8.84E-05, OR = 0.653) remained strongly associated with the analysis of combined cases of major depressive disorder and schizophrenia after Bonferroni correction. Our results indicated that the NVL gene may contain overlapping common genetic risk factors for major depressive disorder and schizophrenia in the Han Chinese population. The roles of NVL in telomerase biogenesis were also highlighted in psychiatric pathogenesis. The study on

  10. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  11. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    Science.gov (United States)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  12. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates

    International Nuclear Information System (INIS)

    Shafiee, A.; Trzaskos, J.M.; Paik, Y.K.; Gaylor, J.L.

    1986-01-01

    With [ 3 H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1 H-NMR, and infrared spectroscopy of the isolated sterols

  13. Demethylation of methylated arsenic species during generation of arsanes with tetrahydridoborate(1−) in acidic media

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-01-01

    Roč. 88, č. 12 (2016), s. 6366-6373 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * demethylation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  14. Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green.

    Science.gov (United States)

    Cho, Bongsup P; Yang, Tianle; Blankenship, Lonnie R; Moody, Joanna D; Churchwell, Mona; Beland, Frederick A; Culp, Sandra J

    2003-03-01

    Malachite green (MG), a triphenylmethane dye used to treat fungal and protozoan infections in fish, undergoes sequential oxidation to produce various N-demethylated derivatives (monodes-, dides(sym)-, dides(unsym)-, trides-, and tetrades-) both before and after reduction to leucomalachite green (LMG). The close structure resemblance of the metabolites with aromatic amine carcinogens implicates a potential genotoxicity from exposure to MG. The availability of the synthetic standards is important for metabolic and DNA adduct studies of MG. This paper describes a simple and versatile method for the synthesis of MG, LMG, and their N-demethylated metabolites. The synthesis involves a coupling of 4-(dimethylamino)benzophenone or 4-nitrobenzophenone with the aryllithium reagents derived from appropriately substituted 4-bromoaniline derivatives, followed by treatment with HCl in methanol. The resulting cationic MG and their leuco analogues showed systematic UV/vis spectral and tandem mass fragmentation patterns consistent with sequential N-demethylation. The extensive (1)H and (13)C spectral assignments of the metabolites were aided by the availability of (13)C(7)-labeled MG and LMG. The results indicate the existence of a resonance structure with the cationic charge located in the central methane carbon (C(7)). The synthetic procedure is general in scope so that it can be extended to the preparation of N-demethylated metabolites of other structurally related N-methylated triphenylmethane dyes.

  15. Base-oxidant promoted metal-free N-demethylation of arylamines

    Indian Academy of Sciences (India)

    A metal-free oxidative N-demethylation of arylamines with triethylamine as a base and tert-butyl hydroperoxide (TBHP) as oxidant is reported in this paper. The reaction is general, practical, inexpensive, non-toxic, and the method followed is environmentally benign, with moderate to good yields.

  16. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease.

    Science.gov (United States)

    Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P; Bao, Xiuliang; Labrias, Philippe R; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R; Bressman, Susan; Cheifetz, Adam S; Clark, Lorraine N; Daly, Mark J; Desnick, Robert J; Duerr, Richard H; Katz, Seymour; Lencz, Todd; Myers, Richard H; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D; Segal, Anthony W; Scott, William K; Silverberg, Mark S; Vance, Jeffery M; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe'er, Itsik; Ioannou, Yiannis; McGovern, Dermot P B; Yue, Zhenyu; Schadt, Eric E; Cho, Judy H; Peter, Inga

    2018-01-10

    Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10 -10 ) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10 -8 ). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  18. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia.

    Science.gov (United States)

    Shimazu, Yayoi; Shimazu, Yutaka; Hishizawa, Masakatsu; Hamaguchi, Masahide; Nagai, Yuya; Sugino, Noriko; Fujii, Sumie; Kawahara, Masahiro; Kadowaki, Norimitsu; Nishikawa, Hiroyoshi; Sakaguchi, Shimon; Takaori-Kondo, Akifumi

    2016-02-01

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1. Because of its immunosuppressive property and resistance to treatment, patients with ATL have poor prognoses. ATL cells possess the regulatory T cell (Treg) phenotype, such as CD4 and CD25, and usually express forkhead box P3 (FOXP3). However, the mechanisms of FOXP3 expression and its association with Treg-like characteristics in ATL remain unclear. Selective demethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene leads to stable FOXP3 expression and defines natural Tregs. Here, we focus on the functional and clinical relationship between the epigenetic pattern of the TSDR and ATL. Analysis of DNA methylation in specimens from 26 patients with ATL showed that 15 patients (58%) hypomethylated the TSDR. The FOXP3(+) cells were mainly observed in the TSDR-hypomethylated cases. The TSDR-hypomethylated ATL cells exerted more suppressive function than the TSDR-methylated ATL cells. Thus, the epigenetic analysis of the FOXP3 gene identified a distinct subtype with Treg properties in heterogeneous ATL. Furthermore, we observed that the hypomethylation of TSDR was associated with poor outcomes in ATL. These results suggest that the DNA methylation status of the TSDR is an important hallmark to define this heterogeneous disease and to predict ATL patient prognosis. ©2015 American Association for Cancer Research.

  19. Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification

    International Nuclear Information System (INIS)

    Xu, Xiaohan; Zhao, Jiating; Li, Yunyun; Fan, Yuqin; Zhu, Nali; Gao, Yuxi; Li, Bai; Liu, Hanyu; Li, Yu-Feng

    2016-01-01

    Mercury (Hg) is a global pollutant that poses a serious threat to human and the environment. Rice was found as an important source for human exposure to Hg in some areas. In this study, the transportation and transformation of IHg and MeHg in rice plants exposed to IHg or MeHg were investigated. The IHg and MeHg concentrations in rice roots and shoots collected every five days were analyzed by HPLC-ICP-MS and SR-XANES. When exposed to MeHg, the percent of IHg in rice roots and shoots increased while MeHg decreased significantly, suggesting prominent demethylation of MeHg occurred. However no notable MeHg was found in both roots and shoots of rice plant when exposed to IHg. SR-XANES analysis further confirmed the demethylation of MeHg with rice. This study provides a new finding that demethylation of MeHg could occur in growing rice, which may be a self-defense process of rice plant. - Graphical abstract: Inorganic mercury in Rice (Oryza sativa L.) plants exposed to methylmercury was detected: An evidence of rice plant against methylmercury phytotoxicity. Display Omitted - Highlights: • Demethylation of MeHg in rice plant was found in rice root. • Hg in rice roots mainly present as MeHg-SR or RS-Hg-SR form. • MeHg-SR in roots can be gradually transformed to RS-Hg-SR with rice growth. - Demethylation of MeHg in growing rice.

  20. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  1. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    Science.gov (United States)

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  2. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui; Ding, Bo; Mishra, Gyan Prakash; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria Del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guoliang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  3. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  4. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation.

    Science.gov (United States)

    Chen, Lili; Jiang, Bowen; Zhong, Chunge; Guo, Jun; Zhang, Lihao; Mu, Teng; Zhang, Qiuhua; Bi, Xiuli

    2018-03-08

    Freeze-dried black raspberry (BRB) powder is considered as a potential cancer chemopreventive agent. In this study, we fed azoxymethane (AOM)/dextran sodium sulfate (DSS)-treated C57BL/6J mice with a diet containing BRB anthocyanins for 12 weeks, and this led to a reduction in colon carcinogenesis. These animals had consistently lower tumor multiplicity compared with AOM/DSS-treated mice not receiving BRB anthocyanins. In AOM/DSS-treated mice, the number of pathogenic bacteria, including Desulfovibrio sp. and Enterococcus spp., was increased significantly, whereas probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus were dramatically decreased, but BRB anthocyanins supplement could reverse this imbalance in gut microbiota. BRB anthocyanins also caused the demethylation of the SFRP2 gene promoter, resulting in increased expression of SFRP2, both at the mRNA and protein levels. Furthermore, the expression levels of DNMT31 and DNMT3B, as well as of p-STAT3 were downregulated by BRB anthocyanins in these animals. Taken together, these results suggested that BRB anthocyanins could modulate the composition of gut commensal microbiota, and changes in inflammation and the methylation status of the SFRP2 gene may play a central role in the chemoprevention of CRC.

  5. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

    Science.gov (United States)

    Kano, Akihito; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Satoh, Masaru; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Tada, Yasuomi; Nishizawa, Yoko; Akimitsu, Kazuya

    2010-01-01

    We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice.

  6. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel

  7. Methylation of the chicken vitellogenin gene: influence of estradiol administration.

    Science.gov (United States)

    Meijlink, F C; Philipsen, J N; Gruber, M; Ab, G

    1983-01-01

    The degree of methylation of the chicken vitellogenin gene has been investigated. Upon induction by administration of estradiol to a rooster, methyl groups at specific sites near the 5'-end of the gene are eliminated. The process of demethylation is slower than the activation of the gene. Demethylation is therefore probably not a prerequisite to gene transcription. At least two other sites in the coding region of the gene are methylated in the liver of estrogenized roosters, but not in the liver of a laying hen, where the gene is naturally active. Images PMID:6298743

  8. Multiyear evaluation of the durability of the resistance conferred by Ma and RMia genes to Meloidogyne incognita in Prunus under controlled conditions.

    Science.gov (United States)

    Khallouk, Samira; Voisin, Roger; Portier, Ulysse; Polidori, Joël; Van Ghelder, Cyril; Esmenjaud, Daniel

    2013-08-01

    Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession 'P.2175', which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × ['Garfi' almond × 'Nemared' peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to

  9. SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model.

    Science.gov (United States)

    Regev-Yochay, Gili; Trzcinski, Krzysztof; Thompson, Claudette M; Lipsitch, Marc; Malley, Richard

    2007-09-01

    The human bacterial pathogen Streptococcus pneumoniae dies spontaneously upon reaching stationary phase. The extent of S. pneumoniae death at stationary phase is unusual in bacteria and has been conventionally attributed to autolysis by the LytA amidase. In this study, we show that spontaneous pneumococcal death is due to hydrogen peroxide (H(2)O(2)), not LytA, and that the gene responsible for H(2)O(2) production (spxB) also confers a survival advantage in colonization. Survival of S. pneumoniae in stationary phase was significantly prolonged by eliminating H(2)O(2) in any of three ways: chemically by supplementing the media with catalase, metabolically by growing the bacteria under anaerobic conditions, or genetically by constructing DeltaspxB mutants that do not produce H(2)O(2). Likewise, addition of H(2)O(2) to exponentially growing S. pneumoniae resulted in a death rate similar to that of cells in stationary phase. While DeltalytA mutants did not lyse at stationary phase, they died at a rate similar to that of the wild-type strain. Furthermore, we show that the death process induced by H(2)O(2) has features of apoptosis, as evidenced by increased annexin V staining, decreased DNA content, and appearance as assessed by transmission electron microscopy. Finally, in an in vivo rat model of competitive colonization, the presence of spxB conferred a selective advantage over the DeltaspxB mutant, suggesting an explanation for the persistence of this gene. We conclude that a suicide gene of pneumococcus is spxB, which induces an apoptosis-like death in pneumococci and confers a selective advantage in nasopharyngeal cocolonization.

  10. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP).

    Science.gov (United States)

    Long, Xin Hua; Zhou, Yun Fei; Peng, Ai Fen; Zhang, Zhi Hong; Chen, Xuan Yin; Chen, Wen Zhao; Liu, Jia Ming; Huang, Shan Hu; Liu, Zhi Li

    2015-05-01

    Previous studies demonstrated that increased Homo sapiens valosin-containing protein (VCP) may be involved in osteosarcoma (OS) metastasis. However, the underlying mechanism of VCP over-expression in OS remains unknown. In the present study, we found a significantly negative correlation between miR-129-5p and VCP protein expression in OS tissues with pulmonary metastasis (Spearman's rho, rs = -0.948). Bioinformatical prediction, Luciferase reporter assay, Western blot, and RT-PCR assays performed on OS cells indicated that VCP is a target of miR-129-5p. In addition, three CPG islands in the region of miR-129-5p promoter were detected by bioinformatical prediction, and significantly higher expression of miR-129-5p and lower methylation level of miR-129-2 gene in OS cells treated with 5-Aza-2'-deoxycytidine (a potent DNA demethylating agent) than in those untreated cells were observed. Furthermore, lower migratory and invasive ability was found in cells with elevated miR-129-5p than in those with decreased miR-129-5p. These findings indicated that increased miR-129-5p may be mediated by demethylation and inhibit OS cell migration and invasion by targeting VCP in OS, and targeting miR-129-5p/VCP signaling pathway may serve as a therapeutic strategy for OS management, although further studies will be necessary.

  11. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    Science.gov (United States)

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  12. Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa.

    Science.gov (United States)

    Qian, C; Cui, C; Wang, X; Zhou, C; Hu, P; Li, M; Li, R; Xiao, J; Wang, X; Chen, P; Xing, L; Cao, A

    2017-11-01

    A key member of the Pm21 resistance gene locus, Stpk-V, derived from Haynaldia villosa, was shown to confer broad-spectrum resistance to wheat powdery mildew. The present study was planned to investigate the resistance mechanism mediated by Stpk-V. Transcriptome analysis was performed in Stpk-V transgenic plants and recipient Yangmai158 upon Bgt infection, and detailed histochemical observations were conducted. Chromosome location of Stpk-V orthologous genes in Triticeae species was conducted for evolutionary study and over-expression of Stpk-V both in barley and Arabidopsis was performed for functional study. The transcriptome results indicate, at the early infection stage, the ROS pathway, JA pathway and some PR proteins associated with the SA pathway were activated in both the resistant Stpk-V transgenic plants and susceptible Yangmai158. However, at the later infection stage, the genes up-regulated at the early stage were continuously held only in the transgenic plants, and a large number of new genes were also activated in the transgenic plants but not in Yangmai158. Results indicate that sustained activation of the early response genes combined with later-activated genes mediated by Stpk-V is critical for resistance in Stpk-V transgenic plants. Stpk-V orthologous genes in the representative grass species are all located on homologous group six chromosomes, indicating that Stpk-V is an ancient gene in the grasses. Over-expression of Stpk-V enhanced host resistance to powdery mildew in barley but not in Arabidopsis. Our results enable a better understanding of the resistance mechanism mediated by Stpk-V, and establish a solid foundation for its use in cereal breeding as a gene resource. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  13. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  14. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis

    NARCIS (Netherlands)

    Díaz-Trujillo, C.; Chong, P.; Stergiopoulos, I.; Meijer, H.J.G.; Wit, de P.J.G.M.; Kema, G.H.J.

    2018-01-01

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications with a major share for sterol demethylation-inhibitors

  15. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis

    NARCIS (Netherlands)

    Díaz-Trujillo, C.; Chong, P.; Stergiopoulos, I.; Meijer, H.J.G.; Wit, de P.J.G.M.; Kema, G.H.J.

    2017-01-01

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications with a major share for sterol demethylation-inhibitors

  16. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis

    International Nuclear Information System (INIS)

    Spudich, E.N.; Takahashi, T.; Spudich, J.L.

    1989-01-01

    This work demonstrates that phototaxis stimuli in the archaebacterium Halobacterium halobium control a methylation/demethylation system in vivo through photoactivation of sensory rhodopsin I (SR-I) in either its attractant or repellent signaling form as well as through the repellent receptor sensory rhodopsin II (SR-II, also called phoborhodopsin). The effects of positive stimuli that suppress swimming reversals (i.e., an increase in attractant or decrease in repellent light) and negative stimuli that induce swimming reversals (i.e., a decrease in attractant or increase in repellent light) through each photoreceptor were monitored by assaying release of volatile [3H]methyl groups. This assay has been used to measure [3H]methanol produced during the process of adaptation to chemotactic stimuli in eubacteria. In H. halobium positive photostimuli produce a transient increase in the rate of demethylation followed by a decrease below the unstimulated value, whereas negative photostimuli cause an increase followed by a rate similar to that of the unstimulated value. Photoactivation of the SR-I attractant and simultaneous photoactivation of the SR-II repellent receptors cancel in their effects on demethylation, demonstrating the methylation system is regulated by an integrated signal. Analysis of mutants indicates that the source for the volatile methyl groups is intrinsic membrane proteins distinct from the chromoproteins that share the membrane. A methyl-accepting protein (94 kDa) previously correlated in amount with the SR-I chromoprotein (25 kDa) is shown here to be missing in a recently isolated SR-I-SR-II+ mutant (Flx3b), thus confirming the association of this protein with SR-I. Photoactivated SR-II in mutant Flx3b controls demethylation, predicting the existence of a photomodulated methyl-accepting component distinct from the 94-kDa protein of SR-I

  17. The autoradiolytic and the γ-induced demethylation of solid thymine-(methyl-14C)

    International Nuclear Information System (INIS)

    Merwitz, O.

    1980-01-01

    The autoradiolytic and the γ-induced demethylation of solid thymine were measured qualitatively and quantitatively for the first time with specially purified thymine-(methyl- 14 C). Analogous experiments with thymine-(methyl- 3 H) and radio-gaschromatographic analysis provided proof for the formation of molecular hydrogen and methane. Ethane was not detected. The results are discussed in connection with e.s.r.-spectroscopic studies. (author)

  18. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    Science.gov (United States)

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  19. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin.

    Science.gov (United States)

    Li, Jun; Li, Beibei; Wendlandt, Sarah; Schwarz, Stefan; Wang, Yang; Wu, Congming; Ma, Zhiyong; Shen, Jianzhong

    2014-04-01

    To investigate the genetic basis of pleuromutilin resistance in coagulase-negative staphylococci of porcine origin that do not carry known pleuromutilin resistance genes and to determine the localization and genetic environment of the identified resistance gene. Plasmid DNA of two pleuromutilin-resistant Staphylococcus cohnii and Staphylococcus simulans isolates was transformed into Staphylococcus aureus RN4220. The identified resistance plasmids were sequenced completely. The candidate gene for pleuromutilin resistance was cloned into shuttle vector pAM401. S. aureus RN4220 transformants carrying this recombinant shuttle vector were tested for their MICs. S. cohnii isolate SA-7 and S. simulans isolate SSI1 carried the same plasmid of 5584 bp, designated pSA-7. A variant of the vga(E) gene was detected, which encodes a 524 amino acid ATP-binding cassette protein. The variant gene shared 85.7% nucleotide sequence identity and the variant protein 85.3% amino acid sequence identity with the original vga(E) gene and Vga(E) protein, respectively. The Vga(E) variant conferred cross-resistance to pleuromutilins, lincosamides and streptogramin A antibiotics. Plasmid pSA-7 showed an organization similar to that of the apmA-carrying plasmid pKKS49 from methicillin-resistant S. aureus and the dfrK-carrying plasmid pKKS966 from Staphylococcus hyicus. Sequence comparisons suggested that recombination events may have played a role in the acquisition of this vga(E) variant. A novel vga(E) gene variant was identified, which was located on a small plasmid and was not associated with the transposon Tn6133 [in contrast to the original vga(E) gene]. The plasmid location may enable its further dissemination to other staphylococci and possibly also to other bacteria.

  20. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease.

    Science.gov (United States)

    Sendín, Lorena Noelia; Orce, Ingrid Georgina; Gómez, Rocío Liliana; Enrique, Ramón; Grellet Bournonville, Carlos Froilán; Noguera, Aldo Sergio; Vojnov, Adrián Alberto; Marano, María Rosa; Castagnaro, Atilio Pedro; Filippone, María Paula

    2017-04-01

    Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.

  1. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy*

    Science.gov (United States)

    Farrow, Scott C.; Facchini, Peter J.

    2013-01-01

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311

  2. Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Facchini, Peter J

    2013-10-04

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.

  3. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  4. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  5. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants.

    Science.gov (United States)

    Silva, Carliane Rc; Monnerat, Rose; Lima, Liziane M; Martins, Érica S; Melo Filho, Péricles A; Pinheiro, Morganna Pn; Santos, Roseane C

    2016-08-01

    Boll weevil is a serious pest of cotton crop. Effective control involves applications of chemical insecticides, increasing the cost of production and environmental pollution. The current genetically modified Bt crops have allowed great benefits to farmers but show activity limited to lepidopteran pests. This work reports on procedures adopted for integration and expression of a cry transgene conferring resistance to boll weevil and fall armyworm by using molecular tools. Four Brazilian cotton cultivars were microinjected with a minimal linear cassette generating 1248 putative lines. Complete gene integration was found in only one line (T0-34) containing one copy of cry1Ia detected by Southern blot. Protein was expressed in high concentration at 45 days after emergence (dae), decreasing by approximately 50% at 90 dae. Toxicity of the cry protein was demonstrated in feeding bioassays revealing 56.7% mortality to boll weevil fed buds and 88.1% mortality to fall armyworm fed leaves. A binding of cry1Ia antibody was found in the midgut of boll weevils fed on T0-34 buds in an immunodetection assay. The gene introduced into plants confers resistance to boll weevil and fall armyworm. Transmission of the transgene occurred normally to T1 progeny. All plants showed phenotypically normal growth, with fertile flowers and abundant seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  7. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  8. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    Science.gov (United States)

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  9. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers.

