WorldWideScience

Sample records for gene caused lattice

  1. Rogue Genes May Cause Some ALS Cases

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_166795.html Rogue Genes May Cause Some ALS Cases Most people with ... 21, 2017 WEDNESDAY, June 21, 2017 (HealthDay News) -- Gene mutations may cause up to 17 percent of ...

  2. Genes Causing Male Infertility in Humans

    Institute of Scientific and Technical Information of China (English)

    Lawrence C. Layman

    2002-01-01

    There are an accumulating number of identified gene mutations that cause infertility in humans. Most of the known gene mutations impair normal puberty and subsequently cause infertility by either hypothalamic /pituitary deficiency of important tropic factors to the gonad or by gonadal genes.

  3. A single gene defect causing claustrophobia.

    Science.gov (United States)

    El-Kordi, A; Kästner, A; Grube, S; Klugmann, M; Begemann, M; Sperling, S; Hammerschmidt, K; Hammer, C; Stepniak, B; Patzig, J; de Monasterio-Schrader, P; Strenzke, N; Flügge, G; Werner, H B; Pawlak, R; Nave, K-A; Ehrenreich, H

    2013-04-30

    Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3'untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia.

  4. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    coccoliths. We compare the results with data on chalk from the extensively studied mussel Pinna nobilis that served as a control. Using high resolution synchrotron powder X-ray diffraction combined with in situ heating, the influence of organic compounds on the structure of the inorganic phase was probed...... and the coccolithophorids. These differences were reflected in lattice deformation (macrostrain), structure (microstrain), and atomic disorder distributions (δorganic). The influence of the biological macromolecules on the inorganic phase was consistently smaller in the P. carterae compared to P. nobilis....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell...

  5. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell....... This suggests that the interaction between biomolecules and calcite is not as tight in the coccoliths as in the shell. Although the shape of chalk has been preserved over millions of years, no major influence on the crystal lattice was observed in the chalk samples....

  6. Covariation of gene frequencies in a stepping-stone lattice of populations1

    Science.gov (United States)

    Felsenstein, Joseph

    2015-01-01

    For a one- or two-dimensional lattice of finite length consisting of populations, each of which has the same population size, the classical stepping-stone model has been used to approximate the patterns of variation at neutral loci in geographic regions. In the pioneering papers by Maruyama (1970a, 1970b, 1971) the changes of gene frequency at a locus subject to neutral mutation between two alleles, migration, and random genetic drift were modeled by a vector autoregression model. Maruyama was able to use the spectrum of the migration matrix, but to do this he had to introduce approximations in which there was either extra mutation in the terminal populations, or extra migration from the subterminal population into the terminal population. In this paper a similar vector autoregression model is used, but it proves possible to obtain the eigenvalues and eigenvectors of the migration matrix without those approximations. Approximate formulas for the variances and covariances of gene frequencies in different populations are obtained, and checked by numerical iteration of the exact covariances of the vector autoregression model. PMID:25542067

  7. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Directory of Open Access Journals (Sweden)

    Akira Meguro

    Full Text Available Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4 gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6, OR = 0.63 and Pc = 1.0 × 10(-5, OR = 0.69 in a total of 574 patients and 608 controls, respectively. Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  8. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    NARCIS (Netherlands)

    Rauch, A.; Thiel, C.T.; Schindler, D.; Wick, U.; Crow, Y.J.; Ekici, A.B.; Essen, A.J. van; Goecke, T.O.; Al-Gazali, L.; Chrzanowska, K.H.; Zweier, C.; Brunner, H.G.; Becker, K.; Curry, C.J.; Dallapiccola, B.; Devriendt, K.; Dorfler, A.; Kinning, E.; Megarbane, A.; Meinecke, P.; Semple, R.K.; Spranger, S.; Toutain, A.; Trembath, R.C.; Voss, E.; Wilson, L.; Hennekam, R.C.M.; Zegher, F. de; Dorr, H.G.; Reis, A.

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism

  9. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Doerfler, Arnd; Kinning, Esther; Megarbane, Andre; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Doerr, Helmuth-Guenther; Reis, Andre

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss- of- function mutations in the centrosomal pericentrin ( PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial

  10. Contemporary Approaches for Identifying Rare Bone Disease Causing Genes

    Institute of Scientific and Technical Information of China (English)

    Charles R.Farber; Thomas L.Clemens

    2013-01-01

    Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisti-cated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.

  11. Single Gene and Syndromic Causes of Obesity: Illustrative Examples.

    Science.gov (United States)

    Butler, Merlin G

    2016-01-01

    Obesity is a significant health problem in westernized societies, particularly in the United States where it has reached epidemic proportions in both adults and children. The prevalence of childhood obesity has doubled in the past 30 years. The causation is complex with multiple sources, including an obesity promoting environment with plentiful highly dense food sources and overall decreased physical activity noted for much of the general population, but genetic factors clearly play a role. Advances in genetic technology using candidate gene approaches, genome-wide association studies, structural and expression microarrays, and next generation sequencing have led to the discovery of hundreds of genes recognized as contributing to obesity. Polygenic and monogenic causes of obesity are now recognized including dozens of examples of syndromic obesity with Prader-Willi syndrome, as a classical example and recognized as the most common known cause of life-threatening obesity. Genetic factors playing a role in the causation of obesity will be discussed along with the growing evidence of single genes and the continuum between monogenic and polygenic obesity. The clinical and genetic aspects of four classical but rare obesity-related syndromes (ie, Prader-Willi, Alström, fragile X, and Albright hereditary osteodystrophy) will be described and illustrated in this review of single gene and syndromic causes of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gene Tree Discordance Causes Apparent Substitution Rate Variation.

    Science.gov (United States)

    Mendes, Fábio K; Hahn, Matthew W

    2016-07-01

    Substitution rates are known to be variable among genes, chromosomes, species, and lineages due to multifarious biological processes. Here, we consider another source of substitution rate variation due to a technical bias associated with gene tree discordance. Discordance has been found to be rampant in genome-wide data sets, often due to incomplete lineage sorting (ILS). This apparent substitution rate variation is caused when substitutions that occur on discordant gene trees are analyzed in the context of a single, fixed species tree. Such substitutions have to be resolved by proposing multiple substitutions on the species tree, and we therefore refer to this phenomenon as Substitutions Produced by ILS (SPILS). We use simulations to demonstrate that SPILS has a larger effect with increasing levels of ILS, and on trees with larger numbers of taxa. Specific branches of the species trees are consistently, but erroneously, inferred to be longer or shorter, and we show that these branches can be predicted based on discordant tree topologies. Moreover, we observe that fixing a species tree topology when performing tests of positive selection increases the false positive rate, particularly for genes whose discordant topologies are most affected by SPILS. Finally, we use data from multiple Drosophila species to show that SPILS can be detected in nature. Although the effects of SPILS are modest per gene, it has the potential to affect substitution rate variation whenever high levels of ILS are present, particularly in rapid radiations. The problems outlined here have implications for character mapping of any type of trait, and for any biological process that causes discordance. We discuss possible solutions to these problems, and areas in which they are likely to have caused faulty inferences of convergence and accelerated evolution.

  13. Insulin gene mutations as a cause of permanent neonatal diabetes.

    Science.gov (United States)

    Støy, Julie; Edghill, Emma L; Flanagan, Sarah E; Ye, Honggang; Paz, Veronica P; Pluzhnikov, Anna; Below, Jennifer E; Hayes, M Geoffrey; Cox, Nancy J; Lipkind, Gregory M; Lipton, Rebecca B; Greeley, Siri Atma W; Patch, Ann-Marie; Ellard, Sian; Steiner, Donald F; Hattersley, Andrew T; Philipson, Louis H; Bell, Graeme I

    2007-09-18

    We report 10 heterozygous mutations in the human insulin gene in 16 probands with neonatal diabetes. A combination of linkage and a candidate gene approach in a family with four diabetic members led to the identification of the initial INS gene mutation. The mutations are inherited in an autosomal dominant manner in this and two other small families whereas the mutations in the other 13 patients are de novo. Diabetes presented in probands at a median age of 9 weeks, usually with diabetic ketoacidosis or marked hyperglycemia, was not associated with beta cell autoantibodies, and was treated from diagnosis with insulin. The mutations are in critical regions of the preproinsulin molecule, and we predict that they prevent normal folding and progression of proinsulin in the insulin secretory pathway. The abnormally folded proinsulin molecule may induce the unfolded protein response and undergo degradation in the endoplasmic reticulum, leading to severe endoplasmic reticulum stress and potentially beta cell death by apoptosis. This process has been described in both the Akita and Munich mouse models that have dominant-acting missense mutations in the Ins2 gene, leading to loss of beta cell function and mass. One of the human mutations we report here is identical to that in the Akita mouse. The identification of insulin mutations as a cause of neonatal diabetes will facilitate the diagnosis and possibly, in time, treatment of this disorder.

  14. [Mutations in the gene encoding filaggrin cause ichthyosis vulgaris].

    Science.gov (United States)

    Prasad, Sumangali Chandra; Rasmussen, Kirsten; Bygum, Anette

    2011-02-14

    Ichthyosis vulgaris is a common genetic skin disorder with an estimated prevalence of 1:250 caused by mutations in the gene encoding filaggrin. This disorder manifests itself within the first year of life and is clinically characterized by dry, scaly skin, keratosis pilaris, palmar hyperlinearity and atopic manifestations. Patients with a severe phenotype are homozygous or compound heterozygous for the mutations, whereas heterozygous patients show mild disease, suggesting semidominant inheritance with incomplete penetrance. We present a patient with classic severe ichthyosis vulgaris, atopic eczema and two loss-of-function mutations.

  15. The Growing Canvas of Biological Development: Multiscale Pattern Generation on an Expanding Lattice of Gene Regulatory Nets

    Science.gov (United States)

    Doursat, René

    The spontaneous generation of an entire organism from a single cell is the epitome of a self-organizing, decentralized complex system. How do nonspatial gene interactions extend in 3-D space? In this work, I present a simple model that simulates some biological developmental principles using an expanding lattice of cells. Each cell contains a gene regulatory network (GRN), modeled as a feedforward hierarchy of switches that can settle in various on/off expression states. Local morphogen gradients provide positional information in input, which is integrated by each GRN to produce differential expression of identity genes in output. Similarly to striping in the Drosophila embryo, the lattice becomes segmented into spatial regions of homogeneous genetic expression that resemble stained-glass motifs. Meanwhile, it also expands by cell proliferation, creating new local gradients of positional information within former single-identity regions. Analogous to a "growing canvas" painting itself, the alternation of growth and patterning results in the creation of a form. This preliminary study attempts to reproduce pattern formation through a multiscale, recursive and modular process. It explores the elusive relationship between nonspatial GRN weights (genotype) and spatial patterns (phenotype). Abstracting from biology in the same spirit as neural networks or swarm optimization, I hope to be contributing to a novel engineering paradigm of system construction that could complement or replace omniscient architects with decentralized collectivities of agents.

  16. Identification of disease-causing genes using microarray data mining and Gene Ontology.

    Science.gov (United States)

    Mohammadi, Azadeh; Saraee, Mohammad H; Salehi, Mansoor

    2011-01-26

    One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene

  17. Identification of disease-causing genes using microarray data mining and Gene Ontology

    Directory of Open Access Journals (Sweden)

    Saraee Mohammad H

    2011-01-01

    Full Text Available Abstract Background One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions The proposed method addresses the weakness of conventional

  18. Identification of disease-causing genes using microarray data mining and Gene Ontology

    Science.gov (United States)

    2011-01-01

    Background One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions The proposed method addresses the weakness of conventional methods by adding a redundancy

  19. Polymorphism of the human vitronectin gene causes vitronectin blood type.

    Science.gov (United States)

    Kubota, K; Hayashi, M; Oishi, N; Sakaki, Y

    1990-03-30

    Human blood plasma/sera are classified into three distinct vitronectin types based on the relative amount of the 75 kDa polypeptide to its cleavage product of 65 kDa. We asked whether the vitronectin blood types correlated with the polymorphism of the vitronectin gene. A portion of the vitronectin gene was amplified by using polymerase chain reaction and digested with a restriction enzyme PmaC I which may distinguish the base sequence causing the polymorphic change at the amino acid position 381. Amplified DNAs of the blood type I (75 kDa-rich), II (75/65 kDa-even), and III (65 kDa-rich) were shown to be resistant, moderately sensitive and completely sensitive to PmaC I, respectively. These results suggest that Thr at position 381 is essential for the cleavage of the vitronectin 75 kDa polypeptide and that three possible combinations of two codominant alleles of vitronectin determine three vitronectin blood types.

  20. A fragile lattice: replacing bacteriophage lambda's head stability gene D with the shp gene of phage 21 generates the Mg2+-dependent virus, lambda shp.

    Science.gov (United States)

    Wendt, Jennifer L; Feiss, Michael

    2004-08-15

    Phage lambda DNA packaging is accompanied by prohead expansion, due to structural changes in gpE, the major capsid protein. Rearrangement of the gpE lattice creates binding sites for trimers of gpD, the head stabilization protein. lambda-Like phage 21's shp gene is homologous to lambda's D gene. gpD and gpShp share 49% amino acid identity. To ask whether gpShp could stabilize the lambda head shell, we replaced lambda's D gene with shp, creating lambda shp. Unlike lambda or 21, lambda shp was strictly dependent on the presence of 10(-2) M Mg2+, and lambda shp virions were very sensitive to chelating agents. Density gradient studies indicated that the lambda gpE lattice was underpopulated with gpShp. gpD's N-terminus has been proposed to contact gpE, and we found that lambda D/shp, which produces a chimeric protein with the N-terminus of gpD and the C-terminus of gpShp, was Mg2+-independent and more stable than lambda shp.

  1. Pathogenic mutations of TGFBI and CHST6 genes in Chinese patients with Avellino, lattice, and macular corneal dystrophies

    Institute of Scientific and Technical Information of China (English)

    Ya-nan HUO; Yu-feng YAO; Ping YU

    2011-01-01

    Objective:To investigate gene mutations associated with three different types of corneal dystrophies (CDs),and to establish a phenotype-genotype correlation.Methods:Two patients with Avellino corneal dystrophy (ACD),four patients with lattice corneal dystrophy type Ⅰ (LCD Ⅰ) from one family,and three patients with macular corneal dystrophy type Ⅰ (MCD Ⅰ) were subjected to both clinical and genetic examinations.Slit lamp examination was performed for all the subjects to assess their corneal phenotypes.Genomic DNA was extracted from peripheral blood leukocytes.The coding regions of the human transforming growth factor β-induced (TGFB/)gene and carbohydrate sulfotransferase 6 (CHST6) gene were amplified by polymerase chain reaction (PCR) and subjected to direct sequencing.DNA samples from 50 healthy volunteers were used as controls.Results:Clinical examination showed three different phenotypes of CDs.Genetic examination identified that two ACD subjects were associated with homozygous R124H mutation of TGFB/,and four LCD Ⅰ subjects were all associated with R124C heterozygous mutation.One MCD Ⅰ subject was associated with a novel S51X homozygous mutation in CHST6,while the other two MCD Ⅰ subjects harbored a previously reported W232X homozygous mutation.Conclusions:Our study highlights the prevalence of codon 124 mutations in the TGFB/gene among the Chinese ACD and LCD Ⅰ patients.Moreover,we found a novel mutation among MCD Ⅰ patients.

  2. Ribosomal protein gene knockdown causes developmental defects in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tamayo Uechi

    Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.

  3. Aucsia gene silencing causes parthenocarpic fruit development in tomato.

    Science.gov (United States)

    Molesini, Barbara; Pandolfini, Tiziana; Rotino, Giuseppe Leonardo; Dani, Valeria; Spena, Angelo

    2009-01-01

    In angiosperms, auxin phytohormones play a crucial regulatory role in fruit initiation. The expression of auxin biosynthesis genes in ovules and placenta results in uncoupling of tomato (Solanum lycopersicum) fruit development from fertilization with production of parthenocarpic fruits. We have identified two newly described genes, named Aucsia genes, which are differentially expressed in auxin-synthesis (DefH9-iaaM) parthenocarpic tomato flower buds. The two tomato Aucsia genes encode 53-amino-acid-long peptides. We show, by RNA interference-mediated gene suppression, that Aucsia genes are involved in both reproductive and vegetative plant development. Aucsia-silenced tomato plants exhibited auxin-related phenotypes such as parthenocarpic fruit development, leaf fusions, and reflexed leaves. Auxin-induced rhizogenesis in cotyledon explants and polar auxin transport in roots were reduced in Aucsia-silenced plants compared with wild-type plants. In addition, Aucsia-silenced plants showed an increased sensitivity to 1-naphthylphthalamic acid, an inhibitor of polar auxin transport. We further prove that total indole-3-acetic acid content was increased in preanthesis Aucsia-silenced flower buds. Thus, the data presented demonstrate that Aucsia genes encode a novel family of plant peptides that control fruit initiation and affect other auxin-related biological processes in tomato. Aucsia homologous genes are present in both chlorophytes and streptophytes, and the encoded peptides are distinguished by a 16-amino-acid-long (PYSGXSTLALVARXSA) AUCSIA motif, a lysine-rich carboxyl-terminal region, and a conserved tyrosine-based endocytic sorting motif.

  4. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters.

    Science.gov (United States)

    Estécio, Marcos R H; Gallegos, Juan; Dekmezian, Mhair; Lu, Yue; Liang, Shoudan; Issa, Jean-Pierre J

    2012-10-01

    Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element.

  5. Lattice Bosons

    CERN Document Server

    Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon

    2000-01-01

    Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.

  6. Angiogenic gene therapy does not cause retinal pathology.

    Science.gov (United States)

    Prokosch, Verena; Stupp, Tobias; Spaniol, Kristina; Pham, Emmanuel; Nikol, Sigrid

    2014-01-01

    The potential negative influence of angiogenic gene therapy on the development or progression of retinal pathologies such as diabetic retinopathy (DR) or age-related macular degeneration (AMD) has led to the systematic exclusion of affected patients from trials. We investigated the role of nonviral fibroblast factor 1 (NV1FGF) in two phase II, multinational, double-blind, randomized, placebo-controlled, gene therapy trials (TALISMAN 201 and 211). One hundred and fifty-two subjects with critical limb ischemia or claudication were randomized to receive eight intramuscular injections of 2.5 ml of NV1FGF at 0.2 mg/ml or 0.4 mg/dl or placebo. One hundred and fifty-two patients received a plasmid dose of NV1FGF of up to 32 mg or placebo. All patients underwent a systematic ophthalmologic examination at baseline and at 3, 6 or 12 months following gene therapy. Twenty-six of these patients (Münster subgroup) received a retinal fluorescence angiography at baseline and at final examination. Among those 26 patients, four of nine patients with diabetes suffered from nonproliferative DR. Three patients showed non-exsudative AMD. No change of retinal morphology or function was observed in Münster subgroup of both TALISMAN trials independent of the intramuscular NV1FGF dosage applied. Angiogenic gene therapy using NV1FGF is safe even in diabetics. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Host‐induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce

    National Research Council Canada - National Science Library

    Govindarajulu, Manjula; Epstein, Lynn; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-01-01

    .... As a proof‐of‐concept, we generated stable transgenic lettuce plants expressing si RNA s targeting potentially vital genes of Bremia lactucae , a biotrophic oomycete that causes downy mildew, the most important...

  8. Superradiance Lattice

    CERN Document Server

    Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O

    2014-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.

  9. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    OpenAIRE

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Engin YILMAZ; Hildebrandt, Friedhelm

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary fo...

  10. Clinical course of cone dystrophy caused by mutations in the RPGR gene

    NARCIS (Netherlands)

    Thiadens, A.A.H.J.; Soerjoesing, G.G.; Florijn, R.J.; Tjiam, A.G.; Hollander, A.I. den; Born, L.I. van den; Riemslag, F.C.; Bergen, A.A.B.; Klaver, C.C.

    2011-01-01

    BACKGROUND: Mutations in the RPGR gene predominantly cause rod photoreceptor disorders with a large variability in clinical course. In this report, we describe two families with mutations in this gene and cone involvement. METHODS: We investigated an X-linked cone dystrophy family (1) with 25

  11. Clinical course of cone dystrophy caused by mutations in the RPGR gene

    NARCIS (Netherlands)

    A.A.H.J. Thiadens (Alberta); G.G. Soerjoesing (Gyan); R.J. Florijn; A.G. Tjiam; A.I. Hollander (Anneke); L.I. van den Born (Ingeborgh); F.C.C. Riemslag (Frans); A.A.B. Bergen (Arthur); C.C.W. Klaver (Caroline)

    2011-01-01

    textabstractBackground: Mutations in the RPGR gene predominantly cause rod photoreceptor disorders with a large variability in clinical course. In this report, we describe two families with mutations in this gene and cone involvement. Methods: We investigated an X-linked cone dystrophy family (1)

  12. Mutations in the nebulin gene can cause severe congenital nemaline myopathy

    NARCIS (Netherlands)

    Wallgren-Pettersson, C; Donner, K; Sewry, C; Lammens, M; Bushby, K; Uzielli, MLG; Lapi, E; Odent, S; Akcoren, Z; Topaloglu, H; Pelin, K; Bijlsma, E.

    2002-01-01

    Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline

  13. Mutations in the nebulin gene can cause severe congenital nemaline myopathy.

    NARCIS (Netherlands)

    Wallgren-Pettersson, C.; Donner, K.; Sewry, C.A.; Bijlsma, E.; Lammens, M.M.Y.; Bushby, K.; Giovannucci Uzielli, M.L.; Lapi, E.; Odent, S.; Akcoren, Z.; Topaloglu, H.; Pelin, K.

    2002-01-01

    Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline

  14. Occurrence of enterotoxin-encoding genes in Staphylococcus aureus causing mastitis in lactating goats

    Directory of Open Access Journals (Sweden)

    Daneelly H. Ferreira

    2014-07-01

    Full Text Available Staphylococcal enterotoxins are the leading cause of human food poisoning worldwide. Staphylococcus spp. are the main mastitis-causing agents in goats and frequently found in high counts in goat milk. This study aimed to investigate the occurrence of enterotoxin-encoding genes in Staphylococcus aureus associated with mastitis in lactating goats in Paraiba State, Brazil. Milk samples (n=2024 were collected from 393 farms. Staphylococcus aureus was isolated in 55 milk samples. Classical (sea, seb, sec, sed, see and novel (seg, seh, sei enterotoxin-encoding genes were investigated by means of polymerase chain reaction (PCR. From thirty-six tested isolates, enterotoxin-encoding genes were detected in 7 (19.5% S. aureus. The gene encoding enterotoxin C (seC was identified in six isolates, while seiwas observed in only one isolate. The genes sea, seb, sed, see, seg and seh were not observed amongst the S. aureus investigated in this study. In summary, S. aureus causing mastitis in goats can harbor enterotoxin-encoding genes and seC was the most frequent gene observed amongst the investigated isolates. This finding is important for surveillance purposes, since enterotoxin C should be investigated in human staphylococcal food poisoning outbreaks caused by consumption of goat milk and dairy products.

  15. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans.

    Science.gov (United States)

    Berry, Vanita; Gregory-Evans, Cheryl; Emmett, Warren; Waseem, Naushin; Raby, Jacob; Prescott, DeQuincy; Moore, Anthony T; Bhattacharya, Shomi S

    2013-12-01

    Congenital cataracts are an important cause of bilateral visual impairment in infants. Through genome-wide linkage analysis in a four-generation family of Irish descent, the disease-associated gene causing autosomal-dominant congenital nuclear cataract was mapped to chromosome 4p16.1. The maximum logarithm of odds (LOD) score was 2.62 at a recombination fraction θ=0, obtained for marker D4S432 physically close to the Wolfram gene (WFS1). By sequencing the coding regions and intron-exon boundaries of WFS1, we identified a DNA substitution (c.1385A-to-G) in exon 8, causing a missense mutation at codon 462 (E462G) of the Wolframin protein. This is the first report of a mutation in this gene causing an isolated nuclear congenital cataract. These findings suggest that the membrane trafficking protein Wolframin may be important for supporting the developing lens.

  16. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    Energy Technology Data Exchange (ETDEWEB)

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  17. Mutation in the CYP21B gene (Ile-172. -->. Asn) causes steroid 21-hydroxylase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Amor, M.; Parker, K.L.; Globerman, H.; New, M.I.; White, P.C.

    1988-03-01

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia. It results from a deficiency in a specific cytochrome P450, P450c21 (P450XXIA). The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) are located in the HLA complex on chromosome 6p. Many mutant alleles are associated with deletions of CYP21B; the authors report the cloning and characterization of a nondeleted mutant CYP21B gene. This mutant gene is expressed on transfection into mouse Y1 adrenal cells, producing mRNA levels similar to those seen after transfection of the normal CYP21B gene. In codon 172 of the mutant gene, the normal codon ATC, encoding isoleucine, has been changed to AAC, encoding asparagine. This mutation is normally present in the CYP21A pseudogene, so that it may have been transferred to the mutant CYP21B gene by gene conversion. Hybridization of oligonucleotide probes corresponding to this and two other mutations normally present in CYP21A demonstrated that 4 out of 20 patients carried the codon 172 mutation; in one of these patients, the mutation was present as part of a larger gene conversion involving at least exons 3-6. Gene conversion may be a frequent cause of 21-hydroxylase deficiency.

  18. Retinal functional change caused by adenoviral vector-mediated transfection of LacZ gene.

    Science.gov (United States)

    Sakamoto, T; Ueno, H; Goto, Y; Oshima, Y; Yamanaka, I; Ishibashi, T; Inomata, H

    1998-04-10

    We examined the effect of insertion of an exogenous gene on retinal function to assess the rationale of adenoviral vector-mediated gene transfer for future gene therapy. An adenoviral vector expressing bacterial LacZ (AdCALacZ) was injected into the eyes of adult rats either intravitreally (group A) or subretinally (group B), and the gene expression and retinal function were thus examined at different time points after gene transfer for 3 weeks. X-Gal histostaining showed that neural retinal cells were transfected in group A and that retinal pigment epithelial cells were transfected in group B. The gene transfer was more efficient in group B (54.4% of the fixed retinal area was stained) than in group A (10.4%). The electroretinogram (ERG) revealed retinal dysfunction in the AdCALacZ-transfected rats even at the stage in which the histological damage was not apparent by electron microscopy and immunohistochemical studies for cytokeratin, S-100 protein, and glial fibrillary acidic protein. The ERG change was correlated with the intensity of inflammation, and retinal function recovered to the original level by 3 weeks, along with a diminution of inflammation. Functional changes were more evident in eyes treated with AdCALacZ than in those infected with adenoviral vector with no exogenous gene; however, no histological difference was observed between these groups, indicating that the insertion of exogenous gene itself affects retinal function. The results showed that different kinds of retinal cells could be gene-transferred by an adenoviral vector, depending on the application method. The retinal dysfunction caused by each adenoviral transfection method was caused by inflammation and the insertion of exogenous gene, and this retinal dysfunction was recoverable. In future gene therapy, special attention should be given to the method of exogenous gene insertion in the retina.

  19. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    Science.gov (United States)

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  20. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    Science.gov (United States)

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Yilmaz, Engin

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B12 deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy. PMID:21903995

  1. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria.

    Science.gov (United States)

    Ovunc, Bugsu; Otto, Edgar A; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H; Yilmaz, Engin; Hildebrandt, Friedhelm

    2011-10-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B(12) deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B(12)-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy.

  2. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  3. Network analysis of differential expression for the identification of disease-causing genes.

    Directory of Open Access Journals (Sweden)

    Daniela Nitsch

    Full Text Available Genetic studies (in particular linkage and association studies identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved. We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes.

  4. Lattice theory

    CERN Document Server

    Donnellan, Thomas; Maxwell, E A; Plumpton, C

    1968-01-01

    Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti

  5. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K.; Sugiyama, N.; Kawanishi, C. [Yokohama City Univ., Yokohama (Japan)] [and others

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.

  6. Prevalence of coagulase gene polymorphism in Staphylococcus aureus isolates causing bovine mastitis

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Dangler, C. A.; Sordillo, L. M.

    1995-01-01

    This study was conducted to investigate polymorphism of the coagulase gene of Staphylococcus aureus causing bovine mastitis. One hundred eighty-seven strains of S. aureus were isolated from bovine mastitic milk samples obtained from 187 different Danish dairy farms. The isolates were characterised...

  7. Congenital isolated adrenocorticotropin deficiency: an underestimated cause of neonatal death, explained by TPIT gene mutations.

    NARCIS (Netherlands)

    Vallette-Kasic, S.; Brue, T.; Pulichino, A.M.; Gueydan, M.; Barlier, A.; David, M.; Nicolino, M.; Malpuech, G.; Dechelotte, P.; Deal, C.; Vliet, G. van; Vroede, M.A. de; Riepe, F.G.; Partsch, C.J.; Sippell, W.G.; Berberoglu, M.; Atasay, B.; Zegher, F. de; Beckers, D.; Kyllo, J.; Donohoue, P.; Fassnacht, M.; Hahner, S.; Allolio, B.; Noordam, C.; Dunkel, L.; Hero, M.; Pigeon, B.; Weill, J.; Yigit, S.; Brauner, R.; Heinrich, J.J.; Cummings, E.; Riddell, C.; Enjalbert, A.; Drouin, J.

    2005-01-01

    Tpit is a T box transcription factor important for terminal differentiation of pituitary proopiomelanocortin-expressing cells. We demonstrated that human and mouse mutations of the TPIT gene cause a neonatal-onset form of congenital isolated ACTH deficiency (IAD). In the absence of glucocorticoid

  8. No muscle involvement in myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations1

    DEFF Research Database (Denmark)

    Hjermind, L.E.; Vissing, J.; Asmus, F.;

    2008-01-01

    Mutations in the epsilon-sarcoglycan gene (SGCE) can cause autosomal dominant inherited myoclonus-dystonia (M-D). Defects in other sarcoglycans; alpha-, beta-, gamma-, and delta can cause autosomal recessive inherited limb girdle muscular dystrophies. epsilon- and alpha-sarcoglycans are very...... homologous and may substitute for one-another in different tissues. We therefore investigated whether mutations in SGCE also cause abnormalities of skeletal and myocardial muscle. Six patients with clinically and genetically verified M-D and no signs of limb-girdle muscular dystrophy were included. Skeletal...

  9. Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans.

    Science.gov (United States)

    Ahmed, Zubair M; Masmoudi, Saber; Kalay, Ersan; Belyantseva, Inna A; Mosrati, Mohamed Ali; Collin, Rob W J; Riazuddin, Saima; Hmani-Aifa, Mounira; Venselaar, Hanka; Kawar, Mayya N; Tlili, Abdelaziz; van der Zwaag, Bert; Khan, Shahid Y; Ayadi, Leila; Riazuddin, S Amer; Morell, Robert J; Griffith, Andrew J; Charfedine, Ilhem; Caylan, Refik; Oostrik, Jaap; Karaguzel, Ahmet; Ghorbel, Abdelmonem; Riazuddin, Sheikh; Friedman, Thomas B; Ayadi, Hammadi; Kremer, Hannie

    2008-11-01

    Many proteins necessary for sound transduction have been identified through positional cloning of genes that cause deafness. We report here that mutations of LRTOMT are associated with profound nonsyndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3-q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, detected by protein blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, new transcripts can arise through partial or complete coalescence of genes. We provide evidence that in the primate lineage LRTOMT evolved from the fusion of two neighboring ancestral genes, which exist as separate genes (Lrrc51 and Tomt) in rodents.

  10. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  11. An exonic insertion within Tex14 gene causes spermatogenic arrest in pigs

    Directory of Open Access Journals (Sweden)

    Sironen Anu

    2011-12-01

    Full Text Available Abstract Background Male infertility is an increasing problem in all domestic species including man. Localization and identification of genes involved in defects causing male infertility provide valuable information of specific events in sperm development. Sperm development is a complex process, where diploid spermatogonia develop into haploid, highly specialized spermatozoa. Correct expression and function of various genes and their protein products are required for production of fertile sperm. We have identified an infertility defect in Finnish Yorkshire boars caused by spermatogenic arrest. The aim of this study was to locate the disease associated region using genome wide screen with the PorcineSNP60 Beadchip and identify the causal mutation by candidate gene approach. Results In the Finnish Yorkshire pig population the spermatogenic arrest (SA defect appears to be of genetic origin and causes severe degeneration of germ cells and total absence of spermatozoa. Genome wide scan with the PorcineSNP60 Beadchip localized the SA defect to porcine chromosome 12 in a 2 Mbp region. Sequencing of a candidate gene Tex14 revealed a 51 bp insertion within exon 27, which caused differential splicing of the exon and created a premature translation stop codon. The expression of Tex14 was markedly down regulated in the testis of a SA affected boar compared to control boars and no protein product was identified by Western blotting. The SA insertion sequence was also found within intron 27 in all analyzed animals, thus the insertion appears to be a possible duplication event. Conclusion In this study we report the identification of a causal mutation for infertility caused by spermatogenic arrest at an early meiotic phase. Our results highlight the role of TEX14 specifically in spermatogenesis and the importance of specific genomic remodeling events as causes for inherited defects.

  12. Schizophrenia: A Pathogenetic Autoimmune Disease Caused by Viruses and Pathogens and Dependent on Genes

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2011-01-01

    Full Text Available Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens.

  13. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    Energy Technology Data Exchange (ETDEWEB)

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W. [Shriners Hospital for Crippled Children, Portland, OR (United States)

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  14. Exonic rearrangements in the known Parkinson's disease-causing genes are a rare cause of the disease in South African patients.

    Science.gov (United States)

    van der Merwe, Celia; Carr, Jonathan; Glanzmann, Brigitte; Bardien, Soraya

    2016-04-21

    Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. To date, a number of PD-causing genes have been found, including SNCA, LRRK2, VPS35, PARK2, PINK1, DJ-1, ATP13A2, and most recently CHCHD2. Mutations in these genes range from point mutations to larger exonic rearrangements including deletions and duplications. This study aimed to detect possible copy number variation (CNV) in the known PD-causing genes in a cohort of South African patients with PD. Multiplex Ligation-dependent Probe Amplification (MLPA) analysis was performed on a total of 210 South African PD patients, and possible CNVs were verified using quantitative real time PCR. No homozygous or compound heterozygous exon rearrangements in the genes analysed were found in the patient group. A heterozygous PARK2 exon 4 deletion was found in a sporadic patient with an age at onset of 51 years. Sanger sequencing did not reveal any additional mutations in PARK2 in this patient. Combining our results with that of previous studies in a South African cohort, the frequency of exonic rearrangements in the known PD-causing genes is only 1.8% (8/439 patients). In conclusion, CNV in the known PD-causing genes are a rare cause of PD in a South African cohort, and there may be as yet unknown genetic causes of PD that are specific to patients of African ethnicity.

  15. Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success.

    Science.gov (United States)

    Jacobson, Samuel G; Aleman, Tomas S; Cideciyan, Artur V; Sumaroka, Alexander; Schwartz, Sharon B; Windsor, Elizabeth A M; Traboulsi, Elias I; Heon, Elise; Pittler, Steven J; Milam, Ann H; Maguire, Albert M; Palczewski, Krzysztof; Stone, Edwin M; Bennett, Jean

    2005-04-26

    Mutations in RPE65, a gene essential to normal operation of the visual (retinoid) cycle, cause the childhood blindness known as Leber congenital amaurosis (LCA). Retinal gene therapy restores vision to blind canine and murine models of LCA. Gene therapy in blind humans with LCA from RPE65 mutations may also have potential for success but only if the retinal photoreceptor layer is intact, as in the early-disease stage-treated animals. Here, we use high-resolution in vivo microscopy to quantify photoreceptor layer thickness in the human disease to define the relationship of retinal structure to vision and determine the potential for gene therapy success. The normally cone photoreceptor-rich central retina and rod-rich regions were studied. Despite severely reduced cone vision, many RPE65-mutant retinas had near-normal central microstructure. Absent rod vision was associated with a detectable but thinned photoreceptor layer. We asked whether abnormally thinned RPE65-mutant retina with photoreceptor loss would respond to treatment. Gene therapy in Rpe65(-/-) mice at advanced-disease stages, a more faithful mimic of the humans we studied, showed success but only in animals with better-preserved photoreceptor structure. The results indicate that identifying and then targeting retinal locations with retained photoreceptors will be a prerequisite for successful gene therapy in humans with RPE65 mutations and in other retinal degenerative disorders now moving from proof-of-concept studies toward clinical trials.

  16. Alu-mediated large deletion of the CDSN gene as a cause of peeling skin disease.

    Science.gov (United States)

    Wada, T; Matsuda, Y; Muraoka, M; Toma, T; Takehara, K; Fujimoto, M; Yachie, A

    2014-10-01

    Peeling skin disease (PSD) is an autosomal recessive skin disorder caused by mutations in CDSN and is characterized by superficial peeling of the upper epidermis. Corneodesmosin (CDSN) is a major component of corneodesmosomes that plays an important role in maintaining epidermis integrity. Herein, we report a patient with PSD caused by a novel homozygous large deletion in the 6p21.3 region encompassing the CDSN gene, which abrogates CDSN expression. Several genes including C6orf15, PSORS1C1, PSORS1C2, CCHCR1, and TCF19 were also deleted, however, the patient showed only clinical features typical of PSD. The deletion size was 59.1 kb. Analysis of the sequence surrounding the breakpoint showed that both telomeric and centromeric breakpoints existed within Alu-S sequences that were oriented in opposite directions. These results suggest an Alu-mediated recombination event as the mechanism underlying the deletion in our patient.

  17. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies.

    Science.gov (United States)

    Cirak, Sebahattin; Foley, Aileen Reghan; Herrmann, Ralf; Willer, Tobias; Yau, Shu; Stevens, Elizabeth; Torelli, Silvia; Brodd, Lina; Kamynina, Alisa; Vondracek, Petr; Roper, Helen; Longman, Cheryl; Korinthenberg, Rudolf; Marrosu, Gianni; Nürnberg, Peter; Michele, Daniel E; Plagnol, Vincent; Hurles, Matt; Moore, Steven A; Sewry, Caroline A; Campbell, Kevin P; Voit, Thomas; Muntoni, Francesco

    2013-01-01

    Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy.

  18. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  19. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    Directory of Open Access Journals (Sweden)

    Julia D. Suerth

    2014-12-01

    Full Text Available Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.

  20. First contiguous gene deletion causing biotinidase deficiency: The enzyme deficiency in three Sri Lankan children

    Directory of Open Access Journals (Sweden)

    Danika Nadeen Senanayake

    2015-03-01

    Full Text Available We report three symptomatic children with profound biotinidase deficiency from Sri Lanka. All three children presented with typical clinical features of the disorder. The first is homozygous for a missense mutation in the BTD gene (c.98_104 del7insTCC; p.Cys33PhefsX36 that is commonly seen in the western countries, the second is homozygous for a novel missense mutation (p.Ala439Asp, and the third is the first reported instance of a contiguous gene deletion causing the enzyme deficiency. In addition, this latter finding exemplifies the importance of considering a deletion within the BTD gene for reconciling enzymatic activity with genotype, which can occur in asymptomatic children who are identified by newborn screening.

  1. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oded Magger

    Full Text Available The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.

  2. Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene.

    Science.gov (United States)

    Tanner, Stephan M; Li, Zhongyuan; Perko, James D; Oner, Cihan; Cetin, Mualla; Altay, Cigdem; Yurtsever, Zekiye; David, Karen L; Faivre, Laurence; Ismail, Essam A; Gräsbeck, Ralph; de la Chapelle, Albert

    2005-03-15

    Hereditary juvenile megaloblastic anemia due to vitamin B12 (cobalamin) deficiency is caused by intestinal malabsorption of cobalamin. In Imerslund-Grasbeck syndrome (IGS), cobalamin absorption is completely abolished and not corrected by the administration of intrinsic factor (IF); if untreated, the disease is fatal. Biallelic mutations either in the cubilin (CUBN) or amnionless (AMN) gene cause IGS. In a series of families clinically diagnosed with likely IGS, at least six displayed no evidence of mutations in CUBN or AMN. A genome-wide search for linkage followed by mutational analysis of candidate genes was performed in five of these families. A region in chromosome 11 showed evidence of linkage in four families. The gastric IF (GIF) gene located in this region harbored homozygous nonsense and missense mutations in these four families and in three additional families. The disease in these cases therefore should be classified as hereditary IF deficiency. Clinically, these patients resembled those with typical IGS; radiocobalamin absorption tests had been inconclusive regarding the nature of the defect. In the diagnosis of juvenile cobalamin deficiency, mutational analysis of the CUBN, AMN, and GIF genes provides a molecular characterization of the underlying defect and may be the diagnostic method of choice.

  3. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Moreira Leonilde M

    2010-06-01

    Full Text Available Abstract Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.

  4. Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels?

    Science.gov (United States)

    Sarquella-Brugada, Georgia; Campuzano, Oscar; Cesar, Sergi; Iglesias, Anna; Fernandez, Anna; Brugada, Josep; Brugada, Ramon

    2016-03-01

    Sudden infant death syndrome is the unexpected demise of a child younger than 1 year of age which remains unexplained after a complete autopsy investigation. Usually, it occurs during sleep, in males, and during the first 12 weeks of life. The pathophysiological mechanism underlying the death is unknown, and the lethal episode is considered multifactorial. However, in cases without a conclusive post-mortem diagnosis, suspicious of cardiac arrhythmias may also be considered as a cause of death, especially in families suffering from any cardiac disease associated with sudden cardiac death. Here, we review current understanding of sudden infant death, focusing on genetic causes leading to lethal cardiac arrhythmias, considering both genes encoding ion channels as well as structural proteins due to recent association of channelopathies and desmosomal genes. We support a comprehensive analysis of all genes associated with sudden cardiac death in families suffering of infant death. It allows the identification of the most plausible cause of death but also of family members at risk, providing cardiologists with essential data to adopt therapeutic preventive measures in families affected with this lethal entity.

  5. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  6. HIV-1 infection causes a down-regulation of genes involved in ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Claudia L Kleinman

    Full Text Available HIV-1 preferentially infects CD4+ T cells, causing fundamental changes that eventually lead to the release of new viral particles and cell death. To investigate in detail alterations in the transcriptome of the CD4+ T cells upon viral infection, we sequenced polyadenylated RNA isolated from Jurkat cells infected or not with HIV-1. We found a marked global alteration of gene expression following infection, with an overall trend toward induction of genes, indicating widespread modification of the host biology. Annotation and pathway analysis of the most deregulated genes showed that viral infection produces a down-regulation of genes associated with the nucleolus, in particular those implicated in regulating the different steps of ribosome biogenesis, such as ribosomal RNA (rRNA transcription, pre-rRNA processing, and ribosome maturation. The impact of HIV-1 infection on genes involved in ribosome biogenesis was further validated in primary CD4+ T cells. Moreover, we provided evidence by Northern Blot experiments, that host pre-rRNA processing in Jurkat cells might be perturbed during HIV-1 infection, thus strengthening the hypothesis of a crosstalk between nucleolar functions and viral pathogenesis.

  7. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene.

    Science.gov (United States)

    Taniyama, Daisuke; Abe, Yoshihiko; Sakai, Tetsuya; Kikuchi, Takahide; Takahashi, Takashi

    2017-01-01

    Streptococcus canis (Sc) is a zoonotic pathogen that is transferred mainly from companion animals to humans. One of the major virulence factors in Sc is the M-like protein encoded by the scm gene, which is involved in anti-phagocytic activities, as well as the recruitment of plasminogen to the bacterial surface in cooperation with enolase, and the consequent enhancement of bacterial transmigration and survival. This is the first reported human case of uncomplicated bacteremia following a dog bite, caused by Streptococcus canis harboring the scm gene. The similarity of the 16S rRNA from the infecting species to that of the Sc type strain, as well as the amplification of the species-specific cfg gene, encoding a co-hemolysin, was used to confirm the species identity. Furthermore, the isolate was confirmed as sequence type 9. The partial scm gene sequence harbored by the isolate was closely related to those of other two Sc strains. While this isolate did not possess the erm(A), erm(B), or mef(A), macrolide/lincosamide resistance genes, it was not susceptible to azithromycin: its susceptibility was intermediate. Even though human Sc bacteremia is rare, clinicians should be aware of this microorganism, as well as Pasteurella sp., Prevotella sp., and Capnocytophaga sp., when examining and treating patients with fever who maintain close contact with companion animals.

  8. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    Science.gov (United States)

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms.

  9. A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy.

    Science.gov (United States)

    Riisager, M; Duno, M; Hansen, F Juul; Krag, T O; Vissing, C R; Vissing, J

    2013-07-01

    Defects in glycosylations of α-dystroglycan are associated with mutations in several genes, including the fukutin gene (FKTN). Hypoglycosylation of α-dystroglycan results in several forms of muscular dystrophy with variable phenotype. Outside Japan, the prevalence of muscular dystrophies related to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due to episodes of tachycardia caused by Wolff-Parkinson-White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations as a cause of LGMD2M without mental retardation and expands the phenotypic spectrum for LGMD2M to include cardiomyopathy and rigid spine syndrome in the mildest affected non-Japanese patient reported so far.

  10. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene.

    Science.gov (United States)

    Toro, Rocio; Pérez-Serra, Alexandra; Campuzano, Oscar; Moncayo-Arlandi, Javier; Allegue, Catarina; Iglesias, Anna; Mangas, Alipio; Brugada, Ramon

    2016-01-01

    Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations. Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64) in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased), 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment. We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

  11. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene.

    Directory of Open Access Journals (Sweden)

    Rocio Toro

    Full Text Available Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations.Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64 in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased, 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment.We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

  12. A new mutation site in the AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Science.gov (United States)

    Zhu, Wufei; Hu, Zhen; Liao, Xiangyu; Chen, Xing; Huang, Wenrong; Zhong, Yu; Zeng, Zhaoyang

    2017-05-24

    Autoimmune polyendocrine syndrome type 1 (APS-1, OMIM 2403000) is a rare autosomal recessive disease that is caused by autoimmune regulator (AIRE). The main symptoms of APS-1 are chronic mucocutaneous candidiasis, autoimmune adrenocortical insufficiency (Addison's disease) and hypoparathyroidism. We collected APS-1 cases and analysed them. The AIRE genes of the patient and his family members were sequenced to identify whether the APS-1 patient had an AIRE mutation. We discovered a mutation site (c.206A>C) that had never before been reported in the AIRE gene located in exon 2 of the AIRE gene. This homogyzous mutation caused a substitution of the 69th amino acid of the AIRE protein from glutamine to proline (p.Q69P). A yeast two-hybrid assay, which was used to analyse the homodimerization properties of the mutant AIRE protein, showed that the mutant AIRE protein could not interact with the normal AIRE protein. Flow cytometry and RT-qPCR analyses indicated that the new mutation site could decrease the expression levels of the AIRE, glutamic acid decarboxylase 65 (GAD65) and tryptophan hydroxylase-1 (TPH1) proteins to affect central immune tolerance. In conclusion, our research has shown that the new mutation site (c.206A>C) may influence the homodimerization and expression levels and other aspects of the AIRE protein. It may also impact the expression levels of tissue-restricted antigens (TRAs), leading to a series of autoimmune diseases.

  13. Deleterious Mutations in the Zinc-Finger 469 Gene Cause Brittle Cornea Syndrome

    Science.gov (United States)

    Abu, Almogit; Frydman, Moshe; Marek, Dina; Pras, Eran; Nir, Uri; Reznik-Wolf, Haike; Pras, Elon

    2008-01-01

    Brittle cornea syndrome (BCS) is an autosomal-recessive disorder characterized by a thin cornea that tends to perforate, causing progressive visual loss and blindness. Additional systemic symptoms such as joint hypermotility, hyperlaxity of the skin, and kyphoscoliosis place BCS among the connective-tissue disorders. Previously, we assigned the disease gene to a 4.7 Mb interval on chromosome 16q24. In order to clone the BCS gene, we first narrowed the disease locus to a 2.8 Mb interval and systematically sequenced genes expressed in connective tissue in this chromosomal segment. We have identified two frameshift mutations in the Zinc-Finger 469 gene (ZNF469). In five unrelated patients of Tunisian Jewish ancestry, we found a 1 bp deletion at position 5943 (5943 delA), and in an inbred Palestinian family we detected a single-nucleotide deletion at position 9527 (9527 delG). The function of ZNF469 is unknown. However, a 30% homology to a number of collagens suggests that it could act as a transcription factor involved in the synthesis and/or organization of collagen fibers. PMID:18452888

  14. Transient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation

    Directory of Open Access Journals (Sweden)

    Jung Hyun Kong

    2011-04-01

    Full Text Available Transient neonatal diabetes mellitus (TNDM is a rare form of diabetes mellitus that presents within the first 6 months of life with remission in infancy or early childhood. TNDM is mainly caused by anomalies in the imprinted region on chromosome 6q24; however, recently, mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1, have also been implicated in TNDM. Herein, we present the case of a male child with TNDM whose mutational analysis revealed a heterozygous c.3547C>T substitution in the ABCC8 gene, leading to an Arg1183Trp mutation in the SUR1 protein. The parents were clinically unaffected and did not show a mutation in the ABCC8 gene. This is the first case of a de novo ABCC8 gene mutation in a Korean patient with TNDM. The patient was initially treated with insulin and successfully switched to sulfonylurea therapy at 14 months of age. Remission of diabetes had occurred at the age of 16 months. Currently, the patient is 21 months old and is euglycemic without any insulin or oral hypoglycemic agents. His growth and physical development are normal, and there are no delays in achieving neurological and developmental milestones.

  15. Gonadal mosaicism in ARID1B gene causes intellectual disability and dysmorphic features in three siblings.

    Science.gov (United States)

    Ben-Salem, Salma; Sobreira, Nara; Akawi, Nadia A; Al-Shamsi, Aisha M; John, Anne; Pramathan, Thachillath; Valle, David; Ali, Bassam R; Al-Gazali, Lihadh

    2016-01-01

    The gene encoding the AT-rich interaction domain-containing protein 1B (ARID1B) has recently been shown to be one of the most frequently mutated genes in patients with intellectual disability (ID). The phenotypic spectrums associated with variants in this gene vary widely ranging for mild to severe non-specific ID to Coffin-Siris syndrome. In this study, we evaluated three children from a consanguineous Emirati family affected with ID and dysmorphic features. Genomic DNA from all affected siblings was analyzed using CGH array and whole-exome sequencing (WES). Based on a recessive mode of inheritance, homozygous or compound heterozygous variants shared among all three affected children could not be identified. However, further analysis revealed a heterozygous variant (c.4318C>T; p.Q1440*) in the three affected children in an autosomal dominant ID causing gene, ARID1B. This variant was absent in peripheral blood samples obtained from both parents and unaffected siblings. Therefore, we propose that the most likely explanation for this situation is that one of the parents is a gonadal mosaic for the variant. To the best of our knowledge, this is the first report of a gonadal mosaicism inheritance of an ARID1B variant leading to familial ID recurrence.

  16. MASA syndrome is caused by mutations in the neural cell adhesion gene, L1CAM

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, C.E.; Wang, Y.; Schroer, R.J.; Stevenson, R.E. [Greenwood Genetic Center, SC (United States)

    1994-09-01

    The MASA syndrome is a recessive X-linked disorder characterized by Mental retardation, Adducted thumbs, Shuffling gait and Aphasia. Recently we found that MASA in one family was likely caused by a point mutation in exon 6 of the L1CAM gene. This gene has also been shown to be involved in X-linked hydrocephalus (HSAS). We have screened 60 patients with either sporadic HSAS or MASA as well as two additional families with MASA. For the screening, we initially utilized 3 cDNA probes for the L1CAM gene. In one of the MASA families, K8310, two affected males were found to have an altered BglII band. The band was present in their carrier mother but not in their normal brothers. This band was detected by the entire cDNA probe as well as the cDNA probe for 3{prime} end of the gene. Analysis of the L1CAM sequence indicated the altered BglII site is distal to the exon 28 but proximal to the punative poly A signal site. It is hypothesized that this point mutation alters the stability of the L1CAM mRNA. This is being tested using cell lines established from the two affected males.

  17. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies

    DEFF Research Database (Denmark)

    2014-01-01

    analyzed exome-sequencing data of 356 trios with the "classical" epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1...... = 8.2 × 10(-4)), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have...... an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize...

  18. New mutations in MAPT gene causing frontotemporal lobar degeneration: biochemical and structural characterization.

    Science.gov (United States)

    Rossi, Giacomina; Bastone, Antonio; Piccoli, Elena; Mazzoleni, Giulia; Morbin, Michela; Uggetti, Andrea; Giaccone, Giorgio; Sperber, Sarah; Beeg, Marten; Salmona, Mario; Tagliavini, Fabrizio

    2012-04-01

    Frontotemporal lobar degeneration (FTLD) can be sporadic or familial. The genes encoding the microtubule-associated protein tau (MAPT) and progranulin (GRN) are the most relevant genes so far known causing the hereditary forms. Following genetic screening of patients affected by FTLD, we identified 2 new MAPT mutations, P364S and G366R, the former in a sporadic case. In the study we report the clinical and genetic features of the patients carrying these mutations, and the functional effects of the mutations, analyzed in vitro in order to investigate their pathogenic character. Both mutations resulted in reduced ability of tau to promote microtubule polymerization; the P364S protein variant also showed a high propensity to aggregate into filaments. These results suggest a high probability that these mutations are pathogenic. Our findings highlight the importance of genetic analysis also in sporadic forms of FTLD, and the role of in vitro studies to evaluate the pathologic features of new mutations.

  19. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  20. Dual Lattice of ℤ-module Lattice

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-07-01

    Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].

  1. A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy

    DEFF Research Database (Denmark)

    Riisager, Maria; Duno, M; Hansen, Flemming Juul;

    2013-01-01

    to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due...... to episodes of tachycardia caused by Wolff-Parkinson-White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations...

  2. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability

    DEFF Research Database (Denmark)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband...... and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P ... methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies....

  3. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene

    DEFF Research Database (Denmark)

    Færch, Mia; Christensen, Jane H; Corydon, Thomas J

    2008-01-01

    and polyuria since infancy. Initial clinical testing confirmed a diagnosis of diabetes insipidus (DI). Urine osmolarity rose during fluid deprivation and after 20 microg of intranasal desmopressin [1-deamino-8-d-arginine-vasopressin (dDAVP)]. A similar DI phenotype was found in his brother. Methods The coding...... output. Discussion The affected members of this Belgian kindred have CNDI with partial resistance to AVP caused by a mutation in the AVPR2 gene that differs from any of the six mutations reported previously to produce this phenotype. Because the resistance to AVP is partial, this form of CNDI can...

  4. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet

    2013-01-01

    in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted...... in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal...

  5. Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans

    OpenAIRE

    Ahmed, Zubair M.; Masmoudi, Saber; Kalay, Ersan; Belyantseva, Inna A.; Mosrati, Mohamed Ali; Collin, Rob W. J.; Riazuddin, Saima; Hmani-Aifa, Mounira; Venselaar, Hanka; Kawar, Mayya N; Abdelaziz, Tlili; van der Zwaag, Bert; Khan, Shahid Y.; Ayadi, Leila; Riazuddin, S. Amer

    2008-01-01

    Many proteins necessary for sound transduction have been discovered through positional cloning of genes that cause deafness 1–3 . In this study, we report that mutations of LRTOMT are associated with profound non-syndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3-q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, that are detected by Western blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, nove...

  6. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    Science.gov (United States)

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  7. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  8. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection.

    Science.gov (United States)

    Park, Jungan; Lee, Hyun-Ju; Cheon, Choong-Ill; Kim, Sung-Han; Hur, Yoon-Sun; Auh, Chung-Kyun; Im, Kyung-Hwan; Yun, Dae-Jin; Lee, Sukchan; Davis, Keith R

    2011-01-01

    Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. These results suggest that ATHB7 and ATHB12 may play an

  9. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia.

    Science.gov (United States)

    Slaugenhaupt, S A; Blumenfeld, A; Gill, S P; Leyne, M; Mull, J; Cuajungco, M P; Liebert, C B; Chadwick, B; Idelson, M; Reznik, L; Robbins, C; Makalowska, I; Brownstein, M; Krappmann, D; Scheidereit, C; Maayan, C; Axelrod, F B; Gusella, J F

    2001-03-01

    Familial dysautonomia (FD; also known as "Riley-Day syndrome"), an Ashkenazi Jewish disorder, is the best known and most frequent of a group of congenital sensory neuropathies and is characterized by widespread sensory and variable autonomic dysfunction. Previously, we had mapped the FD gene, DYS, to a 0.5-cM region on chromosome 9q31 and had shown that the ethnic bias is due to a founder effect, with >99.5% of disease alleles sharing a common ancestral haplotype. To investigate the molecular basis of FD, we sequenced the minimal candidate region and cloned and characterized its five genes. One of these, IKBKAP, harbors two mutations that can cause FD. The major haplotype mutation is located in the donor splice site of intron 20. This mutation can result in skipping of exon 20 in the mRNA of patients with FD, although they continue to express varying levels of wild-type message in a tissue-specific manner. RNA isolated from lymphoblasts of patients is primarily wild-type, whereas only the deleted message is seen in RNA isolated from brain. The mutation associated with the minor haplotype in four patients is a missense (R696P) mutation in exon 19, which is predicted to disrupt a potential phosphorylation site. Our findings indicate that almost all cases of FD are caused by an unusual splice defect that displays tissue-specific expression; and they also provide the basis for rapid carrier screening in the Ashkenazi Jewish population.

  10. Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2010-05-01

    Full Text Available Abstract Background Positions of spliceosomal introns are often conserved between remotely related genes. Introns that reside in non-conserved positions are either novel or remnants of frequent losses of introns in some evolutionary lineages. A recent gain of such introns is difficult to prove. However, introns verified as novel are needed to evaluate contemporary processes of intron gain. Results We identified 25 unambiguous cases of novel intron positions in 31 Drosophila genes that exhibit near intron pairs (NIPs. Here, a NIP consists of an ancient and a novel intron position that are separated by less than 32 nt. Within a single gene, such closely-spaced introns are very unlikely to have coexisted. In most cases, therefore, the ancient intron position must have disappeared in favour of the novel one. A survey for NIPs among 12 Drosophila genomes identifies intron sliding (migration as one of the more frequent causes of novel intron positions. Other novel introns seem to have been gained by regional tandem duplications of coding sequences containing a proto-splice site. Conclusions Recent intron gains sometimes appear to have arisen by duplication of exonic sequences and subsequent intronization of one of the copies. Intron migration and exon duplication together may account for a significant amount of novel intron positions in conserved coding sequences.

  11. Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection

    Directory of Open Access Journals (Sweden)

    Skrabana Rostislav

    2009-05-01

    Full Text Available Abstract Background Toll like receptors (TLR play the central role in the recognition of pathogen associated molecular patterns (PAMPs. Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens. Results The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ in the mutant and wild type moDCs (mocyte derived dendritic cells after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat motifs. Conclusion The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10 and 4th residue downstream to LRR domain (exta-LRR region of TLR4. The study describes novel mutations in the TLRs and presents their association with the MAP infection.

  12. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.

    Science.gov (United States)

    Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin

    2017-06-01

    Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype–phenotype correlation

    Indian Academy of Sciences (India)

    SAOUSSEN M’DIMEGH; CÉCILE AQUAVIVA- BOURDAIN; ASMA OMEZZINE; IBTIHEL M’BAREK; GENEVIÉVE SOUCHE; DORSAF ZELLAMA; KAMEL ABIDI; ABDELATTIF ACHOUR; TAHAR GARGAH; SAOUSSEN ABROUG; ALI BOUSLAMA

    2016-09-01

    Primary hyperoxaluria type I (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine : glyoxylate aminotransferase (AGT) which is deficient or mistargeted to mitochon-dria. PH1 shows considerable phenotypic and genotypic heterogeneity. The incidence and severity of PH1 varies in different geographic regions. DNA samples of the affected members from two unrelated Tunisian families were tested by amplifying and sequencing each of the AGXT exons and intron–exon junctions. We identified a novel frameshift mutation in the AGXT gene, the c.406_410dupACTGC resulting in a truncated protein (p.Gln137Hisfs*19). It is found in homozygous state in two nonconsanguineous unrelated families from Tunisia. These molecular findings provide genotype/phenotype correlations in the intrafamilial phenotypic and permit accurate carrier detection, and prenatal diagnosis. The novel p.G ln137Hisfs*19 mutation detected in our study extend the spectrum of knownAGXT gene mutations in Tunisia.

  14. EPILEPSY CAUSED BY PCDH19 GENE MUTATION: A REVIEW OF LITERATURE AND THE AUTHORS’ OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    K. Yu. Mukhin

    2016-01-01

    Full Text Available Mutation in the PCDH19 gene was first described by L.M. Dibbens et al. in 2008. Mutations in this gene are associated with epilepsy and mental retardation limited to females. The clinical manifestations that are observed in some patients with PCDH19 mutation and Dravet syndrome that is caused by mutation in the SCN1A gene include the onset of febrile and afebrile seizures in infancy, serial seizures during fever, and regression in development after the onset of seizures. Due to the fact that the two diseases have common clinical signs, it is best to test for PCDH19 mutation in patients with the clinical picture of Dravet syndrome and a negative test for SCN1A. In general, the number of scientific papers devoted to analysis and recommendations for the choice of therapy in patients with rare genetic pathology is small now. We analyzed the specific features of clinical signs and therapy in our two observed female patients aged 4 and 11 years with verified PCDH19 mutation. Both patients were noted to have severe epilepsy with febrile convulsions with the development of status epilepticus and to be unresponsive to antiepileptic therapy. The use of different antiepileptic drugs (valproate, oxcarbazepine, phenobarbital, topiramate, levetiracetam at different combinations failed to control the course of epilepsy in the 4-year-old patient whereas the 11-year-old patient who took a combination of valproic acid and benzodiazepines achieved a positive effect.

  15. A partial gene deletion of SLC45A2 causes oculocutaneous albinism in Doberman pinscher dogs.

    Directory of Open Access Journals (Sweden)

    Paige A Winkler

    Full Text Available The first white Doberman pinscher (WDP dog was registered by the American Kennel Club in 1976. The novelty of the white coat color resulted in extensive line breeding of this dog and her offspring. The WDP phenotype closely resembles human oculocutaneous albinism (OCA and clinicians noticed a seemingly high prevalence of pigmented masses on these dogs. This study had three specific aims: (1 produce a detailed description of the ocular phenotype of WDPs, (2 objectively determine if an increased prevalence of ocular and cutaneous melanocytic tumors was present in WDPs, and (3 determine if a genetic mutation in any of the genes known to cause human OCA is causal for the WDP phenotype. WDPs have a consistent ocular phenotype of photophobia, hypopigmented adnexal structures, blue irides with a tan periphery and hypopigmented retinal pigment epithelium and choroid. WDPs have a higher prevalence of cutaneous melanocytic neoplasms compared with control standard color Doberman pinschers (SDPs; cutaneous tumors were noted in 12/20 WDP (5 years of age: 8/8 and 1/20 SDPs (p<0.00001. Using exclusion analysis, four OCA causative genes were investigated for their association with WDP phenotype; TYR, OCA2, TYRP1 and SLC45A2. SLC45A2 was found to be linked to the phenotype and gene sequencing revealed a 4,081 base pair deletion resulting in loss of the terminus of exon seven of SLC45A2 (chr4∶77,062,968-77,067,051. This mutation is highly likely to be the cause of the WDP phenotype and is supported by a lack of detectable SLC45A2 transcript levels by reverse transcriptase PCR. The WDP provides a valuable model for studying OCA4 visual disturbances and melanocytic neoplasms in a large animal model.

  16. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Silène T Wavre-Shapton

    Full Text Available The retinal pigment epithelium (RPE is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1. REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox, Tyr-Cre+. Transmission electron microscopy (TEM was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  17. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome.

    Science.gov (United States)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar; Méchin, Marie-Claire; Wolf, Sabrina; Romano, Maria Teresa; Valentin, Frederic; Wiegmann, Henning; Huchenq, Anne; Kandil, Rima; Garcia Bartels, Natalie; Kilic, Arzu; George, Susannah; Ralser, Damian J; Bergner, Stefan; Ferguson, David J P; Oprisoreanu, Ana-Maria; Wehner, Maria; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Swan, Daniel; Houniet, Darren; Büchner, Aline; Weibel, Lisa; Wagner, Nicola; Grimalt, Ramon; Bygum, Anette; Serre, Guy; Blume-Peytavi, Ulrike; Sprecher, Eli; Schoch, Susanne; Oji, Vinzenz; Hamm, Henning; Farrant, Paul; Simon, Michel; Betz, Regina C

    2016-12-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant to being combed flat. Until now, both simplex and familial UHS-affected case subjects with autosomal-dominant as well as -recessive inheritance have been reported. However, none of these case subjects were linked to a molecular genetic cause. Here, we report the identification of UHS-causative mutations located in the three genes PADI3 (peptidylarginine deiminase 3), TGM3 (transglutaminase 3), and TCHH (trichohyalin) in a total of 11 children. All of these individuals carry homozygous or compound heterozygous mutations in one of these three genes, indicating an autosomal-recessive inheritance pattern in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic causes of UHS and shed light on its pathophysiology and hair physiology in general. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    Directory of Open Access Journals (Sweden)

    Jennifer N. Murdoch

    2014-10-01

    Full Text Available Neural tube defects (NTDs are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  19. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice.

    Science.gov (United States)

    Murdoch, Jennifer N; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D E; Stanier, Philip; Copp, Andrew J

    2014-10-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  20. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  1. Nucleos(t)ide analogues causes HBV S gene mutations and carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Meng-Lan Wang; Hong Tang

    2016-01-01

    BACKGROUND: The long-term use of nucleos(t)ide analogues causes drug resistance and mutations in the HBV reverse tran-scriptase (RT) region of the polymerase gene. The RT region overlaps the HBV surface gene (S gene) and therefore, the mutations in the RT region simultaneously modify S gene se-quence. Certain mutations in the RT region bring about trun-cated S proteins because the corresponding changed S gene en-codes a stop codon which results in the loss of a large portion of the C-terminal hydrophobic region of HBV surface protein. The rtA181T/sW172*, rtM204I/sW196* and rtV191I/sW182*are the most frequently reported drug-resistant mutations with C-terminal truncation, these mutations have oncogenic potential. DATA SOURCES: PubMed and Web of Science were searched using terms: “hepatitis B virus”, “HBV drug resistance muta-tion”, “HBV surface protein”, “HBV truncation”, “hepatocel-lular carcinoma”, “rtA181T/sW172*”, “rtM204I/sW196*”,“rtV191I/sW182*”, and relevant articles published in English in the past decades were reviewed. RESULTS: The rtA181T/sW172* and rtV191I/sW182* mu-tants occurred more frequently than the rtM204I/sW196* mu-tant both in chronic hepatitis B patients and the HBV-related hepatocellular carcinoma tissues. Although these mutations occur naturally, nucleos(t)ide analogues therapy is the main driving force. These mutations may exist alone or coexist with other HBV mutations. All these three mutants impair the vi-rion secretion and result in HBV surface protein retention and serum HBV DNA level reduction. These mutations possess potential carcinogenic properties. The three mutations are re-sistant to more than one nucleos(t)ide analogue and therefore, it is dififcult to treat the patients with the truncated mutations. CONCLUSIONS: Nucleos(t)ide analogues induce drug resis-tance and HBV S gene truncated mutations. These mutations have potential carcinogenesis.

  2. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations.

    Science.gov (United States)

    Muchir, Antoine; Worman, Howard J

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations.

  3. Improved Lattice Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  4. Protein causes hyperinsulinemia: a Chinese patient with hyperinsulinism/hyperammonaemia syndrome due to a glutamate dehydrogenase gene mutation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi; XIAO Xin-hua; DIAO Cheng-ming; TONG An-li; WANG Ou; QIU Zheng-qing; YU Kang; WANG Tong

    2010-01-01

    @@ Glucose is derived from three sources: intestinal absorption, glycogenolysis, and gluconeogenesis. Hypoglycemia in child is often attributed to depletion of glycogen stores. However, recently, congenital hyperinsulinism becomes an important cause of hypoglycaemia in early infancy. Mutations in the genes encoding SUR1 and KIR6.2 are the most frequent genetic causes of hyperinsulinism followed by mutations in the glutamate dehydrogenase (GDH) gene which encodes hyperinsulinism/hyperammonaemia (HI/HA) syndrome.

  5. Charcot-Marie-Tooth type 4F disease caused by S399fsx410 mutation in the PRX gene.

    Science.gov (United States)

    Kabzinska, D; Drac, H; Sherman, D L; Kostera-Pruszczyk, A; Brophy, P J; Kochanski, A; Hausmanowa-Petrusewicz, I

    2006-03-14

    Charcot-Marie-Tooth type 4F disease (CMT4F) is an autosomal recessive neuropathy caused by mutations in the PRX gene. To date, only seven mutations have been identified in the PRX gene. In this study, the authors report a novel S399fsX410 mutation in the PRX gene and its effects at the protein level, which was identified in an 8-year-old patient with early-onset CMT disease.

  6. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection.

    Directory of Open Access Journals (Sweden)

    Jungan Park

    Full Text Available BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV. Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were

  7. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model.

    Science.gov (United States)

    Min, Wonki; Angileri, Francesca; Luo, Haibin; Lauria, Antonino; Shanmugasundaram, Maruda; Almerico, Anna Maria; Cappello, Francesco; de Macario, Everly Conway; Lednev, Igor K; Macario, Alberto J L; Robb, Frank T

    2014-10-27

    Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized.

  8. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  9. A Novel Mutation in the EDAR Gene Causes Severe Autosomal Recessive Hypohidrotic Ectodermal Dysplasia

    DEFF Research Database (Denmark)

    Henningsen, Emil; Svendsen, Mathias Tiedemann; Lildballe, D. L.

    2014-01-01

    We report on a 2-year-old girl presenting with a severe form of hypohidrotic ectodermal dysplasia (HED). The patient presented with hypotrichosis, anodontia, hypohidrosis, frontal bossing, prominent lips and ears, dry, pale skin, and dermatitis. The patient had chronic rhinitis with malodorous na......-mediated NF-kB signalling. This complete loss-of-function mutation likely accounts for the severe clinical abnormalities in ectodermal structures in the described patient. (C) 2014 Wiley Periodicals, Inc....... nasal discharge. The girl was the second born child of first-cousin immigrants from Northern Iraq. A novel homozygous mutation (c.84delC) in the EDAR gene was identified. This mutation most likely causes a frameshift in the protein product (p.S29fs*74). This results in abolition of all ectodysplasin...

  10. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II.

    Science.gov (United States)

    Kim, Jung-Wook; Hu, Jan C-C; Lee, Jae-Il; Moon, Sung-Kwon; Kim, Young-Jae; Jang, Ki-Taeg; Lee, Sang-Hoon; Kim, Chong-Chul; Hahn, Se-Hyun; Simmer, James P

    2005-02-01

    The current system for the classification of hereditary defects of tooth dentin is based upon clinical and radiographic findings and consists of two types of dentin dysplasia (DD) and three types of dentinogenesis imperfecta (DGI). However, whether DGI type III should be considered a distinct phenotype or a variation of DGI type II is debatable. In the 30 years since the classification system was first proposed, significant advances have been made regarding the genetic etiologies of inherited dentin defects. DGI type II is recognized as an autosomal dominant disorder with almost complete penetrance and a low frequency of de novo mutations. We have identified a mutation (c.52G-->T, p.V18F) at the first nucleotide of exon 3 of the DSPP (dentin sialophosphoprotein) gene in a Korean family (de novo) and a Caucasian family. This mutation has previously been reported as causing DGI type II in a Chinese family. These findings suggest that this mutation site represents a mutational "hot spot" in the DSPP gene. The clinical and radiographic features of these two families include the classic phenotypes associated with both DGI type II and type III. Finding that a single mutation causes both phenotypic patterns strongly supports the conclusion that DGI type II and DGI type III are not separate diseases but rather the phenotypic variation of a single disease. We propose a modification of the current classification system such that the designation "hereditary opalescent dentin" or "DGI type II" should be used to describe both the DGI type II and type III phenotypes.

  11. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding.

    Science.gov (United States)

    Fager Ferrari, Marcus; Leinoe, Eva; Rossing, Maria; Norström, Eva; Strandberg, Karin; Steen Sejersen, Tobias; Qvortrup, Klaus; Zetterberg, Eva

    2017-04-11

    Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised platelet function. Therefore, we aimed to investigate platelet degranulation in patients heterozygous for variants in UNC13D, STX11 and STXBP2. During the work-up of patients referred to the Coagulation Unit, Skåne University Hospital, Malmö, Sweden and the Department of Hematology, Rigshospitalet, Copenhagen, Denmark due to bleeding tendencies, 12 patients harboring heterozygous variants in UNC13D, STX11 or STXBP2 were identified using targeted whole exome sequencing. Transmission electron microscopy (TEM) was used to assess the secretion of platelet dense granules following thrombin stimulation. Platelet degranulation, activation and aggregation were further assessed by flow cytometry (FC) and light transmission aggregometry (LTA) with lumi-aggregometry. In total, eight out of twelve (67%) patients showed impaired degranulation by at least one of the assays (TEM, FC and LTA). In the 12 patients, eight different heterozygous variants were identified. One variant was strongly associated with impaired degranulation, while four of the variants were associated with impaired granule secretion to a slightly lesser extent. One additional variant was found in six out of the twelve patients, and was associated with varying degrees of degranulation impairment. Accordingly, six out of the eight (75%) identified variants were associated with impaired platelet degranulation. Our results suggest that heterozygous variants in UNC13D, STX11 and STXBP2 are sufficient to cause platelet secretion defects resulting in increased bleeding.

  12. Free µ-Lattices

    DEFF Research Database (Denmark)

    Santocanale, Luigi

    2002-01-01

    A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...

  13. A case of familial paraganglioma syndrome type 4 caused by a mutation in the SDHB gene.

    Science.gov (United States)

    Drucker, Aaron M; Houlden, Robyn L

    2006-12-01

    A 40-year-old man was referred to our clinic with recurrent paragangliomas. He had undergone resection of a paraganglioma superior to the right adrenal gland at 19 years of age, resection of two para-aortic paragangliomas at 39 years of age, and resection of a paraganglioma in the interatrial septum at 40 years. The patient's mother had died at age 39 years of metastases from a carotid body tumor. MRI and CT scanning, 131I-labeled metaiodobenzylguanidine scanning, and genetic testing for a mutation in the succinate dehydrogenase complex, subunit B gene. Familial paraganglioma syndrome type 4 caused by a mutation in the succinate dehydrogenase complex, subunit B gene. The patient underwent two surgical procedures in our clinic. The first was to remove two para-aortic paragangliomas, and the second to remove a paraganglioma that involved both atria. The patient is at high risk for malignant disease and should undergo an annual monitoring program that consists of physical examination and measurement of his blood pressure and levels of urinary catecholamines and metanephrines. If these procedures suggest a recurrence of paraganglioma, 123I-labeled metaiodobenzylguanidine scanning should be performed. As he might develop nonfunctional tumors, however, he should also undergo CT scanning, MRI scanning, or both, of the neck, thorax, abdomen, and pelvis every 6-12 months. Genetic testing has been offered to family members.

  14. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis.