    Directory of Open Access Journals (Sweden)

    Marumi Ohno

    Full Text Available Cytoplasmic constitutive active/androstane receptor (CAR retention protein (CCRP and also known as DNAJC7 is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.

  10. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  11. Theoretical study on the N-demethylation mechanism of theobromine catalyzed by P450 isoenzyme 1A2.

    Science.gov (United States)

    Tao, Jing; Kang, Yuan; Xue, Zhiyu; Wang, Yongting; Zhang, Yan; Chen, Qiu; Chen, Zeqin; Xue, Ying

    2015-09-01

    Theobromine, a widely consumed pharmacological active substance, can cause undesirable muscle stiffness, nausea and anorexia in high doses ingestion. The main N-demethylation metabolic mechanism of theobromine catalyzed by P450 isoenzyme 1A2 (CYP1A2) has been explored in this work using the unrestricted hybrid density functional method UB3LYP in conjunction with the LACVP(Fe)/6-31G (H, C, N, O, S, Cl) basis set. Single-point calculations including empirical dispersion corrections were carried out at the higher 6-311++G** basis set. Two N-demethylation pathways were characterized, i.e., 3-N and 7-N demethylations, which involve the initial N-methyl hydroxylation to form carbinolamines and the subsequent carbinolamines decomposition to yield monomethylxanthines and formaldehydes. Our results have shown that the rate-limiting N-methyl hydroxylation occurs via a hydrogen atom transfer (HAT) mechanism, which proceeds in a spin-selective mechanism (SSM) in the gas phase. The carbinolamines generated are prone to decomposition via the contiguous heteroatom-assisted proton-transfer. Strikingly, 3-N demethylation is more favorable than 7-N demethylation due to its lower free energy barrier and 7-methylxanthine therefore is the optimum product reported for the demethylation of theobromine catalyzed by CYP1A2, which are in good agreement with the experimental observation. This work has first revealed the detail N-demethylation mechanisms of theobromine at the theoretical level. It can offer more significant information for the metabolism of purine alkaloid. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  13. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  14. Position of coordination of the lithium ion determines the regioselectivity of demethylations of 3,4-dimethoxymorphinans with L-selectride.

    Science.gov (United States)

    Wu, Huifang; Thatcher, Linn N; Bernard, Denzil; Parrish, Damon A; Deschamps, Jeffrey R; Rice, Kenner C; MacKerell, Alexander D; Coop, Andrew

    2005-06-23

    [reaction: see text] L-Selectride is an efficient agent for the 3-O-demethylation of opioids and is known to cleave the least hindered methoxyl group in a molecule. The treatment of a 3,4-dimethoxymorphinan containing a 6-ketal with L-Selectride gave selective 4-O-demethylation, rather than cleavage of the less hindered 3-methoxyl. In contrast, a 3,4-dimethoxymorphinan lacking a 6-ketal gave selective 3-O-demethylation, suggesting that the regiochemistry of L-Selectride-mediated O-demethylation can be manipulated through altering the position of coordination of the lithium ion.

  15. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  16. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  17. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  18. Green synthesis of low-toxicity graphene-fulvic acid with an open band gap enhances demethylation of methylmercury.

    Science.gov (United States)

    Hu, Xiangang; Mu, Li; Lu, Kaicheng; Kang, Jia; Zhou, Qixing

    2014-06-25

    The demethylation of methylmercury has received substantial attention. Here, a novel chemical method for the demethylation of methylmercury is proposed. The low-toxicity graphene-fulvic acid (FA, a ubiquitous material in the environment) was synthesized without the use of a chemical reagent. The hybridized graphene-FA presented an indirect open band gap of 2.25-2.87 eV as well as adequate aqueous dispersion. More importantly, the hybridized graphene-FA exhibited 6- and 10-fold higher photocatalytic efficiencies for the demethylation of methylmercury than FA and free FA with graphene, respectively. This result implies that immobilized, rather than free, FA accelerated the catalysis. Furthermore, inorganic mercuric ion, elemental mercury, and mercuric oxide were identified as the primary demethylation products. For free FA with graphene, graphene quenches the excited-state FA, inhibiting the demethylation by electron transfer. In contrast, the graphene of the self-assembled graphene-FA serves as an electron reservoir, causing electron-hole pair separation. Graphene-FA showed a negligible toxicity toward microalgae compared to graphene. The above results reveal that the green synthesis of graphene and organic molecules is a convenient strategy for obtaining effective cocatalysts.

  19. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Kee D.

    2010-01-01

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF 4 ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers

  20. A Convenient and Efficient Method for Demethylation of Aryl Methyl Ethers with Magnesium Iodide in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Soo [KAIST, Daejeon (Korea, Republic of); Kim, Kee D. [Sangji University, Wonju (Korea, Republic of)

    2010-12-15

    We have developed a new and efficient method for the demethylation of various types of aryl methyl ethers using readily available, stable, and easily handled magnesium iodide in [BMIM]BF{sub 4} ionic liquid. Owing to its simplicity and mild reaction conditions the protocol reported herein may serve as a useful alternative to the existing methods for the deprotection of aryl methyl ethers to the corresponding phenolic derivatives. Demethylation of aryl methyl ethers to the corresponding phenols are very important reactions in organic synthesis. A number of methods have been reported for the cleavage of highly stable aryl methyl ethers utilizing strong acids or bases such as aluminum chloride, boron tribromide, cerium chloride, alkaline thiolate, methyl magnesium iodide, and L-Selectride. However, all of these methods invariably suffered from one or more drawbacks such as harsh reaction conditions, long reaction times, difficulty of manipulation, use of exotic reagents, and low reaction yields. Furthermore, in the most of known methods for demethylation of aryl methyl ethers, use of large excess amounts of demethylating agents have been generally required. Thus, it is highly desirable to develop an improved convenient and efficient procedure for demethylation reactions of aryl methyl ethers.

  1. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin.

    Science.gov (United States)

    Figueira, Cláudio Pereira; Croda, Julio; Choy, Henry A; Haake, David A; Reis, Mitermayer G; Ko, Albert I; Picardeau, Mathieu

    2011-06-09

    In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.

  2. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance

    Directory of Open Access Journals (Sweden)

    Jacobs Jeanne ME

    2011-10-01

    Full Text Available Abstract Background The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.. Results A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM, Phthorimaea operculella (Zeller. Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. Conclusions A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event.

  3. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

    DEFF Research Database (Denmark)

    Kurokawa, Yusuke; Nagai, Keisuke; Hung, Phung Danh

    2018-01-01

    Floods impede gas (O2and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does...... not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene...... determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function...

  4. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Goto, Shingo; Kasai, Kouji; Seki, Hikaru; Suzuki, Masashi; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-05-01

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.

  5. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  6. Nicotine demethylation in Nicotiana cell suspension cultures: N'-formylnornicotine is not involved.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Bhogal, Ramneek K; Molinié, Roland; Felpin, François-Xavier; Mathé-Allainmat, Monique; Meier, Anna-Carolin; Dräger, Birgit; Lebreton, Jacques; Roscher, Albrecht; Robins, Richard J; Mesnard, François

    2005-10-01

    Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.

  7. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  8. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  9. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  10. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis.

    Science.gov (United States)

    Diaz-Trujillo, Caucasella; Chong, Pablo; Stergiopoulos, Ioannis; Cordovez, Viviane; Guzman, Mauricio; De Wit, Pierre J G M; Meijer, Harold J G; Scalliet, Gabriel; Sierotzki, Helge; Lilia Peralta, Esther; Arango Isaza, Rafael E; Kema, Gerrit H J

    2017-11-04

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications, with a major contribution from sterol demethylation-inhibitors (DMIs). The continued use of DMIs places considerable selection pressure on natural P. fijiensis populations, enabling the selection of novel genotypes with reduced sensitivity. The hitherto explanatory mechanism for this reduced sensitivity was the presence of non-synonymous point mutations in the target gene Pfcyp51, encoding the sterol 14α-demethylase enzyme. Here, we demonstrate a second mechanism involved in DMI sensitivity of P. fijiensis. We identified a 19-bp element in the wild-type (wt) Pfcyp51 promoter that concatenates in strains with reduced DMI sensitivity. A polymerase chain reaction (PCR) assay identified up to six Pfcyp51 promoter repeats in four field populations of P. fijiensis in Costa Rica. We used transformation experiments to swap the wt promoter of a sensitive field isolate with a promoter from a strain with reduced DMI sensitivity that comprised multiple insertions. Comparative in vivo phenotyping showed a functional and proportional up-regulation of Pfcyp51, which consequently decreased DMI sensitivity. Our data demonstrate that point mutations in the Pfcyp51 coding domain, as well as promoter inserts, contribute to the reduced DMI sensitivity of P. fijiensis. These results provide new insights into the importance of the appropriate use of DMIs and the need for the discovery of new molecules for black Sigatoka management. © 2017 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  11. HLA non-class II genes may confer type I diabetes susceptibility in a Mapuche (Amerindian) affected family.

    Science.gov (United States)

    Pérez-Bravo, Francisco; Martinez-Laso, Jorge; Martin-Villa, Jose M; Moscoso, Juan; Moreno, Almudena; Serrano-Vela, Juan I; Zamora, Jorge; Asenjo, Silvia; Gleisner, Andrea; Arnaiz-Villena, Antonio

    2006-01-01

    A rare case of type I diabetes is studied in an Amerindian (Mapuche) family from Chile, analyzing glutamic acid decarboxylase, islet-cell autoantibodies and human leukocyte antigen (HLA) genes. The affected sib is the only one that has one specific HLA haplotype combination that differs from the other sibs only in the HLA class I genes. It is concluded that HLA diabetes susceptibility factors may be placed outside the class II region or even that susceptibility factors do not exist in the HLA region in this Amerindian family.

  12. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    Science.gov (United States)

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  13. Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.)

    Science.gov (United States)

    Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia

    2015-01-01

    Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...

  14. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  15. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  17. AFLP markers for the R-gene in the flea beetle, Phyllotreta nemorum, conferring resistance to defenses in Barbarea vulgaris

    NARCIS (Netherlands)

    Breuker, C.J.; Victoir, K.; Jong, de P.W.; Meijden, van der E.; Brakefield, P.M.; Vrieling, K.

    2005-01-01

    A so-called R-gene renders the yellow-striped flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae) resistant to the defenses of the yellow rocket Barbarea vulgaris R.Br. (Brassicacea) and enables it to use it as a host plant in Denmark. In this study, genetic markers for an

  18. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Science.gov (United States)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  19. Mapping of a Leishmania major gene/locus that confers pentamidine resistance by deletion and insertion of transposable element

    Directory of Open Access Journals (Sweden)

    Coelho Adriano C.

    2004-01-01

    Full Text Available Pentamidine (PEN is an alternative compound to treat antimony-resistant leishmaniasis patients, which cellular target remains unclear. One approach to the identification of prospective targets is to identify genes able to mediate PEN resistance following overexpression. Starting from a genomic library of transfected parasites bearing a multicopy episomal cosmid vector containing wild-type Leishmania major DNA, we isolated one locus capable to render PEN resistance to wild type cells after DNA transfection. In order to map this Leishmania locus, cosmid insert was deleted by two successive sets of partial digestion with restriction enzymes, followed by transfection into wild type cells, overexpression, induction and functional tests in the presence of PEN. To determine the Leishmania gene related to PEN resistance, nucleotide sequencing experiments were done through insertion of the transposon Mariner element of Drosophila melanogaster (mosK into the deleted insert to work as primer island. Using general molecular techniques, we described here this method that permits a quickly identification of a functional gene facilitating nucleotide sequence experiments from large DNA fragments. Followed experiments revealed the presence of a P-Glycoprotein gene in this locus which role in Leishmania metabolism has now been analyzed.

  20. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    Full Text Available Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1 gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13 and Gossypium arboreum L. genome (A-genome, n = 13 databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26. Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319 exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.

  1. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    Science.gov (United States)

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-04-20

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.

  2. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    Directory of Open Access Journals (Sweden)

    Muhammad Sarwar Khan

    2015-09-01

    Full Text Available Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols. Here, we report that ArDH expression in chloroplasts confers tolerance to NaCl (up to 400 mM. Transgenic plants compared to wild type survived for four to five weeks on 400 mM NaCl. Nevertheless, plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6% in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses.

  3. Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Anil K Giri

    Full Text Available A recent genome-wide association study (GWAS identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525-OR 1.71, P = 1.38 x 10-09; rs12008279-OR 1.56, P = 1.53 x 10-04 and 2 variants in MORC4 gene (rs12688220-OR 1.72, P = 9.20 x 10-09; rs6622126-OR 1.75, P = 4.04x10-05 in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06 and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31-0.78], P = 0.0027. A variant in the gene MORC4 (rs12688220 showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068 suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14. Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.

  4. Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity

    OpenAIRE

    Vasudevan, Gayatri; Ullman, Buddy; Landfear, Scott M.

    2001-01-01

    Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. do...

  5. Overexpression of a modiifed AM79 aroA gene in transgenic maize confers high tolerance to glyphosate

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-jing; CAO Gao-yi; ZHANG Yu-wen; LIU Yan; LIU Yun-jun

    2015-01-01

    It has previously been shown that a bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene AM79 aroA can be a candidate gene to develop glyphosate-tolerant transgenic crops (Cao et al. 2012). In this study, AM79 aroA was redesigned using the plant biased codons and eliminating the motifs which would lead to the instability of mRNA, to create a synthetic gene that would be expressed highly in plant cel s. The redesigned and artiifcial y synthesized gene, named as mAM79, was cloned into plant expression vector pM3301UbiSpAM79, where mAM79 is fused with signal peptide sequence of pea rib-1,5-bisphospate carboxylase (rbcS) smal subunit and control ed by ubiquitin promoter. The plasmid was transformed into maize (Zea mays) immature embryos using Agrobacterium-mediated transformation method. Total 74 regenerated plants were obtained and PCR analysis showed that these transgenic plants had the integration of mAM79. Southern blot analysis was performed on the genomic DNA from four transgenic lines, and the result showed that one or two copies of mAM79 were integrated into maize genome. RT-PCR analysis result indicated that mAM79 was highly transcribed in transgenic maize plants. When sprayed with glyphosate, transgenic maize line AM85 and AM72 could tolerate 4-fold of commercial usage of glyphosate;however, al the non-transgenic maize plants were kil ed by glyphosate. The results in this study conifrmed that mAM79 could be used to develop glyphosate-tolerant maize, and the obtained transgenic maize lines could be used for the breeding of glyphosate-tolerant maize.

  6. Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici.

    Directory of Open Access Journals (Sweden)

    Yang Bi

    Full Text Available This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had developed a novel non-target-site-based resistance to zoxamide. Analysis of the segregation ratio of zoxamide-resistance in the sexual progeny of the sensitive isolates PCAS1 and PCAS2 indicated that the resistance to zoxamide was controlled by one or more recessive nuclear genes. Furthermore, the segregation of resistance in the F1, F2, and BC1 progeny was in accordance with the theoretical ratios of the χ(2 test (P>0.05, which suggested that the resistance to zoxamide was controlled by two recessive genes, and that resistance to zoxamide occurred when at least one pair of these alleles was homozygous. This implies that the risk of zoxamide-resistance in P. capsici is low to moderate. Nevertheless this potential for resistance should be monitored closely, especially if two compatible mating types co-exist in the same field.

  7. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Science.gov (United States)

    Meguro, Akira; Ideta, Hidenao; Ota, Masao; Ito, Norihiko; Ideta, Ryuichi; Yonemoto, Junichi; Takeuchi, Masaki; Uemoto, Riyo; Nishide, Tadayuki; Iijima, Yasuhito; Kawagoe, Tatsukata; Okada, Eiichi; Shiota, Tomoko; Hagihara, Yuta; Oka, Akira; Inoko, Hidetoshi; Mizuki, Nobuhisa

    2012-01-01

    Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6), OR = 0.63 and Pc = 1.0 × 10(-5), OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  8. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Directory of Open Access Journals (Sweden)

    Akira Meguro

    Full Text Available Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4 gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6, OR = 0.63 and Pc = 1.0 × 10(-5, OR = 0.69 in a total of 574 patients and 608 controls, respectively. Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  9. A non-heme iron-mediated chemical demethylation in DNA and RNA.

    Science.gov (United States)

    Yi, Chengqi; Yang, Cai-Guang; He, Chuan

    2009-04-21

    DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes

  10. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    Science.gov (United States)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  11. Affinity Maturation of an Anti-V Antigen IgG Expressed In Situ Via Adenovirus Gene Delivery Confers Enhanced Protection Against Yersinia pestis Challenge

    Science.gov (United States)

    Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George

    2013-01-01

    Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (Pgenetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511

  12. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition

    Science.gov (United States)

    Rodríguez-Cortez, Virginia C.; del Pino-Molina, Lucia; Rodríguez-Ubreva, Javier; Ciudad, Laura; Gómez-Cabrero, David; Company, Carlos; Urquiza, José M.; Tegnér, Jesper; Rodríguez-Gallego, Carlos; López-Granados, Eduardo; Ballestar, Esteban

    2015-01-01

    Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals. PMID:26081581

  13. (/sup 125/I) 7-iodo-6-demethyl-6-deoxytetracycline HCl: its use in the study of bone mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Belbeck, L W; Bowen, B M; Garnett, E S [McMaster Univ., Hamilton, Ontario (Canada); Porter, J K; Teare, F W

    1979-06-01

    /sup 125/I 7-iodo-6-demethyl-6-deoxytetracycline can be used in a non-invasive method to indicate sites of active bone mineralization. Sequential doses of this agent have been used to follow bone repair in a fractured femur of a dog without resorting to bone biopsy. Metabolic problems that involve bone may also be studied with this potentially useful radiopharmaceutical.

  14. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  15. Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens.

    Science.gov (United States)

    Mukherjee, M; Hadar, R; Mukherjee, P K; Horwitz, B A

    2003-01-01

    To clone the beta-tubulins and to induce resistance to benzimidazoles in the biocontrol fungus Trichoderma virens through site-directed mutagenesis. Two beta-tubulin genes have been cloned using PCR amplification followed by the screening of a T. virens cDNA library. The full-length cDNA clones, coding for 445 and 446 amino acids, have been designated as T. virens tub1 and T. virens tub2. A sequence alignment of these two tubulins with tubulins from other filamentous fungi has shown the presence of some unique amino acid sequences not found in those positions in other beta-tubulins. Constitutive expression of the tub2 gene with a histidine to tyrosine substitution at position 6 (known to impart benomyl/methyl benzimadazol-2-yl carbamate resistance in other fungi), under the Pgpd promoter of Aspergillus nidulans, did not impart resistance to benomyl. The homologous expression of tub2 gene with a histidine to tyrosine mutation at position +6, which is known to impart benomyl tolerance in other fungi, does not impart resistance in T. virens. Unlike other Trichoderma spp., T. virens, has been difficult to mutate for benomyl tolerance. The present study, through site-directed mutagenesis, shows that a mutation known to impart benomyl tolerance in T. viride and other fungi does not impart resistance in this fungus. Understanding the mechanisms of this phenomenon will have a profound impact in plant-disease management, as many plant pathogenic fungi develop resistance to this group of fungicides forcing its withdrawal after a short period of use.

  16. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Science.gov (United States)

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  17. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  18. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  19. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    Science.gov (United States)

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

  20. A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways.

    Science.gov (United States)

    Äijö, Tarmo; Huang, Yun; Mannerström, Henrik; Chavez, Lukas; Tsagaratou, Ageliki; Rao, Anjana; Lähdesmäki, Harri

    2016-03-14

    We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and reveals 5hmC localization in putative regulatory regions.

  1. Production of 17-O-demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by Streptomyces hygroscopicus DEM20745.

    Science.gov (United States)

    Baksh, Aron; Kepplinger, Bernhard; Isah, Hadiza A; Probert, Michael R; Clegg, William; Wills, Corinne; Goodfellow, Michael; Errington, Jeff; Allenby, Nick; Hall, Michael J

    2017-08-01

    The actinomycete DEM20745, collected from non-rhizosphere soil adjacent to Paraserianthes falactaria trees (Cangkringan, Indonesia), is an efficient producer of the anticancer ansamycin polyketide 17-O-demethyl-geldanamycin (17-O-DMG), a biosynthetic precursor of the Hsp90 inhibitor geldanamycin (GDM). In DEM20745, 17-O-DMG is the major ansamycin product observed reaching a maximum titre of 17 mg/L in the fermentation broth. 17-O-DMG has the potential to be a key starting material for the semi-synthesis of GDM analogues for use in anticancer therapy. Thus, this preferential biosynthesis of 17-O-DMG facilitates easy access to this important molecule and provides further insight in the biosynthesis of the geldanamycins.

  2. Conference summaries

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains conference summaries for the 31. annual conference of the Canadian Nuclear Association and the 12. annual conference of the Canadian Nuclear Society. Topics of discussion include: reactor physics; thermalhydraulics; industrial irradiation; computer applications; fuel channel analysis; small reactors; severe accidents; fuel behaviour under accident conditions; reactor components, safety related computer software; nuclear fuel management; fuel behaviour and performance; reactor safety; reactor engineering; nuclear waste management; and, uranium mining and processing

  3. INTERCARTO CONFERENCES

    OpenAIRE

    Vladimir Tikunov

    2010-01-01

    The InterCarto conferences are thematically organized to target one of the most pressing problems of modern geography—creation and use of geographical information systems (GISs) as effective tools for achieving sustainable development of territories. Over the years, from 1994 to 2009, 1872 participants from 51 countries and 156 cities, who made 1494 reports, attended the conferences. There were 1508 participants from 49 regions of Russia making 1340 presentations. The conferences hosted 31 di...