    Science.gov (United States)

    Ye, Xiaoqian; Song, Guangtai; Fan, Mingwen; Shi, Lisong; Jabs, Ethylin Wang; Huang, Shangzhi; Guo, Ruiqiang; Bian, Zhuan

    2006-03-01

    Weyers acrofacial dysostosis (MIM 193530) is an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy and dysplastic teeth. Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive disorder with a similar, but more severe phenotype. Mutations in the EVC have been identified in both syndromes. However, the EVC mutations only occur in a small proportion of EvC patients. Recently, mutations in a new gene, EVC2, were found to be associated with other EvC cases. The EVC and EVC2 are located close to each other in a head-to-head configuration and may be functionally related. In this study, we report identification of a novel heterozygous deletion in the EVC2 that is responsible for autosomal dominant Weyers acrofacial dysostosis in a large Chinese family. This constitutes the first report of Weyers acrofacial dysostosis caused by this gene. Hence, the spectrum of malformation syndromes due to EVC2 mutations is further extended. Our data provides conclusive evidence that Weyers acrofacial dysostosis and EvC syndrome are allelic and genetically heterogeneous conditions.

  15. Linkage disequilibrium mapping places the gene causing familial Mediterranean fever close to D16S246

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. N.; Aksentijevich, I.; Pras, E. [National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD (United States)] [and others

    1996-03-01

    This report presents refined genetic mapping data for the gene causing familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation. We sampled 65 Jewish, Armenian, and Arab families and typed them for eight markers from chromosome 16p. Using a new algorithm that permits multipoint calculations for a dense map of markers in consanguineous families, we obtained a maximal LOD score of 49.2 at a location 1.6 cM centromeric to D16S246. A specific haplotype at D16S283-D16S94-D16S246 was found in 76% of Moroccan and 32% of non-Moroccan Jewish carrier chromosomes, but this haplotype was not overrepresented in Armenian or Arab FMF carriers. Moreover, the 2.5-kb allele at D16S246 was significantly associated with FMF in Moroccan and non-Moroccan Jews but not in Armenians or Arabs. Since the Moroccan Jewish community represents a relatively recently established and genetically isolated founder population, we analyzed the Moroccan linkage-disequilibrium data by using Luria-Delbruck formulas and simulations based on a Poisson branching process. These methods place the FMF susceptibility gene within 0.305 cM of D16S246 (2-LOD-unit range 0.02-0.64 cM). 41 refs., 3 figs., 5 tabs.

  16. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.

    Science.gov (United States)

    Smith, Frances J D; Irvine, Alan D; Terron-Kwiatkowski, Ana; Sandilands, Aileen; Campbell, Linda E; Zhao, Yiwei; Liao, Haihui; Evans, Alan T; Goudie, David R; Lewis-Jones, Sue; Arseculeratne, Gehan; Munro, Colin S; Sergeant, Ann; O'Regan, Gráinne; Bale, Sherri J; Compton, John G; DiGiovanna, John J; Presland, Richard B; Fleckman, Philip; McLean, W H Irwin

    2006-03-01

    Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of approximately 4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

  17. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Science.gov (United States)

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  18. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews.

    Science.gov (United States)

    Laish-Farkash, Avishag; Glikson, Michael; Brass, Dovrat; Marek-Yagel, Dina; Pras, Elon; Dascal, Nathan; Antzelevitch, Charles; Nof, Eyal; Reznik, Haya; Eldar, Michael; Luria, David

    2010-12-01

    to conduct a clinical, genetic, and functional analysis of 3 unrelated families with familial sinus bradycardia (FSB). mutations in the hyperpolarization-activated nucleotide-gated channel (HCN4) are known to be associated with FSB. three males of Moroccan Jewish descent were hospitalized: 1 survived an out-of-hospital cardiac arrest and 2 presented with weakness and presyncopal events. All 3 had significant sinus bradycardia, also found in other first-degree relatives, with a segregation suggesting autosomal-dominant inheritance. All had normal response to exercise and normal heart structure. Sequencing of the HCN4 gene in all patients revealed a C to T transition at nucleotide position 1,454, which resulted in an alanine to valine change (A485V) in the ion channel pore found in most of their bradycardiac relatives, but not in 150 controls. Functional expression of the mutated ion channel in Xenopus oocytes and in human embryonic kidney 293 cells revealed profoundly reduced function and synthesis of the mutant channel compared to wild-type. we describe a new mutation in the HCN4 gene causing symptomatic FSB in 3 unrelated individuals of similar ethnic background that may indicate unexplained FSB in this ethnic group. This profound functional defect is consistent with the symptomatic phenotype.

  19. An inactivating mutation in the SOD 1 gene causes familial amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Pramatarova, A.; Rouleau, G.A. [Montreal General Hospital Research Institute (Canada); Goto, J. [Univ. of Tokyo (Japan)] [and others

    1994-09-01

    Amyotrophic lateral sclerosis (ALS) is characterized by highly selective death of large motor neurons in the cerebral cortex and spinal cord. The familial form of ALS (FALS) accounts for approximately 10% of the cases and is transmitted in an autosomal dominant manner. Recently the defective gene causing chromosome 21-linked FALS was shown to be the Cu/Zn superoxide dismutase (SOD 1). However, the precise mechanism of neurotoxicity seen in FALS with SOD 1 mutations is still unknown. Until now all SOD 1 mutations reported were single base pair substitutions (missense). We have identified a nonsense mutation in exon 5 of the SOD 1 gene in a FALS kindred. This two base pair deletion provokes a frameshift and a predicted premature truncation of the protein. The region affected has a very important structural and functional role: it contains part of the active loop and is involved in dimer contact. We would predict that the loss of these structures would impair the functioning of the enzyme.

  20. The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation.

    Science.gov (United States)

    di Masi, Alessandra; D'Apice, Maria Rosaria; Ricordy, Ruggero; Tanzarella, Caterina; Novelli, Giuseppe

    2008-07-01

    Mandibuloacral dysplasia type A (MADA; OMIM # 248370) is a premature ageing disease caused by the homozygous R527H mutation in the LMNA gene. At the cellular level, MADA is characterized by unprocessed prelamin A accumulation, nuclear architecture alterations, chromatin defects and increased incidence of apoptosis. In some progeroid laminopathies (e.g., HGPS) it has been demonstrated that such biochemical and morphological alterations are strongly linked with genomic instability. To test this also in MADA fibroblasts, their response to the ionising radiation-induced damage was analysed. We observed that their ability to repair the damage was significantly impaired, as demonstrated by the increased chromosome damage and the higher percentage of residual gamma-H2AX foci, corresponding to unrepaired DNA-damage sites. Moreover, MADA fibroblasts showed a markedly reduced phosphorylation of p53 at Ser15(S15) and a lower induction of p53 and CDKN1A proteins after irradiation, compared to the control cell line. Upon irradiation, we also detected differences in the expression of some p53 downstream target genes. In addition, MADA cells showed partial defects in the checkpoint response, particularly in G(1)/S transition. Our results indicate that accumulation of the lamin A precursor protein determines a defect in DNA damage response after X-ray exposure, supporting a crucial role of lamin A in regulating DNA repair process and cell cycle control.

  1. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  2. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.

  3. Computational identification and structural analysis of deleterious functional SNPs in MLL gene causing acute leukemia.

    Science.gov (United States)

    George Priya Doss, C; Rajasekaran, R; Sethumadhavan, Rao

    2010-09-01

    A promising application of the huge amounts of data from the Human Genome Project currently available offers new opportunities for identifying the genetic predisposition and developing a better understanding of complex diseases such as cancers. The main focus of cancer genetics is the study of mutations that are causally implicated in tumorigenesis. The identification of such causal mutations does not only provide insight into cancer biology but also presents anticancer therapeutic targets and diagnostic markers. In this study, we evaluated the Single Nucleotide Polymorphisms (SNPs) that can alter the expression and the function in MLL gene through computational methods. We applied an evolutionary perspective to screen the SNPs using a sequence homologybased SIFT tool, suggested that 10 non-synonymous SNPs (nsSNPs) (50%) were found to be deleterious. Structure based approach PolyPhen server suggested that 5 nsSNPS (25%) may disrupt protein function and structure. PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutations that occurred in the native protein coded by MLL gene is at amino acid positions Q1198P and K1203Q. The solvent accessibility results showed that 7 residues changed from exposed state in the native type protein to buried state in Q1198P mutant protein and remained unchanged in the case of K1203Q. From the overall results obtained, nsSNP with id (rs1784246) at the amino acid position Q1198P could be considered as deleterious mutation in the acute leukemia caused by MLL gene.

  4. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  5. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.

    Science.gov (United States)

    Rust, S; Rosier, M; Funke, H; Real, J; Amoura, Z; Piette, J C; Deleuze, J F; Brewer, H B; Duverger, N; Denèfle, P; Assmann, G

    1999-08-01

    Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.

  6. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome.

    Science.gov (United States)

    Frank, Valeska; den Hollander, Anneke I; Brüchle, Nadina Ortiz; Zonneveld, Marijke N; Nürnberg, Gudrun; Becker, Christian; Du Bois, Gabriele; Kendziorra, Heide; Roosing, Susanne; Senderek, Jan; Nürnberg, Peter; Cremers, Frans P M; Zerres, Klaus; Bergmann, Carsten

    2008-01-01

    Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the list of ciliary disorders (ciliopathies). By positional cloning in a distantly related multiplex family, we mapped a novel locus for MKS to a 3-Mb interval on 12q21. Sequencing of the CEP290 gene located in the minimal critical region showed a homozygous 1-bp deletion supposed to lead to loss of function of the encoded centrosomal protein CEP290/nephrocystin-6. CEP290 is thought to be involved in chromosome segregation and localizes to cilia, centrosomes, and the nucleus. Subsequent analysis of another consanguineous multiplex family revealed homozygous haplotypes and the same frameshift mutation. Our findings add to the increasing body of evidence that ciliopathies can cause a broad spectrum of disease phenotypes, and pleiotropic effects of CEP290 mutations range from single organ involvement with isolated Leber congenital amaurosis to Joubert syndrome and lethal early embryonic multisystemic malformations in Meckel-Gruber syndrome. We compiled clinical and genetic data of all patients with CEP290 mutations described so far. No clear-cut genotype-phenotype correlations were apparent as almost all mutations are nonsense, frameshift, or splice-site changes and scattered throughout the gene irrespective of the patients' phenotypes. Conclusively, other factors than the type and location of CEP290 mutations may underlie phenotypic variability. (c) 2007 Wiley-Liss, Inc.

  7. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance.

    Science.gov (United States)

    Pfeffer, Gerald; Gorman, Gráinne S; Griffin, Helen; Kurzawa-Akanbi, Marzena; Blakely, Emma L; Wilson, Ian; Sitarz, Kamil; Moore, David; Murphy, Julie L; Alston, Charlotte L; Pyle, Angela; Coxhead, Jon; Payne, Brendan; Gorrie, George H; Longman, Cheryl; Hadjivassiliou, Marios; McConville, John; Dick, David; Imam, Ibrahim; Hilton, David; Norwood, Fiona; Baker, Mark R; Jaiser, Stephan R; Yu-Wai-Man, Patrick; Farrell, Michael; McCarthy, Allan; Lynch, Timothy; McFarland, Robert; Schaefer, Andrew M; Turnbull, Douglass M; Horvath, Rita; Taylor, Robert W; Chinnery, Patrick F

    2014-05-01

    Despite being a canonical presenting feature of mitochondrial disease, the genetic basis of progressive external ophthalmoplegia remains unknown in a large proportion of patients. Here we show that mutations in SPG7 are a novel cause of progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions. After excluding known causes, whole exome sequencing, targeted Sanger sequencing and multiplex ligation-dependent probe amplification analysis were used to study 68 adult patients with progressive external ophthalmoplegia either with or without multiple mitochondrial DNA deletions in skeletal muscle. Nine patients (eight probands) were found to carry compound heterozygous SPG7 mutations, including three novel mutations: two missense mutations c.2221G>A; p.(Glu741Lys), c.2224G>A; p.(Asp742Asn), a truncating mutation c.861dupT; p.Asn288*, and seven previously reported mutations. We identified a further six patients with single heterozygous mutations in SPG7, including two further novel mutations: c.184-3C>T (predicted to remove a splice site before exon 2) and c.1067C>T; p.(Thr356Met). The clinical phenotype typically developed in mid-adult life with either progressive external ophthalmoplegia/ptosis and spastic ataxia, or a progressive ataxic disorder. Dysphagia and proximal myopathy were common, but urinary symptoms were rare, despite the spasticity. Functional studies included transcript analysis, proteomics, mitochondrial network analysis, single fibre mitochondrial DNA analysis and deep re-sequencing of mitochondrial DNA. SPG7 mutations caused increased mitochondrial biogenesis in patient muscle, and mitochondrial fusion in patient fibroblasts associated with the clonal expansion of mitochondrial DNA mutations. In conclusion, the SPG7 gene should be screened in patients in whom a disorder of mitochondrial DNA maintenance is suspected when spastic ataxia is prominent. The complex neurological phenotype is likely a result of the clonal

  8. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities.

    Science.gov (United States)

    Chen, Yih-Wen; Harris, Robert A; Hatahet, Zafer; Chou, Kai-ming

    2015-08-18

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η(-/-)) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η(-/-) mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η(-/-) mice was observed and measured by up-regulation of senescence markers, including p53, p16(Ink4a), p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η(-/-) mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η(-/-) mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance.

  9. The cause of anomaly of temperature dependence of electroresistance of the ordering nonstoichiometric FeCo compounds based on a b.c.c. lattice

    Energy Technology Data Exchange (ETDEWEB)

    Repetsky, S.P. [Taras Shevchenko Kyiv National University, 2 Acad. Glushkov Prosp., 03022 Kyiv (Ukraine); Melnyk, I.M. [Taras Shevchenko Kyiv National University, 2 Acad. Glushkov Prosp., 03022 Kyiv (Ukraine)], E-mail: iramel@ukr.net; Tatarenko, V.A. [Taras Shevchenko Kyiv National University, 2 Acad. Glushkov Prosp., 03022 Kyiv (Ukraine); G.V. Kurdyumov Institute for Metal Physics, N.A.S.U., 36 Acad. Vernadsky Blvd., 03142 Kyiv (Ukraine); Len, E.G. [G.V. Kurdyumov Institute for Metal Physics, N.A.S.U., 36 Acad. Vernadsky Blvd., 03142 Kyiv (Ukraine); Vyshivanaya, I.G. [Taras Shevchenko Kyiv National University, 2 Acad. Glushkov Prosp., 03022 Kyiv (Ukraine)

    2009-07-01

    A theory of energy spectrum and electrical conductivity, which takes into account the electron scattering by the potentials of ions and fluctuations of both the spin and charge densities of electrons in disordered substitutional alloys, is developed. Calculations of temperature-concentration dependence of electrical resistance were performed for b.c.c.-Fe{sub 1-c}Co{sub c} alloys. The causes of weak temperature dependence of electrical resistance of the Fe-Co alloys are governed by the presence of a quasi-gap in the electron-energy spectrum, which appears due to strong electron correlations as well as atomic and magnetic orders.

  10. A single point-mutation within the melanophilin gene causes the lavender plumage colour dilution phenotype in the chicken

    Directory of Open Access Journals (Sweden)

    Tixier-Boichard Michèle

    2008-01-01

    Full Text Available Abstract Background The lavender phenotype in the chicken causes the dilution of both black (eumelanin and red/brown (phaeomelanin pigments. Defects in three genes involved in intracellular melanosomal transport, previously described in mammals, give rise to similar diluted pigmentation phenotypes as those seen in lavender chickens. Results We have used a candidate-gene approach based on an expectation of homology with mammals to isolate a gene involved in pigmentation in chicken. Comparative sequence analysis of candidate genes in the chicken identified a strong association between a mutation in the MLPH gene and the diluted pigmentation phenotype. This mutation results in the amino acid change R35W, at a site also associated with similar phenotypes in mice, humans and cats. Conclusion This is the first time that an avian species with a mutation in the MLPH gene has been reported.

  11. Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy.

    Science.gov (United States)

    Debray, François-Guillaume; Stümpfig, Claudia; Vanlander, Arnaud V; Dideberg, Vinciane; Josse, Claire; Caberg, Jean-Hubert; Boemer, François; Bours, Vincent; Stevens, René; Seneca, Sara; Smet, Joél; Lill, Roland; van Coster, Rudy

    2015-11-01

    Leukodystrophies are a heterogeneous group of severe genetic neurodegenerative disorders. A multiple mitochondrial dysfunctions syndrome was found in an infant presenting with a progressive leukoencephalopathy. Homozygosity mapping, whole exome sequencing, and functional studies were used to define the underlying molecular defect. Respiratory chain studies in skeletal muscle isolated from the proband revealed a combined deficiency of complexes I and II. In addition, western blotting indicated lack of protein lipoylation. The combination of these findings was suggestive for a defect in the iron-sulfur (Fe/S) protein assembly pathway. SNP array identified loss of heterozygosity in large chromosomal regions, covering the NFU1 and BOLA3, and the IBA57 and ABCB10 candidate genes, in 2p15-p11.2 and 1q31.1-q42.13, respectively. A homozygous c.436C > T (p.Arg146Trp) variant was detected in IBA57 using whole exome sequencing. Complementation studies in a HeLa cell line depleted for IBA57 showed that the mutant protein with the semi-conservative amino acid exchange was unable to restore the biochemical phenotype indicating a loss-of-function mutation of IBA57. In conclusion, defects in the Fe/S protein assembly gene IBA57 can cause autosomal recessive neurodegeneration associated with progressive leukodystrophy and fatal outcome at young age. In the affected patient, the biochemical phenotype was characterized by a defect in the respiratory chain complexes I and II and a decrease in mitochondrial protein lipoylation, both resulting from impaired assembly of Fe/S clusters.

  12. A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II.

    Science.gov (United States)

    Kim, J W; Nam, S H; Jang, K T; Lee, S H; Kim, C C; Hahn, S H; Hu, J C C; Simmer, J P

    2004-08-01

    The dentin sialophosphoprotein (DSPP) gene (4q21.3) encodes two major noncollagenous dentin matrix proteins: dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Defects in the human gene encoding DSPP cause inherited dentin defects, and these defects can be associated with bilateral progressive high-frequency sensorineural hearing loss. Clinically, five different patterns of inherited dentin defects are distinguished and are classified as dentinogenesis imperfecta (DGI) types I, II, and III, and dentin dysplasia types I and II. The genetic basis for this clinical heterogeneity is unknown. Among the 11 members recruited from the studied kindred, five were affected with autosomal dominant DGI type II. The mutation (g.1188C-->G, IVS2-3C-->G) lay in the third from the last nucleotide of intron 2 and changed its sequence from CAG to GAG. The mutation was correlated with the affection status and was absent in 104 unaffected individuals (208 alleles) with the same ethnic and geological background. The proband was in the primary dentition stage and presented with multiple pulp exposures. The occlusal surface of his dental enamel was generally abraded, and the dentin was heavily worn and uniformly shaded brown. The dental pulp chambers appeared originally to be within normal limits without any sign of obliteration, but over time (by age 4), the pulp chambers became partially or completely obliterated. The oldest affected member (age 59) showed mild hearing loss at high-frequency (8 kHz). Permanent dentition was severely affected in the adults, who had advanced dental attrition, premature loss of teeth, and extensive dental reconstruction.

  13. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice.

    Science.gov (United States)

    Nogami, Tatsuya; Beppu, Hideyuki; Tokoro, Takashi; Moriguchi, Shigeki; Shioda, Norifumi; Fukunaga, Kohji; Ohtsuka, Toshihisa; Ishii, Yoko; Sasahara, Masakiyo; Shimada, Yutaka; Nishijo, Hisao; Li, En; Kitajima, Isao

    2011-06-01

    Mutations of the ATRX gene, which encodes an ATP-dependent chromatin-remodeling factor, were identified in patients with α-thalassemia X-linked mental retardation (ATR-X) syndrome. There is a milder variant of ATR-X syndrome caused by mutations in the Exon 2 of the gene. To examine the impact of the Exon 2 mutation on neuronal development, we generated ATRX mutant (ATRX(ΔE2)) mice. Truncated ATRX protein was produced from the ATRX(ΔE2) mutant allele with reduced expression level. The ATRX(ΔE2) mice survived and reproduced normally. There was no significant difference in Morris water maze test between wild-type and ATRX(ΔE2) mice. In a contextual fear conditioning test, however, total freezing time was decreased in ATRX(ΔE2) mice compared to wild-type mice, suggesting that ATRX(ΔE2) mice have impaired contextual fear memory. ATRX(ΔE2) mice showed significantly reduced long-term potentiation in the hippocampal CA1 region evoked by high-frequency stimulation. Moreover, autophosphorylation of calcium-calmodulin-dependent kinase II (αCaMKII) and phosphorylation of glutamate receptor, ionotropic, AMPA 1 (GluR1) were decreased in the hippocampi of the ATRX(ΔE2) mice compared to wild-type mice. These findings suggest that ATRX(ΔE2) mice may have fear-associated learning impairment with the dysfunction of αCaMKII and GluR1. The ATRX(ΔE2) mice would be useful tools to investigate the role of the chromatin-remodeling factor in the pathogenesis of abnormal behaviors and learning impairment.

  14. The upregulation of matrix metalloproteinase -2 and -9 genes caused by resistin in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Kürşat Oğuz Yaykaşlı

    2014-02-01

    Full Text Available  OBJECTIVES: The articular cartilage allows movement by absorbing mechanical loading within a physiological range. However, the accumulation of excessive adipose tissue has catabolic effect on extracellular matrix (ECM components in some diseases such as rheumatoid arthritis (RA and osteoarthritis (OA. Resistin, inflammatory adipokines is secreted by adipose tissue, and the elevated serum level was reported in obese subjects and patients with RA and OA. Gelatinases (MMP-2 and MMP-9, a subfamily of matrix metalloproteinases are responsible for destruction of collagen and matrix components. In this study, the effect of resistin on gelatinases genes expression was investigated. METHODS: Human chondrocytes was stimulated by resistin at 100 and 250 ng/ml doses for 3h, 6h, 12h, 24h and 48h. 2 µg RNA was subject to reverse transcription after RNA extraction. Gelatinases expressions were analyzed by quantitative Real-Time Polymerase Chain Reaction method. RESULTS: The expression levels of gelatinases were increased at both 100 and 250 ng/mL and peaked at 250 ng/ml dose for 48 hours. CONCLUSIONS: The clarification of etiology for irreversible destruction of ECM has a vital importance to develop new treatment strategies for RA and OA. In conclusion, increased levels of gelatinases expression caused by resistin were founded. The upregulation of gelatinases caused by resistin is might be a new target for obesity associated patients with RA and OA. However, the molecular pathways of this induction should be investigated in other studies. 

  15. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy.

    Science.gov (United States)

    Ito, Takashi; Kimura, Yasushi; Uozumi, Yoriko; Takai, Mika; Muraoka, Satoko; Matsuda, Takahisa; Ueki, Kei; Yoshiyama, Minoru; Ikawa, Masahito; Okabe, Masaru; Schaffer, Stephen W; Fujio, Yasushi; Azuma, Junichi

    2008-05-01

    The sulfur-containing beta-amino acid, taurine, is the most abundant free amino acid in cardiac and skeletal muscle. Although its physiological function has not been established, it is thought to play an important role in ion movement, calcium handling, osmoregulation and cytoprotection. To begin examining the physiological function of taurine, we generated taurine transporter- (TauT-) knockout mice (TauTKO), which exhibited a deficiency in myocardial and skeletal muscle taurine content compared with their wild-type littermates. The TauTKO heart underwent ventricular remodeling, characterized by reductions in ventricular wall thickness and cardiac atrophy accompanied with the smaller cardiomyocytes. Associated with the structural changes in the heart was a reduction in cardiac output and increased expression of heart cardiac failure (fetal) marker genes, such as ANP, BNP and beta-MHC. Moreover, ultrastructural damage to the myofilaments and mitochondria was observed. Further, the skeletal muscle of the TauTKO mice also exhibited decreased cell volume, structural defects and a reduction of exercise endurance capacity. Importantly, the expression of Hsp70, ATA2 and S100A4, which are upregulated by osmotic stress, was elevated in both heart and skeletal muscle of the TauTKO mice. Taurine depletion causes cardiomyocyte atrophy, mitochondrial and myofiber damage and cardiac dysfunction, effects likely related to the actions of taurine. Our data suggest that multiple actions of taurine, including osmoregulation, regulation of mitochondrial protein expression and inhibition of apoptosis, collectively ensure proper maintenance of cardiac and skeletal muscular structure and function.

  16. Refined mapping of the gene causing Familial Mediterranean fever, by linkage and homozygosity studies

    Energy Technology Data Exchange (ETDEWEB)

    Aksentijevich, I.; Pras, E.; Gruberg, L.; Helling, S.; Prosen, L.; Pras, M.; Kastner, D.L. (National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD (United States)); Shen, Y.; Holman, K.; Sutherland, G.R.; Richards, R.I. (Adelaide Children' s Hospital (Australia)); Ramsburg, M.; Dean, M. (Laboratory of Viral Carcinogenesis, Frederick, MD (United States)); Amos, C.I. (Laboratory of Skin Biology, Bethesda, MD (United States))

    1993-08-01

    Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by attacks of fever and serosal inflammation; the biochemical basis is unknown. The authors recently reported linkage of the gene causing FMF (designated [open quotes]MEF[close quotes]) to two markers on chromosome 16p. To map MEF more precisely, they have now tested nine 16p markers. Two-point and multipoint linkage analysis, as well as a study of recombinant haplotypes, placed MEF between D16S94 and D16S80, a genetic interval of about 9 cM. They also examined rates of homozygosity for markers in this region, among offspring of consanguineous marriages. For eight of nine markers, the rate of homozygosity among 26 affected inbred individuals was higher than that among their 20 unaffected sibs. Localizing MEF more precisely on the basis of homozygosity rates alone would be difficult, for two reasons: First, the FMF carrier frequency increases the chance that inbred offspring could have the disease without being homozygous by descent at MEF. Second, several of the markers in this region are relatively nonpolymorphic, with a high rate of homozygosity, regardless of their chromosomal location. 30 refs., 6 figs., 2 tabs.

  17. Idiopathic neonatal necrotising fasciitis caused by community-acquired MSSA encoding Panton Valentine Leukocidin genes.

    LENUS (Irish Health Repository)

    Dunlop, Rebecca L E

    2012-02-01

    Neonatal necrotising fasciitis is very rare in comparison to the adult presentation of the disease and a Plastic Surgeon may only encounter one such case during his or her career. Often this is initially misdiagnosed and managed as simple cellulitis. It generally affects previously healthy babies, the site is often the lower back area and a history of minor skin trauma may be elicited. The causative organism is usually Streptococcus or polymicrobial, as is the case in the adult population. We present the case of a previously healthy 11-day-old infant with idiopathic, rapidly progressive necrotising fasciitis of the back, cause by Methicillin sensitive Staphylococcus aureus (MSSA) infection. The strain was isolated and found to encode the Panton-Valentine Leukocidin genes, which have been associated with particularly severe necrotising infections in other sites, with high mortality. These strains are the subject of specific treatment and eradication guidance in the UK but awareness of this and the importance of obtaining detailed culture typing is likely to be low amongst Plastic Surgeons.

  18. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  19. Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene.

    Science.gov (United States)

    Rohrer, Jonathan D; Warren, Jason D; Omar, Rohani; Mead, Simon; Beck, Jonathan; Revesz, Tamas; Holton, Janice; Stevens, John M; Al-Sarraj, Safa; Pickering-Brown, Stuart M; Hardy, John; Fox, Nick C; Collinge, John; Warrington, Elizabeth K; Rossor, Martin N

    2008-04-01

    To describe the clinical, neuropsychologic, and radiologic features of a family with a C31LfsX35 mutation in the progranulin gene CCDS11483.1). Case series. A large British kindred (DRC255) with a PGRN mutation was assessed. Affected individuals presented with a mean age of 57.8 years (range, 54-67 years) and a mean disease duration of 6.1 years (range, 2-11 years). All patients exhibited a clinical and radiologic phenotype compatible with frontotemporal lobar degeneration based on current consensus criteria. However, unlike sporadic frontotemporal lobar degeneration, parietal deficits, consisting of dyscalculia, visuoperceptual /visuospatial dysfunction, and/or limb apraxia, were a common feature, and brain imaging showed posterior extension of frontotemporal atrophy to involve the parietal lobes. Other common clinical features included language output impairment with either dynamic aphasia or nonfluent aphasia and a behavioral syndrome dominated by apathy. We suggest that parietal deficits may be a prominent feature of PGRN mutations and that these deficits may be caused by disruption of frontoparietal functional pathways.

  20. Ultralocality on the lattice

    CERN Document Server

    Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.

    2002-01-01

    It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.

  1. New integrable lattice hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn

    2006-01-23

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.

  2. Potts and percolation models on bowtie lattices.

    Science.gov (United States)

    Ding, Chengxiang; Wang, Yancheng; Li, Yang

    2012-08-01

    We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q = 1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff et al. [J. Phys. A 39, 15083 (2006)]. For the q = 2 Potts model on a bowtie A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of the Potts model on a bowtie A lattice with noninteger q. Our numerical results, which are accurate up to seven significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on a bowtie A lattice, and the threshold is s(c) = 0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on a bowtie A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.

  3. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  4. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Sevilla, Teresa; Lupo, Vincenzo; Martínez-Rubio, Dolores; Sancho, Paula; Sivera, Rafael; Chumillas, María J; García-Romero, Mar; Pascual-Pascual, Samuel I; Muelas, Nuria; Dopazo, Joaquín; Vílchez, Juan J; Palau, Francesc; Espinós, Carmen

    2016-01-01

    Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a

  5. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a

    Energy Technology Data Exchange (ETDEWEB)

    Chou, J.Y.; Lei, K.J.; Shelly, L.L. [National Institutes of Health, Bethesda, MD (United States)

    1994-09-01

    Glycogen storage disease (GSD) type la (von Gierke disease) is caused by the deficiency of glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. The disease presents with clinical manifestations of severe hypoglycemia, hepatomegaly, growth retardation, lactic acidemia, hyperlipidemia, and hyperuricemia. We have succeeded in isolating a murine G6Pase cDNA from a normal mouse liver cDNA library by differentially screening method. We then isolated the human G6Pase cDNA and gene. To date, we have characterized the G6Pase genes of twelve GSD type la patients and uncovered a total of six different mutations. The mutations are comprised of R83C (an Arg at codon 83 to a Cys), Q347X (a Gly at codon 347 to a stop codon), 459insTA (a two basepair insertion at nucleotide 459 yielding a truncated G6Pase of 129 residues), R295C (an Arg at codon 295 to a Cys), G222R (a Gly at codon 222 to an Arg) and {delta}F327 (a codon deletion for Phe-327 at nucleotides 1058 to 1060). The relative incidences of these mutations are 37.5% (R83C), 33.3% (Q347X), 16.6% (459insTA), 4.2% (G222R), 4.2% (R295C) and 4.2% ({delta}F327). Site-directed mutagenesis and transient expression assays demonstrated that the R83C, Q347X, R295C, and {delta}F327 mutations abolished whereas the G222R mutation greatly reduced G6Pase activity. We further characterized the structure-function requirements of amino acids 83, 222, and 295 in G6Pase catalysis. The identification of mutations in GSD type la patients has unequivocally established the molecular basis of the type la disorder. Knowledge of the mutations may be applied to prenatal diagnosis and opens the way for developing and evaluating new therapeutic approaches.

  6. Evidence that Natural Selection is the Primary Cause of the Guanine-cytosine Content Variation in Rice Genes

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Shi; Xiyin Wang; Zhe Li; Qihui Zhu; Ji Yang; Song Ge; Jingchu Luo

    2007-01-01

    Cereal genes are classified into two distinct classes according to the guanine-cytosine (GC) content at the third codon sites (GC3). Natural selection and mutation bias have been proposed to affect the GC content. However, there has been controversy about the cause of GC variation. Here, we characterized the GC content of 1 092 paralogs and other single-copy genes in the duplicated chromosomal regions of the rice genome (ssp. indica) and classified the paralogs into GC3-rich and GC3-poor groups. By referring to out-group sequences from Arabidopsis and maize, we confirmed that the average synonymous substitution rate of the GC3-rich genes is significantly lower than that of the GC3-poor genes. Furthermore,we explored the other possible factors corresponding to the GC variation including the length of coding sequences, the number of exons in each gene, the number of genes in each family, the location of genes on chromosomes and the protein functions. Consequently, we propose that natural selection rather than mutation bias was the primary cause of the GC variation.

  7. Sober Topological Molecular Lattices

    Institute of Scientific and Technical Information of China (English)

    张德学; 李永明

    2003-01-01

    A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.

  8. Infinite resistive lattices

    NARCIS (Netherlands)

    Atkinson, D; van Steenwijk, F.J.

    The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American

  9. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  10. Genetic and physical localization of the gene causing familial Mediterranean fever

    Energy Technology Data Exchange (ETDEWEB)

    Aksentijevich, I.; Chen, X.; Levy, E. [ARB/NIAMS, Bethesda, MD (United States)] [and others

    1994-09-01

    Familial Mediterranean fever (FMF) is a recessively inherited disease characterized by acute attacks of fever and serositis. The gene causing FMF, designated MEF, is located on chromosome 16p13. We have genotyped a panel of 65 families (non-Ashkenazi Jewish, Armenian, and Arab) for 15 polymorphic markers from distal chromosome 16p. FMF families from all three populations show linkage to chromosome 16. Analysis of recombinants, as well as multipoint linkage data, place MEF in the interval between D16S246 (p218EP6) and D16S138 (N2), a genetic distance of 1-2 cM. We observed a total of 3 recombinants at the telomeric flanking marker D16S246, and 5 at the centromeric flanking marker D16S138. We have previously shown that a haplotype extending from D16S291 to D16S94 on the telomeric side of MEF is strongly associated with FMF among the Moroccan Jewish population, probably representing a founder effect. Here we report that the 2.5 kb allele of the closest telomeric flanking marker D16S246 (p218EP6) was associated with FMF in both Moroccan and non-Moroccan Jews, although not in Armenians and Arabs. Allelic associations for the centromeric flanking markers were much weaker in the Jewish population, suggesting that MEF may be closer to the telomeric end of the D16S246-D16S318 interval. Physical mapping indicates that this interval covers less than 1 Mb of genomic DNA. We will present data on a YAC contig covering this region.

  11. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    Science.gov (United States)

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development.

  12. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes.

    Directory of Open Access Journals (Sweden)

    Geraldine Aubert

    Full Text Available Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied; interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT or the telomerase RNA template (hTERC gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected; this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age.

  13. Meretoja's Syndrome: Lattice Corneal Dystrophy, Gelsolin Type

    Science.gov (United States)

    Abreu, C.; Neves, M.; Oliveira, L.; Beirão, M.

    2017-01-01

    Lattice corneal dystrophy gelsolin type was first described in 1969 by Jouko Meretoja, a Finnish ophthalmologist. It is caused by an autosomal dominant mutation in gelsolin gene resulting in unstable protein fragments and amyloid deposition in various organs. The age of onset is usually after the third decade of life and typical diagnostic triad includes progressive bilateral facial paralysis, loose skin, and lattice corneal dystrophy. We report a case of a 53-year-old female patient referred to our Department of Ophthalmology by severe dry eye and incomplete eyelid closure. She had severe bilateral facial paresis, significant orbicularis, and perioral sagging as well as hypoesthesia of extremities and was diagnosed with Meretoja's syndrome at the age of 50, confirmed by the presence of gelsolin mutation. At our observation she had bilateral diminished tear film break-up time and Schirmer test, diffuse keratitis, corneal opacification, and neovascularization in the left eye. She was treated with preservative-free lubricants and topical cyclosporine, associated with nocturnal complete occlusion of both eyes, and underwent placement of lacrimal punctal plugs. Ocular symptoms are the first to appear and our role as ophthalmologists is essential for the diagnosis, treatment, and monitoring of ocular alterations in these patients. PMID:28250773

  14. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae.

    Science.gov (United States)

    Baylay, Alison J; Ivens, Alasdair; Piddock, Laura J V

    2015-01-01

    Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.

  15. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes.

    Science.gov (United States)

    Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang

    2013-02-01

    We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression.

  16. A Nonsense Mutation in the Acid α-Glucosidase Gene Causes Pompe Disease in Finnish and Swedish Lapphunds

    NARCIS (Netherlands)

    E.H. Seppälä (Eija); A.J.J. Reuser (Arnold); H. Lohi (Hannes)

    2013-01-01

    textabstractPompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here

  17. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome.

    NARCIS (Netherlands)

    Ruiz-Perez, V.L.; Tompson, S.W.; Blair, H.J.; Espinoza-Valdez, C.; Lapunzina, P.; Silva, E.O.; Hamel, B.C.J.; Gibbs, J.L.; Young, I.D.; Wright, M.J.; Goodship, J.A.

    2003-01-01

    Ellis-van Creveld syndrome (EvC) is an autosomal recessive skeletal dysplasia. Elsewhere, we described mutations in EVC in patients with this condition (Ruiz-Perez et al. 2000). We now report that mutations in EVC2 also cause EvC. These two genes lie in a head-to-head configuration that is conserved

  18. Campylobacter jejuni, an uncommon cause of splenic abscess diagnosed by 16S rRNA gene sequencing.

    Science.gov (United States)

    Seng, Piseth; Quenard, Fanny; Menard, Amélie; Heyries, Laurent; Stein, Andreas

    2014-12-01

    Splenic abscess is a rare disease that primarily occurs in patients with splenic trauma, endocarditis, sickle cell anemia, or other diseases that compromise the immune system. This report describes a culture-negative splenic abscess in an immunocompetent patient caused by Campylobacter jejuni, as determined by 16S rRNA gene sequencing.