  4. O2 -independent demethylation of trimethylamine N-oxide by Tdm of Methylocella silvestris.

    Science.gov (United States)

    Zhu, Yijun; Ksibe, Amira Z; Schäfer, Hendrik; Blindauer, Claudia A; Bugg, Timothy D H; Chen, Yin

    2016-11-01

    Bacterial trimethylamine N-oxide (TMAO) demethylase, Tdm, carries out an unusual oxygen-independent demethylation reaction, resulting in the formation of dimethylamine and formaldehyde. In this study, site-directed mutagenesis, homology modelling and metal analyses by inorganic mass spectrometry have been applied to gain insight into metal stoichiometry and underlying catalytic mechanism of Tdm of Methylocella silvestris BL2. Herein, we demonstrate that active Tdm has 1 molar equivalent of Zn 2+ and 1 molar equivalent of non-haem Fe 2+ . We further investigated Zn 2+ - and Fe 2+ -binding sites through homology modelling and site-directed mutagenesis and found that Zn 2+ is coordinated by a 3-sulfur-1-O motif. An aspartate residue (D198) likely bridges Fe 2+ and Zn 2+ centres, either directly or indirectly via H-bonding through a neighbouring H 2 O molecule. H276 contributes to Fe 2+ binding, mutation of which results in an inactive enzyme, and the loss of iron, but not zinc. Site-directed mutagenesis of Tdm also led to the identification of three hydrophobic aromatic residues likely involved in substrate coordination (F259, Y305, W321), potentially through a cation-π interaction. Furthermore, a crossover experiment using a substrate analogue gave direct evidence that a trimethylamine-alike intermediate was produced during the Tdm catalytic cycle, suggesting TMAO has a dual role of being both a substrate and an oxygen donor for formaldehyde formation. Together, our results provide novel insight into the role of Zn 2+ and Fe 2+ in the catalysis of TMAO demethylation by this unique oxygen-independent enzyme. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  5. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  6. A horizontally gene transferred copper resistance locus confers hyper‐resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages

    Science.gov (United States)

    Purves, Joanne; Thomas, Jamie; Riboldi, Gustavo P.; Zapotoczna, Marta; Tarrant, Emma; Andrew, Peter W.; Londoño, Alejandra; Planet, Paul J.; Geoghegan, Joan A.; Waldron, Kevin J.

    2018-01-01

    Summary Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA‐MRSA) USA300, confers copper hyper‐resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B‐3‐ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper‐resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity. PMID:29521441

  7. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in MRSA CC398 Isolates

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Stegger, Marc

    2010-01-01

    the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene......-four percent (n = 23) of the animal isolates and 48% (n = 24) of the human MRSA isolates of CC398 were resistant to zinc chloride and positive for czrC. All 48 MSSA strains from both human and pig origins were found to be susceptible to zinc chloride and negative for czrC. Our findings showed that czr......C is encoding zinc and cadmium resistance in CC398 MRSA isolates, and that it is widespread both in humans and animals. Thus, resistance to heavy metals such as zinc and cadmium may play a role in the coselection of methicillin resistance in S. aureus....

  8. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    Science.gov (United States)

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  9. Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel.

    Science.gov (United States)

    Elwej, Awatef; Grojja, Yousri; Ghorbel, Imen; Boudawara, Ons; Jarraya, Raoudha; Boudawara, Tahia; Zeghal, Najiba

    2016-04-01

    The present study was performed to establish the therapeutic efficacy of pomegranate peel against barium chloride induced liver injury. Adult rats were divided into four groups of six animals each: group I, serving as controls, received distilled water; group II received by their drinking water 67 ppm of BaCl2; group III received both 67 ppm of BaCl2 by the same way than group II and 5 % of pomegranate peel (PP) via diet; group IV received 5 % of PP. Analysis by HPLC/MS of PP showed its rich composition in flavonoids such as gallic acid, castalin, hyperin, quercitrin, syringic acid, and quercetin. The protective effects of pomegranate peel against hepatotoxicity induced by barium chloride were assessed using biochemical parameters and histological studies. Exposure of rats to barium caused oxidative stress in the liver as evidenced by an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOHs), H2O2 and advanced oxidation protein product (AOPP) levels, and lactate dehydrogenase (LDH), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (AST) and aspartate aminotransferase (ALT) activities, a decrease in catalase (CAT) and glutathione peroxidase (GPx) activities, glutathion (GSH), non-protein thiol (NPSH), vitamin C levels, and Mn-SOD gene expression. Liver total MT levels, MT-1, and MT-2 and pro-inflammatory cytokine genes expression like TNF-α, IL-1β and IL-6 were increased. Pomegranate peel, supplemented in the diet of barium-treated rats, showed an improvement of all the parameters indicated above.The present work provided ethnopharmacological relevance of pomegranate peel against the toxic effects of barium, suggesting its beneficial role as a potential antioxidant.

  10. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    Science.gov (United States)

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  11. Conference summaries

    International Nuclear Information System (INIS)

    1986-01-01

    This volume contains conference summaries of the international conference on radioactive waste management of the Canadian Nuclear Society. Topics of discussion include: storage and disposal; hydrogeology and geochemistry; transportation; buffers and backfill; public attitudes; tailings; site investigations and geomechanics; concrete; economics; licensing; matrix materials and container design; durability of fuel; biosphere modelling; radioactive waste processing; and, future options

  12. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population.

    Science.gov (United States)

    Liu, Jie; Zhang, Hong-Xin; Li, Zhi-Qiang; Li, Tao; Li, Jun-Yan; Wang, Ti; Li, You; Feng, Guo-Yin; Shi, Yong-Yong; He, Lin

    2017-07-03

    Schizophrenia and major depressive disorder are two major psychiatric illnesses that may share specific genetic risk factors to a certain extent. Increasing evidence suggests that the two disorders might be more closely related than previously considered. To investigate whether YWHAE gene plays a significant role in major depressive disorder in Han Chinese population, we recruited 1135 unrelated major depressive disorder patients (485 males, 650 females) and 989 unrelated controls (296 males, 693 females) of Chinese Han origin. Eleven common SNPs were genotyped using TaqMan® technology. In male-group, the allele and genotype frequencies of rs34041110 differed significantly between patients and control (P allele =0.036486, OR[95%CI]: 1.249442(1.013988-1.539571); P genotype =0.045301). Also in this group, allele and genotype frequencies of rs1532976 differed significantly (P allele =0.013242, OR[95%CI]: 1.302007(1.056501-1.604563); genotype: P=0.039152). Haplotype-analyses showed that, in male-group, positive association with major depressive disorder was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ 2 =20.397, P=6.38E-06, OR[95%CI]: 7.442 [2.691-20.583]), its C-A-C-G haplotype (χ 2 =19.122, P=1.24E-05, OR and 95%CI: 0.402 [0.264-0.612]), its C-C-T-G haplotype (χ 2 =9.766, P=0.001785, OR[95%CI]: 5.654 [1.664-19.211]). In female-group, positive association was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ 2 =78.628, P=7.94E-19, OR[95%CI]: 50.043 [11.087-225.876]), its A-C-T-G haplotype (χ 2 =38.806, P=4.83E-10, OR[95%CI]: 0.053 [0.015-0.192]), the C-A-C-G haplotype (χ 2 =18.930, P=1.37E-05, OR[95%CI]: 0.526 [0.392-0.705]), and the C-C-T-G haplotype (χ 2 =38.668, P=5.18E-10, OR[95%CI]: 6.130 [3.207-11.716]). Our findings support YWHAE being a risk gene for Major Depressive Disorder in the Han Chinese population. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. INTERCARTO CONFERENCES

    Directory of Open Access Journals (Sweden)

    Vladimir Tikunov

    2010-01-01

    Full Text Available The InterCarto conferences are thematically organized to target one of the most pressing problems of modern geography—creation and use of geographical information systems (GISs as effective tools for achieving sustainable development of territories. Over the years, from 1994 to 2009, 1872 participants from 51 countries and 156 cities, who made 1494 reports, attended the conferences. There were 1508 participants from 49 regions of Russia making 1340 presentations. The conferences hosted 31 different sections, most popular of which were Environmental GIS-Projects: Development and Experience, Sustainable Development and Innovative Projects, GIS: the Theory and Methodology, Projects for Russia and Regions, and GIS-Technologies and Digital Mapping. The next annual InterCarto-InterGIS conference will take place in December 2011. The Russian component of the conference will be held in the Altay Kray followed by another meeting on Bali, Indonesia

  14. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-03-01

    Full Text Available The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

  15. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    Science.gov (United States)

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  16. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower.

    Science.gov (United States)

    Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-01-01

    Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.

  17. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    Science.gov (United States)

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  18. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  19. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker.

    Science.gov (United States)

    Jia, Hongge; Zhang, Yunzeng; Orbović, Vladimir; Xu, Jin; White, Frank F; Jones, Jeffrey B; Wang, Nian

    2017-07-01

    Citrus is a highly valued tree crop worldwide, while, at the same time, citrus production faces many biotic challenges, including bacterial canker and Huanglongbing (HLB). Breeding for disease-resistant varieties is the most efficient and sustainable approach to control plant diseases. Traditional breeding of citrus varieties is challenging due to multiple limitations, including polyploidy, polyembryony, extended juvenility and long crossing cycles. Targeted genome editing technology has the potential to shorten varietal development for some traits, including disease resistance. Here, we used CRISPR/Cas9/sgRNA technology to modify the canker susceptibility gene CsLOB1 in Duncan grapefruit. Six independent lines, D LOB 2, D LOB 3, D LOB 9, D LOB 10, D LOB 11 and D LOB 12, were generated. Targeted next-generation sequencing of the six lines showed the mutation rate was 31.58%, 23.80%, 89.36%, 88.79%, 46.91% and 51.12% for D LOB 2, D LOB 3, D LOB 9, D LOB 10, D LOB 11 and D LOB 12, respectively, of the cells in each line. D LOB 2 and D LOB 3 showed canker symptoms similar to wild-type grapefruit, when inoculated with the pathogen Xanthomonas citri subsp. citri (Xcc). No canker symptoms were observed on D LOB 9, D LOB 10, D LOB 11 and D LOB 12 at 4 days postinoculation (DPI) with Xcc. Pustules caused by Xcc were observed on D LOB 9, D LOB 10, D LOB 11 and D LOB 12 in later stages, which were much reduced compared to that on wild-type grapefruit. The pustules on D LOB 9 and D LOB 10 did not develop into typical canker symptoms. No side effects and off-target mutations were detected in the mutated plants. This study indicates that genome editing using CRISPR technology will provide a promising pathway to generate disease-resistant citrus varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Conference summaries

    International Nuclear Information System (INIS)

    1988-01-01

    This volume contains conference summaries of the 28. annual conference of the Canadian Nuclear Association, and the 9. annual conference of the Canadian Nuclear Society. Topics of discussion include: power reactors; fuel cycles; nuclear power and public understanding; future trends; applications of nuclear technology; CANDU reactors; operational enhancements; design of small reactors; accident behaviour in fuel channels; fuel storage and waste management; reactor commissioning/decommissioning; nuclear safety experiments and modelling; the next generation reactors; advances in nuclear engineering education in Canada; safety of small reactors; current position and improvements of fuel channels; current issues in nuclear safety; and radiation applications - medical and industrial

  1. HSD17B12 gene rs11037575 C>T polymorphism confers neuroblastoma susceptibility in a Southern Chinese population

    Directory of Open Access Journals (Sweden)

    Zhang ZR

    2017-04-01

    Full Text Available Zhuorong Zhang,1,2 Yan Zou,2 Jinhong Zhu,3 Ruizhong Zhang,2 Tianyou Yang,2 Fenghua Wang,2 Huimin Xia,1,2 Jing He,2 Zhichun Feng1,4–6 1Southern Medical University, Guangzhou, Guangdong, 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 3Molecular Epidemiology Laboratory, Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 4Division of Neonatology, Affiliated BaYi Children’s Hospital, Clinical Medical College in PLA Army General Hospital, Southern Medical University, 5National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 6Beijing Key Laboratory of Pediatric Organ Failure, Beijing, People’s Republic of China Abstract: A previous genome-wide association study (GWAS identified four genetic polymorphisms (rs1027702 near DUSP12, rs10055201 in IL31RA, rs2619046 in DDX4, and rs11037575 in HSD17B12 gene that were associated with neuroblastoma susceptibility, especially for low-risk subjects. The aim of this study was to examine the association between these four polymorphisms and neuroblastoma susceptibility in a Southern Chinese population composed of 256 cases and 531 controls. Overall, among all the polymorphisms, single-locus analysis only revealed significant association between the HSD17B12 rs11037575 C>T polymorphism and neuroblastoma susceptibility (CT vs CC: adjusted odds ratio [OR] =0.71, 95% confidence interval [CI] =0.51–0.97, P=0.030. Moreover, stratified analysis indicated that the rs11037575 T allele was associated with decreased neuroblastoma risk among the children aged 0–18 months (adjusted OR =0.60, 95% CI =0.37–0.97, P=0.036; regarding the tumor site, this polymorphism protected against tumor in the mediastinum (adjusted OR =0.59, 95% CI =0.37–0.94, P=0.025. When risk genotypes were combined, we found that girls with

  2. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging.

    Science.gov (United States)

    Wei, Shu; Hua, Hai-Rong; Chen, Qian-Quan; Zhang, Ying; Chen, Fei; Li, Shu-Qing; Li, Fan; Li, Jia-Li

    2017-03-18

    Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews ( Tupaia belangeri chinensis ). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.

  3. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2017-08-01

    Full Text Available Being sessile in nature, plants have to withstand various adverse environmental stress conditions including both biotic and abiotic stresses. Comparatively, abiotic stresses such as drought, salinity, high temperature, and cold pose major threat to agriculture by negatively impacting plant growth and yield worldwide. Rice is one of the most widely consumed staple cereals across the globe, the production and productivity of which is also severely affected by different abiotic stresses. Therefore, several crop improvement programs are directed toward developing stress tolerant rice cultivars either through marker assisted breeding or transgenic technology. Alternatively, some known rhizospheric competent bacteria are also known to improve plant growth during abiotic stresses. A plant growth promoting rhizobacteria (PGPR, Bacillus amyloliquefaciens NBRI-SN13 (SN13 was previously reported by our lab to confer salt stress tolerance to rice seedlings. However, the present study investigates the role of SN13 in ameliorating various abiotic stresses such as salt, drought, desiccation, heat, cold, and freezing on a popular rice cv. Saryu-52 under hydroponic growth conditions. Apart from this, seedlings were also exogenously supplied with abscisic acid (ABA, salicylic acid (SA, jasmonic acid (JA and ethephon (ET to study the role of SN13 in phytohormone-induced stress tolerance as well as its role in abiotic and biotic stress cross-talk. All abiotic stresses and phytohormone treatments significantly affected various physiological and biochemical parameters like membrane integrity and osmolyte accumulation. SN13 also positively modulated stress-responsive gene expressions under various abiotic stresses and phytohormone treatments suggesting its multifaceted role in cross-talk among stresses and phytohormones in response to PGPR. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation by a

  4. Cell-based DNA demethylation detection system for screening of epigenetic drugs in 2D, 3D, and xenograft models

    Czech Academy of Sciences Publication Activity Database

    Agrawal, K.; Das, V.; Otmar, Miroslav; Krečmerová, Marcela; Džubák, P.; Hajdúch, M.

    91A, č. 2 (2017), s. 133-143 ISSN 1552-4922 R&D Projects: GA MZd(CZ) NV15-31984A; GA MŠk(CZ) LO1304; GA MŠk(CZ) LM2015064; GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : DNA methylation * DNA methylation inhibitors * demethylation detection system * epigenetic drugs * high content screening Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.222, year: 2016

  5. Determination of parameters influencing methylation and demethylation in tropical lakes in Brazil and Nicaragua

    International Nuclear Information System (INIS)

    Hylander, Lars D.; Ahlgren, Ingemar; Erikson, Rolf; Lantz, Peter; Toernblom, Erik; Forsberg, Bruce R.; Guimaraes, Jean R.D.; Meili, Markus; Montenegro Guillen, Salvador; Vammen, Katherine; Altamirano, Maximina; Zelaya, Argentina; Sarria Sacasa, Karla; Jimenez, Mario

    2001-01-01

    Increased awareness about the toxicity of mercury (Hg) has during the latest decades resulted in reduced Hg use in industrialised countries. Developing countries, on the contrary, have largely increased their anthropogenic Hg emissions caused by its use in gold mining, transfer of Hg emitting factories from developed countries, and increased burning of coal without appropriate flue gas cleaning. These increased emissions occur mainly in the tropics, where the fate of Hg is not well documented. The aim of the present study is to increase the knowledge about Hg levels and transformations in two tropical areas affected by anthropogenic Hg emissions - the Pantanal wetland in Brazil, housing gold miners using the amalgamation method, and Lake Xolotilan (Managua) in Nicaragua, where a chlor-alkali plant relocated from the USA has emitted much Hg. Actual Hg content in water, biota, and sediment will be determined by atomic fluorescence spectrophotometry and atomic absorption spectrophotometry. Mercury inethylation capacity in sediments and selected biota will be determined with in-situ incubations with 203 Hg and subsequent radiological measurements. Factors affecting the methylation and demethylation rates will be identified by varying environmental conditions such as pH, redox potential, conductivity, light, temperature, geochemical factors and population of bacteria. Sediment turnover will be studied by determining fallout cesium ( 137 Cs) in sediment profiles. The study is expected to increase the knowledge about Hg-transformations in the tropics and point out proper measures to reduce health hazards due to Hg-exposure. (author)

  6. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5

    Science.gov (United States)

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  7. Genetic inactivation of the Fanconi anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents

    Directory of Open Access Journals (Sweden)

    Bassermann Florian

    2010-05-01

    Full Text Available Abstract Background Inactivation of the Fanconi anemia (FA pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI tumors has not yet been systematically explored. Results A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. Conclusions As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could

  8. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    Science.gov (United States)

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  10. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min [Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072 (China); Wu, Junjie, E-mail: wujunjiesh@126.com [Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433 (China); Cai, Yong, E-mail: dryongcai@126.com [Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433 (China)

    2013-09-06

    Highlights: •Dnmt3A and Dnmt3B are involved in the down-regulation of WIF-1 expression in non-small-cell lung cancer. •MiR-29 family members could restore WIF-1 expression through demethylation. •MiR-29s suppress Wnt/β-catenin signaling pathway and inhibit tumor growth. •The expression of miR-29a and miR-29b could be regulated partially in a positive feedback loop. -- Abstract: Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC.

  11. 9. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.

  12. Abundance, genetic diversity and sensitivity to demethylation inhibitor fungicides of Aspergillus fumigatus isolates from organic substrates with special emphasis on compost.

    Science.gov (United States)

    Santoro, Karin; Matić, Slavica; Gisi, Ulrich; Spadaro, Davide; Pugliese, Massimo; Gullino, Maria L

    2017-12-01

    Aspergillus fumigatus is a widespread fungus that colonizes dead organic substrates but it can also cause fatal human diseases. Aspergilloses are treated with demethylation inhibitor (DMI) fungicides; however, resistant isolates appeared recently in the medical and also environmental area. The present study aims at molecular characterizing and quantifying A. fumigatus in major environmental habitats and determining its sensitivity to medical and agricultural DMI fungicides. A. fumigatus was isolated only rarely from soil and meadow/forest organic matter but high concentrations (10 3 to 10 7  cfu/g) were detected in substrates subjected to elevated temperatures, such as compost and silage. High genetic diversity of A. fumigatus from compost was found based on SSR markers, distinguishing among fungal isolates even when coming from the same substrate sample, while subclustering was observed based on mutations in cyp51A gene. Several cyp51A amino acid substitutions were found in 15 isolates, although all isolates were fully sensitive to the tested DMI fungicides, with exception of one isolate in combination with one fungicide. This study suggests that the tested A. fumigatus isolates collected in Italy, Spain and Hungary from the fungus' major living habitats (compost) and commercial growing substrates are not potential carriers for DMI resistance in the environment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Computational Biology Support: RECOMB Conference Series (Conference Support)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Waterman

    2006-06-15

    This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a

  14. Mendel conference

    CERN Document Server

    2015-01-01

    This book is a collection of selected accepted papers of Mendel conference that has been held in Brno, Czech Republic in June 2015. The book contents three chapters which represent recent advances in soft computing including intelligent image processing and bio-inspired robotics.: Chapter 1: Evolutionary Computing, and Swarm intelligence, Chapter 2: Neural Networks, Self-organization, and Machine Learning, and Chapter3: Intelligent Image Processing, and Bio-inspired Robotics. The Mendel conference was established in 1995, and it carries the name of the scientist and Augustinian priest Gregor J. Mendel who discovered the famous Laws of Heredity. In 2015 we are commemorating 150 years since Mendel's lectures, which he presented in Brno on February and March 1865. The main aim of the conference was to create a periodical possibility for students, academics and researchers to exchange their ideas and novel research methods.  .