  19. NK cells are intrinsically functional in pigs with Severe Combined Immunodeficiency (SCID) caused by spontaneous mutations in the Artemis gene

    Science.gov (United States)

    We have identified Severe Combined Immunodeficiency (SCID) in a line of Yorkshire pigs at Iowa State University. These SCID pigs lack B-cells and T-cells, but possess Natural Killer (NK) cells. This SCID phenotype is caused by recessive mutations in the Artemis gene. Interestingly, two human tumor c...

  20. Is the adiposity-associated FTO gene variant related to all-cause mortality independent of adiposity?

    DEFF Research Database (Denmark)

    Zimmermann, E; Ängquist, L H; Mirza, S S

    2015-01-01

    Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has s...

  1. A novel splicing mutation in COL1A1 gene caused type I osteogenesis imperfecta in a Chinese family.

    Science.gov (United States)

    Peng, Hao; Zhang, Yuhui; Long, Zhigao; Zhao, Ding; Guo, Zhenxin; Xue, Jinjie; Xie, Zhiguo; Xiong, Zhimin; Xu, Xiaojuan; Su, Wei; Wang, Bing; Xia, Kun; Hu, Zhengmao

    2012-07-10

    Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations.

    Science.gov (United States)

    Sun, X; Pawlyk, B; Xu, X; Liu, X; Bulgakov, O V; Adamian, M; Sandberg, M A; Khani, S C; Tan, M-H; Smith, A J; Ali, R R; Li, T

    2010-01-01

    Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is required for the biosynthesis of photoreceptor phosphodiesterase (PDE). Gene defects in AIPL1 cause a heterogeneous set of conditions ranging from Leber's congenital amaurosis (LCA), the severest form of early-onset retinal degeneration, to milder forms such as retinitis pigmentosa (RP) and cone-rod dystrophy. In mice, null and hypomorphic alleles cause retinal degeneration similar to human LCA and RP, respectively. Thus these mouse models represent two ends of the disease spectrum associated with AIPL1 gene defects in humans. We evaluated whether adeno-associated virus (AAV)-mediated gene replacement therapy in these models could restore PDE biosynthesis in rods and cones and thereby improve photoreceptor survival. We validated the efficacy of human AIPL1 (isoform 1) replacement gene controlled by a promoter derived from the human rhodopsin kinase (RK) gene, which is active in both rods and cones. We found substantial and long-term rescue of the disease phenotype as a result of transgene expression. This is the first gene therapy study in which both rods and cones were targeted successfully with a single photoreceptor-specific promoter. We propose that the vector and construct design used in this study could serve as a prototype for a human clinical trial.

  3. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics

    DEFF Research Database (Denmark)

    Mootha, Vamsi K; Lepage, Pierre; Miller, Kathleen;

    2003-01-01

    Identifying the genes responsible for human diseases requires combining information about gene position with clues about biological function. The recent availability of whole-genome data sets of RNA and protein expression provides powerful new sources of functional insight. Here we illustrate how...

  4. Partial duplications of the ATRX gene cause the ATR-X syndrome.

    Science.gov (United States)

    Thienpont, Bernard; de Ravel, Thomy; Van Esch, Hilde; Van Schoubroeck, Dominique; Moerman, Philippe; Vermeesch, Joris Robert; Fryns, Jean-Pierre; Froyen, Guy; Lacoste, Caroline; Badens, Catherine; Devriendt, Koen

    2007-10-01

    ATR-X syndrome is a rare syndromic X-linked mental retardation disorder. We report that some of the patients suspected of ATR-X carry large intragenic duplications in the ATRX gene, leading to an absence of ATRX mRNA and of the protein. These findings underscore the need for including quantitative analyses to mutation analysis of the ATRX gene.

  5. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Hashimoto, Naoya; Mizuno, Megumi; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2013-01-01

    Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.

  6. [Current Status of Genetic Diagnosis of Charcot-Marie-Tooth Disease: Variety of the Disease-causing Genes].

    Science.gov (United States)

    Hashiguchi, Akihiro; Higuchi, Yujiro; Takashima, Hiroshi

    2016-01-01

    At least 40 genes have been associated with Charcot-Marie-Tooth disease (CMT) and the related inherited neuropathies. Genetic studies have revealed the following factors as causes of inherited neuropathies: myelin components, transcription factors for myelination, myelin maintenance systems, differentiation factors of the peripheral nerve, neurofilaments, protein transfer systems, mitochondrial proteins, DNA repair, RNA/protein synthesis, ion channels, and aminoacyl-tRNA synthetases. Since 2007, we have tried to screen for mutations in CMT patients using microarrays or next generation sequencers. As a result, the detection rate of gene mutations has improved to about 25%. In this study, we applied target resequencing to 72 genes. From the negative examples, we identified the cases based on clinical course, family history, and electrophysiological findings, and then performed exome analysis. We then tried to identify novel causative genes by analyzing the enormous data obtained from our exome analysis.

  7. A novel mutation in the ADA gene causing severe combined immunodeficiency in an Arab patient: a case report

    Directory of Open Access Journals (Sweden)

    Hellani Ali

    2009-04-01

    Full Text Available Abstract Introduction About 20% of the cases of human severe combined immunodeficiency are the result of the child being homozygous for defective genes encoding the enzyme adenosine deaminase. To our knowledge, the mutation pattern in Arab patients with severe combined immunodeficiency has never been reported previously. Case presentation A 14-month-old Arab boy had clinical features typical of severe combined immunodeficiency. His clinical picture and flow cytometric analysis raised the diagnosis of adenosine deaminase deficiency and prompted us to screen the adenosine deaminase gene for mutation(s. We detected a novel mutation in exon 9 of the adenosine deaminase gene (p.Arg282>Gln, which we believe is the cause of the severe combined immunodeficiency phenotype observed in our patient. Conclusion This is the first report of adenosine deaminase mutation in an Arab patient with severe combined immunodeficiency due to a novel pathogenic mutation in the adenosine deaminase gene.

  8. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck for selecting differentially expressed genes related to vascular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cheng-Quan Yang

    Full Text Available Corky split vein caused by boron (B deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd and 3(rd phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  9. [Advances in molecular mechanisms of bacterial resistance caused by stress-induced transfer of resistance genes--a review].

    Science.gov (United States)

    Sun, Dongchang; Wang, Bing; Zhu, Lihong

    2013-07-04

    The transfer of resistance gene is one of the most important causes of bacterial resistance. Recent studies reveal that stresses induce the transfer of antibiotic resistance gene through multiple mechanisms. DNA damage stresses trigger bacterial SOS response and induce the transfer of resistance gene mediated by conjugative DNA. Antibiotic stresses induce natural bacterial competence for transformation in some bacteria which lack the SOS system. In addition, our latest studies show that the general stress response regulator RpoS regulates a novel type of resistance gene transfer which is mediated by double-stranded plasmid DNA and occurs exclusively on the solid surface. In this review, we summarized recent advances in SOS dependent and independent stress-induced DNA transfer which is mediated by conjugation and transformation respectively, and the transfer of double-stranded plasmid DNA on the solid surface which is regulated by RpoS. We propose that future work should address how stresses activate the key regulators and how these regulators control the expression of gene transfer related genes. Answers to the above questions would pave the way for searching for candidate targets for controlling bacterial resistance resulted from the transfer of antibiotic genes.

  10. A novel lamin A/C gene mutation causing spinal muscular atrophy phenotype with cardiac involvement: report of one case.

    Science.gov (United States)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Kawamata, Jun; Shimohama, Shun

    2015-02-20

    Mutations of the lamin A/C gene have been associated with several diseases such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and Charcot-Marie-Tooth disease, referred to as laminopathies. Only one report of spinal muscular atrophy and cardiomyopathy phenotype with lamin A/C gene mutations has been published. The concept that lamin A/C gene mutations cause spinal muscular atrophy has not been established. We report a man aged 65 years who presented with amyotrophy of lower limbs, arrhythmia and cardiac hypofunction. He showed gait disturbance since childhood, and his family showed similar symptoms. Neurological and electrophysiological findings suggested spinal muscular atrophy type 3. Gene analysis of lamin A/C gene showed a novel nonsense mutation p.Q353X (c.1057C > T). Further investigations revealed that he and his family members had cardiac diseases including atrioventricular block. We report the first Japanese case of spinal muscular atrophy phenotype associated with lamin A/C mutation. When a patient presents a spinal muscular atrophy phenotype and unexplained cardiac disease, especially when the family history is positive, gene analysis of lamin A/C gene should be considered.

  11. Retinal Diseases Caused by Mutations in Genes Not Specifically Associated with the Clinical Diagnosis.

    Science.gov (United States)

    Wang, Xia; Feng, Yanming; Li, Jianli; Zhang, Wei; Wang, Jing; Lewis, Richard A; Wong, Lee-Jun

    2016-01-01

    When seeking a confirmed molecular diagnosis in the research setting, patients with one descriptive diagnosis of retinal disease could carry pathogenic variants in genes not specifically associated with that description. However, this event has not been evaluated systematically in clinical diagnostic laboratories that validate fully all target genes to minimize false negatives/positives. We performed targeted next-generation sequencing analysis on 207 ocular disease-related genes for 42 patients whose DNA had been tested negative for disease-specific panels of genes known to be associated with retinitis pigmentosa, Leber congenital amaurosis, or exudative vitreoretinopathy. Pathogenic variants, including single nucleotide variations and copy number variations, were identified in 9 patients, including 6 with variants in syndromic retinal disease genes and 3 whose molecular diagnosis could not be distinguished easily from their submitted clinical diagnosis, accounting for 21% (9/42) of the unsolved cases. Our study underscores the clinical and genetic heterogeneity of retinal disorders and provides valuable reference to estimate the fraction of clinical samples whose retinal disorders could be explained by genes not specifically associated with the corresponding clinical diagnosis. Our data suggest that sequencing a larger set of retinal disorder related genes can increase the molecular diagnostic yield, especially for clinically hard-to-distinguish cases.

  12. Permanent neonatal diabetes mellitus caused by a novel mutation in the KCNJ11 gene.

    Science.gov (United States)

    Doneray, Hakan; Houghton, Jayne; Tekgunduz, Kadir Serafettin; Balkir, Ferat; Caner, Ibrahim

    2014-03-01

    Mutations in the KCNJ11 gene are responsible for the majority of permanent neonatal diabetes mellitus (PNDM) cases. Some mutations in this gene, including p.Q52R, are associated with the developmental delay, epilepsy, neonatal diabetes (DEND) syndrome. We describe a patient with PNDM who had no neurological finding although she was determined to have a novel mutation (p.Q52L) in the same residue of the KCNJ11 as in the previously reported cases with DEND syndrome. This case suggests that not all Q52 mutations in the KCNJ11 gene are necessarily related to DEND syndrome.

  13. Single nucleotide polymorphisms in obesity-related genes and all-cause and cause-specific mortality: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Ruczinski Ingo

    2009-10-01

    Full Text Available Abstract Background The aim of this study was to examine the associations between 16 specific single nucleotide polymorphisms (SNPs in 8 obesity-related genes and overall and cause-specific mortality. We also examined the associations between the SNPs and body mass index (BMI and change in BMI over time. Methods Data were analyzed from 9,919 individuals who participated in two large community-based cohort studies conducted in Washington County, Maryland in 1974 (CLUE I and 1989 (CLUE II. DNA from blood collected in 1989 was genotyped for 16 SNPs in 8 obesity-related genes: monoamine oxidase A (MAOA, lipoprotein lipase (LPL, paraoxonase 1 and 2 (PON1 and PON2, leptin receptor (LEPR, tumor necrosis factor-α (TNFα, and peroxisome proliferative activated receptor-γ and -δ (PPARG and PPARD. Data on height and weight in 1989 (CLUE II baseline and at age 21 were collected from participants at the time of blood collection. All participants were followed from 1989 to the date of death or the end of follow-up in 2005. Cox proportional hazards regression was used to obtain the relative risk (RR estimates and 95% confidence intervals (CI for each SNP and mortality outcomes. Results The results showed no patterns of association for the selected SNPs and the all-cause and cause-specific mortality outcomes, although statistically significant associations (p PPARG rs4684847 and all-cause mortality (CC: reference; CT: RR 0.99, 95% CI 0.89, 1.11; TT: RR 0.60, 95% CI 0.39, 0.93 and cancer-related mortality (CC: reference; CT: RR 1.01, 95% CI 0.82, 1.25; TT: RR 0.22, 95% CI 0.06, 0.90 and TNFα rs1799964 and cancer-related mortality (TT: reference; CT: RR 1.23, 95% CI 1.03, 1.47; CC: RR 0.83, 95% CI 0.54, 1.28. Additional analyses showed significant associations between SNPs in LEPR with BMI (rs1137101 and change in BMI over time (rs1045895 and rs1137101. Conclusion Findings from this cohort study suggest that the selected SNPs are not associated with overall

  14. A new PKLR gene mutation in the R-type promoter region affects the gene transcription causing pyruvate kinase deficiency.

    Science.gov (United States)

    Manco, L; Ribeiro, M L; Máximo, V; Almeida, H; Costa, A; Freitas, O; Barbot, J; Abade, A; Tamagnini, G

    2000-09-01

    Mutations in the PKLR gene responsible for pyruvate kinase (PK)-deficient anaemia are mainly located in the coding regions: 11 are in the splicing sites and, recently, three mutations have been described in the promoter region. We now report a novel point mutation A-->G on nucleotide 72, upstream from the initiation codon of the PKLR gene, in four Portuguese PK-deficient patients. This new regulatory mutation occurs within the most proximal of the four GATA motifs (GATA-A element) in the R-type promoter region. In two patients who were homozygous for this mutation, a semiquantitative reverse transcription polymerase chain reaction (PCR) procedure was used to evaluate the amount of R-PK mRNA transcript in the reticulocytes. The mRNA level was about five times lower than in normal controls, demonstrating that the PKLR gene transcription is severely affected, most probably because the -72A-->G point mutation disables the binding of the erythroid transcription factor GATA-1 to the GATA-A element. Supporting these data, the two patients homozygous for the -72A-->G mutation had severe haemolytic anaemia and were transfusion dependent until splenectomy. Two other patients who were compound heterozygous for this mutation and the previously described missense mutation 1456C-->T had a mild condition.

  15. Evaluation of the gene encoding the enzyme βHPMEH for the bacterial wilt inhibition caused by Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Elizabeth Fernandez

    2015-10-01

    Full Text Available Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease that attacks important agricultural crops such as potato, tomato, banana, among others, causing serious yield losses. Control of R. solanacearum is difficult because of its wide range of alternate hosts, its long survival in soil, its biological and genetic variation, the lack of natural resistance sources and the insufficiency of the appropriate chemical control measures. Quorum sensing is the term that describes the phenomenon whereby the accumulation of molecules allows bacteria to know the number of bacteria found in the environment (population density. R. solanacearum has a quorum sensing system for the regulation of the expression of virulence genes; the molecule 3-OH-PAME is the self-regulatory signal. The molecule ΒHPMEH hydrolyzes 3-OH-PAME nullifying the signal of virulence, and thus, the quorum sensing communication in R. solanacearum. In order to evaluate the βhpmeh gene we designed two vectors that express this gene under the control of two different promoters. Both vectors were verified by restriction analysis and sequencing. Agroinfiltration assays were used to analyze gene expression and the effect against R. solanacearum in potato (Solanum tuberosum leaves. The results of the transient expression experiments showed that the expression of gene βhpmeh caused a delay in the appearance of symptoms of bacterial wilt and thus is a good candidate for whole genetic plant transformation.

  16. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    Science.gov (United States)

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  17. A mutation in the MATP gene causes the cream coat colour in the horse

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2003-01-01

    Full Text Available Abstract In horses, basic colours such as bay or chestnut may be partially diluted to buckskin and palomino, or extremely diluted to cream, a nearly white colour with pink skin and blue eyes. This dilution is expected to be controlled by one gene and we used both candidate gene and positional cloning strategies to identify the "cream mutation". A horse panel including reference colours was established and typed for different markers within or in the neighbourhood of two candidate genes. Our data suggest that the causal mutation, a G to A transition, is localised in exon 2 of the MATP gene leading to an aspartic acid to asparagine substitution in the encoded protein. This conserved mutation was also described in mice and humans, but not in medaka.

  18. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein.

    Science.gov (United States)

    Tiranti, Valeria; D'Adamo, Pio; Briem, Egill; Ferrari, Gianfrancesco; Mineri, Rossana; Lamantea, Eleonora; Mandel, Hanna; Balestri, Paolo; Garcia-Silva, Maria-Teresa; Vollmer, Brigitte; Rinaldo, Piero; Hahn, Si Houn; Leonard, James; Rahman, Shamima; Dionisi-Vici, Carlo; Garavaglia, Barbara; Gasparini, Paolo; Zeviani, Massimo

    2004-02-01

    Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated that the D83198 protein product is targeted to mitochondria and internalized into the matrix after energy-dependent cleavage of a short leader peptide. The gene had previously been known as "HSCO" (for hepatoma subtracted clone one). However, given its role in EE, the name of the gene has been changed to "ETHE1." The severe consequences of its malfunctioning indicate an important role of the ETHE1 gene product in mitochondrial homeostasis and energy metabolism.

  19. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene.

    Science.gov (United States)

    Tassabehji, M; Newton, V E; Read, A P

    1994-11-01

    Waardenburg syndrome type 2 (WS2) is a dominantly inherited syndrome of hearing loss and pigmentary disturbances. We recently mapped a WS2 gene to chromosome 3p12.3-p14.1 and proposed as a candidate gene MITF, the human homologue of the mouse microphthalmia (mi) gene. This encodes a putative basic-helix-loop-helix-leucine zipper transcription factor expressed in adult skin and in embryonic retina, otic vesicle and hair follicles. Mice carrying mi mutations show reduced pigmentation of the eyes and coat, and with some alleles, microphthalmia, hearing loss, osteopetrosis and mast cell defects. Here we show that affected individuals in two WS2 families have mutations affecting splice sites in the MITF gene.

  20. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome.

    NARCIS (Netherlands)

    Frank, V.; Hollander, A.I. den; Bruchle, N.O.; Zonneveld, M.N.; Nurnberg, G.; Becker, C.; Bois, G. Du; Kendziorra, H.; Roosing, S.; Senderek, J.; Nurnberg, P.; Cremers, F.P.M.; Zerres, K.; Bergmann, C.

    2008-01-01

    Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the

  1. [From gene to disease; Dent's disease caused by abnormalities in the CLCN5 and OCRL1 genes

    NARCIS (Netherlands)

    Levtchenko, E.N.; Monnens, L.A.H.; Bokenkamp, A.; Knoers, N.V.A.M.

    2007-01-01

    Dent's disease is an X-linked disorder, characterized by generalized proximal tubular dysfunction, nephrolithiasis, nephrocalcinosis and the development ofend-stage renal disease, generally occurring after the age of thirty. In the majority of cases, the disease is caused by mutations in the CLCN5-g

  2. A missense mutation S228P in the CRYBB1 gene causes autosomal dominant congenital cataract

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; MA Xu; GU Feng; LIU Ning-pu; HAO Xiao-lin; WANG Kai-jie; WANG Ning-li; ZHU Si-quan

    2007-01-01

    Background Congenital cataract is a highly heterogeneous disorder at both the genetic and phenotypic levels. This study was conducted to identify disease locus for autosomal dominant congenital cataracts in a four generation Chinese family.Methods Family history and clinical data were recorded. All the members were genotyped with microsatellite markers which are close to the known genetic loci for autosomal congenital cataracts. Two-point Lod scores were obtained using the MLINK of the LINKAGE program package (ver 5.1). Candidate genes were amplified by polymerase chain reaction (PCR) and direct cycle sequencing.Results The maximum Lod score of Zmax=2.11 was obtained with three microsatellite markers D22S258, D22S315,and D22S1163 at recombination fraction θ= 0. Haplotype analysis showed that the disease gene was localized to a 18.5 Mbp region on chromosome 22 flanked by markers D22S1174 and D22S270, spanning the β-crystallin gene cluster. A c.752T-->C mutation in exon 6 of CRYBB1 gene, which resulted in a heterozygous S228P mutation in predicted protein,was found to cosegregate with cataract in the family.Conclusions This study identified a novel mutation in CRYBB1 gene in a Chinese family with autosomal dominant congenital cataract. These results provide strong evidence that CRYBB1 is a pathogenic gene for congenital cataract.

  3. The Differences Between Cis- and Trans-Gene Inactivation Caused by Heterochromatin in Drosophila.

    Science.gov (United States)

    Abramov, Yuriy A; Shatskikh, Aleksei S; Maksimenko, Oksana G; Bonaccorsi, Silvia; Gvozdev, Vladimir A; Lavrov, Sergey A

    2016-01-01

    Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo-formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.

  4. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.

    Science.gov (United States)

    Oltmanns, Heiko; Kloos, Dorothee U; Briess, Waltraud; Pflugmacher, Maike; Stahl, Dietmar J; Hehl, Reinhard

    2006-08-01

    The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.

  5. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects

    DEFF Research Database (Denmark)

    Koene, S; Rodenburg, R J; van der Knaap, M S;

    2012-01-01

    Mitochondrial complex I is the largest multi-protein enzyme complex of the oxidative phosphorylation system. Seven subunits of this complex are encoded by the mitochondrial and the remainder by the nuclear genome. We review the natural disease course and signs and symptoms of 130 patients (four new...... cases and 126 from literature) with mutations in nuclear genes encoding structural complex I proteins or those involved in its assembly. Complex I deficiency caused by a nuclear gene defect is usually a non-dysmorphic syndrome, characterized by severe multi-system organ involvement and a poor prognosis...

  6. Enlarged parietal foramina caused by mutations in the homeobox genes ALX4 and MSX2: from genotype to phenotype

    OpenAIRE

    2006-01-01

    Heterozygous mutations of the homeobox genes ALX4 and MSX2 cause skull defects termed enlarged parietal foramina (PFM) and cranium bifidum (CB); a single MSX2 mutation has been documented in a unique craniosynostosis (CRS) family. However, the relative mutational contribution of these genes to PFM/CB and CRS is not known and information on genotype–phenotype correlations is incomplete. We analysed ALX4 and MSX2 in 11 new unrelated cases or families with PFM/CB, 181 cases of CRS, and a single ...

  7. Electronic properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.

    2009-01-01

    Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...

  8. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    NARCIS (Netherlands)

    C. Sevin; S. Ferdinandusse; H.R. Waterham; R.J. Wanders; P. Aubourg

    2011-01-01

    ABSTRACT: OBJECTIVE: To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA). Case report: Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of bl

  9. Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F.; Kimura, A.; Iwanaga, T.; Shimozawa, K.; Yata, J.; Sasazuki,T.

    1987-11-01

    Genomic DNAs from twelve Japanese patients with steroid 21-hydroxylase deficiency were analyzed by Southern blot hybridization. A 3.7-kilobase (kb) Taq I and a 1.7-kb Pvu II restriction endonuclease fragment that correspond to a 21-OHase B gene were absent from the DNA of two unrelated patients with the salt-wasting form of the disease. However, a 10.5-kb Bgl II fragment corresponding to the region encompassing the 21-OHase B gene was still present in these two patients. The genes encoding 21-OHase were cloned from one of these two patients, who was homozygous by descent for HLA-A26;B39;C4A3;C4B1;DR4. Restriction endonuclease mapping as well as partial nucleotide sequencing analysis revealed that the 21-OHase B gene of the patient has been converted to the pseudogene, 21-OHase A, as far as the critical 0.5-kb sequence was concerned. Thus, the defect was due to both chromosomes each carrying two copies of 21-OHase A pseudogene and lacking functional 21-OHase B gene.

  10. New intronic splicing mutation in the LMNA gene causing progressive cardiac conduction defects and variable myopathy.

    Science.gov (United States)

    Rogozhina, Y; Mironovich, S; Shestak, A; Adyan, T; Polyakov, A; Podolyak, D; Bakulina, A; Dzemeshkevich, S; Zaklyazminskaya, E

    2016-12-31

    Most of mutations in the LMNA gene are unique and have been found in only a few unrelated families. The clinical interpretation of new genetic variants, especially beyond the coding area and canonical splice sites, is proving to be difficult and requires advanced investigation. This study included patients with progressive cardiac conduction defects with neuromuscular involvement. The clinical evaluation included medical history and 24-h Holter monitoring. The genetic evaluation included mutation screening in the LMNA gene by the Sanger sequence. Sanger sequencing was followed by RT-PCR of the target fragment of cDNA. In silico modeling was performed with CCBulder and Modeller software. The diagnosis of limb-girdle muscular dystrophy type 1B (LGMD1B) was established. The new intronic variant c.513+45T>G was found in the LMNA gene in the proband and affected daughter. The insertion of 45bp was confirmed in the proband's cDNA. The structural and possible functional effects of the aberrant protein were predicted. Variant c.513+45T>G in the LMNA gene likely translates into the longer lamin A/C proteins with additional 15 amino acids. This variant is thought to be pathogenic. Intronic variants in the LMNA gene located beside canonic splice sites may be responsible for some genotype-negative cases with clinical phenotype of laminopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mutations in low-density lipoprotein receptor gene as a cause of hypercholesterolemia in Taiwan.

    Science.gov (United States)

    Chiu, Chih-Yang; Wu, Yi-Chi; Jenq, Shwu-Fen; Jap, Tjin-Shing

    2005-08-01

    Familial hypercholesterolemia (FH) is inherited as an autosomal dominant trait that has been associated with more than 920 different mutations in the low-density lipoprotein receptor (LDLR) gene. To characterize LDLR gene mutations in the Chinese of Han descent with FH, we isolated genomic DNA from peripheral blood samples of 20 affected subjects and 50 healthy subjects with no family history of hypercholesterolemia. We used polymerase chain reaction and long polymerase chain reaction to amplify the 18 coding exons and the minimal promoter of the LDLR gene, and subjected amplicons to direct sequence analysis. We identified 6 mutations in LDLR gene, including heterozygous missense mutations I420T (ATC-->ACC), C660W (TGC-->TGG), H562Y (CAC-->TAC), and A606T (GCC-->ACC), and a heterozygous and a homozygous mutation in codon P664L (CCG-->CTG) as well as a homozygous large deletion of exons 6 to 8. The FH homozygotes manifested generalized xanthomatosis. One of the mutations we identified (C660W) was novel. In conclusion, we identified 5 missense mutations and 1 large deletion in LDLR gene, including 1 novel mutation in Han Chinese with FH in Taiwan.

  12. Jammed lattice sphere packings

    OpenAIRE

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-01-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...

  13. On Traveling Waves in Lattices: The Case of Riccati Lattices

    Science.gov (United States)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  14. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes

    Science.gov (United States)

    Ye, Meiping; Tu, Jianfei; Jiang, Jianping; Bi, Yingmin; You, Weibo; Zhang, Yanliang; Ren, Jianmin; Zhu, Taohui; Cao, Zhuo; Yu, Zuochun; Shao, Chuxiao; Shen, Zhen; Ding, Baixing; Yuan, Jinyi; Zhao, Xu; Guo, Qinglan; Xu, Xiaogang; Huang, Jinwei; Wang, Minggui

    2016-01-01

    Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80–100% among LA-Kp isolates while 2–11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp. PMID:27965935

  15. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes

    Directory of Open Access Journals (Sweden)

    Meiping Ye

    2016-11-01

    Full Text Available Hypervirulent variants of Klebsiella pneumoniae (hvKp that cause invasive community-acquired pyogenic liver abscess have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from pyogenic liver abscess (PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44 of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5% and K2 (17.5% were the dominant serotypes, and ST23 (47.5% was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40 of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5% isolates had no plasmid and 4 (10% had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80-100% among LA-Kp isolates while 2-11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp.

  16. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds.

    Science.gov (United States)

    Seppälä, Eija H; Reuser, Arnold J J; Lohi, Hannes

    2013-01-01

    Pompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here we describe the genetic defect in canine Pompe disease and show that three related breeds from Scandinavia carry the same mutation. The affected dogs are homozygous for the GAA c.2237G>A mutation leading to a premature stop codon at amino acid position 746. The corresponding mutation has previously been reported in humans and causes infantile Pompe disease in combination with a second fully deleterious mutation. The affected dogs from both the Finnish as well as the Swedish breed mimic infantile-onset Pompe disease genetically, but also clinico-pathologically. Therefore this canine model provides a valuable tool for preclinical studies aimed at the development of gene therapy in Pompe disease.

  17. X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male.

    Science.gov (United States)

    Aughton, David J; Kelley, Richard I; Metzenberg, Aida; Pureza, Vincent; Pauli, Richard M

    2003-01-30

    X-linked dominant chondrodysplasia punctata (CDPX2; Happle syndrome) is recognized almost exclusively in females, who display mosaic and asymmetric features, presumed to arise secondary to random X-inactivation. CDPX2 results from mutation of an X-linked gene coding for sterol-delta(8)-delta(7) isomerase (emopamil binding protein). We describe a boy with clinical features of CDPX2 (including those presumed to arise usually secondary to functional mosaicism in females). Biochemical and molecular studies demonstrate that he is mosaic for a sterol-delta(8)-delta(7) isomerase gene mutation. He is the first reported example of single gene mosaicism giving rise to CDPX2 in a male. Copyright 2002 Wiley-Liss, Inc.

  18. Three patients with middle-age-onset hemochromatosis caused by novel mutations in the hemojuvelin gene.

    Science.gov (United States)

    Koyama, Chizu; Hayashi, Hisao; Wakusawa, Shinya; Ueno, Toshio; Yano, Motoyoshi; Katano, Yoshiaki; Goto, Hidemi; Kidokoro, Ryuichi

    2005-10-01

    Hemochromatosis is a genetically heterogeneous condition. Mutations in the recently described hemojuvelin gene were found in patients with juvenile hemochromatosis, who usually manifest clinical signs of iron overload, including cardiomyopathy and hypogonadism, in their teens and early 20s. In this report, we describe three Japanese patients who showed typical clinical and hepatic histological damage compatible with hemochromatosis at around 50 years of age. Genetic analyses showed that all three patients carried mutations in the hemojuvelin gene. The first patient was homozygous for a novel mutation (745G > C [D249H]), and the second and third patients from the same family were homozygous for another novel mutation (934C > T [Q312X]). No mutations in their HFE, hepcidin, transferrin receptor 2, or ferroportin genes were found. One patient had chronic infection with Helicobacter pylori. The age at initial presentation of hemojuvelin-hemochromatosis occurs over a wider range than previously described.

  19. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2

    Directory of Open Access Journals (Sweden)

    David Alan Isaacs

    2017-05-01

    Full Text Available Background: Episodic ataxia type 2 (OMIM 108500 is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%–50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. Case: A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. Conclusion: This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.

  20. Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype

    DEFF Research Database (Denmark)

    Hansen, J.M.; Thomsen, L.L.; Olesen, J.

    2008-01-01

    Objective: The neuropeptide calcitonin gene-related peptide (CGRP) is a migraine trigger that plays a crucial role in migraine pathophysiology, and CGRP antagonism is efficient in the treatment of migraine attacks. Familial hemiplegic migraine (FHM) is a dominantly inherited subtype of migraine.......58). Headache severity and intensity were not different between the groups. Conclusions: Familial hemiplegic migraine ( FHM) patients do not show hypersensitivity of the calcitonin gene-related peptide (CGRP)-cyclic adenosine 3 ', 5 '-monophosphate pathway, as characteristically seen in migraine patients...... with aura associated with several gene mutations. FHM shares many phenotypical similarities with common types of migraine, indicating common neurobiological pathways. We tested the hypothesis that the FHM genotype confers a CGRP hypersensitive phenotype. Methods: We included 9 FHM patients with known...

  1. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2.

    Science.gov (United States)

    Isaacs, David Alan; Bradshaw, Michael J; Brown, Kelly; Hedera, Peter

    2017-01-01

    Episodic ataxia type 2 (OMIM 108500) is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%-50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.

  2. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  3. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  4. Mutations in MODY Genes Are not Common Cause of Early-Onset Type 2 Diabetes in Mexican Families

    Directory of Open Access Journals (Sweden)

    Bravo-Ríos LE

    2005-05-01

    Full Text Available CONTEXT: Maturity-onset diabetes of the young (MODY is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset and a primary insulin secretion defect. Certain MODY gene sequence variants may be involved in polygenic forms of type 2 diabetes. OBJECTIVE: We assessed the contribution of MODY genes to the etiology of type 2 early-onset diabetes in 23 Mexican families, including five with apparently autosomal dominant inheritance. PATIENTS: Twenty-three unrelated Mexican families with early-onset type 2 diabetes previously screened for the presence of glucokinase mutations, were studied. DESIGN: We screened MODY genes for sequence variants by PCR-SSCP analysis and automated sequencing. We performed a functional analysis of the HNF-1alpha P379H recombinant protein in vitro in both HeLa and RINm5f beta-cell lines. MAIN OUTCOME MEASURES: MODY gene mutation screening and P379H mutant protein transactivation assay. RESULTS: No mutations were detected in the HNF-4alpha, IPF-1, NEUROD1 or HNF-1beta genes in any of the families studied. A new mutation (P379H of the HNF-1alpha gene was identified in one MODY family. RINm5f and HeLa cell transfection assays revealed decreased transactivation activity of the mutant protein on the human insulin promoter. CONCLUSIONS: All known MODY genes were screened for abnormalities in this cohort of early-onset diabetes families which included 5 MODY pedigrees. We identified a new HNF-1alpha MODY mutation (P379H and demonstrated that it reduces the transactivation potential of the mutant protein on the human insulin promoter. No other mutation was identified in this cohort indicating that abnormalities in MODY genes are generally not a common cause of early-onset diabetes and this includes MODY families in Mexico.

  5. Inflammatory peeling skin syndrome caused by homozygous genomic deletion in the PSORS1 region encompassing the CDSN gene.

    Science.gov (United States)

    Ishida-Yamamoto, Akemi; Furio, Laetitia; Igawa, Satomi; Honma, Masaru; Tron, Elodie; Malan, Valerie; Murakami, Masamoto; Hovnanian, Alain

    2014-01-01

    Peeling skin syndrome (PSS) type B is a rare recessive genodermatosis characterized by lifelong widespread, reddish peeling of the skin with pruritus. The disease is caused by small-scale mutations in the Corneodesmosin gene (CDSN) leading to premature termination codons. We report for the first time a Japanese case resulting from complete deletion of CDSN. Corneodesmosin was undetectable in the epidermis, and CDSN was unamplifiable by PCR. QMPSF analysis demonstrated deletion of CDSN exons inherited from each parent. Deletion mapping using microsatellite haplotyping, CGH array and PCR analysis established that the genomic deletion spanned 49-72 kb between HCG22 and TCF19, removing CDSN as well as five other genes within the psoriasis susceptibility region 1 (PSORS1) on 6p21.33. This observation widens the spectrum of molecular defects underlying PSS type B and shows that loss of these five genes from the PSORS1 region does not result in an additional cutaneous phenotype.

  6. Body fat distribution in women with familial partial lipodystrophy caused by mutation in the lamin A/C gene

    Directory of Open Access Journals (Sweden)

    Luciana Z Monteiro

    2012-01-01

    Full Text Available Familial partial lipodystrophy (FPLD, Dunnigan variety, is an autosomal dominant disorder caused due to missense mutations in the lamin A/C (LMNA gene encoding nuclear lamina proteins. Patients with FPLD are predisposed to metabolic complications of insulin resistance such as diabetes. We sought to evaluate and compare body fat distribution with dual-emission X-ray absorptiometry in women with and without FPLD and identify densitometric, clinical and metabolic features.

  7. Exclusion of the APC gene as the cause of a variant form of familial adenomatous polyposis (FAP)

    Energy Technology Data Exchange (ETDEWEB)

    Stella, A.; Resta, N.; Susca, F.; Guanti, G.; Gentile, M. (Universita di Bari (Italy)); Mareni, C.; Montera, P. (Universita di Genova (Italy))

    1993-11-01

    Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. The authors studied two families that both presented a phenotype different from that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described. 30 refs., 1 fig., 1 tab.

  8. Alu Sx repeat-induced homozygous deletion of the StAR gene causes lipoid congenital adrenal hyperplasia.

    Science.gov (United States)

    Eiden-Plach, Antje; Nguyen, Huy-Hoang; Schneider, Ursula; Hartmann, Michaela F; Bernhardt, Rita; Hannemann, Frank; Wudy, Stefan A

    2012-05-01

    Lipoid congenital adrenal hyperplasia (Lipoid CAH) is the most severe form of the autosomal recessive disorder CAH. A general loss of the steroid biosynthetic activity caused by defects in the StAR gene manifests as life-threatening primary adrenal insufficiency. We report a case of Lipoid CAH caused by a so far not described homozygous deletion of the complete StAR gene and provide diagnostic results based on a GC-MS steroid metabolomics and molecular genetic analysis. The patient presented with postnatal hypoglycemia, vomiting, adynamia, increasing pigmentation and hyponatremia. The constellation of urinary steroid metabolites suggested Lipoid CAH and ruled out all other forms of CAH or defects of aldosterone biosynthesis. After treatment with sodium supplementation, hydrocortisone and fludrocortisone the child fully recovered. Molecular genetic analysis demonstrated a homozygous 12.1 kb deletion in the StAR gene locus. The breakpoints of the deletion are embedded into two typical genomic repetitive Alu Sx elements upstream and downstream of the gene leading to the loss of all exons and regulatory elements. We established deletion-specific and intact allele-specific PCR methods and determined the StAR gene status of all available family members over three generations. This analysis revealed that one of the siblings, who died a few weeks after birth, carried the same genetic defect. Since several Alu repeats at the StAR gene locus increase the probability of deletions, patients with typical symptoms of lipoid CAH lacking evidence for the presence of both StAR alleles should be analyzed carefully for this kind of disorder.

  9. Comparative Profile of Heme Acquisition Genes in Disease-Causing and Colonizing Nontypeable Haemophilus influenzae and Haemophilus haemolyticus.

    Science.gov (United States)

    Hariadi, Nurul I; Zhang, Lixin; Patel, Mayuri; Sandstedt, Sara A; Davis, Gregg S; Marrs, Carl F; Gilsdorf, Janet R

    2015-07-01

    Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria that colonize the human pharynx and can cause respiratory tract infections, such as acute otitis media (AOM). Since NTHI require iron from their hosts for aerobic growth, the heme acquisition genes may play a significant role in avoiding host nutritional immunity and determining virulence. Therefore, we employed a hybridization-based technique to compare the prevalence of five heme acquisition genes (hxuA, hxuB, hxuC, hemR, and hup) between 514 middle ear strains from children with AOM and 235 throat strains from healthy children. We also investigated their prevalences in 148 Haemophilus haemolyticus strains, a closely related species that colonizes the human pharynx and is considered to be nonpathogenic. Four out of five genes (hxuA, hxuB, hxuC, and hemR) were significantly more prevalent in the middle ear strains (96%, 100%, 100%, and 97%, respectively) than in throat strains (80%, 92%, 93%, and 85%, respectively) of NTHI, suggesting that strains possessing these genes have a virulence advantage over those lacking them. All five genes were dramatically more prevalent in NTHI strains than in H. haemolyticus, with 91% versus 9% hxuA, 98% versus 11% hxuB, 98% versus 11% hxuC, 93% versus 20% hemR, and 97% versus 34% hup, supporting their potential role in virulence and highlighting their possibility to serve as biomarkers to distinguish H. influenzae from H. haemolyticus. In summary, this study demonstrates that heme acquisition genes are more prevalent in disease-causing NTHI strains isolated from the middle ear than in colonizing NTHI strains and H. haemolyticus isolated from the pharynx.

  10. High Frequency of Pulmonary Hypertension-Causing Gene Mutation in Chinese Patients with Chronic Thromboembolic Pulmonary Hypertension.

    Directory of Open Access Journals (Sweden)

    Qunying Xi

    Full Text Available The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH is unknown. Histopathologic studies revealed that pulmonary vasculature lesions similar to idiopathic pulmonary arterial hypertension (PAH existed in CTEPH patients as well. It's well-known that genetic predisposition plays an important role in the mechanism of PAH. So we hypothesized that PAH-causing gene mutation might exist in some CTEPH patients and act as a background to facilitate the development of CTEPH. In this study, we analyzed 7 PAH-causing genes including BMPR2, ACVRL1, ENG, SMAD9, CAV1, KCNK3, and CBLN2 in 49 CTEPH patients and 17 patients recovered from pulmonary embolism (PE but without pulmonary hypertension(PH. The results showed that the nonsynonymous mutation rate in CTEPH patients is significantly higher than that in PE without PH patients (25 out of 49 (51% CTEPH patients vs. 3 out of 17 PE without PH patients (18%; p = 0.022. Four CTEPH patients had the same point mutation in ACVRL1 exon 10 (c.1450C>G, a mutation approved to be associated with PH in a previous study. In addition, we identified two CTEPH associated SNPs (rs3739817 and rs55805125. Our results suggest that PAH-causing gene mutation might play an important role in the development of CTEPH.

  11. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease.

    Science.gov (United States)

    Roelfsema, Jeroen H; White, Stefan J; Ariyürek, Yavuz; Bartholdi, Deborah; Niedrist, Dunja; Papadia, Francesco; Bacino, Carlos A; den Dunnen, Johan T; van Ommen, Gert-Jan B; Breuning, Martijn H; Hennekam, Raoul C; Peters, Dorien J M

    2005-04-01

    CREB-binding protein and p300 function as transcriptional coactivators in the regulation of gene expression through various signal-transduction pathways. Both are potent histone acetyl transferases. A certain level of CREB-binding protein is essential for normal development, since inactivation of one allele causes Rubinstein-Taybi syndrome (RSTS). There is a direct link between loss of acetyl transferase activity and RSTS, which indicates that the disorder is caused by aberrant chromatin regulation. We screened the entire CREB-binding protein gene (CBP) for mutations in patients with RSTS by using methods that find point mutations and larger rearrangements. In 92 patients, we were able to identify a total of 36 mutations in CBP. By using multiple ligation-dependent probe amplification, we found not only several deletions but also the first reported intragenic duplication in a patient with RSTS. We extended the search for mutations to the EP300 gene and showed that mutations in EP300 also cause this disorder. These are the first mutations identified in EP300 for a congenital disorder.

  12. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome.

    NARCIS (Netherlands)

    Reeuwijk, J. van; Grewal, P.K.; Salih, M.A.; Beltran Valero de Bernabe, D.; McLaughlan, J.M.; Michielse, C.B.; Herrmann, R.; Hewitt, J.E.; Steinbrecher, A.; Seidahmed, M.Z.; Shaheed, M.M.; Abomelha, A.; Brunner, H.G.; Bokhoven, J.H.L.M. van; Voit, T.

    2007-01-01

    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of alpha-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient,

  13. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

    NARCIS (Netherlands)

    Meyer, Esther; Carss, Keren J.; Rankin, Julia; Nichols, John M. E.; Grozeva, Detelina; Joseph, Agnel P.; Mencacci, Niccolo E.; Papandreou, Apostolos; Ng, Joanne; Barra, Serena; Ngoh, Adeline; Ben-Pazi, Hilla; Willemsen, Michel A.; Arkadir, David; Barnicoat, Angela; Bergman, Hagai; Bhate, Sanjay; Boys, Amber; Darin, Niklas; Foulds, Nicola; Gutowski, Nicholas; Hills, Alison; Houlden, Henry; Hurst, Jane A.; Israe, Zvi; Kaminska, Margaret; Limousin, Patricia; Lumsden, Daniel; Mckee, Shane; Misra, Shibalik; Mohammed, Shekeeb S.; Nakou, Vasiliki; Nicolai, Joost; Nilsson, Magnus; Pall, Hardev; Peall, Kathryn J.; Peters, Gregory B.; Prabhakar, Prab; Reuter, Miriam S.; Rump, Patrick; Sege, Reeval; Sinnema, Margje; Smith, Martin; Turnpenny, Peter; White, Susan M.; Wieczorek, Dagmar; Wiethoff, Sarah; Wilson, Brian T.; Winter, Gidon; Wragg, Christopher; Pope, Simon; Heales, Simon J. H.; Morrogh, Deborah; Pittman, Alan; Carr, Lucinda J.; Perez-Duenas, Belen; Lin, Jean-Pierre; Reis, Andre; Gahl, William A.; Toro, Camilo; Bhatia, Kailash P.; Wood, Nicholas W.; Kamsteeg, Erik-Jan; Chong, Wui K.; Gissen, Paul; Topf, Maya; Dale, Russell C.; Chubby, Jonathan R.; Raymond, F. Lucy; Kurian, Manju A.

    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about

  14. Calcitonin gene-related peptide does not cause migraine attacks in patients with familial hemiplegic migraine

    DEFF Research Database (Denmark)

    Hansen, Jakob M; Thomsen, Lise L; Olesen, Jes

    2011-01-01

    Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathogenesis. Intravenous CGRP triggers migraine-like attacks in patients with migraine with aura and without aura. In contrast, patients with familial hemiplegic migraine (FHM) with known mutations did not report more migraine-...

  15. Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions

    NARCIS (Netherlands)

    Lee, Hsien-Yang; Huang, Yong; Bruneau, Nadine; Roll, Patrice; Roberson, Elisha D. O.; Hermann, Mark; Quinn, Emily; Maas, James; Edwards, Robert; Ashizawa, Tetsuo; Baykan, Betul; Bhatia, Kailash; Bressman, Susan; Bruno, Michiko K.; Brunt, Ewout R.; Caraballo, Roberto; Echenne, Bernard; Fejerman, Natalio; Frucht, Steve; Gurnett, Christina A.; Hirsch, Edouard; Houlden, Henry; Jankovic, Joseph; Lee, Wei-Ling; Lynch, David R.; Mohammed, Shehla; Mueller, Ulrich; Nespeca, Mark P.; Renner, David; Rochette, Jacques; Rudolf, Gabrielle; Saiki, Shinji; Soong, Bing-Wen; Swoboda, Kathryn J.; Tucker, Sam; Wood, Nicholas; Hanna, Michael; Bowcock, Anne M.; Szepetowski, Pierre; Fu, Ying-Hui; Ptacek, Louis J.

    2012-01-01

    Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majorit

  16. Juvenile-onset spinal muscular atrophy caused by compound heterozygosity for mutations in the HEXA gene.

    Science.gov (United States)

    Navon, R; Khosravi, R; Melki, J; Drucker, L; Fontaine, B; Turpin, J C; N'Guyen, B; Fardeau, M; Rondot, P; Baumann, N

    1997-05-01

    Progressive proximal muscle weakness is present both in spinal muscular atrophy (SMA) type III (Kugelberg-Welander disease) and in GM2 gangliosidosis, diseases that segregate in an autosomal recessive fashion. The SMN gene for SMA and the HEXA gene for GM2 gangliosidosis were investigated in a woman with progressive proximal muscle weakness, long believed to be SMA type III (Kugelberg-Welander type). She and her family underwent biochemical studies for GM2 gangliosidosis. Analysis of SMN excluded SMA. Biochemical studies on GM2 gangliosidosis showed deficiency in hexosaminidase A activity and increased GM2 ganglioside accumulation in the patient's fibroblasts. The HEXA gene was first analyzed for the Gly269-->Ser mutation characteristic for adult GM2 gangliosidosis. Since the patient was carrying the adult mutation heterozygously, all 14 exons and adjacent intron sequences were analyzed. A novel mutation in exon 1 resulting in an A-to-T change in the initiation codon (ATG to TTG) was identified. The adult patient is a compound heterozygote, with each allele containing a different mutation. Although mRNA was transcribed from the novel mutant allele, expression experiments showed no enzyme activity, suggesting that neither the TTG nor an alternative codon serve as an initiation codon in the HEXA gene.

  17. Permanent neonatal diabetes caused by a novel mutation in the INS gene.

    Science.gov (United States)

    Catli, Gonul; Abaci, Ayhan; Flanagan, Sarah E; Anik, Ahmet; Ellard, Sian; Bober, Ece

    2013-01-01

    Neonatal diabetes mellitus (DM) is a rare condition that can be either transient or permanent. In this case report, we describe a novel mutation (p.L30Q) in the INS gene resulting in permanent DM in a four-month-old female who presented with polyphagia, polyuria, irritability, and hyperglycemia with glucosuria and ketonuria without acidosis.

  18. Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions

    NARCIS (Netherlands)

    Lee, Hsien-Yang; Huang, Yong; Bruneau, Nadine; Roll, Patrice; Roberson, Elisha D. O.; Hermann, Mark; Quinn, Emily; Maas, James; Edwards, Robert; Ashizawa, Tetsuo; Baykan, Betul; Bhatia, Kailash; Bressman, Susan; Bruno, Michiko K.; Brunt, Ewout R.; Caraballo, Roberto; Echenne, Bernard; Fejerman, Natalio; Frucht, Steve; Gurnett, Christina A.; Hirsch, Edouard; Houlden, Henry; Jankovic, Joseph; Lee, Wei-Ling; Lynch, David R.; Mohammed, Shehla; Mueller, Ulrich; Nespeca, Mark P.; Renner, David; Rochette, Jacques; Rudolf, Gabrielle; Saiki, Shinji; Soong, Bing-Wen; Swoboda, Kathryn J.; Tucker, Sam; Wood, Nicholas; Hanna, Michael; Bowcock, Anne M.; Szepetowski, Pierre; Fu, Ying-Hui; Ptacek, Louis J.

    2012-01-01

    Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majorit

  19. Comparison of Proinflammatory Gene Expression in Lesions Caused by either Burn Injuries or Cutaneous Leishmaniasis

    OpenAIRE

    Akhzari; Rezvan; Zolhavarieh; Moafi

    2016-01-01

    Background Leishmaniasis is a worldwide disease prevalent in tropical and sub-tropical countries in the world. Characterization of inflammatory responses produced in cutaneous Leishmaniasis has not yet been completed. The current study aims to assess and compare pro-inflammatory cytokines between burning injuries and Leishmania infection. Methods the specific primers were designed for 10 proinflammatory genes including CCL4, CCL3,...

  20. [Formation of para-Bombay phenotype caused by homozygous or heterozygous mutation of FUT1 gene].

    Science.gov (United States)

    Zhang, Jin-Ping; Zheng, Yan; Sun, Dong-Ni

    2014-02-01

    This study was aimed to explore the molecular mechanisms for para-Bombay phenotype formation. The H antigen of these individuals were identified by serological techniques. The full coding region of alpha (1, 2) fucosyltransferase (FUT1) gene of these individuals was amplified by high-fidelity polymerase chain reaction (PCR). PCR product was identified by TOPO cloning sequencing. Analysis and comparison were used to explore the mechanisms of para-bombay phenotype formation in individuals. The results indicated that the full coding region of FUT1 DNA was successfully amplified by PCR and gel electrophoresis. DNA sequencing and analysis found that h1 (547-552delAG) existed in one chromosome and h4 (35C > T) existed in the other chromosome of NO.1 individual. Meantime, h1 (547-552delAG) was found in two chromosomes of NO.2 and NO.3 individual. It also means that FUT1 gene of NO.1 individual was h1h4 heterozygote, FUT1 gene of NO.2 and NO.3 individuals were h1h1 homozygote. It is concluded that homozygous and heterozygous mutation of FUT1 gene can lead to the formation of para-Bombay phenotype.

  1. Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Iolascon, A.; Aglio, V.; Tamma, G.; D'Apolito, M.; Addabbo, F.; Procino, G.; Simonetti, M.C.; Montini, G.; Gesualdo, L.; Debler, E.W.; Svelto, M.; Valenti, G.

    2007-01-01

    Here, we report the aquaporin 2 (AQP2) mutational analysis of a patient with nephrogenic diabetes insipidus heterozygote due to two novel missense mutations. Direct sequencing of DNA in the male patient revealed that he was compound heterozygote for two mutations in the AQP2 gene: a thymine-to-adeni

  2. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene

    NARCIS (Netherlands)

    Lohmann, Katja; Wilcox, Robert A.; Winkler, Susen; Ramirez, Alfredo; Rakovic, Aleksandar; Park, Jin-Sung; Arns, Bjoern; Lohnau, Thora; Kasten, Meike; Brueggemann, Norbert; Hagenah, Johann; Schmidt, Alexander; Kaiser, Frank J.; Kumar, Kishore R.; Zschiedrich, Katja; Alvarez-Fischer, Daniel; Altenmueller, Eckart; Ferbert, Andreas; Lang, Anthony E.; Muenchau, Alexander; Kostic, Vladimir; Simonyan, Kristina; Agzarian, Marc; Ozelius, Laurie J.; Langeveld, Antonius P. M.; Sue, Carolyn M.; Tijssen, Marina A. J.; Klein, Christine; Groen, Justus

    2013-01-01

    Objective A study was undertaken to identify the gene underlying DYT4 dystonia, a dominantly inherited form of spasmodic dysphonia combined with other focal or generalized dystonia and a characteristic facies and body habitus, in an Australian family. Methods Genome-wide linkage analysis was carried

  3. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Science.gov (United States)

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  4. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome.

    NARCIS (Netherlands)

    Dauwerse, J.G.; Dixon, J.; Seland, S.; Ruivenkamp, C.A.; Haeringen, A. van; Hoefsloot, L.H.; Peters, D.J.; Boers, A.C.; Daumer-Haas, C.; Maiwald, R.; Zweier, C.; Kerr, B.; Cobo, A.M.; Toral, J.F.; Hoogeboom, A.J.M.; Lohmann, D.R.; Hehr, U.; Dixon, M.J.; Breuning, M.H.; Wieczorek, D.

    2011-01-01

    We identified a deletion of a gene encoding a subunit of RNA polymerases I and III, POLR1D, in an individual with Treacher Collins syndrome (TCS). Subsequently, we detected 20 additional heterozygous mutations of POLR1D in 252 individuals with TCS. Furthermore, we discovered mutations in both allele

  5. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

    NARCIS (Netherlands)

    Meyer, Esther; Carss, Keren J.; Rankin, Julia; Nichols, John M. E.; Grozeva, Detelina; Joseph, Agnel P.; Mencacci, Niccolo E.; Papandreou, Apostolos; Ng, Joanne; Barra, Serena; Ngoh, Adeline; Ben-Pazi, Hilla; Willemsen, Michel A.; Arkadir, David; Barnicoat, Angela; Bergman, Hagai; Bhate, Sanjay; Boys, Amber; Darin, Niklas; Foulds, Nicola; Gutowski, Nicholas; Hills, Alison; Houlden, Henry; Hurst, Jane A.; Israe, Zvi; Kaminska, Margaret; Limousin, Patricia; Lumsden, Daniel; Mckee, Shane; Misra, Shibalik; Mohammed, Shekeeb S.; Nakou, Vasiliki; Nicolai, Joost; Nilsson, Magnus; Pall, Hardev; Peall, Kathryn J.; Peters, Gregory B.; Prabhakar, Prab; Reuter, Miriam S.; Rump, Patrick; Sege, Reeval; Sinnema, Margje; Smith, Martin; Turnpenny, Peter; White, Susan M.; Wieczorek, Dagmar; Wiethoff, Sarah; Wilson, Brian T.; Winter, Gidon; Wragg, Christopher; Pope, Simon; Heales, Simon J. H.; Morrogh, Deborah; Pittman, Alan; Carr, Lucinda J.; Perez-Duenas, Belen; Lin, Jean-Pierre; Reis, Andre; Gahl, William A.; Toro, Camilo; Bhatia, Kailash P.; Wood, Nicholas W.; Kamsteeg, Erik-Jan; Chong, Wui K.; Gissen, Paul; Topf, Maya; Dale, Russell C.; Chubby, Jonathan R.; Raymond, F. Lucy; Kurian, Manju A.

    2017-01-01

    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about th

  6. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M;

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  7. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome.

    NARCIS (Netherlands)

    Frank, V.; Hollander, A.I. den; Bruchle, N.O.; Zonneveld, M.N.; Nurnberg, G.; Becker, C.; Bois, G. Du; Kendziorra, H.; Roosing, S.; Senderek, J.; Nurnberg, P.; Cremers, F.P.M.; Zerres, K.; Bergmann, C.

    2008-01-01

    Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the li

  8. Childhood trauma as a cause of psychosis: linking genes, psychology, and biology.

    Science.gov (United States)

    van Winkel, Ruud; van Nierop, Martine; Myin-Germeys, Inez; van Os, Jim

    2013-01-01

    Recent studies have provided robust evidence for an association between childhood trauma (CT) and psychosis. Meta-analyses have quantified the association, pointing to odds ratios in the order of around 3, and prospective studies have shown that reverse causation is unlikely to explain the association. However, more work is needed to address the possibility of a gene-environment correlation, that is, whether genetic risk for psychosis predicts exposure to CT. Nevertheless, multiple studies have convincingly shown that the association between CT and psychosis remains strong and significant when controlling for genetic risk, in agreement with a possible causal association. In addition, several studies have shown plausible psychological and neurobiological mechanisms linking adverse experiences to psychosis, including induction of social defeat and reduced self-value, sensitization of the mesolimbic dopamine system, changes in the stress and immune system, and concomitant changes in stress-related brain structures, such as the hippocampus and the amygdala, findings that should be integrated, however, in more complex models of vulnerability. It is currently unclear whether genetic vulnerability plays a role in conferring the mental consequences of adversity, and which genes are likely to be involved. The current, limited evidence points to genes that are not specifically involved in psychosis but more generally in regulating mood (serotonin transporter gene), neuroplasticity (brain-derived neurotrophic factor), and the stress-response system (FKBP5), in line with a general effect of CT on a range of mental disorders, rather than suggesting specificity for psychosis.

  9. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation

    DEFF Research Database (Denmark)

    Kalscheuer, Vera M; Freude, Kristine; Musante, Luciana

    2003-01-01

    We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previou...

  10. Two different forms of lethal chondrodysplasias caused by COL2A1 gene mutations

    Energy Technology Data Exchange (ETDEWEB)

    Winterpacht, A.; Hilbert, K.; Schwarze, U. [Univ. of Mainz (Germany)] [and others

    1994-09-01

    Two bone dysplasia families seem to be due to mutations in the type II procollagen gene (COL2A1): the so-called spondyloepiphyseal dysplasia congenita (SEDC) group with achondrogenesis II, hypochondrogenesis, SEDC, osteoarthrosis and the Stickler-Kniest pattern that include different forms of Kniest and Stickler dysplasia. Both groups comprise a clinical spectrum ranging from lethal to mild. COL2A1-mutations have been identified in lethal forms of the SEDC family but not in lethal forms of the Stickler/Kniest group. We now report a COL2A-1 mutation in an additional case of hypochondrogenesis (patient S) and in a lethal case of Kniest dysplasia (patient B). We amplified all 54 exons of the COL2A1 gene in both patients and screened the PCR products for mutations by SSCP analysis and sequencing. In patient B, we identified an 18 bp deletion in exon 34 which removes 6 amino acids from the mature protein. In patient S, we were able to identify a two base pair exchange (GG to AT) in exon 31, which leads to the very unusual conversion of Gly to Ile. To our knowledge, this is the first report of a Gly to Ile conversion in the COL2A1 gene, and the first report of a COL2A1 gene mutation in a lethal form of Kniest dysplasia. On the basis of the known COL2A1 gene mutations and the genotype-phenotype correlations established so far, we provide molecular data (an in frame deletion in patient B and a Gly conversion in patient S) that support their clinical classification as Kniest dysplasia and hypochondrogenesis, respectively.

  11. Clinical and Prognostic Profiles of Cardiomyopathies Caused by Mutations in the Troponin T Gene.

    Science.gov (United States)

    Ripoll-Vera, Tomás; Gámez, José María; Govea, Nancy; Gómez, Yolanda; Núñez, Juana; Socías, Lorenzo; Escandell, Ángela; Rosell, Jorge

    2016-02-01

    Mutations in the troponin T gene (TTNT2) have been associated in small studies with the development of hypertrophic cardiomyopathy characterized by a high risk of sudden death and mild hypertrophy. We describe the clinical course of patients carrying mutations in this gene. We analyzed the clinical characteristics and prognosis of patients with mutations in the TNNT2 gene who were seen in an inherited cardiac disease unit. Of 180 families with genetically studied cardiomyopathies, 21 families (11.7%) were identified as having mutations in TNNT2: 10 families had Arg92Gln, 5 had Arg286His, 3 had Arg278Cys, 1 had Arg92Trp, 1 had Arg94His, and 1 had Ile221Thr. Thirty-three additional genetic carriers were identified through family assessment. The study included 54 genetic carriers: 56% were male, and the mean average age was 41 ± 17 years. There were 33 cases of hypertrophic cardiomyopathy, 9 of dilated cardiomyopathy, and 1 of noncompaction cardiomyopathy, and maximal myocardial thickness was 18.5 ± 6mm. Ventricular dysfunction was present in 30% of individuals and a history of sudden death in 62%. During follow-up, 4 patients died and 14 (33%) received a defibrillator (8 probands, 6 relatives). Mean survival was 54 years. Carriers of Arg92Gln had early disease development, high penetrance, a high risk of sudden death, a high rate of defibrillator implantation, and a high frequency of mixed phenotype. Mutations in the TNNT2 gene were more common in this series than in previous studies. The clinical and prognostic profiles depended on the mutation present. Carriers of the Arg92Gln mutation developed hypertrophic or dilated cardiomyopathy and had a significantly worse prognosis than those with other mutations in TNNT2 or other sarcomeric genes. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  13. Screening and analysis of genes expressed upon infection of broad bean with Clover yellow vein virus causing lethal necrosis

    Directory of Open Access Journals (Sweden)

    Suzuki Yuji

    2011-07-01

    Full Text Available Abstract Clover yellow vein virus (ClYVV causes lethal systemic necrosis in legumes, including broad bean (Vicia faba and pea (Pisum sativum. To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI, and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP. We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA-dependent pathogenesis-related (PR proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression.

  14. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    Science.gov (United States)

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  15. A novel deletion partly removing the AVP gene causes autosomal recessive inheritance of early-onset neurohypophyseal diabetes insipidus.

    Science.gov (United States)

    Christensen, J H; Kvistgaard, H; Knudsen, J; Shaikh, G; Tolmie, J; Cooke, S; Pedersen, S; Corydon, T J; Gregersen, N; Rittig, S

    2013-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) typically presents with age-dependent penetrance and autosomal dominant inheritance caused by missense variations in one allele of the AVP gene encoding the arginine vasopressin (AVP) prohormone. We present the molecular genetic characteristics underlying an unusual form of FNDI occurring with very early onset and seemingly autosomal recessive inheritance. By DNA amplification and sequencing, we identified a novel variant allele of the AVP gene carrying a 10,396 base pair deletion involving the majority of the AVP gene as well as its regulatory sequences in the intergenic region between the AVP and the OXT gene, encoding the oxytocin prohormone. We found two chromosomes carrying the deletion in affected family members and one in unaffected family members suspected to transmit the deleted allele. Whole-genome array analysis confirmed the results and excluded the presence of any additional major pathogenic abnormalities. The deletion is predicted to abolish the transcription of the AVP gene, thus the fact that family members heterozygous for the deletion remain healthy argues, in general, against haploinsufficiency as the pathogenic mechanism FNDI. Accordingly, our data is strong support to the prevailing idea that dominant inheritance of FNDI is due to a dominant-negative effect exerted by variant AVP prohormone.

  16. Cellular defects caused by hypomorphic variants of the Bloom syndrome helicase gene BLM.

    Science.gov (United States)

    Shastri, Vivek M; Schmidt, Kristina H

    2016-01-01

    Bloom syndrome is an autosomal recessive disorder characterized by extraordinary cancer incidence early in life and an average life expectancy of ~27 years. Premature stop codons in BLM, which encodes a DNA helicase that functions in DNA double-strand-break repair, make up the vast majority of Bloom syndrome mutations, with only 13 single amino acid changes identified in the syndrome. Sequencing projects have identified nearly one hundred single nucleotide variants in BLM that cause amino acid changes of uncertain significance. Here, in addition to identifying five BLM variants incapable of complementing certain defects of Bloom syndrome cells, making them candidates for new Bloom syndrome causing mutations, we characterize a new class of BLM variants that cause some, but not all, cellular defects of Bloom syndrome. We find elevated sister-chromatid exchanges, a delayed DNA damage response and inefficient DNA repair. Conversely, hydroxyurea sensitivity and quadriradial chromosome accumulation, both characteristic of Bloom syndrome cells, are absent. These intermediate variants affect sites in BLM that function in ATP hydrolysis and in contacting double-stranded DNA. Allele frequency and cellular defects suggest candidates for new Bloom syndrome causing mutations, and intermediate BLM variants that are hypomorphic which, instead of causing Bloom syndrome, may increase a person's risk for cancer or possibly other Bloom-syndrome-associated disorders, such as type-2 diabetes.

  17. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds.

    Science.gov (United States)

    Fontanesi, L; Scotti, E; Allain, D; Dall'olio, S

    2014-04-01

    In rabbit, the dilute locus is determined by a recessive mutated allele (d) that causes the dilution of both eumelanic and pheomelanic pigmentations. In mice, similar phenotypes are determined by mutations in the myosin VA, Rab27a and melanophilin (MLPH) genes. In this study, we investigated the rabbit MLPH gene and showed that a mutation in this gene appears responsible for the dilute coat colour in this species. Checkered Giant F1 families segregating for black and grey (diluted or blue) coat colour were first genotyped for a complex indel in intron 1 of the MLPH gene that was completely associated with the coat colour phenotype (θ = 0.00; LOD = 4.82). Then, we sequenced 6357 bp of the MLPH gene in 18 rabbits of different coat colours, including blue animals. A total of 165 polymorphisms were identified: 137 were in non-coding regions and 28 were in coding exons. One of them was a frameshift deletion in exon 5. Genotyping the half-sib families confirmed the complete cosegregation of this mutation with the blue coat colour. The mutation was analysed in 198 rabbits of 23 breeds. All Blue Vienna and all other blue/grey/ash rabbits in other breeds (Californian, Castor Rex, Checkered Giant, English Spot, Fairy Marburg and Fairy Pearly) were homozygous for this deletion. The identification of MLPH as the responsible gene for the dilute locus in rabbit provides a natural animal model for human Griscelli syndrome type 3 and a new mutant to study the role of this gene on pigmentation. © 2013 Stichting International Foundation for Animal Genetics.

  18. Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene

    Science.gov (United States)

    Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis

    2012-01-01

    Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272

  19. Permanent neonatal diabetes caused by creation of an ectopic splice site within the INS gene.

    Directory of Open Access Journals (Sweden)

    Intza Garin

    Full Text Available BACKGROUND: The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. METHODOLOGY/PRINCIPAL FINDINGS: Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. CONCLUSIONS/SIGNIFICANCE: This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants.

  20. An unusual cause of cerebral venous sinus thrombosis: prothrombin G20210A gene mutation.

    Science.gov (United States)

    Porres-Aguilar, Mateo; Square, Jaime H; Storey, Raul; Rodriguez-Dunn, Simon; Mohamed-Aly, Mohamed S

    2007-09-01

    Cerebral venous sinus thrombosis represents less than 1% of all strokes, being an uncommon entity with a wide spectrum of clinical scenarios. We present a 45-year-old Hispanic female with a history of long-term oral contraceptive use who was diagnosed with cerebral venous sinus thrombosis due to a heterozygous carrier mutation in the prothrombin G20210A gene. The patient was successfully managed with intravenous heparin with favorable clinical results without adverse effects. The prevalence of inherited primary thrombophilia increases with additional risk factors such as the use of oral contraceptives that can trigger or prothrombotic events in any vascular bed. An increased prevalence in the prothrombin G20210 gene mutation has been demonstrated in the Mexican-Mestizo population. Controversy exists regarding therapy of cerebral venous sinus thrombosis; according to experts, heparin remains the cornerstone of therapy with acceptable outcomes. More clinical trials are required to evaluate long-term outcomes in this subgroup of patients.

  1. DNA rearrangement causes multiple changes in gene expression at the amylase locus in Drosophila melanogaster.

    Science.gov (United States)

    Hickey, D A; Benkel, B F; Abukashawa, S; Haus, S

    1988-12-01

    A spontaneous null mutation at the alpha-amylase locus in Drosophila melanogaster was recovered from a laboratory population. The mutant strain was found to lack amylase enzyme production and to produce low, but detectable, levels of amylase mRNA. Moreover, the null strain is also lacking the glucose repression of amylase mRNA production which is seen in wild-type strains. The mutant phenotype correlates with a rearrangement in genomic DNA which, in turn, corresponds to a simple inversion in the arrangement observed most frequently in North American populations of D. melanogaster, including the common laboratory strain, Oregon-R. These results have implications for our understanding of both the evolution of the duplicated amylase gene structure and the regulation of amylase gene expression.

  2. Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene.

    Science.gov (United States)

    Bayrakli, Fatih; Poyrazoglu, Hatice Gamze; Yuksel, Sirin; Yakicier, Cengiz; Erguner, Bekir; Sagiroglu, Mahmut Samil; Yuceturk, Betul; Ozer, Bugra; Doganay, Selim; Tanrikulu, Bahattin; Seker, Askin; Akbulut, Fatih; Ozen, Ali; Per, Huseyin; Kumandas, Sefer; Altuner Torun, Yasemin; Bayri, Yasar; Sakar, Mustafa; Dagcinar, Adnan; Ziyal, Ibrahim

    2015-12-01

    We report an association between a new causative gene and spastic paraplegia, which is a genetically heterogeneous disorder. Clinical phenotyping of one consanguineous family followed by combined homozygosity mapping and whole-exome sequencing analysis. Three patients from the same family shared common features of progressive complicated spastic paraplegia. They shared a single homozygous stretch area on chromosome 6. Whole-exome sequencing revealed a homozygous mutation (c.853_871del19) in the gene coding the kinesin light chain 4 protein (KLC4). Meanwhile, the unaffected parents and two siblings were heterozygous and one sibling was homozygous wild type. The 19 bp deletion in exon 6 generates a stop codon and thus a truncated messenger RNA and protein. The association of a KLC4 mutation with spastic paraplegia identifies a new locus for the disease.

  3. A Hybrid CFHR3-1 Gene Causes Familial C3 Glomerulopathy.

    LENUS (Irish Health Repository)

    Malik, Talat H

    2012-07-01

    Controlled activation of the complement system, a key component of innate immunity, enables destruction of pathogens with minimal damage to host tissue. Complement factor H (CFH), which inhibits complement activation, and five CFH-related proteins (CFHR1-5) compose a family of structurally related molecules. Combined deletion of CFHR3 and CFHR1 is common and confers a protective effect in IgA nephropathy. Here, we report an autosomal dominant complement-mediated GN associated with abnormal increases in copy number across the CFHR3 and CFHR1 loci. In addition to normal copies of these genes, affected individuals carry a unique hybrid CFHR3-1 gene. In addition to identifying an association between these genetic observations and complement-mediated kidney disease, these results provide insight into the protective role of the combined deletion of CFHR3 and CFHR1 in IgA nephropathy.

  4. Nuclear lattice simulations

    Directory of Open Access Journals (Sweden)

    Epelbaum E.

    2010-04-01

    Full Text Available We review recent progress on nuclear lattice simulations using chiral effective field theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb effects, and the binding energy of light nuclei.

  5. Ethylmalonic Encephalopathy Is Caused by Mutations in ETHE1, a Gene Encoding a Mitochondrial Matrix Protein

    OpenAIRE

    2004-01-01

    Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated t...

  6. Calcitonin gene-related peptide does not cause migraine attacks in patients with familial hemiplegic migraine

    DEFF Research Database (Denmark)

    Hansen, Jakob M; Thomsen, Lise L; Olesen, Jes

    2011-01-01

    Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathogenesis. Intravenous CGRP triggers migraine-like attacks in patients with migraine with aura and without aura. In contrast, patients with familial hemiplegic migraine (FHM) with known mutations did not report more migraine......-like attacks compared to controls. Whether CGRP triggers migraine-like attacks in FHM patients without known mutations is unknown....

  7. Sensorineural hearing loss caused by MYH14 gene mutation. A case report

    Directory of Open Access Journals (Sweden)

    Pedro CARNEIRO-SOUSA

    2016-11-01

    Full Text Available Introduction and objective: Hereditary causes are responsible for half of cases of sensorineural hearing loss in young people. MYH14 mutation is autosomal dominant. Description: A 33 years-old patient with moderate-to-severe sensorineural hearing loss. Genetic study revealed MYH14 mutation. Discussion: This is a case of post-lingual sensorineural deafness, compatible with autosomal dominant inheritance. MYH14 mutation seems to increase susceptibility to acoustic trauma, which may justify the late onset of hearing loss. Conclusions: MYH14 mutation is, probably, a cause for hearing loss. Genetic study has, therefore, a growing importance.

  8. NUCLEAR GENE MUTATIONS AS THE CAUSE OF MITOCHONDRIAL COMPLEX III DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Erika eFernandez-Vizarra

    2015-04-01

    Full Text Available Complex III (CIII deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than ten years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last three-four years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided.

  9. Alzheimer's Disease: A Pathogenetic Autoimmune Disorder Caused by Herpes Simplex in a Gene-Dependent Manner

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2010-01-01

    Full Text Available Herpes simplex is implicated in Alzheimer's disease and viral infection produces Alzheimer's disease like pathology in mice. The virus expresses proteins containing short contiguous amino acid stretches (5–9aa “vatches” = viralmatches homologous to APOE4, clusterin, PICALM, and complement receptor 1, and to over 100 other gene products relevant to Alzheimer's disease, which are also homologous to proteins expressed by other pathogens implicated in Alzheimer's disease. Such homology, reiterated at the DNA level, suggests that gene association studies have been tracking infection, as well as identifying key genes, demonstrating a role for pathogens as causative agents. Vatches may interfere with the function of their human counterparts, acting as dummy ligands, decoy receptors, or via interactome interference. They are often immunogenic, and antibodies generated in response to infection may target their human counterparts, producing protein knockdown, or generating autoimmune responses that may kill the neurones in which the human homologue resides, a scenario supported by immune activation in Alzheimer's disease. These data may classify Alzheimer's disease as an autoimmune disorder created by pathogen mimicry of key Alzheimer's disease-related proteins. It may well be prevented by vaccination and regular pathogen detection and elimination, and perhaps stemmed by immunosuppression or antibody adsorption-related therapies.

  10. Knockout of Lysosomal Enzyme-Targeting Gene Causes Abnormalities in Mouse Pup Isolation Calls

    Science.gov (United States)

    Barnes, Terra D.; Holy, Timothy E.

    2017-01-01

    Humans lacking a working copy of the GNPTAB gene suffer from the metabolic disease Mucolipidosis type II (MLII). MLII symptoms include mental retardation, skeletal deformities and cartilage defects as well as a speech delay with most subjects unable to utter single words (Otomo et al., 2009; Cathey et al., 2010; Leroy et al., 2012). Here we asked whether mice lacking a copy of Gnptab gene exhibited vocal abnormities. We recorded ultrasonic vocalizations from 5 to 8 day old mice separated from their mother and littermates. Although Gnptab−/− pups emitted a similar number of calls, several features of the calls were different from their wild type littermates. Gnptab−/− mice showed a decrease in the length of calls, an increase in the intra-bout pause duration, significantly fewer pitch jumps with smaller mean size, and an increase in the number of isolated calls. In addition, Gnptab−/− mice vocalizations had less power, particularly in the higher frequencies. Gnptab+/− mouse vocalizations did not appear to be affected. We then attempted to classify these recordings using these features to determine the genotype of the animal. We were able to correctly identify 87% of the recordings as either Gnptab−/− or Gnptab+/+ pup, significantly better than chance, demonstrating that genotype is a strong predictor of vocalization phenotype. These data show that deletion of genes in the lysosomal enzyme targeting pathway affect mouse pup isolation calls.