  15. Berkeley Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved.

  16. Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    To a regular observer at annual international meetings, progress in particle physics from one year to the next sometimes might seem ponderously slow. But shift the timescale and the result is startling. Opening his summary of the 1986 International Conference on High Energy Physics, held in Berkeley, California, from 16-23 July, Steve Weinberg first recalled the 1966 Conference, also held in Berkeley. Then the preoccupations were current algebra, hadron resonances and the interpretation of scattering in terms of Regge poles, and the theory of weak interactions. Physics certainly has moved

  17. Recessive resistance to Bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris L.) affects long distance movement of the virus.

    Science.gov (United States)

    Feng, Xue; Orellana, Gardenia; Myers, James; Karasev, Alexander V

    2018-04-12

    Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII, in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-1 2 , bc-2, bc-2 2 , and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-1 2 , bc-2, and bc-2 2 alleles and their combinations, while no BCMV replication was found in inoculated leaves of 'IVT7214' carrying the bc-u, bc-2 and bc-3 genes, except for isolate 1755a capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV,VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-1 2 , bc-2, and bc-2 2 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when

  18. Caffeine demethylation measured by breath analysis in experimental liver injury in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schaad, H.J.; Renner, E.L.; Wietholtz, H.; Preisig, R. [University of Berne, Department of Clinical Pharmaceology, Berne (Switzerland); Arnaud, M.J. [Nestle Research Center, Nestec Ltd., Vevey (Switzerland)

    1995-01-01

    To assess the effect of experimental liver injury on caffeine metabolism, 1 {mu}{sup C}i/kg b.w. of [3-methyl{sup 14}C]-caffeine (together with 5 mg/kg b.w. of the cold compound) was injected i.p. to four different experimental groups and respective controls of unanesthetized male Sprague-Dawley rats. Exhaled {sup 14}CO{sub 2} was completely collected during 4 h and peak exhalation rate and fraction of dose recovered were calculated. 1/3 hepatectomy affected {sup 14}CO{sub 2} exhalation to a limited extent, decreasing solely peak exhalation rate (p<0.05 compared to sham-operated control). 2/3 hepatectomy, on the other hand, resulted in significant reduction (p<0.01) in both peak exhalation rate (by 59%) and fraction of dose recovered (by 47%), that were proportionate to the loss of liver mass (50%). End-to-side portocaval shunt led to the well-documented hepatic `atrophy`, liver weight being diminished on average to 50% within 2 weeks of surgery; however, reductions in peak exhalation rate (by 75%) and fraction of dose recovered (by 64%) were even more pronounced. Finally, 48 h bile duct ligation was equivalent to `functional 2/3 hepatectomy`, peak exhalation rate (by 65%) and fraction of dose recovered (by 56%) being markedly diminished despite increased liver weight. These results indicate that {sup 14}CO{sub 2} exhalation curves following administration of specifically labelled caffeine are quantitative indicators of acute or chronic loss of functioning liver mass. In addition, the 3-demethylation pathway appears to be particularly sensitive to the inhibitory effects of cholestasis on microsomal function. (au) (30 refs.).

  19. Determination of parameters influencing methylation and demethylation in tropical lakes in Brazil and Nicaragua

    International Nuclear Information System (INIS)

    Hylander, Lars D.; Ahlgren, Ingemar; Broberg, Anders; Lantz, Peter; Tornblom, Erik; Forsberg, Bruce R.; Guimaraes, Jean R.D.; Mauro, Jane; Markus, Meili; Guillen Montenegro, Salvador; Vammen, Katherine; Sacasa, Sarria Karla; Regnell, Olof

    2002-01-01

    Increased awareness about the toxicity of mercury (Hg) has during the latest decades resulted in reduced use of Hg in industrialised countries. Developing countries, on the contrary, have largely increased their anthropogenic Hg emissions caused by its use in gold mining, transfer of Hg emitting factories from developed countries, and increased burning of coal without appropriate flue gas cleaning. The contribution of global Hg sources and the importance of other parameters to increased Hg levels encountered in hydroelectric reservoirs and other areas after flooding is not well understood, especially not in the tropics. The aim of the present study is to increase the knowledge about Hg transformations in tropical areas. Total Hg content in water, biota, and sediment will be determined by atomic absorption and fluorescence spectrophotometry and methyl Hg content in biota by gaschromatography after extraction with acids, hydroxides, and organic solvents. Mercury methylation capacity in sediments, water, and selected biota will be determined with 203 Hg and subsequent radiological measurements of insitu incubations. Factors affecting the methylation and demethylation rates will be identified with laboratory incubations with 203 Hg at varying environmental conditions such as organic matter, pH, redox potential, conductivity, light, temperature, geochemical factors and populations of bacteria. The populations of bacteria will be determined to quantity by isotope techniques. The first experiments indicate markedly larger methylation capacity as well as bacterial production of incubated samples of Eichhornia crassipes, originating from Brazil, compared to Myriophyllum spicatum from Sweden. The results are the first step to better understand the importance of environmental parameters and bacterial production for methylation of Hg. (author)

  20. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    Directory of Open Access Journals (Sweden)

    Natalie R Lazar Adler

    Full Text Available Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA. Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE. A single mutant (bpaC was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA, those attenuated for virulence and net intracellular replication (BpaE, the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA. Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors

  1. Conference proceedings

    African Journals Online (AJOL)

    ebutamanya

    2016-02-29

    Feb 29, 2016 ... In addition, there are persistent problems with leadership and planning, vaccine stock management, supply chain capacity and quality, provider-parent communication, and financial sustainability. The conference delegates agreed to move from talking to taking concrete actions around children's health, and ...

  2. Glasgow conference

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1994-10-15

    The biennial 'Rochester' International Conferences on High Energy Physics which tick the rhythm of high energy physics progress reflect the dominance of the 'Standard Model' - the picture of electroweak and quark/gluon interactions in a simple framework of six weaklyinteracting particles (leptons) and six quarks. Despite its limited intellectual appeal, after a decade of intense probing the Standard Model still refuses to budge.

  3. Conference summary

    International Nuclear Information System (INIS)

    Clark, D.J.

    1975-10-01

    A brief review is given of the main results presented at the International Conference on Heavy Ion Sources, October 27--30, 1975. The sections are as follows: highlights, general observations, fundamental processes in sources, positive ion sources, negative ion sources, beam formation and emittance measurements, stripping, accelerators and experiments, and future prospects

  4. Lisbon Conference

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Although no major physics discoveries were announced, the European Physical Society's International Conference on High Energy Physics, held in Lisbon from 9-15 July, was significant in that it showed the emerging pattern of physics for the 1980s

  5. Conference report

    African Journals Online (AJOL)

    Tamara Shefer

    Bloomberg Philanthropies. The conference theme “from research to implementation” emphasised the importance of connecting knowledge around violence with injury prevention, while stressing the need to address the multitude of transnational public health challenges. In speaking to this theme, the. Tampere Declaration ...

  6. Conference Planning.

    Science.gov (United States)

    Carter, Richard

    1982-01-01

    Presents an overview of the management planning technique known as Break Even Analysis and outlines its use as a tool in financial planning for organizations intending to conduct or sponsor a conference, seminar, or workshop. Three figures illustrating Break Even Analysis concepts and a Break Even Analysis worksheet are included. (JL)

  7. Conference proceedings

    African Journals Online (AJOL)

    abp

    2015-08-07

    Aug 7, 2015 ... Conference was organized in June 2-6, 2014 at the Yaoundé Mont Febe Hotel, in Cameroon. Under the theme«Practice .... while the implementation of family planning in African HIV programs will favor safe contraception ... equipment. The WHO-stepwise approach for the global strategy for the prevention ...

  8. Conference summaries

    International Nuclear Information System (INIS)

    1983-01-01

    The papers presented at this conference cover the fields of thermalhydraulics, nuclear plant design and operation, licensing, decontamination, restoration and dismantling of nuclear power facilities, services to the nuclear industry, new applications of nuclear technology, reactor physics and fuel cycles, accelerator-breeders, fusion research and lasers

  9. Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory.

    Science.gov (United States)

    Kumar, Dinesh; Aggarwal, Milan; Kaas, Garrett A; Lewis, John; Wang, Jing; Ross, Daniel L; Zhong, Chun; Kennedy, Andrew; Song, Hongjun; Sweatt, J David

    2015-10-01

    A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  10. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  11. FOXP3 Expression in GARP-Transduced Helper T Cells Is Not Associated with FOXP3 TSDR Demethylation.

    Science.gov (United States)

    Kehrmann, Jan; Zeschnigk, Michael; Buer, Jan; Probst-Kepper, Michael

    2011-10-01

    AIM: Glycoprotein A repetitions predominant (GARP or LRRC32) represents a human regulatory CD4+ CD25(hi) FOXP3+ T (T(reg)) cell-specific receptor that controls FOXP3. Ectopic expression of GARP in helper T (T(h)) cells has been shown to be sufficient for the induction of FOXP3 and generation of a stable regulatory phenotype. Since expression of FOXP3 in Treg cells is epigenetically controlled by a conserved motif, the so-called T(reg)-specific demethylated region (TSDR), we asked whether GARP-mediated upregulation of FOXP3 in Th cells is similarly accompanied by demethylation of the TSDR. METHODS: DNA methylation of the FOXP3 TSDR was analyzed by direct sequencing of polymerase chain reaction (PCR) products from bisulfite-treated genomic DNA. RESULTS: Although GARP-transduced T(h) cells exhibit constitutive FOXP3 expression and a regulatory phenotype, the FOXP3 TSDR is completely methylated as in naive T(h) cells. GARP-mediated FOXP3 upregulation in T(h) cells is not associated with T(reg)-specific demethylation of the FOXP3 TSDR. CONCLUSION: Although GARP-engineered T(h) cells exhibit stable FOXP3 expression and a phenotypic reprogramming towards T(reg) cells in vitro, these cells do not completely mimic the epigenotype of natural T(reg) cells. Thus, concepts based on the genetic modification of T(h) cells as cellular therapies to treat autoimmune diseases or to control transplantation tolerance should be critically tested before any clinical application.

  12. Relationship of the demethylation of the DNA with the induction of the sister chromatid exchanges (SCE) In vivo

    International Nuclear Information System (INIS)

    Toribio E, E.

    2005-01-01

    The methylation of the DNA is an epigenetic modification that has an important paper in the regulation of the functionality of the genome of the organisms. It can be altered by demethylation processes, either natural or experimentally induced. The 5-azacytidine (Aza) is a compound that causes the demethylation of the DNA (dm-DNA), inducing with it, expression genic and increase in the frequency of the Sister Chromatid Exchange (SCE). The SCE is a genotoxicity indicator, caused by diverse mutagens and carcinogen. Since the biological meaning and the formation mechanism of this phenomenon has not been totally illustrious, the exploration of the relation between the dm-DNA and the induction of SCE, it could offer new knowledge to explain those queries. The purpose of this work was to study in cells of the mouse bone marrow In vivo, the effect of the Aza on the induction of SCE, based on two aspects: 1) dose answer and 2) the effectiveness of multiple exhibition. To six groups of three to five animals, they are administered Aza to dose of 5, 10, 15 or 20 mg/Kg of weight; in sharp or multiple form, previously to the bromodeoxyuridine supply and 24 h was sacrificed after this; 2 h after an injection with colchicine. Preparations of those metaphases were made, those which were dyed by means of a technique of fluorescence more Giemsa. It was observed that to sharp low dose, the Aza produced an increment in the frequency of SCE that although small it was proportional and statistically significant. To sharp and multiple high doses, the Aza doesn't cause additional increments of SCE, but if toxicity at cellular level and of individuals. It is concluded that a relationship exists between the dm-DNA and the induction of SCE. It is suggested that the total demethylation of the DNA causes 2 SCE/Cell in cells of the mouse bone marrow, or that the cytotoxicity prevents to evidence a bigger induction. (Author)

  13. Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis

    DEFF Research Database (Denmark)

    Kristensen, D G; Nielsen, J E; Jørgensen, Anne

    2014-01-01

    cells were assessed by quantitative measurements. The expression of TET1, TET2, APOBEC1, MBD4, APEX1, PARP1, DNMT1, DNMT3A, DNMT3B and DNMT3L in adult testis specimens with CIS and in human fetal testis was investigated by immunohistochemistry and immunofluorescence.Results:DNA from micro-dissected CIS...... cells contained very low levels of 5hmC produced by ten eleven translocation (TET) enzymes. CIS cells and fetal germ cells expressed the suggested initiator of active demethylation, APOBEC1, and the base excision repair proteins MBD4, APEX1 and PARP1, whereas TETs - the alternative initiators were...

  14. Conference Proceedings

    International Nuclear Information System (INIS)

    1998-01-01

    National and international aspects of climate change were the central concern of this conference organized by the Alliance for Responsible Environmental Alternatives (AREA). AREA is a coalition of industry, labour and municipalities from across Canada which was created to reflect the views and represent the interests of Canadians in the Climate Change Debate. Ways and means of optimizing Canada's response to the Global Climate Change Challenge were discussed. Discussions emphasized issues regarding the effectiveness of voluntary mechanisms to reduce greenhouse gases, as opposed to government-mandated actions for achieving climate change targets. The issue of how a differentiated system for emission reduction targets and timetables can be implemented was also debated. The economic implications of climate change were outlined. Canada's national agenda and the likely outcomes of the Conference of Parties (COP 4) in Buenos Aires also received much attention. tabs., figs

  15. SIGEF Conference

    CERN Document Server

    Terceño-Gómez, Antonio; Ferrer-Comalat, Joan; Merigó-Lindahl, José; Linares-Mustarós, Salvador

    2015-01-01

    This book is a collection of selected papers presented at the SIGEF conference, held at the Faculty of Economics and Business of the University of Girona (Spain), 06-08 July, 2015. This edition of the conference has been presented with the slogan “Scientific methods for the treatment of uncertainty in social sciences”. There are different ways for dealing with uncertainty in management. The book focuses on soft computing theories and their role in assessing uncertainty in a complex world. It gives a comprehensive overview of quantitative management topics and discusses some of the most recent developments in all the areas of business and management in soft computing including Decision Making, Expert Systems and Forgotten Effects Theory, Forecasting Models, Fuzzy Logic and Fuzzy Sets, Modelling and Simulation Techniques, Neural Networks and Genetic Algorithms and Optimization and Control. The book might be of great interest for anyone working in the area of management and business economics and might be es...

  16. Conference summaries

    International Nuclear Information System (INIS)

    1987-01-01

    This volume contains summaries of 28 papers presented at the 27. conference of the Canadian Nuclear Association. These papers discuss the general situation of the Canadian nuclear industry and the CANDU reactor; dialogue with the public; the International Atomic Energy Agency; and economic goals and operating lessons. It also contains summaries of 70 papers presented at the 8. conference of the Canadian Nuclear Society, which discuss plant life extension; safety and the environment; reactor physics; thermalhydraulics; risk assessment; the CANDU spacer location and repositioning project; CANDU operations; safety research after Chernobyl; fuel channels; and nuclear technology developments. The individual papers are also available in INIS-mf--13673 (CNA), and INIS-mf--12909 (CNS). (L.L.)

  17. Glasgow conference

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1994-01-01

    The biennial 'Rochester' International Conferences on High Energy Physics which tick the rhythm of high energy physics progress reflect the dominance of the 'Standard Model' - the picture of electroweak and quark/gluon interactions in a simple framework of six weaklyinteracting particles (leptons) and six quarks. Despite its limited intellectual appeal, after a decade of intense probing the Standard Model still refuses to budge

  18. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  19. Washington Conference

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The 1981 Particle Accelerator Conference was held in Washington from 11-13 March. It was the ninth in the series of meetings organized in the USA which differ from the 'International' meetings in their coverage of the full range of accelerator engineering and technology, including applications outside e field of high energy physics. The Conference took place under the cloud of further budget cuts for Fiscal Year 1982 in the USA which the Department of Energy has applied in line with the financial policy of the new administration. Coming on top of many years of budget trimming which have reduced the number of high energy physics Laboratories funded by the DOE to three (Brookhaven, Fermilab, Stanford - Cornell is funded by the National Science Foundation) and reduced the exploitation of these Laboratories to less than half of their potential, the new cuts did not exactly help to boost morale. Nevertheless, the huge amount of tailed work in accelerator physics and technology which was presented at the Conference showed how alive the field is

  20. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  1. Polymorphisms in the 3' UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy

    DEFF Research Database (Denmark)

    Kamiyama, Masumi; Kobayashi, Masaaki; Araki, Shin-ichi

    2007-01-01

    Using a large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese type 2 diabetic patients, we have identified a gene encoding neurocalcin delta (NCALD) as a candidate for a susceptibility gene to diabetic nephropathy; the landmark SNP was found in the 3' UT...

  2. The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Nussbaumer, C; Keller, Bente

    2003-01-01

    -type (non-transgenic) background. This indicates that LEP regulates a subset of the genes involved in the process of leaf blade outgrowth, and that genetic and/or functional redundancy in this process compensates for the loss of RLP function during the formation of the wild-type leaf blade. More detailed...... gene. Therefore, these lines are potentially mutated in genes for interacting partners of LEP or in downstream regulatory genes. In contrast, the recessive rlp lines exhibit a specific reversion of the leafy petiole phenotype. Thus, these lines are most probably mutated in genes specific...

  3. Inhibition of CYP2D6-mediated tramadol O-demethylation in methadone but not buprenorphine maintenance patients.

    Science.gov (United States)

    Coller, Janet K; Michalakas, Jennifer R; James, Heather M; Farquharson, Aaron L; Colvill, Joel; White, Jason M; Somogyi, Andrew A

    2012-11-01

    Management of pain in opioid dependent individuals is problematic due to numerous issues including cross-tolerance to opioids. Hence there is a need to find alternative analgesics to classical opioids and tramadol is potentially one such alternative. Methadone inhibits CYP2D6 in vivo and in vitro. We aimed to investigate the effect of methadone on the pathways of tramadol metabolism: O-demethylation (CYP2D6) to the opioid-active metabolite M1 and N-demethylation (CYP3A4) to M2 in subjects maintained on methadone or buprenorphine as a control. Compared with subjects on buprenorphine, methadone reduced the clearance of tramadol to active O-desmethyl-tramadol (M1) but had no effect on N-desmethyltramadol (M2) formation. Similar to other analgesics whose active metabolites are formed by CYP2D6 such as codeine, reduced formation of O-desmethyltramadol (M1) is likely to result in reduced analgesia for subjects maintained on methadone. Hence alternative analgesics whose metabolism is independent of CYP2D6 should be utilized in this patient population. To compare the O- (CYP2D6 mediated) and N- (CYP3A4 mediated) demethylation metabolism of tramadol between methadone and buprenorphine maintained CYP2D6 extensive metabolizer subjects. METHODS Nine methadone and seven buprenorphine maintained subjects received a single 100 mg dose of tramadol hydrochloride. Blood was collected at 4 h and assayed for tramadol, methadone, buprenorphine and norbuprenorphine (where appropriate) and all urine over 4 h was assayed for tramadol and its M1 and M2 metabolites. The urinary metabolic ratio [median (range)] for O-demethylation (M1) was significantly lower (P= 0.0002, probability score 1.0) in the subjects taking methadone [0.071 (0.012-0.103)] compared with those taking buprenorphine [0.192 (0.108-0.392)], but there was no significant difference (P= 0.21, probability score 0.69) in N-demethylation (M2). The percentage of dose [median (range)] recovered as M1 was significantly lower

  4. Conference summaries

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1985-01-01

    The 113 papers presented at this conference covered the areas of 1) fuel design, development and production; 2) nuclear plant safety; 3) nuclear instrumentation; 4) public and regulatory matters; 5) developments and opportunities in fusion; 6) fuel behaviour under normal operating conditions; 7) nuclear plant design and operations; 8) materials science and technology; 9) nuclear power issues; 10) fusion technology; 11) fuel behaviour under accident conditions; 12) large scale fuel channel replacement programs; 13) thermalhydraulics experimental studies; 14) reactor physics and analysis; 15) applications of accelerators; 16) fission product release and severe fuel damage under accident conditions; 17) thermalhydraulics modeling and assessments; 18) waste management and the environment; and 20) new reactor concepts

  5. NATO Conference

    CERN Document Server

    Lynn, W

    1975-01-01

    The contents of this volume involve selection, emendation and up-dating of papers presented at the NATO Conference "Mathe­ matical Analysis of Decision problems in Ecology" in Istanbul, Turkey, July 9-13, 1973. It was sponsored by the System Sciences Division of NATO directed by Dr. B. Bayraktar with local arrange­ ments administered by Dr. Ilhami Karayalcin, professor of the Department of Industrial Engineering at the Technical University of Istanbul. It was organized by A. Charnes, University professor across the University of Texas System, and Walter R.Lynn, Di­ rector of the School of Civil and Environmental Engineering at Cornell Unjversity. The objective of the conference was to bring together a group of leading researchers from the major sciences involved in eco­ logical problems and to present the current state of progress in research of a mathematical nature which might assist in the solu­ tion of these problems. Although their presentations are not herein recorded, the key­ note address of Dr....

  6. EGC Conferences

    CERN Document Server

    Ritschard, Gilbert; Pinaud, Bruno; Venturini, Gilles; Zighed, Djamel; Advances in Knowledge Discovery and Management

    This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2012 Conference held in Bordeaux, France, on January 2012. This conference was the 12th edition of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for ``Extraction et Gestion des Connaissances'' and means ``Knowledge Discovery and Management'', or KDM). This book is intended to be read by all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called ``Knowledge Discovery and Data Mining'' and ``Classification and Feature Extraction or Selection''. The first part (6 chapters) deals with...

  7. Munich conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-10-15

    'The Standard Model has survived impact for another year', declared Don Perkins of Oxford, summarizing the 24th International Conference on High Energy Physics held in Munich from 4-10 August. 'But is this a triumph or a frustration for physics?' he added. The twin pillars of the Standard Model, the electroweak unification of electromagnetism and the weak nuclear force, and the field theory (quantum chromodynamics) of the quark-gluon interactions responsible for the strong nuclear force, have not trembled since the electroweak unification went to the textbooks in 1983, but from time to time small cracks have appeared which might have gone on to shake the theory severely, if not undermine it. Major conference summarizers have got used to singing the praises of the Standard Model, but this year at Munich even detailed examination failed to reveal any serious cracks, while looking deeper into physics even some anomalous results hinting at gaps in understanding have either gone away or have diminished credibility.

  8. Munich conference

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    'The Standard Model has survived impact for another year', declared Don Perkins of Oxford, summarizing the 24th International Conference on High Energy Physics held in Munich from 4-10 August. 'But is this a triumph or a frustration for physics?' he added. The twin pillars of the Standard Model, the electroweak unification of electromagnetism and the weak nuclear force, and the field theory (quantum chromodynamics) of the quark-gluon interactions responsible for the strong nuclear force, have not trembled since the electroweak unification went to the textbooks in 1983, but from time to time small cracks have appeared which might have gone on to shake the theory severely, if not undermine it. Major conference summarizers have got used to singing the praises of the Standard Model, but this year at Munich even detailed examination failed to reveal any serious cracks, while looking deeper into physics even some anomalous results hinting at gaps in understanding have either gone away or have diminished credibility

  9. Title - EFARS - Conference (Uninvited)

    OpenAIRE

    Lohrey, MC; Lawrence, AS

    2016-01-01

    Abstract - EFARS - Conference (Uninvited) "Notes" - EFARS - Conference (Uninvited) In preparation (Publication status) Yes, full paperYes, abstract onlyNo (Peer reviewed?) "Add a comment" - EFARS - Conference - Uninvited

  10. Conference Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    This volume contains the unedited proceedings of the Second Annual Conference on Managing Electricity Price Volatility. There were a total of eleven papers presented, dealing with a variety of issues affecting price volatility. Subjects treated included: new power generation development in Alberta; an analysis of electricity supply and demand to predict future price volatility; the effect of government intervention in the Alberta electricity market; risk management in volatile energy markets; an analysis of Alberta's capacity to supply its own internal electric power needs; the impact of increased electricity import and export capacity on price fluctuation in Alberta; improving market liquidity in Alberta; using weather derivatives to offset price risk; the impact of natural gas prices on electricity price volatility; capitalizing on advancements in online trading; and strategies for businesses to keep operating through times of price volatility. In most cases only overhead viewgraphs are available

  11. MUSME Conference

    CERN Document Server

    Martinez, Eusebio

    2015-01-01

    This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the ...

  12. Cairo conference.

    Science.gov (United States)

    McMichael, A J

    1994-09-03

    The United Nations Conference on Population and Development in Cairo in September, 1994, will evoke criticism of the inability of governments to act quickly enough to avert demographic and environmental crises. Rapid population growth has clear implications for public health. Globally there now occur anthropogenic changes in atmospheric composition, the degradation of fertile lands and ocean fisheries, an accelerating loss of biodiversity, and the social and ecological problems of massive urbanization. In the future, per capita consumption levels will increase in burgeoning populations of developing countries, thus adding to the environmental impacts of overconsuming rich countries. By the end of the decade there will be over six billion people, of whom one half will live in cities. These demographic and environmental trends, if translated into climatic change, regional food shortages, and weakened ecosystems, would adversely affect human health. The World Health Organization is likely to concentrate only on accessible family planning and promotion of health for women and families. Continuing asymmetric child-saving aid, unaccompanied by substantial aid to help mobilize the social and economic resources needed to reduce fertility, may delay the demographic transition in poor countries and potentiate future public health disasters. As a result of recent reductions in fertility, even in Sub-Saharan Africa, average family sizes have been halved. Yet the demographic momentum will double population by 2050. The biosphere is a complex of ecosystems and, if unsustained, it could not fulfill the productive, cleansing, and protective functions on which life depends. The Cairo conference must therefore recognize that sustaining human health is a prime reason for concern about population growth and models of economic development.

  13. Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants

    DEFF Research Database (Denmark)

    Wienholtz, Nanna H; Ciechanowski, Aynur Barut; Nørskov-Lauritsen, Niels

    2017-01-01

    using site-directed mutagenesis. Recombinants were also generated using PCR-amplified ftsI from clinical strains encoding multiple amino acid substitutions. MICs of ampicillin, cefuroxime, cefotaxime and ceftriaxone were determined using Etest ® . Results: Transformation of a susceptible strain with fts...... for recombinants were lower than those for the donor strains. Using site-directed mutagenesis, no single substitution conferred resistance to the tested β-lactams, although V511A increased the MIC of cefuroxime to the intermediate category for intravenous administration. Recombinants encoding N526K...

  14. Genomic sequencing and in vivo footprinting of an expression-specific DNase I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA.

    Science.gov (United States)

    Saluz, H P; Feavers, I M; Jiricny, J; Jost, J P

    1988-01-01

    Genomic sequencing was used to study the in vivo methylation pattern of two CpG sites in the promoter region of the avian vitellogenin gene. The CpG at position +10 was fully methylated in DNA isolated from tissues that do not express the gene but was unmethylated in the liver of mature hens and estradiol-treated roosters. In the latter tissue, this site became demethylated and DNase I hypersensitive after estradiol treatment. A second CpG (position -52) was unmethylated in all tissues examined. In vivo genomic footprinting with dimethyl sulfate revealed different patterns of DNA protection in silent and expressed genes. In rooster liver cells, at least 10 base pairs of DNA, including the methylated CpG, were protected by protein(s). Gel-shift assays indicated that a protein factor, present in rooster liver nuclear extract, bound at this site only when it was methylated. In hen liver cells, the same unmethylated CpG lies within a protected region of approximately equal to 20 base pairs. In vitro DNase I protection and gel-shift assays indicate that this sequence is bound by a protein, which binds both double- and single-stranded DNA. For the latter substrate, this factor was shown to bind solely the noncoding (i.e., mRNA-like) strand. Images PMID:3413118

  15. Genotypes do not confer risk for delinquency but rather alter susceptibility to positive and negative environmental factors: gene-environmentinteractions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR [corrected].

    Science.gov (United States)

    Nilsson, Kent W; Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2014-12-10

    Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17-18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. © The Author 2015. Published by Oxford University

  16. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    Science.gov (United States)

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID

  17. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116.

    Science.gov (United States)

    Choi, Jee-Hye; Min, Na Young; Park, Jina; Kim, Jin Hong; Park, Soo Hyun; Ko, Young Jong; Kang, Yoonsung; Moon, Young Joon; Rhee, Sangmyung; Ham, Seung Wook; Park, Ae Ja; Lee, Kwang-Ho

    2010-01-01

    Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter. Copyright 2009 Elsevier Inc. All rights reserved.

  18. The Roles of a Flavone-6-Hydroxylase and 7-O-Demethylation in the Flavone Biosynthetic Network of Sweet Basil*

    Science.gov (United States)

    Berim, Anna; Gang, David R.

    2013-01-01

    Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin. PMID:23184958

  19. Analysis of acylcarnitines as their N-demethylated ester derivatives by gas chromatography-chemical ionization mass spectrometry.

    Science.gov (United States)

    Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C

    1991-11-15

    A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.

  20. Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines (HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production.

    Science.gov (United States)

    Welsh, N; Bendtzen, K; Welsh, M

    1995-01-01

    A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with the mol wt 23, 17, and 14 kD, were immunoprecipitated with anti-IL-1ra antibodies from [35S]methionine-labeled HITra2 cells. Both at a low and at a high glucose concentration, 4-5 ng of IL-1ra/10(6) cells (ELISA) was released from these cells. On the other hand, a high glucose concentration evoked a three-fold increase in the release of insulin, suggesting that IL-1ra was released constitutively. Measured by nitrite production, transfected HIT, and NIT-1 cells exhibited a more than 10-fold decrease in IL-1 beta sensitivity. Since the conditioned culture media from the HITra2 cells exhibited an anti-IL-1 beta activity of only 0.5 U/ml, and mixed culture of HITra2 cells and isolated rat islets prevented IL-1 beta induced inhibition of insulin release, it is likely that IL-1ra acts locally at the cell surface. It is concluded that expression of a hybrid insulin/IL-1ra gene confers resistance to IL-1 and that this technique may be used to elucidate the role of IL-1 in autoimmune disorders such as insulin-dependent diabetes mellitus. Images PMID:7706480

  1. Primetime for Learning Genes.

    Science.gov (United States)

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene ( BDNF ), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  2. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria.

    Science.gov (United States)

    Yoshii, Atsushi; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-08-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.

  3. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  4. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis.

    Science.gov (United States)

    Guo, Chuan-yu; Wu, Guang-heng; Xing, Jin; Li, Wen-qi; Tang, Ding-zhong; Cui, Bai-ming

    2013-05-01

    A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.

  5. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice

    Science.gov (United States)

    Ren, Juansheng; Gao, Fangyuan; Wu, Xianting; Lu, Xianjun; Zeng, Lihua; Lv, Jianqun; Su, Xiangwen; Luo, Hong; Ren, Guangjun

    2016-01-01

    An urgent need exists to identify more brown planthopper (Nilaparvata lugens Stål, BPH) resistance genes, which will allow the development of rice varieties with resistance to BPH to counteract the increased incidence of this pest species. Here, using bioinformatics and DNA sequencing approaches, we identified a novel BPH resistance gene, LOC_Os06g03240 (MSU LOCUS ID), from the rice variety Ptb33 in the interval between the markers RM19291 and RM8072 on the short arm of chromosome 6, where a gene for resistance to BPH was mapped by Jirapong Jairin et al. and renamed as “Bph32”. This gene encodes a unique short consensus repeat (SCR) domain protein. Sequence comparison revealed that the Bph32 gene shares 100% sequence identity with its allele in Oryza latifolia. The transgenic introgression of Bph32 into a susceptible rice variety significantly improved resistance to BPH. Expression analysis revealed that Bph32 was highly expressed in the leaf sheaths, where BPH primarily settles and feeds, at 2 and 24 h after BPH infestation, suggesting that Bph32 may inhibit feeding in BPH. Western blotting revealed the presence of Pph (Ptb33) and Tph (TN1) proteins using a Penta-His antibody, and both proteins were insoluble. This study provides information regarding a valuable gene for rice defence against insect pests. PMID:27876888

  6. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice.

    Science.gov (United States)

    Ren, Juansheng; Gao, Fangyuan; Wu, Xianting; Lu, Xianjun; Zeng, Lihua; Lv, Jianqun; Su, Xiangwen; Luo, Hong; Ren, Guangjun

    2016-11-23

    An urgent need exists to identify more brown planthopper (Nilaparvata lugens Stål, BPH) resistance genes, which will allow the development of rice varieties with resistance to BPH to counteract the increased incidence of this pest species. Here, using bioinformatics and DNA sequencing approaches, we identified a novel BPH resistance gene, LOC_Os06g03240 (MSU LOCUS ID), from the rice variety Ptb33 in the interval between the markers RM19291 and RM8072 on the short arm of chromosome 6, where a gene for resistance to BPH was mapped by Jirapong Jairin et al. and renamed as "Bph32". This gene encodes a unique short consensus repeat (SCR) domain protein. Sequence comparison revealed that the Bph32 gene shares 100% sequence identity with its allele in Oryza latifolia. The transgenic introgression of Bph32 into a susceptible rice variety significantly improved resistance to BPH. Expression analysis revealed that Bph32 was highly expressed in the leaf sheaths, where BPH primarily settles and feeds, at 2 and 24 h after BPH infestation, suggesting that Bph32 may inhibit feeding in BPH. Western blotting revealed the presence of Pph (Ptb33) and Tph (TN1) proteins using a Penta-His antibody, and both proteins were insoluble. This study provides information regarding a valuable gene for rice defence against insect pests.

  7. Conference summaries

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Tim [Inta Communication Limited for European Service Network/ DG Research, Trillium House, 32 New Street, St. Neots, Cambridge PE19 1AJ (United Kingdom)

    2004-07-01

    The summaries were derived from presentations, interviews and discussions at the conference. The summaries are given at two levels, overall for the conference and for specific sessions as follows: 1) Overall Conference: 'A Sound Scientific Basis for Serious Decisions; 2) Sessions on EC Policy and Socio-Political Issues: 'Promoting Safety and Protecting Society'; 3) Session on P and T: 'Partitioning and Transmutation: A Technical Fix or Technical Training?'; 4) Sessions on Geological Disposal and Research Networking: 'No Technical Barriers to Geological Disposal'. First an overall summary of Euradwaste '04 is presented. Significant progress was made on the technical and scientific basis for geological disposal of radioactive waste during the European Commission's Fifth EURATOM Framework Programme for Research (FP5). Deep geological disposal is technically feasible now and can demonstrate the guarantees of long-term isolation and protection of the public. In parallel, socio-political studies have produced methodologies for constructive dialogue with potential host communities that reflect the honesty and openness expected by a democratic society. A harmonized legislative framework for nuclear safety and waste disposal across the enlarged European Union is currently being discussed. Disposal in deep (> 300 metre) geological repositories, the favoured strategy in Europe for long-lived high-level radioactive waste, is now possible. The Sessions on EC Policy and Socio-Political Issues are summarized as follows. The opening day of Euradwaste '04 focused on European Commission policy, including the proposed Directives on disposal of radioactive waste and nuclear safety and socio-political aspects including governance and decision making, public perception/acceptance of waste disposal and its sustainability. A decision on the proposed package will now be made after Union enlargement. Public agreement on the siting of

  8. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  9. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid.

    Science.gov (United States)

    Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O

    2012-02-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  10. Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica)

    Science.gov (United States)

    Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting

    2018-01-01

    Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625

  11. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Iñigo Landa

    2009-09-01

    Full Text Available In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30-1.70; P = 5.9x10(-9. Functional assays of rs1867277 (NM_004473.3:c.-283G>A within the FOXE1 5' UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/alphaCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

  12. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Science.gov (United States)

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  13. Conference Papers

    International Nuclear Information System (INIS)

    2003-01-01

    A total of 18 papers were presented at the 2003 Annual Executive Conference of the Canadian Gas Association held at St. Andrews, NB, from June 25th to June 28th. Titles of the presentations were as follows: (1) 'Positioning natural gas in a transforming world' by Pierre Marcel Desjardins; (2) 'Positioning natural gas in a transforming world' by Jean-Paul Theoret; (3) 'Perceptions of natural gas' by Noel Sampson; (4) 'Energy efficiency as an opportunity for the natural gas industry' by Peter Love; (5) 'Natural gas R and D - NRCan perspective' by Graham R. Campbell; (6) 'Impact of earned media on corporate perceptions in the gas industry' by Michael Coates; (7) 'Moving forward with an initiative for natural gas technology innovation' by Emmanuel Morin; (8) 'Natural gas R and D - No more dodging the issue' by Chuck Szmurlo; (9) 'Meeting the technology needs of the gas industry and the gas consumer' by Stanley S. Borys; (10) 'Market signals' by John Wellard; (11) 'Future sources of Canadian natural gas' by Rick Hyndman; (12) 'The state of supply: Northeast U.S. perspective' by Tom Kiley; (13) 'AGA's priorities and perspectives' by Dick Reiten; (14) 'Global energy issues: Recent development in policy and business' by Gerald Doucet; (15) 'Keeping the distribution cart behind the horse: Why finding more offshore gas is much more important than completing the natural gas grid, including for New Brunswick' by Brian Lee Crowley; (16) 'Environmental opportunities and challenges for the gas industry' by Manfred Klein; (17) 'The potential for natural gas demand destruction' by Timothy Partridge; and (18) 'Pushing the envelope on gas supply' by Roland R. George. In most instances only speaking notes and view graphs are available

  14. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    Science.gov (United States)

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco

    NARCIS (Netherlands)

    Strizhov, N.; Keller, M.; Mathur, J.; Koncz-Kaiman, Z.; Bosch, D.; Prudovksy, E.; Schell, J.; Sneh, B.; Koncz, C.; Zilberstein, A.

    1996-01-01

    Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and

  16. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    Science.gov (United States)

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata.

    Science.gov (United States)

    Fraga, Mario F; Rodríguez, Roberto; Cañal, Maria Jesús

    2002-08-01

    In animals, DNA methylation is related to gene silencing during ontogenic development. Little is known about DNA methylation in plants, although occasional changes in the DNA methylation state of specific gene promoters have been reported in angiosperms during some developmental processes. We found large differences in the extent of DNA methylation between meristematic areas of juvenile and mature Pinus radiata D. Don. trees, whereas differences in the extent of DNA methylation between differentiated tissues of juvenile and mature trees were small. In meristematic areas, there was a gradual decrease in extent of DNA methylation as the degree of reinvigoration increased. The observed changes in extent of DNA methylation during aging and reinvigoration indicate that reinvigoration could be a consequence of epigenetic modifications opposite in direction to those that occur during aging.

  18. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Li Xiao Hui

    2015-09-01

    Full Text Available S-adenosylhomocysteine hydrolase (SAHH, catalyzing the reversible hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.

  19. Genetics and mapping of the R₁₁ gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Seiler, G J; Vick, B A; Gulya, T J

    2012-09-01

    Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20 % yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6 cM, and shared a common marker, ORS728, which was mapped 1.3 cM proximal to Rf5 and 0.3 cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5 cM distal to Rf5 and ORS45 was 1.0 cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9

  20. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes’ Activities

    Directory of Open Access Journals (Sweden)

    Rong-Xiang Zhang

    2017-07-01

    Full Text Available Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l-myo-inositol monophosphatase (IMPase is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice (Oryza sativa L. remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP. Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha, while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA treatment. Meanwhile, we cloned the 5’ flanking promoter sequence of the OsIMP gene and identified several important cis-acting elements, such as LTR (low-temperature responsiveness, TCA-element (salicylic acid responsiveness, ABRE-element (abscisic acid responsiveness, GARE-motif (gibberellin responsive, MBS (MYB Binding Site and other cis-acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H2O2 and malondialdehyde (MDA, and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD

  1. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  2. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes' Activities.

    Science.gov (United States)

    Zhang, Rong-Xiang; Qin, Li-Jun; Zhao, De-Gang

    2017-07-20

    Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l- myo -inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice ( Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP . Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha , while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis -acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis -acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD

  3. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana.

    Science.gov (United States)

    Liu, Xiufang; Song, Yunzhi; Xing, Fangyu; Wang, Ning; Wen, Fujiang; Zhu, Changxiang

    2016-09-01

    WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.

  4. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gao, Caiqiu; Wang, Yucheng; Jiang, Bo; Liu, Guifeng; Yu, Lili; Wei, Zhigang; Yang, Chuanping

    2011-02-01

    Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.

  5. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    Science.gov (United States)

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  6. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    Science.gov (United States)

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  8. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor

    DEFF Research Database (Denmark)

    Kristensen, Line Hyltoft; Nielsen, Anders Laerke; Helgstrand, Charlotte

    2012-01-01

    Dynamic methylations and demethylations of histone lysine residues are important for gene regulation and are facilitated by histone methyltransferases and histone demethylases (HDMs). KDM5B/Jarid1B/PLU1 is an H3K4me3/me2 specific lysine demethylase belonging to the family of JmjC domain containing...... lysine specific HDMs (JHDMs). Several studies have linked KDM5B to breast, prostate and skin cancer, highlighting its potential as a drug target. However, most inhibitor studies have focused on other JHDMs, and inhibitors for KDM5B remain to be explored. Here, we report the expression, purification...... and characterization of the catalytic core of recombinant KDM5B (residues 1-769, ccKDM5B). We show that ccKDM5B, recombinantly expressed in insect cells, demethylates H3K4me3 and H3K4me2 in vitro. The kinetic characterization showed that ccKDM5B has a K(m) (app) value of 0.5 µM for its tri-methylated substrate H3...

  9. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J).

    Science.gov (United States)

    Lee, Hong Jo; Lee, Kyung Youn; Jung, Kyung Min; Park, Kyung Je; Lee, Ko On; Suh, Jeong-Yong; Yao, Yongxiu; Nair, Venugopal; Han, Jae Yong

    2017-12-01

    Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na + /H + exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Resolution, configurational assignment, and enantiopharmacology at glutamate receptors of 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and demethyl-ACPA

    DEFF Research Database (Denmark)

    Johansen, T N; Stensbøl, T B; Nielsen, B

    2001-01-01

    We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution...... of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC...... columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid...