  11. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications.

    Science.gov (United States)

    Bargal, Ruth; Cormier-Daire, Valerie; Ben-Neriah, Ziva; Le Merrer, Martine; Sosna, Jacob; Melki, Judith; Zangen, David H; Smithson, Sarah F; Borochowitz, Zvi; Belostotsky, Ruth; Raas-Rothschild, Annick

    2009-01-01

    The spondylo-meta-epiphyseal dysplasia [SMED] short limb-hand type [SMED-SL] is a rare autosomal-recessive disease, first reported by Borochowitz et al. in 1993.(1) Since then, 14 affected patients have been reported.(2-5) We diagnosed 6 patients from 5 different consanguineous Arab Muslim families from the Jerusalem area with SMED-SL. Additionally, we studied two patients from Algerian and Pakistani ancestry and the parents of the first Jewish patients reported.(1) Using a homozygosity mapping strategy, we located a candidate region on chromosome 1q23 spanning 2.4 Mb. The position of the Discoidin Domain Receptor 2 (DDR2) gene within the candidate region and the similarity of the ddr2 knockout mouse to the SMED patients' phenotype prompted us to study this gene(6). We identified three missense mutations c.2254 C > T [R752C], c. 2177 T > G [I726R], c.2138C > T [T713I] and one splice site mutation [IVS17+1g > a] in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene. The results of this study will permit an accurate early prenatal diagnosis and carrier screening for families at risk.

  12. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears.

    Science.gov (United States)

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W

    2014-11-01

    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.

  13. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L. [Univ. of Toronto, Ontario (Canada)] [and others

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  14. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19.

    Science.gov (United States)

    Seow, Heng F; Bröer, Stefan; Bröer, Angelika; Bailey, Charles G; Potter, Simon J; Cavanaugh, Juleen A; Rasko, John E J

    2004-09-01

    Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.

  15. Original tandem duplication in FXIIIA gene with splicing site modification and four amino acids insertion causes factor XIII deficiency.

    Science.gov (United States)

    Louhichi, Nacim; Haj Salem, Ikhlass; Medhaffar, Moez; Miled, Nabil; Hadji, Ahmad F; Keskes, Leila; Fakhfakh, Faiza

    2017-04-01

    : Recessive mutations of F13A gene are reported to be responsible of FXIIIA subunit deficiency (FXIIIA). In all, some intronic nucleotide changes identified in this gene were investigated by in-silico analysis and occasionally supported by experimental data or reported in some cases as a polymorphism. To determine the molecular defects responsible of congenital factor XIII deficiency in Libyan patient, molecular analysis was performed by direct DNA sequencing of the coding regions and splice junctions of the FXIIIA subunit gene (F13A). A splicing minigene assay was used to study the effect of this mutation. Bioinformatics exploration was fulfilled to conceive consequences on protein. A 12-bp duplication straddling the border of intron 9 and exon 10 leads to two 3' acceptor splice sites, resulting in silencing of the downstream wild 3' splice site. It caused an in-frame insertion of 12 nucleotides into mRNA and four amino acids into protein. Bioinformatic analysis predicts that the insertion of four amino acids affects the site 3 of calcium binding site, which disturbs the smooth function of the FXIIIA peptide causing the factor XIII deficiency. This study showed that a small duplication seems to weaken the original 3' splice site and enhance the activation of a new splice site responsible for an alternative splicing. It would be interesting to examine the underlying molecular mechanism involved in this rearrangement.

  16. Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations

    Directory of Open Access Journals (Sweden)

    Tamás eArányi

    2013-03-01

    Full Text Available The human ABCC6 gene encodes an ABC transporter protein expressed primarily in the liver and to a lesser extent in the kidneys and the intestines. We review here the mechanisms of this restricted tissue-specific expression and the role of hepatocyte nuclear factor 4α which is responsible for the expression pattern. Detailed analyses uncovered further regulators of the expression of the gene pointing to an intronic primate-specific regulator region, an activator of the expression of the gene by binding C/EBPbeta, which interacts with other proteins acting in the proximal promoter. This regulatory network is affected by various environmental stimuli including oxidative stress and the ERK1/2 pathway. We also review here the structural and functional consequences of disease-causing missense mutations of ABCC6. A significant clustering of the missense disease-causing mutations was found at the domain-domain interfaces. This clustering means that the domain contacts are much less permissive to amino acid replacements than the rest of the protein. We summarize the experimental methods resulting in the identification of mutants with preserved transport activity but failure in intracellular targeting. These mutants are candidates for functional rescue by chemical chaperons. The results of such research can provide the basis of future allele-specific therapy of ABCC6-mediated disorders like pseudoxanthoma elasticum or the generalized arterial calcification in infancy.

  17. Global Disruption of Alternative Splicing and Neurodegeneration Is Caused by Mutation of a U2 snRNA Gene

    Science.gov (United States)

    Jia, Yichang; Mu, John C.; Ackerman, Susan L.

    2012-01-01

    SUMMARY Although uridine-rich small nuclear RNAs (U-snRNAs) are essential for pre-mRNA splicing, little is known regarding their function in the regulation of alternative splicing or of the biological consequences of their dysfunction in mammals. Here, we demonstrate that mutation of Rnu2–8, one of the mouse multicopy U2 snRNA genes, causes ataxia and neurodegeneration. Coincident with the observed pathology, the level of mutant U2 RNAs was highest in the cerebellum and increased after granule neuron maturation. Furthermore, neuron loss was strongly dependent on the dosage of mutant and wild type snRNA genes. Comprehensive transcriptome analysis identified a group of alternative splicing events, including the splicing of small introns, which were disrupted in the mutant cerebellum. Our results suggest that the expression of mammalian U2 snRNA genes, previously presumed to be ubiquitious, is spatially and temporally regulated, and dysfunction of a single U2 snRNA causes neuron degeneration through distortion of pre-mRNA splicing. PMID:22265417

  18. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration.

    Science.gov (United States)

    Jia, Yichang; Mu, John C; Ackerman, Susan L

    2012-01-20

    Although uridine-rich small nuclear RNAs (U-snRNAs) are essential for pre-mRNA splicing, little is known regarding their function in the regulation of alternative splicing or of the biological consequences of their dysfunction in mammals. Here, we demonstrate that mutation of Rnu2-8, one of the mouse multicopy U2 snRNA genes, causes ataxia and neurodegeneration. Coincident with the observed pathology, the level of mutant U2 RNAs was highest in the cerebellum and increased after granule neuron maturation. Furthermore, neuron loss was strongly dependent on the dosage of mutant and wild-type snRNA genes. Comprehensive transcriptome analysis identified a group of alternative splicing events, including the splicing of small introns, which were disrupted in the mutant cerebellum. Our results suggest that the expression of mammalian U2 snRNA genes, previously presumed to be ubiquitous, is spatially and temporally regulated, and dysfunction of a single U2 snRNA causes neuron degeneration through distortion of pre-mRNA splicing. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Tissue-Specific Expression of a Splicing Mutation in the IKBKAP Gene Causes Familial Dysautonomia

    OpenAIRE

    Slaugenhaupt, Susan A; Blumenfeld, Anat; Gill, Sandra P.; Leyne, Maire; Mull, James; Cuajungco, Math P.; Liebert, Christopher B.; Chadwick, Brian; Idelson, Maria; Reznik, Luba; Robbins, Christiane M.; Makalowska, Izabela; Brownstein, Michael J.; Krappmann, Daniel; Scheidereit, Claus

    2001-01-01

    Familial dysautonomia (FD; also known as “Riley-Day syndrome”), an Ashkenazi Jewish disorder, is the best known and most frequent of a group of congenital sensory neuropathies and is characterized by widespread sensory and variable autonomic dysfunction. Previously, we had mapped the FD gene, DYS, to a 0.5-cM region on chromosome 9q31 and had shown that the ethnic bias is due to a founder effect, with >99.5% of disease alleles sharing a common ancestral haplotype. To investigate the molecular...

  20. Abnormal desmin protein in myofibrillar myopathies caused by desmin gene mutations.

    Science.gov (United States)

    Li, M; Dalakas, M C

    2001-04-01

    Muscle proteins were extracted in various sodium dodecyl sulfate buffers from 6 patients with myofibrillar myopathy (MFM) and previously identified with mutations in the desmin gene (desmin myopathy; DesM), 6 with MFM without mutations, and 14 disease controls to search for alterations in biochemistry and solubility of mutated desmin filaments. In the 1% posthigh-speed pellet fraction, desmin was detected with immunoblots only in DesM and not the other MFM. We conclude that mutant desmin forms insoluble aggregates that are specific for the DesM and can be detected with Western blots.

  1. Regional rearrangements in chromosome 15q21 cause formation of cryptic promoters for the CYP19 (aromatase) gene.

    Science.gov (United States)

    Demura, Masashi; Martin, Regina M; Shozu, Makio; Sebastian, Siby; Takayama, Kazuto; Hsu, Wei-Tong; Schultz, Roger A; Neely, Kirk; Bryant, Michael; Mendonca, Berenice B; Hanaki, Keiichi; Kanzaki, Susumu; Rhoads, David B; Misra, Madhusmita; Bulun, Serdar E

    2007-11-01

    Production of appropriate quantities of estrogen in various tissues is essential for human physiology. A single gene (CYP19), regulated via tissue-specific promoters, encodes the enzyme aromatase, which catalyzes the key step in estrogen biosynthesis. Aromatase excess syndrome is inherited as autosomal dominant and characterized by high systemic estrogen levels, short stature, prepubertal gynecomastia and testicular failure in males, and premature breast development and uterine pathology in females. The underlying genetic mechanism is poorly understood. Here, we characterize five distinct heterozygous rearrangements responsible for aromatase excess syndrome in three unrelated families and two individuals (nine patients). The constitutively active promoter of one of five ubiquitously expressed genes located within the 11.2 Mb region telomeric to the CYP19 gene in chromosome 15q21 cryptically upregulated aromatase expression in several tissues. Four distinct inversions reversed the transcriptional direction of the promoter of a gene (CGNL1, TMOD3, MAPK6 or TLN2), placing it upstream of the CYP19 coding region in the opposite strand, whereas a deletion moved the promoter of a fifth gene (DMXL2), normally transcribed from the same strand, closer to CYP19. The proximal breakpoints of inversions were located 17-185 kb upstream of the CYP19 coding region. Sequences at the breakpoints suggested that the inversions were caused by intrachromosomal nonhomologous recombination. Splicing the untranslated exon downstream of each promoter onto the identical junction upstream of the translation initiation site created CYP19 mRNA encoding functional aromatase protein. Taken together, small rearrangements may create cryptic promoters that direct inappropriate transcription of CYP19 or other critical genes.

  2. The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury.

    Science.gov (United States)

    Zou, Yuan; Zhang, Lin; Rao, Shen; Zhu, Xiaoyang; Ye, Lanlan; Chen, Weixin; Li, Xueping

    2014-01-01

    Papaya (Carica papaya L.) is sensitive to low temperature and easy to be subjected to chilling injury, which causes fruit ripening disorder. This study aimed to investigate the relationship between the expression of genes related to ethylene and fruit ripening disorder caused by chilling injury. Papaya fruits were firstly stored at 7°C and 12°C for 25 and 30 days, respectively, then treated with exogenous ethylene and followed by ripening at 25°C for 5 days. Chilling injury symptoms such as pulp water soaking were observed in fruit stored at 7°C on 20 days, whereas the coloration and softening were completely blocked after 25 days, Large differences in the changes in the expression levels of twenty two genes involved in ethylene were seen during 7°C-storage with chilling injury. Those genes with altered expression could be divided into three groups: the group of genes that were up-regulated, including ACS1/2/3, EIN2, EIN3s/EIL1, CTR1/2/3, and ERF1/3/4; the group of genes that were down-regulated, including ACO3, ETR1, CTR4, EBF2, and ERF2; and the group of genes that were un-regulated, including ACO1/2, ERS, and EBF1. The results also showed that pulp firmness had a significantly positive correlation with the expression of ACS2, ACO1, CTR1/4, EIN3a/b, and EBF1/2 in fruit without chilling injury. This positive correlation was changed to negative one in fruit after storage at 7°C for 25 days with chilling injury. The coloring index displayed significantly negative correlations with the expression levels of ACS2, ACO1/2, CTR4, EIN3a/b, ERF3 in fruit without chilling injury, but these correlations were changed into the positive ones in fruit after storage at 7°C for 25 days with chilling injury. All together, these results indicate that these genes may play important roles in the abnormal softening and coloration with chilling injury in papaya.

  3. Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene.

    OpenAIRE

    Waterham, H. R.; Wijburg, F.A.; Hennekam, R. C.; Vreken, P; Poll-The, B T; Dorland, L.; Duran, M.; Jira, P.E.; Smeitink, J. A.; Wevers, R. A.; Wanders, R J

    1998-01-01

    Smith-Lemli-Opitz syndrome is a frequently occurring autosomal recessive developmental disorder characterized by facial dysmorphisms, mental retardation, and multiple congenital anomalies. Biochemically, the disorder is caused by deficient activity of 7-dehydrocholesterol reductase, which catalyzes the final step in the cholesterol-biosynthesis pathway-that is, the reduction of the Delta7 double bond of 7-dehydrocholesterol to produce cholesterol. We identified a partial transcript coding for...

  4. Molecular Diagnosis of Analbuminemia: A New Case Caused by a Nonsense Mutation in the Albumin Gene

    Directory of Open Access Journals (Sweden)

    Lorenzo Minchiotti

    2011-10-01

    Full Text Available Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB. We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB gene, carried out by single-strand conformational polymorphism (SSCP, heteroduplex analysis (HA, and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23–c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.

  5. Frameshift mutation in the PTCH2 gene can cause nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Fujii, Katsunori; Ohashi, Hirofumi; Suzuki, Maiko; Hatsuse, Hiromi; Shiohama, Tadashi; Uchikawa, Hideki; Miyashita, Toshiyuki

    2013-12-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by developmental defects and tumorigenesis. The gene responsible for NBCCS is PTCH1, encoding a receptor for the secreted protein, sonic hedgehog. Recently, a Chinese family with NBCCS carrying a missense mutation in PTCH2, a close homolog of PTCH1, was reported. However, the pathological significance of missense mutations should be discussed cautiously. Here, we report a 13-year-old girl diagnosed with NBCCS based on multiple keratocystic odontogenic tumors and rib anomalies carrying a frameshift mutation in the PTCH2 gene (c.1172_1173delCT). Considering the deleterious nature of the frameshift mutation, our study further confirmed a causative role for the PTCH2 mutation in NBCCS. The absence of typical phenotypes in this case such as palmar/plantar pits, macrocephaly, falx calcification, hypertelorism and coarse face, together with previously reported cases, suggested that individuals with NBCCS carrying a PTCH2 mutation may have a milder phenotype than those with a PTCH1 mutation.

  6. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo.

  7. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa).

    Science.gov (United States)

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria x ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus.

  8. Mutations of SCN4A gene cause different diseases: 2 case reports and literature review.

    Science.gov (United States)

    Liu, Xiao-li; Huang, Xiao-jun; Luan, Xing-hua; Zhou, Hai-yan; Wang, Tian; Wang, Jing-yi; Chen, Sheng-di; Tang, Hui-dong; Cao, Li

    2015-01-01

    SCN4A encodes the Nav1.4 channel and mutations in SCN4A lead to different ionic channelopathies. In this study, one sporadic individual of periodic paralysis, one paramyotonia family and 200 normal healthy controls are enrolled. Genomic DNA was extracted from peripheral blood leukocytes, followed by polymerase chain reaction and DNA sequencing of candidate genes, including SCN4A and CACNA1S. As a result, heterozygous mutations c.2024G>A (R675Q) and c.1333G>A (V445M) of gene SCN4A were identified in the hypokalemic periodic paralysis patient and the paramyotonia congenita family respectively. Both mutations were not detected in healthy controls. Compared with reported cases, patients with mutation R675Q usually do not present hypokalemic periodic paralysis but hyperkalemic or normokalemic periodic paralysis. The mutation V445M was first reported in Chinese patients with nondystrophic myotonias. In addition, we carried out literature review by summarizing clinical features of the 2 mutations and establish the genotype-phenotype correlations to provide guidance for diagnosis.

  9. Deletion in the EVC2 Gene Causes Chondrodysplastic Dwarfism in Tyrolean Grey Cattle

    Science.gov (United States)

    Murgiano, Leonardo; Jagannathan, Vidhya; Benazzi, Cinzia; Bolcato, Marilena; Brunetti, Barbara; Muscatello, Luisa Vera; Dittmer, Keren; Piffer, Christian; Gentile, Arcangelo; Drögemüller, Cord

    2014-01-01

    During the summer of 2013 seven Italian Tyrolean Grey calves were born with abnormally short limbs. Detailed clinical and pathological examination revealed similarities to chondrodysplastic dwarfism. Pedigree analysis showed a common founder, assuming autosomal monogenic recessive transmission of the defective allele. A positional cloning approach combining genome wide association and homozygosity mapping identified a single 1.6 Mb genomic region on BTA 6 that was associated with the disease. Whole genome re-sequencing of an affected calf revealed a single candidate causal mutation in the Ellis van Creveld syndrome 2 (EVC2) gene. This gene is known to be associated with chondrodysplastic dwarfism in Japanese Brown cattle, and dwarfism, abnormal nails and teeth, and dysostosis in humans with Ellis-van Creveld syndrome. Sanger sequencing confirmed the presence of a 2 bp deletion in exon 19 (c.2993_2994ACdel) that led to a premature stop codon in the coding sequence of bovine EVC2, and was concordant with the recessive pattern of inheritance in affected and carrier animals. This loss of function mutation confirms the important role of EVC2 in bone development. Genetic testing can now be used to eliminate this form of chondrodysplastic dwarfism from Tyrolean Grey cattle. PMID:24733244

  10. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia.

    Science.gov (United States)

    Tan, Jingwen; Zhang, Jinqing; Chen, Wei; Sun, Yi; Wan, Zhe; Li, Ruoyu; Liu, Wei

    2015-04-01

    The mechanism of fluconazole resistance in Candida tropicalis is still unclear. Recently, we isolated a fluconazole-resistant strain of C. tropicalis from the blood specimen of a patient with candidemia in China. In vitro antifungal susceptibility of the isolate was determined by using CLSI M27-A3 and E-test methods. The sequence of ERG11 gene was then analyzed, and the three-dimensional model of Erg11p encoded by ERG11 gene was also investigated. The sequencing of ERG11 gene revealed the mutation of A395T in this fluconazole-resistant isolate of C. tropicalis, resulting in the Y132F substitution in Erg11p. Sequence alignment and three-dimensional model comparison of Erg11ps showed high similarity between fluconazole-susceptible isolates of C. tropicalis and Candida albicans. The comparison of the three-dimensional models of Erg11ps demonstrated that the position of the Y132F substitution in this isolate of C. tropicalis is identical to the isolate of C. albicans with fluconazole resistance resulting from Y132F substitution in Erg11p. Hence, we ascertain that the Y132F substitution of Erg11p caused by A395T mutation in ERG11 gene confers the fluconazole resistance in C. tropicalis.

  11. A cryptic balanced translocation involving COL1A2 gene disruption cause a rare type of osteogenesis imperfecta.

    Science.gov (United States)

    Xu, Xiao-Jie; Lv, Fang; Liu, Yi; Wang, Jian-Yi; Song, Yu-Wen; Asan; Wang, Jia-Wei; Song, Li-Jie; Jiang, Yan; Wang, Ou; Xia, Wei-Bo; Xing, Xiao-Ping; Li, Mei

    2016-09-01

    Osteogenesis imperfecta (OI) is a group of hereditary disorders characterized by low bone mass and recurrent fractures. Most OI cases follow an autosomal dominant pattern of inheritance and are attributed to mutations in genes encoding type I collagen (COL1A1/COL1A2). Genomic structural variations involving type I collagen genes are extremely rare in OI. In this study, we characterized a de novo balanced translocation of t(5;7)(q32;q21.3) that caused an extremely rare type of OI in a patient from a non-consanguineous family. The clinical phenotypes of this OI included recurrent fractures, low bone mass, macrocephaly, blue sclera and failure to thrive. Next-generation sequencing was used to identify the translocation, and Sanger sequencing was used to validate and map the breakpoints. The breakpoint on chromosome 7 disrupted the COL1A2 gene in the 17th exon, presumed to affect type I collagen production and give rise to OI. The breakpoint on chromosome 5 disrupted the protein phosphatase 2 regulatory subunit B, beta gene (PPP2R2B) within the first intron. This is the first report of a copy-neutral structural variant involving COL1A2 that leads to a rare type of OI. This study expands the genotypic spectrum of OI and demonstrates the effectiveness of targeted sequencing for breakpoint mapping. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15].

    Science.gov (United States)

    Mardanov, A V; Lane, D; Ravin, N V

    2010-01-01

    Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

  13. Novel frameshift mutation in the CACNA1A gene causing a mixed phenotype of episodic ataxia and familiar hemiplegic migraine.

    Science.gov (United States)

    Kinder, S; Ossig, C; Wienecke, M; Beyer, A; von der Hagen, M; Storch, A; Smitka, M

    2015-01-01

    Episodic ataxia type 2 (EA2, MIM#108500) is the most common form of EA and an autosomal-dominant inherited disorder characterized by paroxysmal episodes of ataxia. The disease causative gene CACNA1A encodes for the alpha 1A subunit of the voltage-gated P/Q-type calcium channel. We report on a family with a novel mutation in the CACNA1A gene. The clinical symptoms within the family varied from the typical clinical presentation of EA2 with dysarthria, gait ataxia and oculomotor symptoms to migraine and dystonia. A novel nonsense mutation of the CACNA1A gene was identified in all affected family members and is most likely the disease causing molecular defect. The pharmacological treatment with acetazolamide (AAA) was successful in three family members so far. Treatment with AAA led to a reduction of migraine attacks and an improvement of the dystonia. This relationship confirmed the hypothesis that this novel mutation results in a heterogeneous phenotype and confutes the coincidence with common migraine. Dystonia is potentially included as a further part of the phenotype spectrum of CACNA1A gene mutations. Copyright © 2014. Published by Elsevier Ltd.

  14. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  15. Further insight into the phenotype associated with a mutation in the ORC6 gene, causing Meier-Gorlin syndrome 3.

    Science.gov (United States)

    Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly

    2015-03-01

    Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation.

  16. Overexpression of the CmACS-3 gene in melon causes abnormal pollen development.

    Science.gov (United States)

    Zhang, H; Luan, F

    2015-01-01

    Sexual diversity expressed by the Curcurbitaceae family is a primary example of developmental plasticity in plants. Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. Over-expression of the CmACS-3 gene in melon plants showed an increased number of flower buds, and increased femaleness as demonstrated by a larger number bisexual buds. Transformation of CmACS-3 in melons showed earlier development of and an increased number of bisexual buds that matured to anthesis but also increased the rate of development of the bisexual buds to maturity. Field studies showed that CmACS-3-overexpressing melons had earlier mature bisexual flowers, earlier fruit set, and an increased number of fruits set on closely spaced nodes on the main stem.

  17. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2.

    Science.gov (United States)

    Li, Anren; Jiao, Xiaodong; Munier, Francis L; Schorderet, Daniel F; Yao, Wenliang; Iwata, Fumino; Hayakawa, Mutsuko; Kanai, Atsushi; Shy Chen, Muh; Alan Lewis, Richard; Heckenlively, John; Weleber, Richard G; Traboulsi, Elias I; Zhang, Qingjiong; Xiao, Xueshan; Kaiser-Kupfer, Muriel; Sergeev, Yuri V; Hejtmancik, J Fielding

    2004-05-01

    Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal dystrophy characterized by multiple glistening intraretinal crystals scattered over the fundus, a characteristic degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. The BCD region of chromosome 4q35.1 was refined to an interval flanked centromerically by D4S2924 by linkage and haplotype analysis; mutations were found in the novel CYP450 family member CYP4V2 in 23 of 25 unrelated patients with BCD tested. The CYP4V2 gene, transcribed from 11 exons spanning 19 kb, is expressed widely. Homology to other CYP450 proteins suggests that CYP4V2 may have a role in fatty acid and steroid metabolism, consistent with biochemical studies of patients with BCD.

  18. Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions

    Directory of Open Access Journals (Sweden)

    Hsien-Yang Lee

    2012-01-01

    Full Text Available Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25 of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the t-SNARE, SNAP25. PRRT2 localizes to axons but not to dendritic processes in primary neuronal culture, and mutants associated with PKD/IC lead to dramatically reduced PRRT2 levels, leading ultimately to neuronal hyperexcitability that manifests in vivo as PKD/IC.

  19. Modified Lattice Landau Gauge

    CERN Document Server

    Von Smekal, L; Sternbeck, A; Williams, A G

    2007-01-01

    We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.

  20. Jammed lattice sphere packings.

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  1. Jammed lattice sphere packings

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  2. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    Science.gov (United States)

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1

  3. Identification of novel mutation in cathepsin C gene causing Papillon-Lefèvre Syndrome in Mexican patients

    OpenAIRE

    2013-01-01

    Abstract Background Papillon-Lefèvre Syndrome (PLS) is a type IV genodermatosis caused by mutations in cathepsin C (CTSC), with a worldwide prevalence of 1–4 cases per million in the general population. In México, the prevalence of this syndrome is unknown, and there are few case reports. The diagnosis of twenty patients in the state of Sinaloa highlights the need to characterize this syndrome in Mexicans. Methods To understand the basis of PLS in Mexicans, the gene expression, enzymatic acti...

  4. Identification of novel mutation in cathepsin C gene causing Papillon-Lefèvre Syndrome in Mexican patients

    OpenAIRE

    2013-01-01

    Background Papillon-Lefèvre Syndrome (PLS) is a type IV genodermatosis caused by mutations in cathepsin C (CTSC), with a worldwide prevalence of 1–4 cases per million in the general population. In México, the prevalence of this syndrome is unknown, and there are few case reports. The diagnosis of twenty patients in the state of Sinaloa highlights the need to characterize this syndrome in Mexicans. Methods To understand the basis of PLS in Mexicans, the gene expression, enzymatic activity and ...

  5. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders

    OpenAIRE

    Drenth, J.P.H.; Waxman, S G

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in los...

  6. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene.

    Science.gov (United States)

    Jansen, G A; Ofman, R; Ferdinandusse, S; Ijlst, L; Muijsers, A O; Skjeldal, O H; Stokke, O; Jakobs, C; Besley, G T; Wraith, J E; Wanders, R J

    1997-10-01

    Refsum disease is an autosomal-recessively inherited disorder characterized clinically by a tetrad of abnormalities: retinitis pigmentosa, peripheral neuropathy, cerebellar ataxia and elevated protein levels in the cerebrospinal fluid (CSF) without an increase in the number of cells in the CSF. All patients exhibit accumulation of an unusual branched-chain fatty acid, phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), in blood and tissues. Biochemically, the disease is caused by the deficiency of phytanoyl-CoA hydroxylase (PhyH), a peroxisomal protein catalyzing the first step in the alpha-oxidation of phytanic acid. We have purified PhyH from rat-liver peroxisomes and determined the N-terminal amino-acid sequence, as well as an additional internal amino-acid sequence obtained after Lys-C digestion of the purified protein. A search of the EST database with these partial amino-acid sequences led to the identification of the full-length human cDNA sequence encoding PhyH: the open reading frame encodes a 41.2-kD protein of 338 amino acids, which contains a cleavable peroxisomal targeting signal type 2 (PTS2). Sequence analysis of PHYH fibroblast cDNA from five patients with Refsum disease revealed distinct mutations, including a one-nucleotide deletion, a 111-nucleotide deletion and a point mutation. This analysis confirms our finding that Refsum disease is caused by a deficiency of PhyH.

  7. Novel splice, missense, and nonsense mutations in the fumarylacetoacetase gene causing tyrosinemia type I

    Energy Technology Data Exchange (ETDEWEB)

    Rootwelt, H.; Kvittingen, E.A. [Univ. of Oslo (Norway); Berger, R. [Wilhelmina Kinderziekenhuis, Utrecht (Netherlands); Gray, G.; Kelly, D.A. [Children`s Hospital, Birmingham (United Kingdom); Coskun, T. [Hacettepe Univ., Ankara (Turkey)

    1994-10-01

    In six unrelated patients with hereditary tyrosinemia type 1 (HT1), three different disease-causing mutations were found by DNA sequencing. Two Pakistani patients, with acute and intermediate forms of HT1, were homozygous for a G{sup 192} {yields} T mutation in the last nucleotide of exon 2. This caused aberrant splicing with partial intron 2 retention and premature termination. Three Turkish patients with chronic and intermediate forms of HT1 were homozygous for an A{sup 698} {yields} T mutation substituting aspartic acid 233 with valine. A Norwegian patient with an intermediate clinical phenotype was heterozygous for G{sup 786} {yields} A, introducing a TGA stop codon for Trp262 (W262X). Site-directed mutagenesis and expression in a rabbit reticulocyte lysate system demonstrated that the nonsense and missense mutations abolished fumarylacetoacetase activity and gave reduced amounts of a truncated and a full-length protein, respectively. Simple tests were established to identify the three mutations by restriction digestion of PCR-amplified genomic DNA. Among 30 additional HT1 patients investigated, 2 were found to be homozygous and 1 heterozygous for G{sup 192} {yields} T. Two other patients were homozygous and one was heterozygous for W262X. 21 refs., 4 figs.

  8. Structural Basis for a Human Glycosylation Disorder Caused by Mutation of the COG4 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, B.; Smith, R; Ungar, D; Nakamura, A; Jeffrey, P; Lupashin, V; Hughson, F

    2009-01-01

    The proper glycosylation of proteins trafficking through the Golgi apparatus depends upon the conserved oligomeric Golgi (COG) complex. Defects in COG can cause fatal congenital disorders of glycosylation (CDGs) in humans. The recent discovery of a form of CDG, caused in part by a COG4 missense mutation changing Arg 729 to Trp, prompted us to determine the 1.9 A crystal structure of a Cog4 C-terminal fragment. Arg 729 is found to occupy a key position at the center of a salt bridge network, thereby stabilizing Cog4's small C-terminal domain. Studies in HeLa cells reveal that this C-terminal domain, while not needed for the incorporation of Cog4 into COG complexes, is essential for the proper glycosylation of cell surface proteins. We also find that Cog4 bears a strong structural resemblance to exocyst and Dsl1p complex subunits. These complexes and others have been proposed to function by mediating the initial tethering between transport vesicles and their membrane targets; the emerging structural similarities provide strong evidence of a common evolutionary origin and may reflect shared mechanisms of action.

  9. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance.

    Science.gov (United States)

    Coffee, Erin M; Tolan, Dean R

    2010-12-01

    Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.-132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.-132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity.

  10. A novel mitofusin 2 gene mutation causing Charcot-Marie-Tooth type 2A disease in a Chinese family

    Institute of Scientific and Technical Information of China (English)

    CHEING Chor Kwan; LAU Kwok Kwong; YU Kwok Wai; CHAN Yan Wo Albert; MAK Miu Chloe

    2010-01-01

    @@ Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathies, comprises a genetically heterogeneous group of inherited peripheral neuropathies. Clinically it is characterized by progressive distal weakness, muscle atrophy, distal sensory loss and loss of deep tendon reflexes. Following electrophysiological criteria, CMT is divided into two main forms: the primarily demyelinating neuropathy CMT1 with severely decreased nerve conduction velocity (NCV) (38 m/s) but decreased amplitudes.1 CMT2A, an autosomal dominant disease caused by mitofusin 2 gene (MFN2) mutations, is the most common type of CMT2, accounting for up to 33% of familial CMT2 cases.2 We reported a patient with clinical diagnosis of CMT2 caused by a novel MFN2 mutation. To our knowledge, this is a relatively early report of genetically confirmed CMT2A in Chinese.

  11. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation.

    Science.gov (United States)

    Orr, Nathan; Arnaout, Rima; Gula, Lorne J; Spears, Danna A; Leong-Sit, Peter; Li, Qiuju; Tarhuni, Wadea; Reischauer, Sven; Chauhan, Vijay S; Borkovich, Matthew; Uppal, Shaheen; Adler, Arnon; Coughlin, Shaun R; Stainier, Didier Y R; Gollob, Michael H

    2016-04-12

    Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect.

  12. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices.

    Science.gov (United States)

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  13. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices

    CERN Document Server

    Wulf, Thomas

    2016-01-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be under- stood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  14. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices

    Science.gov (United States)

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  15. MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus.

    Directory of Open Access Journals (Sweden)

    Patricia Blanchet

    2017-08-01

    Full Text Available Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense. The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.

  16. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  17. Lattice Gerbe Theory

    CERN Document Server

    Lipstein, Arthur E

    2014-01-01

    We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.

  18. Root lattices and quasicrystals

    Science.gov (United States)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  19. SPIN ON THE LATTICE.

    Energy Technology Data Exchange (ETDEWEB)

    ORGINOS,K.

    2003-01-07

    I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.

  20. Superalloy Lattice Block Structures

    Science.gov (United States)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  1. Inhibition of scratching behaviour caused by contact dermatitis in histidine decarboxylase gene knockout mice.

    Science.gov (United States)

    Seike, M; Ikeda, M; Kodama, H; Terui, T; Ohtsu, H

    2005-03-01

    A neuronal system dedicated to itch consists of primary afferent and spinothalamic projection neurons. Histamine is thought to be one of the main mediators for the transmission of itch sensation. However, there are little available information on the role of histamine in scratching behaviour and sensory transmission of atopic dermatitis and chronic eczema. In the present study, the role of histamine in scratching behaviour and neural conduction of sensation in the chronic eczema model was investigated by using l-histidine decarboxylase (HDC) gene knockout mice lacking histamine. The chronic contact dermatitis was induced with daily application of diphenylcyclopropenone (DCP) on a hind paw of HDC (+/+) and HDC (-/-) mice for 2 months. The observation of scratching behaviour and the hot-plate test were performed in both mice. Histological studies were performed in the skin and spinal cord tissues. Histological examination revealed that both HDC (+/+) and HDC (-/-) mice displayed the similar extent of inflammatory cell infiltration, hyperplastic epidermis and newly spreading of neuronal processes in the skin tissue. Scratching behaviour was exclusively induced in HDC (+/+) mice, whereas it was barely observed in HDC (-/-) mice. The expression of c-Fos was specifically upregulated in HDC (+/+) mice in lamina I of the spinal dorsal horn following repeated DCP application. Scratching behaviour in chronic contact dermatitis in mice was thought mainly mediated with histamine. The afferent pathway of sensation in chronic contact dermatitis model may connect with the central nervous system through lamina I of the spinal dorsal horn.

  2. Achromatopsia caused by novel missense mutations in the CNGA3 gene

    Directory of Open Access Journals (Sweden)

    Xi-Teng Chen

    2015-10-01

    Full Text Available AIM:To identify the genetic defects in a Chinese family with achromatopsia.METHODS:A 2.5-year-old boy, who displayed nystagmus, photophobia, and hyperopia since early infancy, was clinically evaluated. To further confirm and localize the causative mutations in this family, targeted region capture and next-generation sequencing of candidate genes, such as CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H were performed using a custom-made capture array.RESULTS:Slit-lamp examination showed no specific findings in the anterior segments. The optic discs and maculae were normal on fundoscopy. The unaffected family members reported no ocular complaints. Clinical signs and symptoms were consistent with a clinical impression of autosomal recessive achromatopsia. The results of sequence analysis revealed two novel missense mutations in CNGA3, c.633T>A (p.D211E and c.1006G>T (p.V336F, with an autosomal recessive mode of inheritance.CONCLUSION: Genetic analysis of a Chinese family confirmed the clinical diagnosis of achromatopsia. Two novel mutations were identified in CNGA3, which extended the mutation spectrum of this disorder.

  3. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome

    DEFF Research Database (Denmark)

    Dietrich, Andrea; Fernandez, Thomas V; King, Robert A

    2015-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet to be clarif......Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet......, it is clear that large patient cohorts and open-access repositories will be essential to further advance the field. To that end, the large multicenter Tourette International Collaborative Genetics (TIC Genetics) study was established. The goal of the TIC Genetics study is to undertake a comprehensive gene...... discovery effort, focusing both on familial genetic variants with large effects within multiply affected pedigrees and on de novo mutations ascertained through the analysis of apparently simplex parent-child trios with non-familial tics. The clinical data and biomaterials (DNA, transformed cell lines, RNA...

  4. Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.

    Science.gov (United States)

    Meng, Jing; Stephenson, Edwin C

    2002-06-01

    The maternal effect gene swallow ( swa) of Drosophila is required for bicoid and htsN4 mRNA localization during oogenesis. Swallow is also required for additional, poorly understood, functions in early embryogenesis. We have examined the cytoskeleton in swa mutant oocytes and embryos by immunocytochemistry and confocal microscopy. Mid- and late-stage swaoocytes have defective cytoplasmic actin networks. Stage-10 oocytes have solid actin clumps and hollow actin spheres in the subcortical layer, and late-stage oocytes have uniformly distributed hollow actin spheres in the subcortical layer and in deeper cytoplasm. Swa preblastoderm embryos have uneven and irregularly distributed actin at the cortex, and defective subcortical actin networks that contain hollow and solid spheres. In swa syncytial blastoderm embryos, the abnormal actin cytoskeleton is associated with defects in nuclear distribution, migration and cleavage. Actin cytoskeletal defects correlate with spindle defects, suggesting that the abnormal organization of the actin cytoskeleton allows interaction of mitotic spindles, which induces defective nuclear divisions and loss of nuclei from the surface of the embryo.