  11. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    Science.gov (United States)

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  12. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb, the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.

  13. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    International Nuclear Information System (INIS)

    Sun Xingmin; Goehler, Andre; Heller, Knut J.; Neve, Horst

    2006-01-01

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10 9 phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages

  14. More about the Viking hypothesis of origin of the delta32 mutation in the CCR5 gene conferring resistance to HIV-1 infection.

    Science.gov (United States)

    Lucotte, Gérard; Dieterlen, Florent

    2003-11-01

    The chemokine receptor CCR5 constitutes the major coreceptor for the HIV-1, because a mutant allele of the CCR5 gene named delta32 was shown to provide to homozygotes a strong resistance against infection. In the present study the frequency of the delta32 allele was collected in 36 European populations and in Cyprus, and the highest allele frequencies were found in Nordic countries. We constructed an allele map of delta32 frequencies in Europe; the map is in accordance to the Vikings hypothesis of the origin of the mutation and his dissemination during the eighth to the tenth centuries.

  15. Transfer of human genes conferring resistance to methylating mutagens, but not to UV irradiation and cross-linking agents, into Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kaina, B.; Van Zeeland, A.A.; Backendorf, C.; Thielmann, H.W.; Van de Putte, P.

    1987-01-01

    Chinese hamster ovary cells were transfected by human DNA ligated to the bacterial gpt (xanthine-guanine-phosphoribosyltransferase) gene which was used either in its native form or after partial inactivation with methylnitrosourea. The gpt+ transfectants were screened for resistance to high doses of N-methyl-N'-nitro-N-nitrosoguanidine. Using this approach, we showed that Chinese hamster ovary cells can acquire N-methyl-N'-nitro-N-nitrosoguanidine resistance upon transfection with DNA from diploid human fibroblasts, that this resistance is transferable by secondary transfection and is specific for methylating mutagens, and that it is not caused by increased removal of O6-methylguanine, 3-methyladenine, and 7-methylguanine from DNA

  16. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Wetlands in large rivers are important sites of production of the neurotoxin methylmercury (MeHg), and the periphyton growing on wetland macrophytes are increasingly recognized as key players in this production and transfer in food webs. Information is lacking about mercury methylation (K m ) and demethylation (K d ) rates in periphytic biofilms from the Northern Hemisphere, as well as about the drivers of net MeHg production, hampering ecosystem modeling of Hg cycling. Mercury methylation and demethylation rates were measured in periphytic biofilms growing on submerged plants in a shallow fluvial lake located in a temperate cold region (St. Lawrence River, Quebec, Canada). Incubations were performed in situ within macrophyte beds using low-level spikes of 199 HgO and Me 200 Hg stable isotopes as tracers. A direct relationship was observed between K m (0.002 to 0.137 d −1 ) and [MeHg] in periphyton. A similar relationship was found between K d (0.096 to 0.334 d −1 ) and [inorganic Hg]. Periphyton of Lake St. Pierre reached high levels of net MeHg production that were two orders of magnitude higher than those found in local sediment. This production varied through the plant growing season and was mainly driven by environmental variables such as depth of growth, available light, dissolved oxygen, temperature, plant community structure, and productivity of the habitat. - Highlights: • Periphyton Hg methylation and demethylation were studied in a large fluvial lake. • Addition of stable Hg isotopes was used to obtain in situ rates for these processes. • Net methylation was higher in periphyton than in local sediments. • Methylation and demethylation rates fluctuated during the summer. • Key drivers of rates were depth, light, temperature, and community structure

  17. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, Stéphanie; Planas, Dolors [GRIL, Département de sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8 (Canada); Amyot, Marc [GRIL, Département de sciences biologiques, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7 (Canada)

    2015-04-15

    Wetlands in large rivers are important sites of production of the neurotoxin methylmercury (MeHg), and the periphyton growing on wetland macrophytes are increasingly recognized as key players in this production and transfer in food webs. Information is lacking about mercury methylation (K{sub m}) and demethylation (K{sub d}) rates in periphytic biofilms from the Northern Hemisphere, as well as about the drivers of net MeHg production, hampering ecosystem modeling of Hg cycling. Mercury methylation and demethylation rates were measured in periphytic biofilms growing on submerged plants in a shallow fluvial lake located in a temperate cold region (St. Lawrence River, Quebec, Canada). Incubations were performed in situ within macrophyte beds using low-level spikes of {sup 199}HgO and Me{sup 200}Hg stable isotopes as tracers. A direct relationship was observed between K{sub m} (0.002 to 0.137 d{sup −1}) and [MeHg] in periphyton. A similar relationship was found between K{sub d} (0.096 to 0.334 d{sup −1}) and [inorganic Hg]. Periphyton of Lake St. Pierre reached high levels of net MeHg production that were two orders of magnitude higher than those found in local sediment. This production varied through the plant growing season and was mainly driven by environmental variables such as depth of growth, available light, dissolved oxygen, temperature, plant community structure, and productivity of the habitat. - Highlights: • Periphyton Hg methylation and demethylation were studied in a large fluvial lake. • Addition of stable Hg isotopes was used to obtain in situ rates for these processes. • Net methylation was higher in periphyton than in local sediments. • Methylation and demethylation rates fluctuated during the summer. • Key drivers of rates were depth, light, temperature, and community structure.

  18. Deferasirox and vitamin D improves overall survival in elderly patients with acute myeloid leukemia after demethylating agents failure.

    Directory of Open Access Journals (Sweden)

    Etienne Paubelle

    Full Text Available The prognosis of acute myeloid leukemia (AML in elderly (≥65 years patients is poor and treatment remains non-consensual especially for those who are not eligible for intensive therapies. Our group has shown that in vitro the iron chelator deferasirox (DFX synergizes with vitamin D (VD to promote monocyte differentiation in primary AML cells. Herein, we present results from a retrospective case-control study in which the association of DFX (1-2 g/d and 25-hydroxycholecalciferol (100,000 IU/week (DFX/VD was proposed to patients following demethylating agents failure. Median survival of patients treated with DFX/VD combination (n = 17 was significantly increased in comparison with matched patients receiving best supportive care (BSC alone (n = 13 (10.4 versus 4 months respectively. In addition, the only factor associated to an increased overall survival in DFX/VD-treated patients was serum VD levels. We conclude that DFX/VD treatment correlated with increased overall survival of AML patients in this retrospective cohort of elderly patients.

  19. Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells.

    Science.gov (United States)

    Manzar, Gohar S; Kim, Eun-Mi; Zavazava, Nicholas

    2017-08-25

    Type 1 diabetes (T1D) can be managed by transplanting either the whole pancreas or isolated pancreatic islets. However, cadaveric pancreas is scarcely available for clinical use, limiting this approach. As such, there is a great need to identify alternative sources of clinically usable pancreatic tissues. Here, we used induced pluripotent stem (iPS) cells derived from patients with T1D to generate glucose-responsive, insulin-producing cells (IPCs) via 3D culture. Initially, T1D iPS cells were resistant to differentiation, but transient demethylation treatment significantly enhanced IPC yield. The cells responded to high-glucose stimulation by secreting insulin in vitro The shape, size, and number of their granules, as observed by transmission electron microscopy, were identical to those found in cadaveric β cells. When the IPCs were transplanted into immunodeficient mice that had developed streptozotocin-induced diabetes, they promoted a dramatic decrease in hyperglycemia, causing the mice to become normoglycemic within 28 days. None of the mice died or developed teratomas. Because the cells are derived from "self," immunosuppression is not required, providing a much safer and reliable treatment option for T1D patients. Moreover, these cells can be used for drug screening, thereby accelerating drug discovery. In conclusion, our approach eliminates the need for cadaveric pancreatic tissue.

  20. Validation of 13CO2 breath analysis as a measurement of demethylation of stable isotope labeled aminopyrine in man

    International Nuclear Information System (INIS)

    Schneider, J.F.; Schoeller, D.A.; Nemchausky, B.; Bayer, J.L.; Klein, P.

    1978-01-01

    Interval sampling of expired breath as a simple, non-invasive assessment of the effect of liver disease upon hepatic microsomal drug metabolism, has been demonstrated with [ 14 C] dimethylaminoantipyrine (aminopyrine). In order to eliminate radiation risk the authors have validated the use of aminopyrine labeled with the stable, non-radioactive isotope 13 C. Simultaneous oral administration of both [ 14 C]- and [ 13 C] aminopyrine to five adult subjects without liver disease as well as five patients with known liver disease, resulted in the excretion of label at nearly identical rates in both individual time collections (r=0.94) as well as cumulative excretion for three hours (r=0.97). An oral dose of 2-mg/kg of [ 13 C) aminopyrine resulted in rates of production of 13 CO 2 significantly greater than baseline variations in 13 CO 2 production in the fasting, resting subject. Measurements of a single peak value at one half hour correlated closely with the determination of cumulative appearance over three hours (r=0.96). A consistent reproducible increase in the peak production of 13 CO 2 was observed when five patients received phenobarbital. Stable isotope labeled aminopyrine may be used to detect the effects of disease and treatment upon hepatic N-demethylation activity in human subjects without incurring any risk from radiation. Furthermore, the availability of another isotopic carbon label should make possible the study of direct drug-drug interaction utilizing CO 2 analysis. (Auth.)

  1. Quantification of citalopram or escitalopram and their demethylated metabolites in neonatal hair samples by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Frison, Giampietro; Favretto, Donata; Vogliardi, Susanna; Terranova, Claudio; Ferrara, Santo Davide

    2008-08-01

    Citalopram and escitalopram are highly selective serotonin reuptake inhibitors widely used in the treatment of depression. They exhibit adverse drug reactions and side effects, however, and the development of specific methods for their determination is of great interest in clinical and forensic toxicology. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the assay of citalopram, escitalopram, and their demethylated metabolites in 10-mg hair samples. The analytes were extracted by incubation in methanol and liquid/liquid extraction with diethyl ether/dichloromethane. Gradient elution on a narrow bore C18 column was realized using clomipramine-d3 as an internal standard. Positive ion electrospray ionization and tandem mass spectrometry determination by collision-induced dissociation were performed in an ion trap mass spectrometer. The method exhibited a linear range of 25 to 2000 pg/mg, a quantification limit of 25 pg/mg for all analytes, relative standard deviations in the range of 12.10 to 9.80 (intraassay), and 13.80 to 11.78 (interassay), and accuracies (as percent recovery of the spiked standards) in the range of 90% to 110%; it was applied to the determination of citalopram and escitalopram and their metabolites in hair samples of two newborns to document their in utero exposure to the drugs. The method proved suitable for neonatal hair analysis of citalopram or escitalopram and was applied to two real cases of gestational exposure.

  2. Intramolecular Oxidative O-Demethylation of an Oxoferryl Porphyrin Complexed with a Per-O-methylated β-Cyclodextrin Dimer.

    Science.gov (United States)

    Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji

    2016-11-22

    The intramolecular oxidation of ROCH 3 to ROCH 2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe III TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH 2 PyCH 2 O- linker (Py=pyridine-3,5-diyl). The O=Fe IV TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe IV TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe II TPPS (t 1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH 3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe IV TPPS from ROCH 3 yields HO-Fe III TPPS and ROCH 2 . . This was followed by radical coupling to afford Fe II TPPS and ROCH 2 OH. The hemiacetal (ROCH 2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden.

    Science.gov (United States)

    Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei

    2016-09-08

    Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.

  4. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  5. INFCE plenary conference documents

    International Nuclear Information System (INIS)

    This document consists of the reports to the First INFCE Plenary Conference (November 1978) by the Working Groups a Plenary Conference of its actions and decisions, the Communique of the Final INFCE Plenary Conference (February 1980), and a list of all documents in the IAEA depository for INFCE

  6. Conferences are like swans

    OpenAIRE

    Corker, Chris

    2012-01-01

    Chris Corker was the lead on bringing the 2011 Higher Education Research Scholarship Group Conference to fruition, both in the months preceding the event and on the day. In this viewpoint, Chris shares his experiences of conference administration and delivery, and explores how conferences and swans have more in common that you would imagine.

  7. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  8. International Conference on Physics

    CERN Document Server

    2016-01-01

    OMICS International, (conference series) the World Class Open Access Publisher and Scientific Event Organizer is hosting “International Conference on physics” which is going to be the biggest conference dedicated to Physics. The theme “Highlighting innovations and challenges in the field of Physics” and it features a three day conference addressing the major breakthroughs, challenges and the solutions adopted. The conference will be held during June 27-29, 2016 at New Orleans, USA. Will be published in: http://physics.conferenceseries.com/

  9. Genetic variation in a microRNA-502 minding site in SET8 gene confers clinical outcome of non-small cell lung cancer in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Jiali Xu

    Full Text Available BACKGROUND: Genetic variants may influence microRNA-target interaction through modulate their binding affinity, creating or destroying miRNA-binding sites. SET8, a member of the SET domain-containing methyltransferase, has been implicated in a variety array of biological processes. METHODS: Using Taqman assay, we genotyped a polymorphism rs16917496 T>C within the miR-502 binding site in the 3'-untranslated region of the SET8 gene in 576 non-small cell lung cancer (NSCLC patients. Functions of rs16917496 were investigated using luciferase activity assay and validated by immunostaining. RESULTS: Log-rank test and cox regression indicated that the CC genotype was associated with a longer survival and a reduced risk of death for NSCLC [58.0 vs. 41.0 months, P = 0.031; hazard ratio = 0.44, 95% confidential interval: 0.26-0.74]. Further stepwise regression analysis suggested rs16917496 was an independently favorable factor for prognosis and the protective effect more prominent in never smokers, patients without diabetes and patients who received chemotherapy. A significant interaction was observed between rs16917496 and smoking status in relation to NSCLC survival (PC located at miR-502 binding site contributes to NSCLC survival by altering SET8 expression through modulating miRNA-target interaction.

  10. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium.

    Science.gov (United States)

    Zhang, Yan-Min; Zhang, Hong-Mei; Liu, Zi-Hui; Li, Hui-Cong; Guo, Xiu-Lin; Li, Guo-Liang

    2015-02-01

    Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.

  11. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  12. Facilitating Learning at Conferences

    DEFF Research Database (Denmark)

    Ravn, Ib; Elsborg, Steen

    2011-01-01

    The typical conference consists of a series of PowerPoint presentations that tend to render participants passive. Students of learning have long abandoned the transfer model that underlies such one-way communication. We propose an al-ternative theory of conferences that sees them as a forum...... for learning, mutual inspiration and human flourishing. We offer five design principles that specify how conferences may engage participants more and hence increase their learning. In the research-and-development effort reported here, our team collaborated with conference organizers in Denmark to introduce...... and facilitate a variety of simple learning techniques at thirty one- and two-day conferences of up to 300 participants each. We present ten of these techniques and data evaluating them. We conclude that if conference organizers allocate a fraction of the total conference time to facilitated processes...

  13. Influences of the disease resistance conferred by the individual ...

    African Journals Online (AJOL)

    To research possible influences of the disease resistance conferred by different trans-resistance genes on the transgenic rice plants in their yields and grain quality, three transgenic rice lines, including two with the resistance genes Pi-d2 and Pi-d3, respectively, for rice blast, and one with the resistance gene Xa21 for rice ...

  14. Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens stal), and development of STS markers for marker-assisted selection.

    Science.gov (United States)

    Cha, Young-Soon; Ji, Hyeonso; Yun, Doh-Won; Ahn, Byoung-Ohg; Lee, Myung Chul; Suh, Seok-Cheol; Lee, Chun Seok; Ahn, Eok Keun; Jeon, Yong-Hee; Jin, Il-Doo; Sohn, Jae-Keun; Koh, Hee-Jong; Eun, Moo-Young

    2008-08-31

    The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

  15. Length of Variable Numbers of Tandem Repeats in the Carboxyl Ester Lipase (CEL) Gene May Confer Susceptibility to Alcoholic Liver Cirrhosis but Not Alcoholic Chronic Pancreatitis.

    Science.gov (United States)

    Fjeld, Karianne; Beer, Sebastian; Johnstone, Marianne; Zimmer, Constantin; Mössner, Joachim; Ruffert, Claudia; Krehan, Mario; Zapf, Christian; Njølstad, Pål Rasmus; Johansson, Stefan; Bugert, Peter; Miyajima, Fabio; Liloglou, Triantafillos; Brown, Laura J; Winn, Simon A; Davies, Kelly; Latawiec, Diane; Gunson, Bridget K; Criddle, David N; Pirmohamed, Munir; Grützmann, Robert; Michl, Patrick; Greenhalf, William; Molven, Anders; Sutton, Robert; Rosendahl, Jonas

    2016-01-01

    Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16-16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts.

  16. Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography.

    Science.gov (United States)

    Fantacuzzi, Marialuigia; Bettoni, Giancarlo; D'Orazio, Giovanni; Fanali, Salvatore

    2006-03-01

    The enantiomeric separation of some demethylated analogues of clofibric acid, namely 2-(6-chloro-benzothiazol-2-ylsulfanyl)-, 2-(6-methoxy-benzothiazol-2-ylsulfanyl)-, 2-(quinolin-2-yloxy)-, 2-(6-chloro-quinolin-2-yloxy)-, 2-(7-chloro-quinolin-4-yloxy)-propionic acid (compounds A-E, respectively), has been studied by CZE and nano-LC using for the first technique two beta-CD derivatives and vancomycin added to the BGE and vancomycin-modified silica particles for the second one, with the aim to find the optimum experimental conditions for the baseline resolution. The type and the concentration of the chiral selector added to the BGE, the buffer pH, the type of organic modifier and its concentration, the capillary temperature and the applied voltage played a very important role in the enantioresolution of the analysed compounds. The use of 6-monodeoxy-6-monoamino-beta-CD allowed to achieve baseline resolution of four of five clofibric acid derivatives in less than 10 min while heptakis-(2,3,6-tri-O-methyl)-beta-CD partially resolved the same compounds in their enantiomers. Employing vancomycin as the chiral selector in CZE, the counter-current partial filling method was chosen achieving baseline resolution of four analytes. All the studied compounds were enantioresolved employing a capillary column packed with vancomycin stationary phase by nano-LC, and the resolution was strongly influenced by the concentration of the organic modifier and by the pH of the mobile phase. The best results were achieved at pH 4.5 in presence of 60% of methanol (MeOH). However, longer analysis times were observed in the experiments carried out by nano-LC.

  17. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; McGee-Lawrence, Meghan E.; Becerra, Clara Castillejo; Amanatullah, Derek F.; Ta, Lauren E.; Otero, Miguel; Goldring, Mary B.; Kakar, Sanjeev; Westendorf, Jennifer J.

    2016-01-01

    OBJECTIVE Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability. OA is characterized by articular chondrocyte deterioration, subchondral bone changes and debilitating pain. One strategy to promote cartilage regeneration and repair is to accelerate proliferation and matrix production of articular chondrocytes. We previously reported that the protein phosphatase Phlpp1 controls chondrocyte differentiation by regulating the activities of anabolic kinases. Here we examined the role of Phlpp1 in osteoarthritis progression in a murine model. We also assessed PHLPP1 expression and promoter methylation. DESIGN Knee joints of WT and Phlpp1−/− mice were surgically destabilized by transection of the medial meniscal ligament (DMM). Mice were assessed for signs of OA progression via radiographic and histological analyses, and pain assessment for mechanical hypersensitivity using the von Frey assay. Methylation of the PHLPP1 promoter and PHLPP1 expression was evaluated in human articular cartilage and chondrocyte cell lines. RESULTS Following DMM surgeries, Phlpp1 deficient mice showed fewer signs of OA and cartilage degeneration. Mechanical allodynia associated with DMM surgeries was also attenuated in Phlpp1−/− mice. PHLPP1 was highly expressed in human articular cartilage from OA patients, but was undetectable in cartilage specimens from femoral neck fractures. Higher PHLPP1 levels correlated with less PHLPP1 promoter CpG methylation in cartilage from OA patients. Blocking cytosine methylation or treatment with inflammatory mediators enhanced PHLPP1 expression in human chondrocyte cell lines. CONCLUSION Phlpp1 deficiency protects against OA progression while CpG demethylation and inflammatory responses promote PHLPP1 expression. PMID:26746148

  18. Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide, Denmert (S-1358)

    International Nuclear Information System (INIS)

    Kato, Toshiro; Kawase, Yasuo

    1976-01-01

    A direct evidence of the inhibitory effect in a cell-free system of S. cerevisiae was experimentally studied, and the site of action of Denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbon-imidate) in sterol biosynthesis was examined. 14 C-labeled lanosterol and 14-desmethyl-lanosterol were biosynthetically prepared. DL-mevalonate-2- 14 C was incubated with yeast cell-free homogenates for 3 hr at 28 deg C while being shaked vigorously in atmospheric oxygen. The resultant 14 C-labeled sterol was extracted and chromatographed on a silicic acid-Hyflo Super Cel column. 4,4-dimethyl sterol thus obtained was acetylated with acetic anhydride and pyridine. The separation of lanosteryl acetate and 14-desmethyl lanosteryl acetate was accomplished on alumina thin-layer plates. After the saponification of each steryl acetate, the quantity of the sterol was assessed by gas chromatography with cholesterol as an internal standard. The incubation of the 14 C-labeled sterol was achieved under the same conditions as those for the DL-mevalonate-2- 14 C except the addition of the substrate which was dispersed in 0.1M phosphate buffer. Denmert inhibited the conversion of 14 C-labeled lanosterol to 4-desmethyl sterol, while the conversion of 14 C-labeled 14-desmethyl lanosterol to 4-desmethyl sterol was hardly affected by the fungicide. Therefore, Denmert is a potent selective inhibitor of the demethylation at the C-14 position in ergosterol biosynthesis. The fungicide, triarimol, exhibited the same effect on sterol biosynthesis as that of Denmert. (Iwakiri, K.)