  5. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis.

    Science.gov (United States)

    Lynch, Danielle C; Dyment, David A; Huang, Lijia; Nikkel, Sarah M; Lacombe, Didier; Campeau, Philippe M; Lee, Brendan; Bacino, Carlos A; Michaud, Jacques L; Bernier, Francois P; Parboosingh, Jillian S; Innes, A Micheil

    2013-01-01

    Acrodysostosis is characterized by nasal hypoplasia, peripheral dysostosis, variable short stature, and intellectual impairment. Recently, mutations in PRKAR1A were reported in patients with acrodysostosis and hormone resistance. Subsequently, mutations in a phosphodiesterase gene (PDE4D) were identified in seven sporadic cases. We sequenced PDE4D in seven acrodysostosis patients from five families. Missense mutations were identified in all cases. Families showed de novo inheritance except one family with three affected children whose father was subsequently found to have subtle features of acrodysostosis. There were no recurrent mutations. Short stature and endocrine resistance are rare in this series; however, cognitive involvement and obesity were frequent. This last finding is relevant given PDE4D is insulin responsive and potentially involved in lipolysis. PDE4D encodes a cyclic AMP regulator and places PDE4D-related acrodysostosis within the same family of diseases as pseudohypoparathyroidism, pseudopseudohypoparathyroidism, PRKAR1A-related acrodysostosis and brachydactyly-mental retardation syndrome; all characterized by cognitive impairment and short distal extremities.

  6. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  7. Technicolor on the Lattice

    CERN Document Server

    Pica, C; Lucini, B; Patella, A; Rago, A

    2009-01-01

    Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.

  8. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  9. Permutohedral Lattice CNNs

    OpenAIRE

    Kiefel, Martin; Jampani, Varun; Gehler, Peter V.

    2014-01-01

    This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....

  10. Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men

    Directory of Open Access Journals (Sweden)

    Leyla Ounis

    2015-02-01

    Full Text Available Klinefelter syndrome and Y-chromosomal microdeletion analyses were once the only two genetic tests offered to infertile men. Analyses of aurora kinase C (AURKC and DPY19L2 are now recommended for patients presenting macrozoospermia and globozoospermia, respectively, two rare forms of teratozoospermia particularly frequent among North African men. We carried out genetic analyses on Algerian patients, to evaluate the prevalence of these syndromes in this population and to compare it with the expected frequency of Klinefelter syndrome and Y-microdeletions. We carried out a retrospective study on 599 consecutive patients consulting for couple infertility at the assisted reproduction unit of the Ibn Rochd Clinique, Constantine, Algeria. Abnormal sperm parameters were observed in 404 men. Fourteen and seven men had typical macrozoospermia and globozoospermia profiles, respectively. Molecular diagnosis was carried out for these patients, for the AURKC and DPY19L2 genes. Eleven men with macrozoospermia had a homozygous AURKC mutation (79%, corresponding to 2.7% of all patients with abnormal spermograms. All the men with globozoospermia studied (n = 5, corresponding to 1.2% of all infertile men, presented a homozygous DPY19L2 deletion. By comparison, we would expect 1.6% of the patients in this cohort to have Klinefelter syndrome and 0.23% to have Y-microdeletion. Our findings thus indicate that AURKC mutations are more frequent than Klinefelter syndrome and constitute the leading genetic cause of infertility in North African men. Furthermore, we estimate that AURKC and DPY19L2 molecular defects are 10 and 5 times more frequent, respectively, than Y-microdeletions.

  11. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  12. Ultrastructural changes caused by polymyxin B and meropenem in multiresistant Klebsiella pneumoniae carrying blaKPC-2 gene.

    Science.gov (United States)

    Scavuzzi, Alexsandra Maria Lima; Alves, Luiz Carlos; Veras, Dyana Leal; Brayner, Fábio André; Lopes, Ana Catarina Souza

    2016-12-01

    The ultrastructural alterations caused by polymyxin B and meropenem and by the association between polymyxin B and meropenem were investigated in two multiresistant isolates of Klebsiella pneumoniae (K3-A2 and K12-A2) carriers of blaKPC-2, coming from infection and colonization in patients in a public hospital in Recife, Brazil. The ultrastructural changes were detected by transmission electron microscopy and scanning. The susceptibility of the isolates to antimicrobials was tested by the disc diffusion method and microdilution in broth. The analysis by electron microscopy showed that the isolates presented morphological and ultrastructural cellular changes when subjected to a clinically relevant concentration of antimicrobials alone or in combination. When subjected to meropenem, they presented retraction of the cytoplasmic material, rupture of the cell wall and extravasation of the cytoplasmic content. When submitted to polymyxin B, the isolates showed condensation of the ribosomes, DNA clotting, cell wall thickening and the presence of membrane compartment. When subjected to polymyxin B and meropenem in combination, the isolates showed a higher intensity of the ultrastructural changes visualized. This is the first report of the ultrastructural changes caused by polymyxin B and meropenem in multiresistant isolates of K. pneumoniae carriers of the blaKPC-2 gene. It should be noted that even when the K. pneumoniae isolates were multiresistant carriers of the blaKPC-2 gene, they underwent important structural change owing to the action of polymyxin B and meropenem.

  13. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene.

    Science.gov (United States)

    Melià, Maria J; Kubota, Akatsuki; Ortolano, Saida; Vílchez, Juan J; Gámez, Josep; Tanji, Kurenai; Bonilla, Eduardo; Palenzuela, Lluís; Fernández-Cadenas, Israel; Pristoupilová, Anna; García-Arumí, Elena; Andreu, Antoni L; Navarro, Carmen; Hirano, Michio; Martí, Ramon

    2013-05-01

    In 2001, we reported linkage of an autosomal dominant form of limb-girdle muscular dystrophy, limb-girdle muscular dystrophy 1F, to chromosome 7q32.1-32.2, but the identity of the mutant gene was elusive. Here, using a whole genome sequencing strategy, we identified the causative mutation of limb-girdle muscular dystrophy 1F, a heterozygous single nucleotide deletion (c.2771del) in the termination codon of transportin 3 (TNPO3). This gene is situated within the chromosomal region linked to the disease and encodes a nuclear membrane protein belonging to the importin beta family. TNPO3 transports serine/arginine-rich proteins into the nucleus, and has been identified as a key factor in the HIV-import process into the nucleus. The mutation is predicted to generate a 15-amino acid extension of the C-terminus of the protein, segregates with the clinical phenotype, and is absent in genomic sequence databases and a set of >200 control alleles. In skeletal muscle of affected individuals, expression of the mutant messenger RNA and histological abnormalities of nuclei and TNPO3 indicate altered TNPO3 function. Our results demonstrate that the TNPO3 mutation is the cause of limb-girdle muscular dystrophy 1F, expand our knowledge of the molecular basis of muscular dystrophies and bolster the importance of defects of nuclear envelope proteins as causes of inherited myopathies.

  14. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    Science.gov (United States)

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  15. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds.

    Directory of Open Access Journals (Sweden)

    Eija H Seppälä

    Full Text Available Pompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here we describe the genetic defect in canine Pompe disease and show that three related breeds from Scandinavia carry the same mutation. The affected dogs are homozygous for the GAA c.2237G>A mutation leading to a premature stop codon at amino acid position 746. The corresponding mutation has previously been reported in humans and causes infantile Pompe disease in combination with a second fully deleterious mutation. The affected dogs from both the Finnish as well as the Swedish breed mimic infantile-onset Pompe disease genetically, but also clinico-pathologically. Therefore this canine model provides a valuable tool for preclinical studies aimed at the development of gene therapy in Pompe disease.

  16. Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome.

    Science.gov (United States)

    Rossi, Giacomina; Conconi, Donatella; Panzeri, Elena; Redaelli, Serena; Piccoli, Elena; Paoletta, Laura; Dalprà, Leda; Tagliavini, Fabrizio

    2013-01-01

    In addition to the main function of promoting polymerization and stabilization of microtubules, other roles are being attributed to tau, now considered a multifunctional protein. In particular, previous studies suggest that tau is involved in chromosome stability and genome protection. We performed cytogenetic analysis, including molecular karyotyping, on lymphocytes and fibroblasts from patients affected by frontotemporal lobar degeneration carrying different mutations in the microtubule-associated protein tau gene, to investigate the effects of these mutations on genome stability. Furthermore, we analyzed the response of mutated lymphoblastoid cell lines to genotoxic agents to evaluate the participation of tau to DNA repair systems. We found a significantly higher level of chromosome aberrations in mutated than in control cells. Mutated lymphocytes showed higher percentages of stable lesions, clonal and total aneuploidy (medians: 2 versus 0, p $\\ll$ 0.01; 1.5 versus 0, p $\\ll$ 0.01; 16.5 versus 0, p $\\ll$ 0.01, respectively). Fibroblasts of patients showed higher percentages of stable lesions, structural aberrations and total aneuploidy (medians: 0 versus 0, p = 0.03; 5.8 versus 0, p = 0.02; 26.5 versus 12.6, p $\\ll$ 0.01, respectively). In addition, the in depth analysis of DNA copy number variations showed a higher tendency to non-allelic homologous recombination in mutated cells. Finally, while our analysis did not support an involvement of tau in DNA repair systems, it revealed its role in stabilization of chromatin. In summary, our findings indicate a role of tau in genome and chromosome stability that can be ascribed to its function as a microtubule-associated protein as well as a protein protecting chromatin integrity through interaction with DNA.

  17. Mutations in the lysosomal [beta]-galactosidase gene that cause the adult form of GMI gangliosidosis

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Rafi, M.A.; Wenger, D.A. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1994-06-01

    Three adult patients with acid-galactosidase deficiency/GM1 gangliosidosis who were from two unrelated families of Scandinavian descent were found to share a common point mutation in the coding region of the corresponding gene. The patients share common clinical features, including early dysarthria, mild ataxia, and bone abnormalities. When cDNA from the two patients in family 1 was PCR amplified and sequenced, most (39/41) of the clones showed a C-to-T transition (C[yields]T) at nucleotide 245 (counting from the initiation codon). This mutation changes the codon for the Thr(ACG) to Met(ATG). Mutant and normal sequences were also found in that position in genomic DNA, indicating the presence of another mutant allele. Genomic DNA from the patient in family 2 revealed the same point mutation in one allele. It was determined that in each family only the father carried the C[yields]T mutation. Expression studies showed that this mutation produced 3%-4% of [beta]-galactosidase activity, confirming its deleterious effects. The cDNA clones from the patients in family 1 that did not contain the C[yields]T revealed a 20-bp insertion of intronic sequence between nucleotides 75 and 76, the location of the first intron. Further analysis showed the insertion of a T near the 5[prime] splice donor site which led to the use of a cryptic splice site. It appears that the C[yields]T mutation results in enough functional enzyme to produce a mild adult form of the disease, even in the presence of a second mutation that likely produces nonfunctional enzyme. 31 refs., 7 figs., 1 tab.

  18. Genotype–phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene

    Science.gov (United States)

    Feely, Shawna; Scherer, Steven S.; Herrmann, David N.; Burns, Joshua; Muntoni, Francesco; Li, Jun; Siskind, Carly E.; Day, John W.; Laura, Matilde; Sumner, Charlotte J.; Lloyd, Thomas E.; Ramchandren, Sindhu; Shy, Rosemary R.; Grider, Tiffany; Bacon, Chelsea; Finkel, Richard S.; Yum, Sabrina W.; Moroni, Isabella; Piscosquito, Giuseppe; Pareyson, Davide; Reilly, Mary M.; Shy, Michael E.

    2015-01-01

    We aimed to characterize genotype–phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot–Marie–Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot–Marie–Tooth disease neuropathy score version 1 or 2 and the Charcot–Marie–Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot–Marie–Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3–84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot–Marie–Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot–Marie–Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required

  19. A Hereditary Enteropathy Caused by Mutations in the SLCO2A1 Gene, Encoding a Prostaglandin Transporter.

    Directory of Open Access Journals (Sweden)

    Junji Umeno

    2015-11-01

    Full Text Available Previously, we proposed a rare autosomal recessive inherited enteropathy characterized by persistent blood and protein loss from the small intestine as chronic nonspecific multiple ulcers of the small intestine (CNSU. By whole-exome sequencing in five Japanese patients with CNSU and one unaffected individual, we found four candidate mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. The pathogenicity of the mutations was supported by segregation analysis and genotyping data in controls. By Sanger sequencing of the coding regions, 11 of 12 other CNSU patients and 2 of 603 patients with a diagnosis of Crohn's disease were found to have homozygous or compound heterozygous SLCO2A1 mutations. In total, we identified recessive SLCO2A1 mutations located at seven sites. Using RT-PCR, we demonstrated that the identified splice-site mutations altered the RNA splicing, and introduced a premature stop codon. Tracer prostaglandin E2 uptake analysis showed that the mutant SLCO2A1 protein for each mutation exhibited impaired prostaglandin transport. Immunohistochemistry and immunofluorescence analyses revealed that SLCO2A1 protein was expressed on the cellular membrane of vascular endothelial cells in the small intestinal mucosa in control subjects, but was not detected in affected individuals. These findings indicate that loss-of-function mutations in the SLCO2A1 gene encoding a prostaglandin transporter cause the hereditary enteropathy CNSU. We suggest a more appropriate nomenclature of "chronic enteropathy associated with SLCO2A1 gene" (CEAS.

  20. Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: functional differentiation from Muenke coronal synostosis syndrome.

    Science.gov (United States)

    Kress, Wolfram; Schropp, Christian; Lieb, Gabriele; Petersen, Birgit; Büsse-Ratzka, Maria; Kunz, Jürgen; Reinhart, Edeltraut; Schäfer, Wolf-Dieter; Sold, Johanna; Hoppe, Florian; Pahnke, Jan; Trusen, Andreas; Sörensen, Niels; Krauss, Jürgen; Collmann, Hartmut

    2006-01-01

    The Saethre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome with uni- or bilateral coronal synostosis and mild limb deformities. It is caused by loss-of-function mutations of the TWIST 1 gene. In an attempt to delineate functional features separating SCS from Muenke's syndrome, we screened patients presenting with coronal suture synostosis for mutations in the TWIST 1 gene, and for the Pro250Arg mutation in FGFR3. Within a total of 124 independent pedigrees, 39 (71 patients) were identified to carry 25 different mutations of TWIST 1 including 14 novel mutations, to which six whole gene deletions were added. The 71 patients were compared with 42 subjects from 24 pedigrees carrying the Pro250Arg mutation in FGFR3 and 65 subjects from 61 pedigrees without a detectable mutation. Classical SCS associated with a TWIST 1 mutation could be separated phenotypically from the Muenke phenotype on the basis of the following features: low-set frontal hairline, gross ptosis of eyelids, subnormal ear length, dilated parietal foramina, interdigital webbing, and hallux valgus or broad great toe with bifid distal phalanx. Functional differences were even more important: intracranial hypertension as a consequence of early progressive multisutural fusion was a significant problem in SCS only, while mental delay and sensorineural hearing loss were associated with the Muenke's syndrome. Contrary to previous reports, SCS patients with complete loss of one TWIST allele showed normal mental development.

  1. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.

    Science.gov (United States)

    Howe, Steven J; Mansour, Marc R; Schwarzwaelder, Kerstin; Bartholomae, Cynthia; Hubank, Michael; Kempski, Helena; Brugman, Martijn H; Pike-Overzet, Karin; Chatters, Stephen J; de Ridder, Dick; Gilmour, Kimberly C; Adams, Stuart; Thornhill, Susannah I; Parsley, Kathryn L; Staal, Frank J T; Gale, Rosemary E; Linch, David C; Bayford, Jinhua; Brown, Lucie; Quaye, Michelle; Kinnon, Christine; Ancliff, Philip; Webb, David K; Schmidt, Manfred; von Kalle, Christof; Gaspar, H Bobby; Thrasher, Adrian J

    2008-09-01

    X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.

  2. Solitons in spiraling Vogel lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2012-01-01

    We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally-rich structure of Vogel lattices allows generation of spiraling soliton motion.

  3. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    Directory of Open Access Journals (Sweden)

    Lee SH

    2016-04-01

    Full Text Available Sin Hang Lee,1,21Pathology Department, Milford Hospital, Milford, CT, USA; 2Milford Molecular Diagnostics, Milford, CT, USA Abstract: Lyme disease (LD, the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. Keywords: Lyme disease, Borrelia burgdorferi, homeologous 16S rRNA genes, DNA sequencing

  4. Enlarged parietal foramina caused by mutations in the homeobox genes ALX4 and MSX2: from genotype to phenotype.

    Science.gov (United States)

    Mavrogiannis, Lampros A; Taylor, Indira B; Davies, Sally J; Ramos, Feliciano J; Olivares, José L; Wilkie, Andrew O M

    2006-02-01

    Heterozygous mutations of the homeobox genes ALX4 and MSX2 cause skull defects termed enlarged parietal foramina (PFM) and cranium bifidum (CB); a single MSX2 mutation has been documented in a unique craniosynostosis (CRS) family. However, the relative mutational contribution of these genes to PFM/CB and CRS is not known and information on genotype-phenotype correlations is incomplete. We analysed ALX4 and MSX2 in 11 new unrelated cases or families with PFM/CB, 181 cases of CRS, and a single family segregating a submicroscopic deletion of 11p11.2, including ALX4. We explored the correlations between skull defect size and age, gene, and mutation type, and reviewed additional phenotypic manifestations. Four PFM cases had mutations in either ALX4 or MSX2; including previous families, we have identified six ALX4 and six MSX2 mutations, accounting for 11/13 familial, but only 1/6 sporadic cases. The deletion family confirms the delineation of a mental retardation locus to within 1.1 Mb region of 11p11.2. Overall, no significant size difference was found between ALX4- and MSX2-related skull defects, but the ALX4 mutation p.R218Q tends to result in persistent CB and is associated with anatomical abnormalities of the posterior fossa. We conclude that PFM caused by mutations in ALX4 and MSX2 have a similar prevalence and are usually clinically indistinguishable. Mutation screening has a high pickup rate in PFM, especially in familial cases, but is not indicated in CRS.

  5. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model.

    Directory of Open Access Journals (Sweden)

    Marine Douaud

    Full Text Available Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.

  6. Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice.

    Science.gov (United States)

    Kubo, Takahiko; Takashi, Tomonori; Ashikari, Motoyuki; Yoshimura, Atsushi; Kurata, Nori

    2016-02-01

    Molecular mechanisms of hybrid breakdown associated with sterility (F2 sterility) are poorly understood as compared with those of F1 hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F2 sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereas the indica allele (HSA1a-i(s)) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i(s), encodes an uncharacterized protein with some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i(s)-HSA1b-i(s) alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i(s) caused semi-sterility in the heterozygous state with the HSA1a-i(s)-HSA1b-i(s) haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F1 hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F1 and F2 hybrid sterility.

  7. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype.

    Directory of Open Access Journals (Sweden)

    Gianluca Occhi

    2013-03-01

    Full Text Available The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27(KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27(KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF in the 5'UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF-encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27(KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27(KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27(KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27(KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.

  8. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype.

    Science.gov (United States)

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-03-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27(KIP1), an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27(KIP1) expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5'UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF-encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27(KIP1) expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27(KIP1) activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27(KIP1) activity can also be modulated by an uORF and mutations affecting uORF could change p27(KIP1) expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.

  9. Designing isotropic interactions for self-assembly of complex lattices.

    Science.gov (United States)

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2011-08-19

    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids. © 2011 American Physical Society

  10. Wave propagation in reconfigurable magneto-elastic kagome lattice structures

    Science.gov (United States)

    Schaeffer, Marshall; Ruzzene, Massimo

    2015-05-01

    The paper discusses the wave propagation characteristics of two-dimensional magneto-elastic kagome lattices. Mechanical instabilities caused by magnetic interactions are exploited in combination with particle contact to bring about changes in the topology and stiffness of the lattices. The analysis uses a lumped mass system of particles, which interact through axial and torsional elastic forces as well as magnetic forces. The propagation of in-plane waves is predicted by applying Bloch theorem to lattice unit cells with linearized interactions. Elastic wave dispersion in these lattices before and after topological changes is compared, and large differences are highlighted.

  11. A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2013-01-01

    Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.

  12. Lattice Simulations using OpenACC compilers

    CERN Document Server

    Majumdar, Pushan

    2013-01-01

    OpenACC compilers allow one to use Graphics Processing Units without having to write explicit CUDA codes. Programs can be modified incrementally using OpenMP like directives which causes the compiler to generate CUDA kernels to be run on the GPUs. In this article we look at the performance gain in lattice simulations with dynamical fermions using OpenACC compilers.

  13. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    NARCIS (Netherlands)

    Bross, Peter; Li, Zhijie; Hansen, Jakob; Hansen, Jens Jacob; Nielsen, Marit Nyholm; Corydon, Thomas Juhl; Georgopoulos, Costa; Ang, Debbie; Lundemose, Jytte Banner; Niezen-Koning, Klary; Eiberg, Hans; Yang, Huanming; Kolvraa, Steen; Bolund, Lars; Gregersen, Niels

    2007-01-01

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for v

  14. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    NARCIS (Netherlands)

    Bross, Peter; Li, Zhijie; Hansen, Jakob; Hansen, Jens Jacob; Nielsen, Marit Nyholm; Corydon, Thomas Juhl; Georgopoulos, Costa; Ang, Debbie; Lundemose, Jytte Banner; Niezen-Koning, Klary; Eiberg, Hans; Yang, Huanming; Kolvraa, Steen; Bolund, Lars; Gregersen, Niels

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for

  15. Characterization of a disease-causing Glu119-Lys mutation in the low-density lipoprotein receptor gene in two Danish families with heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Jensen, L G

    1994-01-01

    Mutations in the gene for the low-density lipoprotein receptor (LDL receptor) cause the autosomal dominant inherited disease familial hypercholesterolemia (FH). In 15 Danish patients with heterozygous FH we have screened exon 4 of the LDL receptor gene for point mutations and small rearrangements...

  16. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    DEFF Research Database (Denmark)

    Bross, Peter; Li, Zhijie; Hansen, Jakob;

    2007-01-01

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups fo...

  17. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K;

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cell...

  18. Measuring on Lattices

    Science.gov (United States)

    Knuth, Kevin H.

    2009-12-01

    Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.

  19. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico.

    Science.gov (United States)

    Patzi-Vargas, Sandra; Zaidi, Mussaret Bano; Perez-Martinez, Iza; León-Cen, Magda; Michel-Ayala, Alba; Chaussabel, Damien; Estrada-Garcia, Teresa

    2015-03-01

    Diarrheagenic Escherichia coli (DEC) cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG), mainly associated with enteroaggregative E. coli (EAEC), were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%), surpassing Salmonella (12%) and Shigella (9%). Predominant DEC groups were diffusely adherent E. coli (DAEC) (35%), EAEC (24%), and enteropathogenic E. coli (EPEC) (19%). Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26%) and DAEC (18%); 30% had moderate diarrhoea mainly caused by DAEC (36%), mixed DEC infections (33%) and EAEC (32%). DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6-24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3-13.9). The presence of SVG dispersin, (aatA), dispersin-translocator (aatA), enteroaggregative heat-stable toxin 1 (astA), plasmid encoded toxin (pet), cytolethal distending toxin (cdt) was higher in DEC than non-DEC strains, (36% vs 26%, P DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2%) and non-DEC strains (21% and 13%). DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.

  20. YBR/EiJ mice: a new model of glaucoma caused by genes on chromosomes 4 and 17

    Directory of Open Access Journals (Sweden)

    K. Saidas Nair

    2016-08-01

    Full Text Available A variety of inherited animal models with different genetic causes and distinct genetic backgrounds are needed to help dissect the complex genetic etiology of glaucoma. The scarcity of such animal models has hampered progress in glaucoma research. Here, we introduce a new inherited glaucoma model: the inbred mouse strain YBR/EiJ (YBR. YBR mice develop a form of pigmentary glaucoma. They exhibit a progressive age-related pigment-dispersing iris disease characterized by iris stromal atrophy. Subsequently, these mice develop elevated intraocular pressure (IOP and glaucoma. Genetic mapping studies utilizing YBR as a glaucoma-susceptible strain and C57BL/6J as a glaucoma-resistant strain were performed to identify genetic loci responsible for the iris disease and high IOP. A recessive locus linked to Tyrp1b on chromosome 4 contributes to iris stromal atrophy and high IOP. However, this is not the only important locus. A recessive locus on YBR chromosome 17 causes high IOP independent of the iris stromal atrophy. In specific eyes with high IOP caused by YBR chromosome 17, the drainage angle (through which ocular fluid leaves the eye is largely open. The YBR alleles of genes on chromosomes 4 and 17 underlie the development of high IOP and glaucoma but do so through independent mechanisms. Together, these two loci act in an additive manner to increase the susceptibility of YBR mice to the development of high IOP. The chromosome 17 locus is important not only because it causes IOP elevation in mice with largely open drainage angles but also because it exacerbates IOP elevation and glaucoma induced by pigment dispersion. Therefore, YBR mice are a valuable resource for studying the genetic etiology of IOP elevation and glaucoma, as well as for testing new treatments.

  1. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico.

    Directory of Open Access Journals (Sweden)

    Sandra Patzi-Vargas

    2015-03-01

    Full Text Available Diarrheagenic Escherichia coli (DEC cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG, mainly associated with enteroaggregative E. coli (EAEC, were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%, surpassing Salmonella (12% and Shigella (9%. Predominant DEC groups were diffusely adherent E. coli (DAEC (35%, EAEC (24%, and enteropathogenic E. coli (EPEC (19%. Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26% and DAEC (18%; 30% had moderate diarrhoea mainly caused by DAEC (36%, mixed DEC infections (33% and EAEC (32%. DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6-24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3-13.9. The presence of SVG dispersin, (aatA, dispersin-translocator (aatA, enteroaggregative heat-stable toxin 1 (astA, plasmid encoded toxin (pet, cytolethal distending toxin (cdt was higher in DEC than non-DEC strains, (36% vs 26%, P <0.0001, OR = 1.5, 95% CI, 1.3-1.8. 98% of EAEC-infected children harboured strains with SVG; 85% carried the aap-aatA gene combination, and 33% of these also carried astA. 28% of both EPEC and ETEC, and 6% of DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2% and non-DEC strains (21% and 13%. DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.

  2. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    Science.gov (United States)

    Drenth, Joost P H; Waxman, Stephen G

    2007-12-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.

  3. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report.

    Science.gov (United States)

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain.

  4. Deletion of exon 8 from the EXT1 gene causes multiple osteochondromas (MO) in a family with three affected members.

    Science.gov (United States)

    Zhuang, Lei; Gerber, Simon D; Kuchen, Stefan; Villiger, Peter M; Trueb, Beat

    2016-01-01

    Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.

  5. Lattice Boltzmann Stokesian dynamics.

    Science.gov (United States)

    Ding, E J

    2015-11-01

    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.

  6. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  7. Improved Lattice Radial Quantization

    CERN Document Server

    Brower, Richard C; Fleming, George T

    2014-01-01

    Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.

  8. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  9. Digital lattice gauge theories

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio

    2016-01-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...

  10. Polymorphisms in the TOLLIP Gene Influence Susceptibility to Cutaneous Leishmaniasis Caused by Leishmania guyanensis in the Amazonas State of Brazil.

    Science.gov (United States)

    de Araujo, Felipe Jules; da Silva, Luan Diego Oliveira; Mesquita, Tirza Gabrielle; Pinheiro, Suzana Kanawati; Vital, Wonei de Seixas; Chrusciak-Talhari, Anette; Guerra, Jorge Augusto de Oliveira; Talhari, Sinésio; Ramasawmy, Rajendranath

    2015-01-01

    The clinical outcome to Leishmania-infection is determined by the individual adaptive immune T helper cell responses and their interactions with parasitized host cells. An early development of a proinflammatory immune response (Th1 response) is necessary for Leishmania-infection resolution. The Toll-interacting protein (TOLLIP) regulates human Toll-like receptors signaling pathways by down regulating the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inducing the ant-inflammatory cytokine interleukin-10 (IL-10). Polymorphisms in the TOLLIP gene are associated with infectious diseases. The polymorphisms rs5743899 and rs3750920 in the TOLLIP gene were genotyped by polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis in 631 patients with cutaneous leishmaniasis (CL) caused by L. guyanensis and 530 individuals with no history of leishmaniasis. The G and T alleles of the rs5743899 and rs3750920 were more common in patients with CL than in healthy individuals (P = 2.6 x10(-8) ; odds ratio [OR], 1.7 [ 95% confidence interval (CI) 1.4-2.0] and P = 1.9 x10(-8) ; OR, 1.6 [95% CI 1.4-1.9] respectively). The r2 and D' linkage disequilibrium between the two polymorphisms are 0.05 and 0.473 with a confidence bounds of 0.37 to 0.57 respectively. The two polymorphisms are independently associated with an increased risk of developing CL.

  11. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins.

    Science.gov (United States)

    Cernada, María; Bäuerl, Christine; Serna, Eva; Collado, Maria Carmen; Martínez, Gaspar Pérez; Vento, Máximo

    2016-05-16

    Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.

  12. Two mutational hotspots in the interleukin-2 receptor {gamma} chain gene causing human X-linked severe combined immunodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, A.E.; Puck, J.M. [National Institutes of Health, Bethesda, MD (United States); Buckley, R.H. [and others

    1995-09-01

    Human severe combined immunodeficiency (SCID), a syndrome of profoundly impaired cellular and humoral immunity, is most commonly caused by mutations in the X-linked gene for interleukin-2 (IL-2) receptor {gamma} chain (IL2RG). For mutational analysis of IL2RG in males with SCID, SSCP screening was followed by DNA sequencing. Of 40 IL2RG mutations found in unrelated SCID patients, 6 were point mutations at the CpG dinucleotide at cDNA 690-691, encoding amino acid R226. This residue lies in the extracellular domain of the protein in a region not previously recognized to be significantly conserved in the cytokine receptor gene family, 11 amino acids upstream from the highly conserved WSXWS motif. Three additional instances of mutation at another CpG dinucleotide at cDNA 879 produced a premature termination signal in the intracellular domain of IL2RG, resulting in loss of the SH2-homologous intracellular domain known to be essential for signaling from the IL-2 receptor complex. Mutations at these two hotspots constitute >20% of the X-linked SCID mutations found by our group and a similar proportion of all reported IL2RG mutations. 41 refs., 5 figs., 1 tab.

  13. Optical Lattice Clocks

    Science.gov (United States)

    Oates, Chris

    2012-06-01

    Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).

  14. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene

    DEFF Research Database (Denmark)

    Toustrup, Lise Bols; Zhou, Yan; Kvistgaard, Helene

    2017-01-01

    Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using...... lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line...

  15. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  16. Belief functions on lattices

    CERN Document Server

    Grabisch, Michel

    2008-01-01

    We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.

  17. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen.

    Directory of Open Access Journals (Sweden)

    Mengzhou Zhou

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+ enterotoxigenic Escherichia coli (ETEC, a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS: Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB. Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%. The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+ but lacking enterotoxin genes of estA, estB, and elt did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE: The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies. Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the

  18. Lattice of ℤ-module

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].

  19. An Algorithm on Generating Lattice Based on Layered Concept Lattice

    Directory of Open Access Journals (Sweden)

    Zhang Chang-sheng

    2013-08-01

    Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.

  20. A missense mutation P136L in the arylsulfatase A gene causes instability and loss of activity of the mutant enzyme.

    Science.gov (United States)

    Kafert, S; Heinisch, U; Zlotogora, J; Gieselmann, V

    1995-02-01

    Metachromatic leukodystrophy is a lysosomal storage disease caused by deficiency of arylsulfatase A. Sequencing of the arylsulfatase A genes of an Ashkenazi Jewish patient suffering from the severe late infantile form of the disease revealed a point mutation in exon 2 causing proline 136 to be substituted by leucine. The patient was homozygous for this mutation. Studies on Ltk- cells stably expressing the mutant enzyme show that the mutation causes complete loss of enzyme activity and rapid degradation in an early biosynthetic compartment.

  1. The JKJ Lattice

    Science.gov (United States)

    Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro

    2002-12-01

    The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.

  2. Quantum lattice problems

    NARCIS (Netherlands)

    de Raedt, Hans; von der Linden, W.; Binder, K

    1995-01-01

    In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi

  3. Measuring on Lattices

    CERN Document Server

    Knuth, Kevin H

    2009-01-01

    Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...

  4. Lattice Multiverse Models

    OpenAIRE

    Williamson, S. Gill

    2010-01-01

    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  5. Phenomenology from lattice QCD

    CERN Document Server

    Lellouch, L P

    2003-01-01

    After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.

  6. Noetherian and Artinian Lattices

    Directory of Open Access Journals (Sweden)

    Derya Keskin Tütüncü

    2012-01-01

    Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.

  7. Postretinal Structure and Function in Severe Congenital Photoreceptor Blindness Caused by Mutations in the GUCY2D Gene

    Science.gov (United States)

    Aguirre, Geoffrey K.; Butt, Omar H.; Datta, Ritobrato; Roman, Alejandro J.; Sumaroka, Alexander; Schwartz, Sharon B.; Cideciyan, Artur V.; Jacobson, Samuel G.

    2017-01-01

    Purpose To examine how severe congenital blindness resulting from mutations of the GUCY2D gene alters brain structure and function, and to relate these findings to the notable preservation of retinal architecture in this form of Leber congenital amaurosis (LCA). Methods Six GUCY2D-LCA patients (ages 20–46) were studied with optical coherence tomography of the retina and multimodal magnetic resonance imaging (MRI) of the brain. Measurements from this group were compared to those obtained from populations of normally sighted controls and people with congenital blindness of a variety of causes. Results Patients with GUCY2D-LCA had preservation of the photoreceptors, ganglion cells, and nerve fiber layer. Despite this, visual function in these patients ranged from 20/160 acuity to no light perception, and functional MRI responses to light stimulation were attenuated and restricted. This severe visual impairment was reflected in substantial thickening of the gray matter layer of area V1, accompanied by an alteration of resting-state correlations within the occipital lobe, similar to a comparison group of congenitally blind people with structural damage to the retina. In contrast to the comparison blind population, however, the GUCY2D-LCA group had preservation of the size of the optic chiasm, and the fractional anisotropy of the optic radiations as measured with diffusion tensor imaging was also normal. Conclusions These results identify dissociable effects of blindness upon the visual pathway. Further, the relatively intact postgeniculate white matter pathway in GUCY2D-LCA is encouraging for the prospect of recovery of visual function with gene augmentation therapy.

  8. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood.

    Science.gov (United States)

    Li, Quanzi; Min, Douyong; Wang, Jack Peng-Yu; Peszlen, Ilona; Horvath, Laszlo; Horvath, Balazs; Nishimura, Yufuko; Jameel, Hasan; Chang, Hou-Min; Chiang, Vincent L

    2011-02-01

    Members of glycosyltransferase protein families GT8, GT43 and GT47 are implicated in the biosynthesis of xylan in the secondary cell walls of Arabidopsis. The Arabidopsis mutant irx8 has a 60% reduction in xylan. However, over-expression of an ortholog of Arabidopsis IRX8, poplar PoGT8D, in Arabidopsis irx8 mutant could not restore xylan synthesis. The functions of tree GT8D genes remain unclear. We identified two GT8 gene homologs, PtrGT8D1 and PtrGT8D2, in Populus trichocarpa. They are the only two GT8D members and are abundantly and specifically expressed in the differentiating xylem of P. trichocarpa. PtrGT8D1 transcript abundance was >7 times that of PtrGT8D2. To elucidate the genetic function of GT8D in P. trichocarpa, the expression of PtrGT8D1 and PtrGT8D2 was simultaneously knocked down through RNAi. Four transgenic lines had 85-94% reduction in transcripts of PtrGT8D1 and PtrGT8D2, resulting in 29-36% reduction in stem wood xylan content. Xylan reduction had essentially no effect on cellulose quantity but caused an 11-25% increase in lignin. These transgenics exhibit a brittle wood phenotype, accompanied by increased vessel diameter and thinner fiber cell walls in stem xylem. Stem modulus of elasticity and modulus of rupture were reduced by 17-29% and 16-23%, respectively, and were positively correlated with xylan content but negatively correlated with lignin quantity. These results suggest that PtrGT8Ds play key roles in xylan biosynthesis in wood. Xylan may be a more important factor than lignin affecting the stiffness and fracture strength of wood.

  9. Postretinal Structure and Function in Severe Congenital Photoreceptor Blindness Caused by Mutations in the GUCY2D Gene.

    Science.gov (United States)

    Aguirre, Geoffrey K; Butt, Omar H; Datta, Ritobrato; Roman, Alejandro J; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2017-02-01

    To examine how severe congenital blindness resulting from mutations of the GUCY2D gene alters brain structure and function, and to relate these findings to the notable preservation of retinal architecture in this form of Leber congenital amaurosis (LCA). Six GUCY2D-LCA patients (ages 20-46) were studied with optical coherence tomography of the retina and multimodal magnetic resonance imaging (MRI) of the brain. Measurements from this group were compared to those obtained from populations of normally sighted controls and people with congenital blindness of a variety of causes. Patients with GUCY2D-LCA had preservation of the photoreceptors, ganglion cells, and nerve fiber layer. Despite this, visual function in these patients ranged from 20/160 acuity to no light perception, and functional MRI responses to light stimulation were attenuated and restricted. This severe visual impairment was reflected in substantial thickening of the gray matter layer of area V1, accompanied by an alteration of resting-state correlations within the occipital lobe, similar to a comparison group of congenitally blind people with structural damage to the retina. In contrast to the comparison blind population, however, the GUCY2D-LCA group had preservation of the size of the optic chiasm, and the fractional anisotropy of the optic radiations as measured with diffusion tensor imaging was also normal. These results identify dissociable effects of blindness upon the visual pathway. Further, the relatively intact postgeniculate white matter pathway in GUCY2D-LCA is encouraging for the prospect of recovery of visual function with gene augmentation therapy.