  19. AINSE's 40th anniversary conference. Conference handbook

    International Nuclear Information System (INIS)

    1998-01-01

    Highlights of 40 years of activity of the Australian Institute of Nuclear Science and Engineering (AINSE) were the main focus of this conference. Topics covered include nuclear physics, plasma physics, radiation chemistry, radiation biology, neutron diffraction, nuclear techniques of analysis and other relevant aspects of nuclear science and technology. The conference handbook contains the summaries of the 78 papers and posters presented and the list of participants

  20. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2011-10-17

    ... Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November 29, 2011, from 1 p.m. to 5 p.m. and... reliability that were identified in earlier Commission technical conferences. The conference also will discuss...

  1. International Cryocooler Conference

    CERN Document Server

    Cryocoolers 13

    2005-01-01

    This is the 13th volume in the conference series. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature super-capacitor applications.

  2. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  3. Conference proceedings ISES 2014

    DEFF Research Database (Denmark)

    Christensen, Janne Winther; Peerstrup Ahrendt, Line; Malmkvist, Jens

    The 10th Internatinal Equitation Science Conference is held i Denmark from August 6th - 9th 2014. This book of proceedings contaions abstracts of 35 oral and 57 poster presentations within the conference themes Equine Stress, Learning and Training as well as free papers.......The 10th Internatinal Equitation Science Conference is held i Denmark from August 6th - 9th 2014. This book of proceedings contaions abstracts of 35 oral and 57 poster presentations within the conference themes Equine Stress, Learning and Training as well as free papers....

  4. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  5. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C J [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the full text or extended abstracts of papers number 61- to number 114

  6. Radiation`96. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia.

  7. Multiphoton processes: conference proceedings

    International Nuclear Information System (INIS)

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base

  8. Radiation`96. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia.

  9. FPGAworld CONFERENCE2009 SEPTEMBER

    OpenAIRE

    2009-01-01

    The FPGAworld Conference addresses aspects of digital and hardware/software system engineering on FPGA technology. It is a discussion and network forum for students, researchers and engineers working on industrial and research projects, state-of-the-art investigations, development and applications. The book contains some presentations; for more information see (www.fpgaworld.com/conference).

  10. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  11. Hamburg Accelerator Conference (2)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-11-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval.

  12. Program of the Conference

    International Nuclear Information System (INIS)

    2006-01-01

    The International Conference SES 2006 (Secure Energy Supply, Bezpecna dodavka energie) was realised in Bratislava, during September 26 - 29, 2006 in the hotel Crowne Plaza and deals with most important problems of world and Slovak energetics. Objective of this Conference was discussion of experience and information concerning strategic aspects of energy supply safety and the development of the Slovak and European Energy Industry

  13. Vehicular Networking Conference (VNC)

    NARCIS (Netherlands)

    Altintas, O.; Chen, W.; Heijenk, Geert; Dressler, F.; Ekici, E.; Kargl, Frank; Shigeno, H.; Dietzel, Stefan

    2011-01-01

    On behalf of the Organizing Committee, we would like to welcome you to the third edition of the IEEE Vehicular Networking Conference (IEEE VNC 2011) in Amsterdam, the Netherlands. IEEE VNC is a unique conference sponsored by both the IEEE Communications Society and the IEEE Intelligent

  14. Radiation'96. Conference handbook

    International Nuclear Information System (INIS)

    1996-01-01

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia

  15. Hamburg Accelerator Conference (2)

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  16. Threats, protests greet conference.

    Science.gov (United States)

    Struck, D

    1994-09-04

    In preparation for the 1994 International Conference on Population and Development, Egypt has deployed 14,000 police to protect participants from threatened violence. The Vatican has joined forces with Muslim fundamentalists to condemn the conference as a vehicle for imposing Western ideals, particularly abortion, on Third world countries. In addition, the opposition is raising the specter of a descent of homosexuals onto Cairo and Muslim fundamentalists have threatened to murder Western representatives. A suit filed by Islamic lawyers, aimed at stopping the conference, failed. Sudan and Saudi Arabia plan to boycott the conference, and it remains uncertain whether Libya will be represented. Conference organizers have not been deterred by the threats and note that the controversy has drawn public attention to the central issues under debate.

  17. Autism genes keep turning up chromatin.

    Science.gov (United States)

    Lasalle, Janine M

    2013-06-19

    Autism-spectrum disorders (ASD) are complex genetic disorders collectively characterized by impaired social interactions and language as well as repetitive and restrictive behaviors. Of the hundreds of genes implicated in ASD, those encoding proteins acting at neuronal synapses have been most characterized by candidate gene studies. However, recent unbiased genome-wide analyses have turned up a multitude of novel candidate genes encoding nuclear factors implicated in chromatin remodeling, histone demethylation, histone variants, and the recognition of DNA methylation. Furthermore, the chromatin landscape of the human genome has been shown to influence the location of de novo mutations observed in ASD as well as the landscape of DNA methylation underlying neurodevelopmental and synaptic processes. Understanding the interactions of nuclear chromatin proteins and DNA with signal transduction pathways and environmental influences in the developing brain will be critical to understanding the relevance of these ASD candidate genes and continued uncovering of the "roots" of autism etiology.

  18. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter.

    Science.gov (United States)

    Yang, Ruili; Yu, Tingting; Kou, Xiaoxing; Gao, Xiang; Chen, Chider; Liu, Dawei; Zhou, Yanheng; Shi, Songtao

    2018-06-01

    Ten-eleven translocation (Tet) family-mediated DNA oxidation represents an epigenetic modification capable of converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), which regulates various biological processes. However, it is unknown whether Tet family affects mesenchymal stem cells (MSCs) or the skeletal system. Here we show that depletion of Tet1 and Tet2 results in impaired self-renewal and differentiation of bone marrow MSCs (BMMSCs) and a significant osteopenia phenotype. Tet1 and Tet2 deficiency reduces demethylation of the P2rX7 promoter and downregulates exosome release, leading to intracellular accumulation of miR-297a-5p, miR-297b-5p, and miR-297c-5p. These miRNAs inhibit Runx2 signaling to impair BMMSC function. We show that overexpression of P2rX7 rescues the impaired BMMSCs and osteoporotic phenotype in Tet1 and Tet2 double knockout mice. These results indicate that Tet1 and Tet2 play a critical role in maintaining BMMSC and bone homeostasis through demethylation of P2rX7 to control exosome and miRNA release. This Tet/P2rX7/Runx2 cascade may serve as a target for the development of novel therapies for osteopenia disorders.

  19. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    Science.gov (United States)

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  20. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C J [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the foreword, technical program, the author index and of the papers (1-60) presented at the conference.

  1. Second international conference on isotopes. Conference proceedings

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the foreword, technical program, the author index and of the papers (1-60) presented at the conference

  2. To conference or not to conference

    African Journals Online (AJOL)

    can travel throughout the world, from Cape to Cairo, from Jakarta to. Istanbul, from San ... Is there any real advantage of going to conferences in the era of electronic ... to register and travel, and the time off work, are justified, although we are.

  3. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  4. Otto Toeplitz Memorial Conference

    International Nuclear Information System (INIS)

    Ball, J.A.

    1981-01-01

    A conference in operator theory and its applications commemorating the 100th anniversary of the birth of the distinguished German mathematician Otto Toeplitz, organized by the University of Tel Aviv together with German Mathematical Society, took place in Tel Aviv, Israel, from May 11th to 15th, 1981. I give here a broad very subjective overview of the proceedings of the conference for the benefit of readers of TTSP; for those interested in further details, a forthcoming volume in the Birkhaeuser series Operator Theory: Advances and Applications will consist of expanded written versions of most of the talks given at the conference

  5. The 26. CLI national conference. Conference proceedings

    International Nuclear Information System (INIS)

    Chevet, Pierre-Franck; Niel, Jean-Christophe; Legrand, Henri; Dumont, Jean-Jacques; Lachaume, Jean-Luc; Delalonde, Jean-Claude; Sene, Monique; Le Deaut, Jean Yves; Charles, Thierry; Sasseigne, Philippe; Fournier, Nicolas; Murith, Christophe; Rivasi, Michele; Perissat, Frederic; KESSLER, Emmanuel

    2014-12-01

    This document gathers contributions presented during a conference held in December 2014. After introduction speeches and a focus of some updates by ANCCLI and ASN representatives, this conference comprised two round tables. The first one addressed the continuation of nuclear reactor operation after their fourth safety re-examination, with contributions by representatives of the ASN, of the ANCCLI, of the IRSN, and of EDF. The second one addressed the issue of a European harmonisation regarding actions of protection of populations in case of a nuclear accident, with interventions of representatives of a CLI, of the ASN, of the Swiss federal office for public health, of an NGO (Nuclear Transparency Watch), and of a departmental prefect

  6. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    little support amongst serious students of learning. The professional conference as a forum for knowledge sharing is in dire need of a new learning theory and a more enlightened practice. The notion of human flourishing is offered as basis for theory, and four simple design principles for the so......The typical one-day conference attended by managers or professionals in search of inspiration is packed with PowerPoint presentations and offers little opportunity for involvement or knowledge sharing. Behind the conventional conference format lurks the transfer model of learning, which finds......-called “learning conference” are proposed: People go to conferences to 1. get concise input, 2. interpret it in the light of their ongoing concerns, 3. talk about their current projects and 4. meet the other attendees and be inspired by them. Six practical techniques that induce attendees to do these things...

  7. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  8. Conference on radioecology

    International Nuclear Information System (INIS)

    1989-12-01

    32 abstracts of contributions presented at the conference and covering all aspects of radioecology are included. The lecturers were mainly from Czechoslovakia; contributions from the USSR, France, Belgium, Hungary, Bulgaria, etc., however, were also presented. (P.A.)

  9. Ranking Operations Management conferences

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Gupta, Sushil; Laptaned, U

    2007-01-01

    Several publications have appeared in the field of Operations Management which rank Operations Management related journals. Several ranking systems exist for journals based on , for example, perceived relevance and quality, citation, and author affiliation. Many academics also publish at conferences

  10. Photos of the conference

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    1984-05-01

    Full Text Available Birgitta  Åhman is the photographer of the series of pictures from the conference, also for the cover photo of the full paper edition showing Kongsvold Mountain Hut and Biological Station.

  11. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  12. 2nd SUMO Conference

    CERN Document Server

    Weber, Melanie

    2015-01-01

    This contributed volume contains the conference proceedings of the Simulation of Urban Mobility (SUMO) conference 2014, Berlin. The included research papers cover a wide range of topics in traffic planning and simulation, including open data, vehicular communication, e-mobility, urban mobility, multimodal traffic as well as usage approaches. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.  

  13. Multiphoton processes: conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, P.; Smith, S.J. (eds.)

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  14. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  15. Conference Report: The BPS Annual Conference 2004

    Directory of Open Access Journals (Sweden)

    Irina Roncaglia

    2004-05-01

    Full Text Available In this article I will review four papers presented at the British Psychological Society Annual Conference held this year in London held over a 3 day period. The Conference included a variety of scientific presentations and discussions through symposia, roundtable discussions, single papers and poster sessions. Although numerous papers took an experimental approach, few applied any type of qualitative methodology. The topics covered within the different psychological disciplines spanned from early childhood through old age; I have chosen four papers that covered a life course perspective and took into consideration clinical issues as well. The first paper discusses a grounded theory approach used to analyse a play therapy session between therapist and child. The second review reports some recent findings in the way the brains of people on the autistic spectrum disorder might function. The third paper discusses positive psychology and how such an emerging movement has influenced new research in the field. The last paper reviewed will discuss the issue of the ageing process, and I will present some arguments related to the useful application of qualitative methodologies within this area of research. In conclusion, I will highlight some personal reflections on the Conference and the need for a greater balance between qualitative and quantitative methodologies to be used in collaboration rather than as antagonists. URN: urn:nbn:de:0114-fqs0402176

  16. Conference scene: DGVS spring conference 2009.

    Science.gov (United States)

    Kolligs, Frank Thomas

    2009-10-01

    The 3rd annual DGVS Spring Conference of the German Society for Gastroenterology (Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten) was held at the Seminaris Campus Hotel in Berlin, Germany, on 8-9 May, 2009. The conference was organized by Roland Schmid and Matthias Ebert from the Technical University of Munich, Germany. The central theme of the meeting was 'translational gastrointestinal oncology: towards personalized medicine and individualized therapy'. The conference covered talks on markers for diagnosis, screening and surveillance of colorectal cancer, targets for molecular therapy, response prediction in clinical oncology, development and integration of molecular imaging in gastrointestinal oncology and translational research in clinical trial design. Owing to the broad array of topics and limitations of space, this article will focus on biomarkers, response prediction and the integration of biomarkers into clinical trials. Presentations mentioned in this summary were given by Matthias Ebert (Technical University of Munich, Germany), Esmeralda Heiden (Epigenomics, Berlin, Germany), Frank Kolligs (University of Munich, Germany), Florian Lordick (University of Heidelberg, Germany), Hans Jorgen Nielsen (University of Copenhagen, Denmark), Anke Reinacher-Schick (University of Bochum, Germany), Christoph Röcken (University of Berlin, Germany), Wolff Schmiegel (University of Bochum, Germany) and Thomas Seufferlein (University of Halle, Germany).

  17. Symmetric dimeric bisbenzimidazoles DBP(n reduce methylation of RARB and PTEN while significantly increase methylation of rRNA genes in MCF-7 cancer cells.

    Directory of Open Access Journals (Sweden)

    Svetlana V Kostyuk

    Full Text Available Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n are able to block DNA methyltransferase activities. It was also found that DBP(n produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome.It is shown that DBP(n are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n.It is concluded that DBP (n are able to accumulate in the nucleus (excluding the nucleolus area and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed

  18. World Energy Conference

    International Nuclear Information System (INIS)

    Ott, G.; Schilling, H.D.

    1979-01-01

    After making some general remarks about goals, tasks, and works of the World Energy Conference the topics and the frame of the 11th World Energy Conference which will take place in Munich from 8th to 12th September 1980 are outlined. This conference is held under the general topic 'energy for our world' and deals with the reciprocal relation between energy supply, environment, and society. The main part of the publication presented here is the German version of the most important sections of the investigation 'World Energy-Looking Ahead to 2020' by the Conservation Commission (CC) of the World Energy Conference. Added to this is the German original brief version of a report by the Mining-Research Company (Bergbau-Forschung GmbH) to the CC which deals with the estimation of the world's coal resources and their future availability. This report was presented on the 10th World Energy Conference in Istanbul together with the corresponding reports concerning the other energy sources. Finally, an introduction to the technical programme for the 11th World Energy Conference 1980 is given. (UA) [de

  19. Escitalopram is a weak inhibitor of the CYP2D6 catalyzed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain

    DEFF Research Database (Denmark)

    Noehr-Jensen, L; Zwisler, S T; Larsen, F

    2009-01-01

    Tramadol is O–demethylated to the active metabolite (+)–O–desmethyltramadol ((+)–M1) via CYP2D6, an enzyme that is weakly inhibited by escitalopram. We investigated the possibility of a pharmacokinetic (PK) and pharmacodynamic (PD) effect of escitalopram on tramadol metabolism. Fifteen healthy...... subjects completed this randomized, double–blind, three–phase, crossover trial. Combinations of escitalopram 20 mg/day or placebo together with tramadol 150 mg or placebo were used. Blood samples for pharmacokinetics were drawn at 0–24 h after medication. The analgesic effect of (+)–M was assessed...... AUEC1–12 of CPT were 4,140 and 4,388 cm·s after placebo and escitalopram, respectively (P = 0.71). Although escitalopram is a weak inhibitor of CYP2D6, it does not impair the analgesic effect of tramadol....

  20. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    Science.gov (United States)

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  1. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    International Nuclear Information System (INIS)

    Araújo, E.S.S. de; Vasques, L.R.; Stabellini, R.; Krepischi, A.C.V.; Pereira, L.V.

    2014-01-01

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A

  2. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  3. 2nd Bozeman Conference

    CERN Document Server

    Lund, John

    1991-01-01

    This volume contains a collection of papers delivered by the partici­ pants at the second Conference on Computation and Control held at Mon­ tana State University in Bozeman, Montana from August 1-7, 1990. The conference, as well as this proceedings, attests to the vitality and cohesion between the control theorist and the numerical analyst that was adver­ tised by the first Conference on Computation and Control in 1988. The proceedings of that initial conference was published by Birkhiiuser Boston as the first volume of this same series entitled Computation and Control, Proceedings of the Bozeman Conference, Bozeman, Montana, 1988. Control theory and numerical analysis are both, by their very nature, interdisciplinary subjects as evidenced by their interaction with other fields of mathematics and engineering. While it is clear that new control or es­ timation algorithms and new feedback design methodologies will need to be implemented computationally, it is likewise clear that new problems in computation...

  4. Conferences and Family Reunions

    Directory of Open Access Journals (Sweden)

    Sarah Sutherland

    2012-12-01

    Full Text Available Professional associations and conferences have similarities with and differences from families and family reunions. This comparison can illustrate some ways professional associations can approach the integration of new members and the planning of conferences in order to facilitate membership development and leadership renewal. Unlike family reunions, professional conferences are not closed events that require a shared culture in order to fully participate; they are events that should show the constant change and development of practice that is representative of the profession – for both members and non-members. Some of the topics explored in the article are: making it easy for outsiders to contribute, considering the tastes of new members, making it easy to volunteer in a meaningful way, and remembering who the future of the organization is. These simple considerations will assist in opening professional associations to new participants and help them to maintain their relevance and vitality over time.

  5. Low Energy Conference 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    11 of the 19 presentations have been indexed for the database. The following national organisations jointly organised the Low-energy Conference 2009: The Norwegian Society for the Conservation of Nature, the Norwegian Society of Engineers and Technologists, Norwegian Technology, the Federation of Norwegian Industries and the Low-Energy Program. Energy efficiency is often given little attention in the ongoing debates concerning different initiatives in order to reduce greenhouse emissions. The aim of the conference was to set energy efficiency on the agenda as an important environmental instrument. Both the Intergovernmental Panel on Climate Change - IPCC and the International Energy Agency - IEA regard energy efficiency as one of the fastest and most effective ways of reducing greenhouse emissions. Despite of this little is done. Many countries are ahead of Norway - why are we lagging behind? The Low-Energy conference has a broad approach: Nigel Jollands from the International Energy Agency -IEA puts energy efficiency in a global perspective. Soeren Rise from Teqniq in Denmark informs about the Danes' energy saving agreement, which appears to have been a success. The conference increased the competencies on concrete energy efficiency solutions, how to speed up the marketing of energy-friendly buildings and technologies, possibilities through industry and the impact of EU-directives and other instruments in order to trigger the potential. The conference closed with a discussion panel of leading energy politicians. The conference contributed to raise the debate in advance of the General election in Norway and the climate negotiations in Copenhagen during the autumn 2009. (EW)

  6. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Šímová, Jana; Paračková, Zuzana; Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, Milan

    2014-01-01

    Roč. 95, č. 5 (2014), s. 743-753 ISSN 0741-5400 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GAP301/10/2174 Institutional support: RVO:68378050 Keywords : arginase-1 * immunosuppression * microenvironment Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 4.289, year: 2014

  7. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing

    NARCIS (Netherlands)

    A. Lagarou (Anna); A.B. Mohd Sarip; Y.M. Moshkin (Yuri); G.E. Chalkley (Gillian); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was

  8. CONFERENCE: Nuclear visions

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Last summer, four hundred visitors of about 30 different nationalities descended on the ancient town of Visby on the Swedish island of Gotland for the Second International Conference on Nucleus-Nucleus Collisions. For the conference itself, sessions were organized not according to conventional topics like low, intermediate and high energy reactions, but along phenomena-related lines that brought listeners together instead of splitting them up. Examples were 'phase transitions', 'new facilities' and 'breaking nuclear matter into pieces'

  9. VMEbus in physics conference

    International Nuclear Information System (INIS)

    1986-01-01

    The first conference ''VMEbus in Physics'' was held at CERN on 7th and 8th October 1985. The conference surveyed the applications of the VMEbus standards in physics, with special emphasis on particle physics and accelerator control. Developments in the definition of the standards and in the formation of users groups were discussed. Manufacturer's representatives were given the opportunity to appreciate the requirements of the fast-growing VMEbus market in the physics community. These proceedings contain the unedited text of the oral and poster presentations given on that occasion. (orig.)

  10. CONFERENCE: Linacs at Seeheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-07-15

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories.

  11. International conference, ICPRAM 2012

    CERN Document Server

    Sánchez, J; Fred, Ana; Pattern recognition : applications and methods : revised selected papers

    2013-01-01

    This edited book includes extended and revised versions of a set of selected papers from the First International Conference on Pattern Recognition (ICPRAM 2012), held in Vilamoura, Algarve, Portugal, from 6 to 8 February, 2012, sponsored by the Institute for Systems and Technologies of Information Control and Communication (INSTICC) and held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI) and Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL2). The conference brought together researchers, engineers and practitioners interested on the areas of Pattern Recognition, both from theoretical and application perspectives.

  12. Internet conferences in glycobiology.

    Science.gov (United States)

    Hardy, B J; Doughty, S W; Parretti, M F; Tennison, J; Wilson, I

    1997-09-01

    In this article we describe recent activities in the use of electronic conferencing in glycobiology focusing on our experiences with the organization and development of the Second Electronic Glycoscience Conference (EGC-2), which was held on the Internet and World Wide Web in September 1996. EGC-2 involved the presentation and discussion of scientific research results in a virtual conferencing environment which incorporated virtual replicas of many activities usually observed at a physical conference in addition to features unique to the electronic medium. Highlights of the scientific program and technical developments in the design and use of these facilities are briefly described. EGC-3 will be held in October 1997.

  13. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    2007-01-01

    /methodology/approach: A typical full-day conference is analyzed. It has six hours of podium talk and twenty-five minutes for delegates to become involved. What model of learning can possibly lie behind this? The transfer model, which assumes learners to be empty vessels. An alternative view is that conference delegates...... are described: Individual reflection, the buzz dyad, ?You have won two consultants, free of charge?, facilitated group work, the knowledge exchange, and lunch with gaffer tape. Originality/value: This paper introduces modern learning theory and techniques into an educational context which has resisted...

  14. CONFERENCE: Linacs at Seeheim

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories

  15. The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate–Dependent Nucleic Acid Demethylase

    Science.gov (United States)

    Gerken, Thomas; Girard, Christophe A.; Tung, Yi-Chun Loraine; Webby, Celia J.; Saudek, Vladimir; Hewitson, Kirsty S.; Yeo, Giles S. H.; McDonough, Michael A.; Cunliffe, Sharon; McNeill, Luke A.; Galvanovskis, Juris; Rorsman, Patrik; Robins, Peter; Prieur, Xavier; Coll, Anthony P.; Ma, Marcella; Jovanovic, Zorica; Farooqi, I. Sadaf; Sedgwick, Barbara; Barroso, Inês; Lindahl, Tomas; Ponting, Chris P.; Ashcroft, Frances M.; O'Rahilly, Stephen; Schofield, Christopher J.

    2009-01-01

    Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass. PMID:17991826

  16. Veterans in Society Conference 2014: Humanizing the Discourse (Conference Program)

    OpenAIRE

    Virginia Tech. Department of English. Center for the Study of Rhetoric in Society; Virginia Tech. Veterans Studies Group

    2014-01-01

    This program lists the daily sessions, presentations, and events that took place during the 2014 Veterans in Society Conference, which was held from April 27-28, 2014 at the Hotel Roanoke in Roanoke, VA. This program also includes speaker and presenter bios, descriptions of unrecorded conference events, and a letter from conference co-chair Jim Dubinsky, the director of Virginia Tech's Center for the Study of Rhetoric in Society. The 2014 Veterans in Society Conference: Humanizing the Discour...

  17. 6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1

    OpenAIRE

    Yuan, Bifeng; Zhang, Jing; Wang, Hongxia; Xiong, Lei; Cai, Qian; Wang, Tina; Jacobsen, Steven; Pradhan, Sriharsa; Wang, Yinsheng

    2011-01-01

    Thiopurines including 6-thioguanine (SG), 6-mercaptopurine and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). SG is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that SG treatment results in reactivation of epigenetically silenced genes in T leukemia cells...

  18. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2013-05-13

    ... Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9, 2013 from 9:00 a.m. to 5:00 p.m. This... technical support for webcasts and offers the option of listening to the meeting via phone-bridge for a fee...

  19. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation

    DEFF Research Database (Denmark)

    de la Rica, Lorenzo; Rodríguez-Ubreva, Javier; García, Mireia

    2013-01-01

    to osteoclasts is a unique terminal differentiation process within the hematopoietic system. This differentiation model is relevant to autoimmune disease and cancer, and there is abundant knowledge on the sets of transcription factors involved.......DNA methylation is a key epigenetic mechanism for driving and stabilizing cell-fate decisions. Local deposition and removal of DNA methylation are tightly coupled with transcription factor binding, although the relationship varies with the specific differentiation process. Conversion of monocytes...

  20. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Akhtar, Javed; Chen, Hua-Xia; Wang, Zhou

    2013-01-01

    5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

  1. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  2. Annual Conference Abstracts

    Science.gov (United States)

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  3. International Nuclear Physics Conference

    CERN Document Server

    2016-01-01

    We are pleased to announce that the 26th International Nuclear Physics Conference (INPC2016) will take place in Adelaide (Australia) from September 11-16, 2016. The 25th INPC was held in Firenze in 2013 and the 24th INPC in Vancouver, Canada, in 2010. The Conference is organized by the Centre for the Subatomic Structure of Matter at the University of Adelaide, together with the Australian National University and ANSTO. It is also sponsored by the International Union of Pure and Applied Physics (IUPAP) and by a number of organisations, including AUSHEP, BNL, CoEPP, GSI and JLab. INPC 2016 will be held in the heart of Adelaide at the Convention Centre on the banks of the River Torrens. It will consist of 5 days of conference presentations, with plenary sessions in the mornings, up to ten parallel sessions in the afternoons, poster sessions and a public lecture. The Conference will officially start in the evening of Sunday 11th September with Registration and a Reception and will end late on the afternoon of Fri...

  4. Hamburg Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-10-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn.

  5. BEAUTY'99 Conference Summary

    International Nuclear Information System (INIS)

    Eerola, Paula

    2000-01-01

    Investigations of B hadrons are expected to break new ground in measuring CP-violation effects. This series of BEAUTY conferences, originating from the 1993 conference in Liblice, has contributed significantly in developing ideas of CP-violation measurements using B hadrons and formulating and comparing critically the B-physics experiments. In the '99 conference in Bled we saw the ripening of the field and the first fruit emerging - Tevatron have produced beautiful B-physics results and more are expected to come with the next run, while the B-physics experiments at DESY, SLAC and KEK are starting their operation. The longer-term projects at LHC and Tevatron have taken their shape and detailed prototyping work is going on. Meanwhile, on the phenomenological side, there has been impressive theoretical progress in understanding deeper the 'standard' measurements and proposing new signatures. In this summary, I will highlight the status of the field as presented in the conference, concentrating on signatures, experiments and R and D programmes

  6. Bioenergy 93 conference

    International Nuclear Information System (INIS)

    1993-01-01

    In this report the presentations given in the Bioenergy 93 Conference are published. The papers are grouped as follows: Opening addresses, biomass implementation strategies, nordic bioenergy research programs, production, handling and conversion of biofuels, combustion technology of biofuels and bioenergy visions

  7. Leader Training Conference Report.

    Science.gov (United States)

    Michigan-Ohio Regional Educational Lab., Inc., Detroit.

    The purpose of this conference was to prepare key people in the field of education to function as inservice education leaders in their respective settings. It called for participants to learn what the MOREL inservice education program is and what it hopes to accomplish, to identify the role and functions of the inservice education leader, and to…

  8. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  9. Vienna wirechamber conference 98

    International Nuclear Information System (INIS)

    1998-02-01

    This volume of the Vienna wirechamber conference 1998 contains abstracts of lectures and abstracts of poster sessions of the following topics: high energy physics, gaseous detectors, radiation detectors, calorimetry, drift chambers, wire spark chambers, tracking chambers, neutron detectors, particle detection, muon spectrometry, nuclear medicine. (Suda)

  10. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  11. Transactions: student conference, 1982

    International Nuclear Information System (INIS)

    1982-01-01

    Papers presented at this conference covered the topics of CANDU reactor physics, control systems and steam generators; imaging in neutron radiography; cooling systems for a SLOWPOKE reactor; accelerator breeders; the investigation of point defects using positrons; neutron and gamma detectors; fusion reaction kinetics; and heavy ion fusion

  12. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  13. Microbicides 2006 conference

    Directory of Open Access Journals (Sweden)

    McGowan Ian

    2006-10-01

    Full Text Available Abstract Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities.

  14. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  15. Grammar! A Conference Report.

    Science.gov (United States)

    King, Lid, Ed.; Boaks, Peter, Ed.

    Papers from a conference on the teaching of grammar, particularly in second language instruction, include: "Grammar: Acquisition and Use" (Richard Johnstone); "Grammar and Communication" (Brian Page); "Linguistic Progression and Increasing Independence" (Bernardette Holmes); "La grammaire? C'est du bricolage!" ("Grammar? That's Hardware!") (Barry…

  16. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  17. Santa Fe Linac Conference

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The 1981 Linear Accelerator Conference, organized by Los Alamos National Laboratory, was held from 19-23 October in Santa Fe, New Mexico. The surroundings were superb and helped to ensure a successful meeting. There were more than two hundred and twenty participants, with good representation from Japan and Western Europe

  18. Indico CONFERENCE: Define the Programme

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial you are going to learn how to define the programme of a conference in Indico. The program of your conference is divided in different “tracks”. Tracks represent the subject matter of the conference, such as “Online Computing”, “Offline Computing”, and so on.

  19. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    International Nuclear Information System (INIS)

    1989-01-01

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society

  20. Conference summaries. Canadian Nuclear Association 29. annual conference; Canadian Nuclear Society 10. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Separate abstracts were prepared for 15 papers from the twenty-ninth Annual Conference of the Canadian Nuclear Association. Abstracts were also prepared for the 102 papers from the tenth Annual Conference of the Canadian Nuclear Society.

  1. NIH Consensus Conference. Acupuncture.

    Science.gov (United States)

    1998-11-04

    To provide clinicians, patients, and the general public with a responsible assessment of the use and effectiveness of acupuncture to treat a variety of conditions. A nonfederal, nonadvocate, 12-member panel representing the fields of acupuncture, pain, psychology, psychiatry, physical medicine and rehabilitation, drug abuse, family practice, internal medicine, health policy, epidemiology, statistics, physiology, biophysics, and the representatives of the public. In addition, 25 experts from these same fields presented data to the panel and a conference audience of 1200. Presentations and discussions were divided into 3 phases over 2 1/2 days: (1) presentations by investigators working in areas relevant to the consensus questions during a 2-day public session; (2) questions and statements from conference attendees during open discussion periods that were part of the public session; and (3) closed deliberations by the panel during the remainder of the second day and morning of the third. The conference was organized and supported by the Office of Alternative Medicine and the Office of Medical Applications of Research, National Institutes of Health, Bethesda, Md. The literature, produced from January 1970 to October 1997, was searched through MEDLINE, Allied and Alternative Medicine, EMBASE, and MANTIS, as well as through a hand search of 9 journals that were not indexed by the National Library of Medicine. An extensive bibliography of 2302 references was provided to the panel and the conference audience. Expert speakers prepared abstracts of their own conference presentations with relevant citations from the literature. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined questions, developed their conclusions based on the scientific evidence presented in the open forum and scientific literature. The panel composed a draft statement, which was read in its entirety and circulated to the experts and the audience

  2. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    Science.gov (United States)

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  3. Wake Conference 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The 52 papers in this volume constitute the proceedings of the 2017 Wake Conference, held in Visby on the island of Gotland, Sweden. The Wake Conference series began in Visby, where it was held in 2009 and 2011. In 2013 the conference took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it went back to where it started, Visby, and this time it once again takes place at Uppsala University’s Gotland campus, May 30 th - June 1 st . Modern wind turbines are today clustered in large farms with a total production capacity reaching those of a nuclear power plant. When placed in a wind farm, the turbines will be fully or partially influenced by the wake of upstream turbines. This wake interaction results in a decreased power production, caused by the lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of vortices and their dynamics in the wake of a turbine is important for the optimal design of wind farms. The increased importance and interest in the field of wake and wind farm aerodynamics can be seen in the increased number of scientific articles on the subject. For example, on the Web of Science citation index, the number citations on the topic ‘wind turbine wakes’ increased from about 50 in 2006 to more than 3800 in 2016. This citation growth essentially shows that the growth in the global production of electrical energy has become a scientific problem to be solved by scientists and engineers. In order to make a substantial impact on one of the most significant challenges of our time, global climate change, the wind industry’s growth must continue. A part of making this growth possible will require research into the physics of wind turbine wakes and wind farms. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and

  4. DNMT1-interacting RNAs block gene specific DNA methylation

    Science.gov (United States)

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  5. Computational Intelligence : International Joint Conference

    CERN Document Server

    Rosa, Agostinho; Cadenas, José; Dourado, António; Madani, Kurosh; Filipe, Joaquim

    2016-01-01

    The present book includes a set of selected extended papers from the sixth International Joint Conference on Computational Intelligence (IJCCI 2014), held in Rome, Italy, from 22 to 24 October 2014. The conference was composed by three co-located conferences:  The International Conference on Evolutionary Computation Theory and Applications (ECTA), the International Conference on Fuzzy Computation Theory and Applications (FCTA), and the International Conference on Neural Computation Theory and Applications (NCTA). Recent progresses in scientific developments and applications in these three areas are reported in this book. IJCCI received 210 submissions, from 51 countries, in all continents. After a double blind paper review performed by the Program Committee, 15% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience in...

  6. Indico CONFERENCE tutorial

    CERN Multimedia

    CERN. Geneva; Manzoni, Alex Marc

    2017-01-01

    This short tutorial explains how to create a CONFERENCE in indico and how to handle abstracts and registration forms, in detail: Timestamps: 1:01 - Programme  2:28 - Call for abstracts  11:50 - Abstract submission  13:41 - Abstract Review 15:41 - The Judge's Role 17:23 - Registration forms' creation 23:34 - Candidate participant's registration/application 25:54 - Customisation of Indico pages - Layout 28:08 - Customisation of Indico pages - Menus 29:47 - Configuring Event reminders and import into calendaring tools   See HERE a recent presentation by Pedro about the above steps in the life of an indico CONFERENCE event.

  7. 7th IAASS Conference

    CERN Document Server

    Rongier, Isabelle

    2015-01-01

    The 7th IAASS Conference, “Space Safety is No Accident” is an invitation to reflect and exchange information on a number of topics in space safety and sustainability of national and international interest. The conference is also a forum to promote mutual understanding, trust and the widest possible international cooperation in such matters. The once exclusive “club” of nations with autonomous sub-orbital and orbital space access capabilities is becoming crowded with fresh and ambitious new entrants. New commercial spaceports are starting operations and others are being built. In the manned spaceflight arena a commercial market is becoming a tangible reality with suborbital spaceflights and government use of commercial services for cargo and crew transportation to orbit. Besides the national ambitions in space, the international cooperation both civil and commercial is also gaining momentum. In the meantime robotic space exploration will accelerate and with it the need to internationally better regulat...

  8. Annual conference SAEE 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The role of economical support instruments in the successful and efficient propagation of renewable forms of energy was the issue addressed by the 2009 conference of the Swiss Association for Energy Economics. Topics covered include production conditions, resource annuities and remuneration for the feeding-in of power generated from renewable forms of energy, a review of instruments for the encouragement of the use of renewable forms of energy from the economics point of view and the appraisal of support instruments from the economic policy point of view. Contributions presented in the second session include a review of global and national potentials for the use of renewable forms of energy, a review of instruments and their effect on the market from the point of view of an energy utility active at national and European levels, and, finally, the question if economic instruments are needed to support investments in renewable forms of energy is posed. A podium session concluded the conference

  9. UKSG Annual Conference 2012

    Directory of Open Access Journals (Sweden)

    Gopal Dutta

    2012-07-01

    Full Text Available UKSG offered four free places for students to attend the 2012 Conference, made possible with generous support from Elsevier, whose contribution is very much appreciated. Those eligible to apply were students enrolled on Library & Information and Publishing degree courses, and the successful applicants were (Ieft to right as photographed against the River Clyde: Stuart Lawson (University of Brighton, Jennifer Lovatt (Oxford Brookes University, Gopal Dutta (University of Sheffield and Lydia Lantzsch (Oxford Brookes University. The four have allowed us to take a peek at the diaries they kept during the conference. The extracts below give us a flavour of the event including the plenary and breakout sessions, the debates and the stamina of those who kept the dancing going!

  10. Mississippi Climate & Hydrology Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  11. 2013 APPLEPIES Conference

    CERN Document Server

    2014-01-01

    This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. A wide spectrum of application domains are covered, from automotive to space and from health to security, and special attention is devoted to the use of embedded devices and sensors for imaging, communication, and control. The book is based on the 2013 APPLEPIES Conference, held in Rome, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas covered by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean, and efficient energy; the environment; and smart, green, and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and th...

  12. The third Geneva Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-12-15

    Full text: On 31 August 1964, the Third United Nations International Conference on the Peaceful Uses of Atomic Energy (more familiarly known as the 'Third Geneva') was opened at the Palais des Nations in Geneva by the Secretary-General of the United Nations, U Thant. It was somewhat narrower in scope than the previous conferences held in 1935 and 1958, the emphasis being on nuclear power and closely related topics; the conference showed that recent progress in this field had provided more than ample material for a major international gathering. All three conferences have been organized by the United Nations, but on this occasion responsibility for the scientific aspects was delegated to IAEA. The UN Scientific Advisory Committee provided advice and guidance on the scientific side. Under the presidency of Professor V. S. Emelyanov (USSR) the conference sat from 31 August to 9 September, to deal with a programme divided into eight general sessions and 36 technical sessions, for which a total of nearly 750 papers were presented. About 1800 delegates and advisers, representing 75 countries as well as UN agencies, attended; in addition there were some 2000 observers. The central theme of the conference was experience in the construction and operation of power reactors and recent advances in power technology, together with forecasts of future developments. Nuclear fuels and reactor materials, health and safety, waste disposal, and economics of nuclear power figured largely. Technical sessions were devoted to such subjects as the technical and economic aspects of the power reactor systems currently in operation or being built, and the main lines of development towards more advanced systems and development of the fast breeder. Parallel lines of development of alternative systems were also considered - some, such as organic reactors, having already been the subject of extensive trials, while others are in the conceptual stage. 'Package' power plants designed for easy

  13. IEEE conference record -- Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference

  14. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  15. The third Geneva Conference

    International Nuclear Information System (INIS)

    1964-01-01

    Full text: On 31 August 1964, the Third United Nations International Conference on the Peaceful Uses of Atomic Energy (more familiarly known as the 'Third Geneva') was opened at the Palais des Nations in Geneva by the Secretary-General of the United Nations, U Thant. It was somewhat narrower in scope than the previous conferences held in 1935 and 1958, the emphasis being on nuclear power and closely related topics; the conference showed that recent progress in this field had provided more than ample material for a major international gathering. All three conferences have been organized by the United Nations, but on this occasion responsibility for the scientific aspects was delegated to IAEA. The UN Scientific Advisory Committee provided advice and guidance on the scientific side. Under the presidency of Professor V. S. Emelyanov (USSR) the conference sat from 31 August to 9 September, to deal with a programme divided into eight general sessions and 36 technical sessions, for which a total of nearly 750 papers were presented. About 1800 delegates and advisers, representing 75 countries as well as UN agencies, attended; in addition there were some 2000 observers. The central theme of the conference was experience in the construction and operation of power reactors and recent advances in power technology, together with forecasts of future developments. Nuclear fuels and reactor materials, health and safety, waste disposal, and economics of nuclear power figured largely. Technical sessions were devoted to such subjects as the technical and economic aspects of the power reactor systems currently in operation or being built, and the main lines of development towards more advanced systems and development of the fast breeder. Parallel lines of development of alternative systems were also considered - some, such as organic reactors, having already been the subject of extensive trials, while others are in the conceptual stage. 'Package' power plants designed for easy

  16. XIX Edoardo Amaldi Conference

    CERN Document Server

    Abousahl, Said; Plastino, Wolfango

    2016-01-01

    This book, comprising contributions presented at the XIX Edoardo Amaldi Conference, examines important aspects of international cooperation aimed at enhancing nuclear safety, security, safeguards (the “3S”), and non-proliferation, thereby assisting in the development and maintenance of the verification regime and progress toward a nuclear weapon-free world. The Conference served as a forum where eminent scientists, diplomats, and policymakers could compare national perspectives and update international collaborations. The book opens by addressing the political, institutional, and legal dimensions of the 3S and non-proliferation; current challenges are discussed and attempts made to identify possible solutions and future improvements. Subsequent sections consider scientific developments that can contribute to increased effectiveness in the implementation of international regimes, particularly in critical areas, technology foresight, and the ongoing evaluation of current capabilities. The closing sections d...

  17. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  18. Vancouver Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-06-15

    Anyone who contends that particle physics is cond