  10. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with Unconditional Autosomal Dominant Nonsyndromic Hereditary Hearing Impairment

    Institute of Scientific and Technical Information of China (English)

    Hong-Yang Wang; Ya-Li Zhao; Qiong Liu; Hu Yuan; Yun Gao; Lan Lan; Lan Yu

    2015-01-01

    Background: There are more than 300 genetic loci that have been found to be related to hereditary hearing impairment (HHI), including 92 causative genes for nonsyndromic hearing loss, among which 34 genes are related to autosomal dominant nonsyndromic HHI (ADNSHHI).Traditional linkage analysis and candidate gene sequencing are not effective at detecting the ADNSHHI, especially for the unconditional families that may have more than one pathogenic cause.This study identified two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional ADNSHHI.Methods: To decipher the genetic code of a Chinese family (family 686) with ADNSHHI, different gene screening techniques have been performed, including linkage analysis, candidate genes screening, high-throughput sequencing and Sanger sequencing.These techniques were done on samples obtained from this family over a period of 10 years.Results: We identified a pathogenic missense mutation, c.2081G>A (p.G694E), in TJP2, a gene that plays a crucial role in apoptosis and age-related hearing loss (ARHL).The mutation was co-segregated in this pedigree in all, but not in the two patients who presented with different phenotypes from the other affected family members.In one of the two patients, we confirmed that the compound heterozygosity for p.Y136* and p.G45E in the GJB2 gene may account for the phenotype shown in this patient.Conclusions: We identified the co-occurrence of two genetic causes in family 686.The possible disease-causing missense mutation of TJP2 in family 686 presents an opportunity for further investigation into ARHL.It is necessary to combine various genes screening methods, especially for some unconventional cases.

  11. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with Unconditional Autosomal Dominant Nonsyndromic Hereditary Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Hong-Yang Wang

    2015-01-01

    Full Text Available Background: There are more than 300 genetic loci that have been found to be related to hereditary hearing impairment (HHI, including 92 causative genes for nonsyndromic hearing loss, among which 34 genes are related to autosomal dominant nonsyndromic HHI (ADNSHHI. Traditional linkage analysis and candidate gene sequencing are not effective at detecting the ADNSHHI, especially for the unconditional families that may have more than one pathogenic cause. This study identified two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional ADNSHHI. Methods: To decipher the genetic code of a Chinese family (family 686 with ADNSHHI, different gene screening techniques have been performed, including linkage analysis, candidate genes screening, high-throughput sequencing and Sanger sequencing. These techniques were done on samples obtained from this family over a period of 10 years. Results: We identified a pathogenic missense mutation, c. 2081G>A (p.G694E, in TJP2, a gene that plays a crucial role in apoptosis and age-related hearing loss (ARHL. The mutation was co-segregated in this pedigree in all, but not in the two patients who presented with different phenotypes from the other affected family members. In one of the two patients, we confirmed that the compound heterozygosity for p.Y136FNx01 and p.G45E in the GJB2 gene may account for the phenotype shown in this patient. Conclusions: We identified the co-occurrence of two genetic causes in family 686. The possible disease-causing missense mutation of TJP2 in family 686 presents an opportunity for further investigation into ARHL. It is necessary to combine various genes screening methods, especially for some unconventional cases.

  12. Basis reduction for layered lattices

    NARCIS (Netherlands)

    Torreão Dassen, Erwin

    2011-01-01

    We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre

  13. Spin qubits in antidot lattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;

    2008-01-01

    and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...

  14. Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2007-10-01

    Full Text Available Abstract Background The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. Results The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S. Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027 from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé test nor the Tajima's D test reached significance. Conclusion The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary

  15. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics.

    Science.gov (United States)

    Johnson, J R; Moseley, S L; Roberts, P L; Stamm, W E

    1988-02-01

    To assess the role of aerobactin as a virulence factor among uropathogenic Escherichia coli, we determined the prevalence, location, and phenotypic expression of aerobactin determinants among 58 E. coli strains causing bacteremic urinary tract infections. We correlated the presence of the aerobactin system with antimicrobial-agent resistance, the presence and phenotypic expression of other uropathogenic virulence factor determinants (P fimbriae, hemolysin, and type 1 fimbriae), and characteristics of patients. Colony and Southern hybridization of total and plasmid DNA with DNA probes for each virulence factor showed that aerobactin determinants were present in 78% of the strains and were plasmid associated in 21%, whereas P fimbria, hemolysin, and type 1 fimbria determinants were present in 74, 43, and 98% of the strains, respectively, and were always chromosomal. Chromosomal aerobactin, P fimbria, and hemolysin determinants occurred together on the chromosome more often in strains from patients without predisposing urological or medical conditions (P = 0.04). Strains with plasmid-encoded aerobactin lacked determinants for P fimbriae (P = 0.004) and hemolysin (P = 0.0004), were resistant to multiple antimicrobial agents (P = 0.0001), and were found only in compromised patients. Mating experiments demonstrated that some aerobactin plasmids also encoded antimicrobial-agent resistance. These findings suggest that the determinants for aerobactin, P fimbriae, and hemolysin are conserved on the chromosome of the antimicrobial-agent-susceptible uropathogenic strains of E. coli which invade noncompromised patients. In contrast, these chromosomal virulence factors are often absent from E. coli strains causing urosepsis in compromised hosts; these strains may acquire plasmid aerobactin in conjunction with antimicrobial-agent resistance genes.

  16. Meretoja’s Syndrome: Lattice Corneal Dystrophy, Gelsolin Type

    Directory of Open Access Journals (Sweden)

    I. Casal

    2017-01-01

    Full Text Available Lattice corneal dystrophy gelsolin type was first described in 1969 by Jouko Meretoja, a Finnish ophthalmologist. It is caused by an autosomal dominant mutation in gelsolin gene resulting in unstable protein fragments and amyloid deposition in various organs. The age of onset is usually after the third decade of life and typical diagnostic triad includes progressive bilateral facial paralysis, loose skin, and lattice corneal dystrophy. We report a case of a 53-year-old female patient referred to our Department of Ophthalmology by severe dry eye and incomplete eyelid closure. She had severe bilateral facial paresis, significant orbicularis, and perioral sagging as well as hypoesthesia of extremities and was diagnosed with Meretoja’s syndrome at the age of 50, confirmed by the presence of gelsolin mutation. At our observation she had bilateral diminished tear film break-up time and Schirmer test, diffuse keratitis, corneal opacification, and neovascularization in the left eye. She was treated with preservative-free lubricants and topical cyclosporine, associated with nocturnal complete occlusion of both eyes, and underwent placement of lacrimal punctal plugs. Ocular symptoms are the first to appear and our role as ophthalmologists is essential for the diagnosis, treatment, and monitoring of ocular alterations in these patients.

  17. Hereditary motor and sensory neuropathy, caused by mutations in the NEFL gene in a family from Karachaevo-Cherkessia

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2016-01-01

    Full Text Available The clinical and genetic features of hereditary motor and sensory neuropathy (HMSN; Charcot–Marie–Tooth disease, CMT caused by newly identified missense mutation s.65G>T (p.Pro22His in NEFL gene located on the chromosome 8р21.2 are described. The disease was diagnosed in a large family from Ust-Dzhegutinsky district of the Karachay-Cherkess Republic with the segregation of the disease in four generations. The prevalence of the HMSN in that district was found to be 1:4340 persons, including 1:3376 among Karachays. The clinical picture of the disease was characterized by onset at the age of 11–14 years, weakness in foot muscles and steppage gait. The specific features in the majority of patients were the absence of major sensory disturbances, as well as long-term preserved distal arm muscles. Nerve conduction velocity in the median nerve varied from 30 to 42 m/s, which corresponds to values in patients with CMT2E, previously described.

  18. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene.

    Science.gov (United States)

    Momose, Masaki; Nakayama, Masayoshi; Itoh, Yoshio; Umemoto, Naoyuki; Toguri, Toshihiro; Ozeki, Yoshihiro

    2013-04-01

    The molecular mechanisms underlying spontaneous bud mutations, which provide an important breeding tool in carnation, are poorly understood. Here we describe a new active hAT type transposable element, designated Tdic101, the movement of which caused a bud mutation in carnation that led to a change of flower color from purple to deep pink. The color change was attributed to Tdic101 insertion into the second intron of F3'H, the gene for flavonoid 3'-hydroxylase responsible for purple pigment production. Regions on the deep pink flowers of the mutant can revert to purple, a visible phenotype of, as we show, excision of the transposable element. Sequence analysis revealed that Tdic101 has the characteristics of an autonomous element encoding a transposase. A related, but non-autonomous element dTdic102 was found to move in the genome of the bud mutant as well. Its mobilization might be the result of transposase activities provided by other elements such as Tdic101. In carnation, therefore, the movement of transposable elements plays an important role in the emergence of a bud mutation.

  19. Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis.

    Science.gov (United States)

    Sandilands, Aileen; O'Regan, Gráinne M; Liao, Haihui; Zhao, Yiwei; Terron-Kwiatkowski, Ana; Watson, Rosemarie M; Cassidy, Andrew J; Goudie, David R; Smith, Frances J D; McLean, W H Irwin; Irvine, Alan D

    2006-08-01

    Mutations in the filament aggregating protein (filaggrin) gene have recently been identified as the cause of the common genetic skin disorder ichthyosis vulgaris (IV), the most prevalent inherited disorder of keratinization. The main characteristics of IV are fine-scale on the arms and legs, palmar hyperlinearity, and keratosis pilaris. Here, we have studied six Irish families with IV for mutations in filaggrin. We have identified a new mutation, 3702delG, in addition to further instances of the reported mutations R501X and 2282del4, which are common in people of European origin. A case of a 2282del4 homozygote was also identified. Mutation 3702delG terminates protein translation in filaggrin repeat domain 3, whereas both recurrent mutations occur in repeat 1. These mutations are semidominant: heterozygotes have an intermediate phenotype most readily identified by palmar hyperlinearity and in some cases fine-scale and/or keratosis pilaris, whereas homozygotes or compound heterozygotes generally have more marked ichthyosis. Interestingly, the phenotypes of individuals homozygous for R501X, 2282del4, or compound heterozygous for R501X and 3702delG, were comparable, suggesting that mutations located centrally in the filaggrin repeats are also pathogenic.

  20. Structural and Functional Mutations of the Perlecan Gene Cause Schwartz-Jampel Syndrome, with Myotonic Myopathy and Chondrodysplasia

    Science.gov (United States)

    Arikawa-Hirasawa, Eri; Le, Alexander H.; Nishino, Ichizo; Nonaka, Ikuya; Ho, Nicola C.; Francomano, Clair A.; Govindraj, Prasanthi; Hassell, John R.; Devaney, Joseph M.; Spranger, Jürgen; Stevenson, Roger E.; Iannaccone, Susan; Dalakas, Marinos C.; Yamada, Yoshihiko

    2002-01-01

    Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS. PMID:11941538

  1. Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

    Science.gov (United States)

    Ratbi, Ilham; Falkenberg, Kim D.; Sommen, Manou; Al-Sheqaih, Nada; Guaoua, Soukaina; Vandeweyer, Geert; Urquhart, Jill E.; Chandler, Kate E.; Williams, Simon G.; Roberts, Neil A.; El Alloussi, Mustapha; Black, Graeme C.; Ferdinandusse, Sacha; Ramdi, Hind; Heimler, Audrey; Fryer, Alan; Lynch, Sally-Ann; Cooper, Nicola; Ong, Kai Ren; Smith, Claire E.L.; Inglehearn, Christopher F.; Mighell, Alan J.; Elcock, Claire; Poulter, James A.; Tischkowitz, Marc; Davies, Sally J.; Sefiani, Abdelaziz; Mironov, Aleksandr A.; Newman, William G.; Waterham, Hans R.; Van Camp, Guy

    2015-01-01

    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6. PMID:26387595

  2. Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia.

    Science.gov (United States)

    Arikawa-Hirasawa, Eri; Le, Alexander H; Nishino, Ichizo; Nonaka, Ikuya; Ho, Nicola C; Francomano, Clair A; Govindraj, Prasanthi; Hassell, John R; Devaney, Joseph M; Spranger, Jürgen; Stevenson, Roger E; Iannaccone, Susan; Dalakas, Marinos C; Yamada, Yoshihiko

    2002-05-01

    Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS.

  3. A novel mutation in the thyroglobulin gene that causes goiter and dwarfism in Wistar Hannover GALAS rats.

    Science.gov (United States)

    Sato, Akira; Abe, Kuniya; Yuzuriha, Misako; Fujii, Sakiko; Takahashi, Naofumi; Hojo, Hitoshi; Teramoto, Shoji; Aoyama, Hiroaki

    2014-04-01

    Outbred stocks of rats have been used extensively in biomedical, pharmaceutical and/or toxicological studies as a model of genetically heterogeneous human populations. One of such stocks is the Wistar Hannover GALAS rat. However, the colony of Wistar Hannover GALAS rat has been suspected of keeping a problematic mutation that manifests two distinct spontaneous abnormalities, goiter and dwarfism, which often confuses study results. We have successfully identified the responsible mutation, a guanine to thymine transversion at the acceptor site (3' end) of intron 6 in the thyroglobulin (Tg) gene (Tgc.749-1G>T), that induces a complete missing of exon 7 from the whole Tg transcript by mating experiments and subsequent molecular analyses. The following observations confirmed that Tgc.749-1G>T/Tgc.749-1G>T homozygotes manifested both dwarfism and goiter, while Tgc.749-1G>T/+ heterozygotes had only a goiter with normal appearance, suggesting that the mutant phenotypes inherit as an autosomal semi-dominant trait. The mutant phenotypes, goiter and dwarfism, mimicked those caused by typical endocrine disrupters attacking the thyroid. Hence a simple and reliable diagnostic methodology has been developed for genomic DNA-based genotyping of animals. The diagnostic methodology reported here would allow users of Wistar Hannover GALAS rats to evaluate their study results precisely by carefully interpreting the data obtained from Tgc.749-1G>T/+ heterozygotes having externally undetectable thyroidal lesions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Familial lipoprotein lipase deficiency caused by known (G188E) and novel (W394X) LPL gene mutations.

    Science.gov (United States)

    Hooper, A J; Crawford, G M; Brisbane, J M; Robertson, K; Watts, G F; van Bockxmeer, F M; Burnett, J R

    2008-01-01

    Lipoprotein lipase (LPL) is the key enzyme in the catabolism of triglyceride-rich lipoproteins in the circulation. Familial LPL deficiency is characterized by hypertriglyceridaemia and absence of LPL activity. We report a case of LPL deficiency in a 43-year-old woman, who initially presented in childhood with chylomicronaemia syndrome. At that time, her plasma triglyceride concentration was approximately 30 mmol/L and post-heparin lipolytic activity was very low. In addition to having the known missense mutation LPL G188E, the patient was also found to have a novel nonsense mutation in exon 8, namely LPL W394X. The novel substitution in exon 8 (c.1262G > A) predicts a truncated protein product of 393 amino acids that lacks the carboxylterminal 12% of the mature LPL. Trp(394) is part of a cluster of exposed tryptophan residues in the carboxyl-terminal domain of LPL important for binding lipid substrate. Of 11 members from her three-generation family, three were heterozygotes for G188E (mean plasma triglyceride, 3.5 +/- 2.0 mmol/L), whereas six were heterozygotes for W394X (triglyceride, 4.3 +/- 1.8 mmol/L). In summary, we describe a case of familial LPL deficiency caused by compound heterozygosity for known (G188E) and novel (W394X) LPL gene mutations.

  5. Introduction to lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  6. Lattice Quantum Chromodynamics

    Science.gov (United States)

    Sachrajda, C. T.

    2016-10-01

    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  7. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  8. Fractional lattice charge transport

    Science.gov (United States)

    Flach, Sergej; Khomeriki, Ramaz

    2017-01-01

    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  9. Lattice QCD for Cosmology

    CERN Document Server

    Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K

    2016-01-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  10. Solitons in nonlinear lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2010-01-01

    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...

  11. Parametric lattice Boltzmann method

    Science.gov (United States)

    Shim, Jae Wan

    2017-06-01

    The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.

  12. Varieties of lattices

    CERN Document Server

    Jipsen, Peter

    1992-01-01

    The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.

  13. Lattice Quantum Chromodynamics

    CERN Document Server

    Sachrajda, C T

    2016-01-01

    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  14. International Lattice Data Grid

    CERN Document Server

    Davies, C T H; Kenway, R D; Maynard, C M

    2002-01-01

    We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.

  15. Weakly deformed soliton lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)

    1990-12-01

    In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).

  16. Crystallographic Lattice Boltzmann Method

    Science.gov (United States)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  17. Topological Lattice Actions

    CERN Document Server

    Bietenholz, W; Pepe, M; Wiese, U -J

    2010-01-01

    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge $Q$. Irrespective of this, in the 2-d O(3) model the topological susceptibility $\\chi_t = \\l/V$ is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some cla...

  18. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  19. Hadroquarkonium from lattice QCD

    Science.gov (United States)

    Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang

    2017-04-01

    The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.

  20. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  1. A Mechanical Lattice Aid for Crystallography Teaching.

    Science.gov (United States)

    Amezcua-Lopez, J.; Cordero-Borboa, A. E.

    1988-01-01

    Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)

  2. Kenneth Wilson and lattice QCD

    CERN Document Server

    Ukawa, Akira

    2015-01-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...

  3. Isolation and characterization of a floral homeotic gene in Fraxinus nigra causing earlier flowering and homeotic alterations in transgenic Arabidopsis

    Science.gov (United States)

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...

  4. A novel point mutation within the EDA gene causes an exon dropping in mature RNA in Holstein Friesian cattle breed affected by X-linked anhidrotic ectodermal dysplasia

    Directory of Open Access Journals (Sweden)

    Pariset Lorraine

    2011-07-01

    Full Text Available Abstract Background X-linked anhidrotic ectodermal dysplasia is a disorder characterized by abnormal development of tissues and organs of ectodermal origin caused by mutations in the EDA gene. The bovine EDA gene encodes the ectodysplasin A, a membrane protein expressed in keratinocytes, hair follicles and sweat glands, which is involved in the interactions between cell and cell and/or cell and matrix. Four mutations causing ectodermal dysplasia in cattle have been described so far. Results We identified a new single nucleotide polymorphism (SNP at the 9th base of exon 8 in the EDA gene in two calves of Holstein Friesian cattle breed affected by ectodermal dysplasia. This SNP is located in the exonic splicing enhancer (ESEs recognized by SRp40 protein. As a consequence, the spliceosome machinery is no longer able to recognize the sequence as exonic and causes exon skipping. The mutation determines the deletion of the entire exon (131 bp in the RNA processing, causing a severe alteration of the protein structure and thus the disease. Conclusion We identified a mutation, never described before, that changes the regulation of alternative splicing in the EDA gene and causes ectodermal dysplasia in cattle. The analysis of the SNP allows the identification of carriers that can transmit the disease to the offspring. This mutation can thus be exploited for a rational and efficient selection of unequivocally healthy cows for breeding.

  5. Severe phenotype in an apparent homozygosity caused by a large deletion in the CFTR gene: a case report.

    Science.gov (United States)

    Martins, Raisa da Silva; Fonseca, Ana Carolina Proença; Acosta, Franklyn Enrique Samudio; Folescu, Tania Wrobel; Higa, Laurinda Yoko Shinzato; Sad, Izabela Rocha; Chaves, Célia Regina Moutinho de Miranda; Cabello, Pedro Hernan; Cabello, Giselda Maria Kalil

    2014-08-30

    Over 1900 mutations have been identified in the cystic fibrosis conductance transmembrane regulator gene, including single nucleotide substitutions, insertions, and deletions. Unidentified mutations may still lie in introns or in regulatory regions, which are not routinely investigated, or in large genomic deletions, which are not revealed by conventional molecular analysis. The apparent homozygosity for a rare, cystic fibrosis conductance transmembrane regulator mutation screened by standard molecular analysis should be further investigated to confirm if the mutation is in fact homozygous. We describe a patient presenting with an apparent homozygous S4X mutation. A 13-year-old female patient of African descent with clinical symptoms of classic cystic fibrosis and a positive sweat test (97 mEq/L, diagnosed at age 3 years) presented with pancreatic insufficiency and severe pulmonary symptoms (initial lung colonization with Pseudomonas aeruginosa at age 4 years; forced vital capacity: 69%; forced expiratory volume: 51%; 2011). Furthermore, she developed severe acute lung disease and recurrent episodes of dehydration requiring hospitalization. The girl carried the CFTR mutation S4X in apparent homozygosity. However, further analysis revealed a large deletion in the second allele that included the region of the mutation. The deletion that we describe includes nucleotides 120-142, which correspond to a loss of 23 nucleotides that abolishes the normal translation initiation codon. This study reiterates the view that large, cystic fibrosis conductance transmembrane regulator deletions are an important cause of severe cystic fibrosis and emphasizes the importance of including large deletions/duplications in cystic fibrosis conductance transmembrane regulator diagnostic tests.

  6. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  7. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice.

    Directory of Open Access Journals (Sweden)

    Xu-Gang Xia

    2006-01-01

    Full Text Available RNA interference (RNAi has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III-expressed short hairpin RNA (shRNA has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs-the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.

  8. Is the adiposity-associated FTO gene variant related to all-cause mortality independent of adiposity? Meta-analysis of data from 169,551 Caucasian adults

    NARCIS (Netherlands)

    Zimmermann, E.; Angquist, L. H.; Mirza, S. S.; Zhao, J. H.; Chasman, D. I.; Fischer, K.; Qi, Q.; Smith, A. V.; Thinggaard, M.; Jarczok, M. N.; Nalls, M. A.; Trompet, S.; Timpson, N. J.; Schmidt, B.; Jackson, A. U.; Lyytikainen, L. P.; Verweij, N.; Mueller-Nurasyid, M.; Vikstrom, M.; Marques-Vidal, P.; Wong, A.; Meidtner, K.; Middelberg, R. P.; Strawbridge, R. J.; Christiansen, L.; Kyvik, K. O.; Hamsten, A.; Jaaskelainen, T.; Tjonneland, A.; Eriksson, J. G.; Whitfield, J. B.; Boeing, H.; Hardy, R.; Vollenweider, P.; Leander, K.; Peters, A.; van der Harst, P.; Kumari, M.; Lehtimaki, T.; Meirhaeghe, A.; Tuomilehto, J.; Joeckel, K. -H.; Ben-Shlomo, Y.; Sattar, N.; Baumeister, S. E.; Smith, G. Davey; Casas, J. P.; Houston, D. K.; Maerz, W.; Christensen, K.; Gudnason, V.; Hu, F. B.; Metspalu, A.; Ridker, P. M.; Wareham, N. J.; Loos, R. J. F.; Tiemeier, H.; Sonestedt, E.; Sorensen, T. I. A.

    Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has

  9. A new Frameshift mutation on the α2-globin gene causing α⁺-thalassemia: codon 43 (TTC>-TC or TTC>T-C).

    Science.gov (United States)

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Barro, Claire; Francina, Alain

    2012-01-01

    We report a new mutation on the α2-globin gene causing α(+)-thalassemia (α(+)-thal) with a deletion of a single nucleotide (T) at amino acid residue 43 [HBA2:c.130delT or HBA2:c.131delT]. This frameshift deletion gives rise to a premature termination codon at codon 47.

  10. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype.

    NARCIS (Netherlands)

    Bliek, J.; Terhal, P.; Bogaard, M.J. van den; Maas, S.; Hamel, B.C.J.; Salieb-Beugelaar, G.; Simon, M.; Letteboer, T.; Smagt, J. van der; Kroes, H.Y.; Mannens, M.

    2006-01-01

    The H19 differentially methylated region (DMR) controls the allele-specific expression of both the imprinted H19 tumor-suppressor gene and the IGF2 growth factor. Hypermethylation of this DMR--and subsequently of the H19 promoter region--is a major cause of the clinical features of gigantism and/or

  11. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

    NARCIS (Netherlands)

    Berns, K.; Hijmans, E.M.; Bernards, R.A.

    1997-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To searc

  12. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...

  13. An outbreak of acute respiratory disease caused by a virus associated RNA II gene mutation strain of human adenovirus 7 in China, 2015

    Science.gov (United States)

    Liang, Beibei; Wu, Fuli; Li, Hao; Liu, Hongbo; Sheng, Chunyu; Ma, Qiuxia; Yang, Chaojie; Xie, Jing; Li, Peng; Jia, Leili; Wang, Ligui; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Human adenovirus 7 (HAdV-7) strains are a major cause of acute respiratory disease (ARD) among adults and children, associated with fatal pneumonia. An ARD outbreak caused by HAdV-7 that involved 739 college students was reported in this article. To better understand the underlying cause of this large-scale epidemic, virus strains were isolated from infected patients and sequence variations of the whole genome sequence were detected. Evolutionary trees and alignment results indicated that the major capsid protein genes hexon and fibre were strongly conserved among serotype 7 strains in China at that time. Instead, the HAdV-7 strains presented three thymine deletions in the virus associated RNA (VA RNA) II terminal region. We also found that the mutation might lead to increased mRNA expression of an adjacent gene, L1 52/55K, and thus promoted faster growth. These findings suggest that sequence variation of VA RNA II gene was a potential cause of such a severe HAdV-7 infection and this gene should be a new-emerging factor to be monitored for better understanding of HAdV-7 infection. PMID:28225804

  14. Causes of Ataxia

    Science.gov (United States)

    ... Donate to the National Ataxia Foundation Causes of Ataxia The hereditary ataxias are genetic, which means they ... the disease is inherited as a recessive gene. Ataxia Gene Identified in 1993 The first ataxia gene ...

  15. Ordered sets and lattices

    CERN Document Server

    Drashkovicheva, Kh; Igoshin, V I; Katrinyak, T; Kolibiar, M

    1989-01-01

    This book is another publication in the recent surveys of ordered sets and lattices. The papers, which might be characterized as "reviews of reviews," are based on articles reviewed in the Referativnyibreve Zhurnal: Matematika from 1978 to 1982. For the sake of completeness, the authors also attempted to integrate information from other relevant articles from that period. The bibliography of each paper provides references to the reviews in RZhMat and Mathematical Reviews where one can seek more detailed information. Specifically excluded from consideration in this volume were such topics as al

  16. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....

  17. BESTROPHINOPATHY: A Spectrum of Ocular Abnormalities Caused by the c.614T>C Mutation in the BEST1 Gene

    NARCIS (Netherlands)

    Toto, L.; Boon, C.J.F.; Antonio, L. Di; Parodi, M. Battaglia; Mastropasqua, R.; Antonucci, I.; Stuppia, L.; Mastropasqua, L.

    2016-01-01

    PURPOSE: To describe the variable ocular phenotype associated with a heterozygous mutation in the BEST1 gene. METHODS: Clinical and genetic assessment was performed in five members of the same family. Molecular genetic analysis of the BEST1 gene was performed by direct sequencing. Extensive

  18. Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nissen, Peter H.; Agerholm, Jørgen S

    2010-01-01

    European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD...

  19. A novel mutation (4040-4045 nt. delA in exon 14 of the factor VIII gene causing severe hemophilia A

    Directory of Open Access Journals (Sweden)

    Habib Onsori

    2011-01-01

    Full Text Available Hemophilia A is an X-linked congenital bleeding disorder caused by Factor VIII deficiency. Different mutations including point mutations, deletions, insertions and inversions have been reported in the FVIII gene, which cause hemophilia A. In the current study, with the use of conformational sensitive gel electrophoresis (CSGE analysis, we report a novel 1-nt deletion in the A6 sequence at codons 1328-1330 (4040-4045 nt delA occurring in exon 14 of the FVIII gene in a seven-year-old Iranian boy with severe hemophilia A. This mutation that causes frameshift and premature stop-codon at 1331 has not previously been reported in the F8 Hemophilia A Mutation, Structure, Test and Resource Site (HAMSTeRS database.

  20. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.

    Science.gov (United States)

    Shitsukawa, Naoki; Ikari, Chihiro; Shimada, Sanae; Kitagawa, Satoshi; Sakamoto, Koichi; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko; Takumi, Shigeo; Nasuda, Shuhei; Murai, Koji

    2007-04-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1.

  1. 5q14.3 deletion neurocutaneous syndrome: Contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C: A progressive disease.

    Science.gov (United States)

    Ilari, Rita; Agosta, Guillermo; Bacino, Carlos

    2016-03-01

    We report the case of a young girl who was presented with complex clinical symptoms caused by the deletion of contiguous genes: RASA1 and MEF2C, located on chromosome 5q14.3. Specifically, the diagnosis of her skin disorder and vascular malformations involving central nervous system is consistent with a RASopathy. The child's neurological manifestations are observed in most patients suffering from 5q14.3 by deletion or mutation of the MEF2C gene. A review of the literature allowed us to conclude that the contiguous deletion of genes RASA1 and MEF2C fulfills the criteria for the diagnosis of a Neurocutaneous syndrome as proposed by Carr et al. [2011]. We also assessed the penetrance of RASA1 and clinical manifestations of MEF2C according to the type of deletion. This child described presents the complete symptomatology of both deleted genes. We would also like to highlight the progression of the disorder.

  2. Identification of a novel nemaline myopathy-causing mutation in the troponin T1 (TNNT1) gene: a case outside of the old order Amish.

    Science.gov (United States)

    Marra, Jonathan D; Engelstad, Kristin E; Ankala, Arunkanth; Tanji, Kurenai; Dastgir, Jahannaz; De Vivo, Darryl C; Coffee, Bradford; Chiriboga, Claudia A

    2015-05-01

    Nemaline myopathy (NM) is a congenital neuromuscular disorder often characterized by hypotonia, facial weakness, skeletal muscle weakness, and the presence of rods on muscle biopsy. A rare form of nemaline myopathy known as Amish Nemaline Myopathy has only been seen in a genetically isolated cohort of Old Order Amish patients who may additionally present with tremors in the first 2-3 months of life. We describe an Hispanic male diagnosed with nemaline myopathy histopathologically and subsequently confirmed by next generation gene sequencing. Direct sequencing revealed that he is homozygous for a pathogenic nonsense variant c.323C>G (p.S108X) in exon 9 of the TNNT1 gene. This report describes a novel pathogenic variant in the TNNT1 gene and represents a nemaline myopathy-causing variant in the TNNT1 gene outside of the Old Order Amish and Dutch ancestry. © 2014 Wiley Periodicals, Inc.

  3. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available BACKGROUND: Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. CONCLUSIONS/SIGNIFICANCE: Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  4. Lattice harmonics expansion revisited

    Science.gov (United States)

    Kontrym-Sznajd, G.; Holas, A.

    2017-04-01

    The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.

  5. Lattice paramenter, lattice disorder and resistivity of carbohydrate doepd MgB2 and their correlation with the transition temperature

    OpenAIRE

    Kim, J. H.; Oh, Sangjun; Xu, X.; Joo, Jinho; Rindflesich, M.; Tomsic, M; Dou, S. X.

    2009-01-01

    The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the transition temperature by carbon doping in MgB2. In this work, an extensive investigation on the effects of carbohydrate doping has been carried out. It is found that not only the a-axis but also the c-axis lattice parameter increases with the sintering temperature. A linear relation between the unit cell volume and the critical temperature is observed. Compared with the well know...

  6. Extreme lattices: symmetries and decorrelation

    Science.gov (United States)

    Andreanov, A.; Scardicchio, A.; Torquato, S.

    2016-11-01

    We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.

  7. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  8. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated

  9. Entangling gates in even Euclidean lattices such as Leech lattice

    CERN Document Server

    Planat, Michel

    2010-01-01

    We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].

  10. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.

    Science.gov (United States)

    Mühlhausen, Andreas; Lenser, Teresa; Mummenhoff, Klaus; Theißen, Günter

    2013-03-01

    In the Brassicaceae, indehiscent fruits evolved from dehiscent fruits several times independently. Here we use closely related wild species of the genus Lepidium as a model system to analyse the underlying developmental genetic mechanisms in a candidate gene approach. ALCATRAZ (ALC), INDEHISCENT (IND), SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are known fruit developmental genes of Arabidopsis thaliana that are expressed in the fruit valve margin governing dehiscence zone formation. Comparative expression analysis by quantitative RT-PCR, Northern blot and in situ hybridization show that their orthologues from Lepidium campestre (dehiscent fruits) are similarly expressed at valve margins. In sharp contrast, expression of the respective orthologues is abolished in the corresponding tissue of indehiscent Lepidium appelianum fruits, indicating that changes in the genetic pathway identified in A. thaliana caused the transition from dehiscent to indehiscent fruits in the investigated species. As parallel mutations in different genes are quite unlikely, we conclude that the changes in gene expression patterns are probably caused by changes in upstream regulators of ALC, IND and SHP1/2, possible candidates from A. thaliana being FRUITFULL (FUL), REPLUMLESS (RPL) and APETALA2 (AP2). However, neither expression analyses nor functional tests in transgenic plants provided any evidence that the FUL or RPL orthologues of Lepidium were involved in evolution of fruit indehiscence in Lepidium. In contrast, stronger expression of AP2 in indehiscent compared to dehiscent fruits identifies AP2 as a candidate gene that deserves further investigation.

  11. Replication error deficient and proficient colorectal cancer gene expression differences caused by 3'UTR polyT sequence deletions

    DEFF Research Database (Denmark)

    Wilding, Jennifer L; McGowan, Simon; Liu, Ying

    2010-01-01

    , and have distinct pathologies. Regulatory sequences controlling all aspects of mRNA processing, especially including message stability, are found in the 3'UTR sequence of most genes. The relevant sequences are typically A/U-rich elements or U repeats. Microarray analysis of 14 RER+ (deficient) and 16 RER......- (proficient) colorectal cancer cell lines confirms a striking difference in expression profiles. Analysis of the incidence of mononucleotide repeat sequences in the 3'UTRs, 5'UTRs, and coding sequences of those genes most differentially expressed in RER+ versus RER- cell lines has shown that much...... of this differential expression can be explained by the occurrence of a massive enrichment of genes with 3'UTR T repeats longer than 11 base pairs in the most differentially expressed genes. This enrichment was confirmed by analysis of two published consensus sets of RER differentially expressed probesets for a large...

  12. A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila

    National Research Council Canada - National Science Library

    Renn, Susan C.P; Park, Jae H; Rosbash, Michael; Hall, Jeffrey C; Taghert, Paul H

    1999-01-01

    .... Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons...

  13. Hyperkalemic periodic paralysis caused by recurring mutation in the adult muscle sodium channel alpha-subunit gene.

    Science.gov (United States)

    Sillén, A; Wadelius, C; Sundvall, M; Ahlsten, G; Gustavson, K H

    1996-01-01

    Linkage studies and mutation analysis were performed in two Swedish families with hyperkalemic periodic paralysis (HYPP), an autosomal dominant inherited disorder characterized by episodic muscle weakness associated with increasing or high levels of serum potassium. The gene for HYPP is the gene encoding the alpha-subunit of the sodium channel of adult human skeletal muscle (SCN4A). SCN4A has been localized on chromosome 17 q closely linked to the human growth hormone gene. Linkage between a microsatellite polymorphism in the SCN4A gene and the disease was shown in two Swedish families (Z = 12.10 theta = 0). Sequence analysis revealed that the two Swedish families have got a C to T transition at position 2188 in the cDNA. At the protein level this Thr 704 to Met mutation is located in the fifth membrane spanning segment of domain II of the protein, as previously described (28). The mutation was linked to different microsatellite alleles regarding both a (GT)n and a (GA)n repeat in the gene. Either the families are related and new mutations have occurred in both microsatellites when the pedigrees were separated or the mutation has arisen independently in the two families analysed. From the mutant alleles characterized so far it seems as if a limited number of mutations is present in this gene.

  14. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Moore, Daniel J; Onoufriadis, Alexandros; Shoemark, Amelia

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger...... resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia...

  15. Identical Mutation in SH3BP2 Gene Causes Clinical Phenotypes with Different Severity in Mother and Daughter – Case Report

    Science.gov (United States)

    Preda, L.; Dinca, O.; Bucur, A.; Dragomir, C.; Severin, E.

    2010-01-01

    Cherubism is a particular form of fibrous dysplasia of the jaws. Familial occurrence was reported in most cases. The condition is a rare hereditary disorder with autosomal dominant inheritance, with complete penetrance in males and incomplete penetrance in females and variable expressivity. It is known to be caused by mutations in the gene encoding SH3-domain binding protein 2, SH3BP2 gene. Major diagnostic criteria are cherubic facial appearance, painless hard enlargement of the jaws, and frequently associated dental abnormalities. The aim of the study was to analyze clinical and genetic features of cherubism in a family with 3 daughters in which the youngest one was affected. Clinical and radiographic examinations, hematological and biochemical evaluations and biopsy were performed. Molecular genetic analysis consisted of PCR amplification and direct sequencing of selected exons of the SH3BP2 gene. Cherubism was suspected based on clinical and radiographic examinations of the 9-year-old daughter. She presented asymmetrical enlargement of the mandible, speech and swallowing problems and dental abnormalities on the lower jaw. There was no history of similar clinical findings in any of the daughters or the parents of the affected girl. Abnormal results were obtained by genetic analysis. A c.1244G>A mutation was identified in exon 9 of the SH3BP2 gene in the asymptomatic mother and her affected daughter. The identified mutation in the SH3BP2 gene is probably disease-causing. The asymptomatic mother transmitted the gene mutation to her affected daughter. Our results confirm the reduced penetrance and variable expression of the gene mutation. PMID:21045962

  16. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression.

    Science.gov (United States)

    Paper, Walter; Kroeber, Markus; Heersink, Sebastian; Stephan, Dietrich A; Fuchshofer, Rudolf; Russell, Paul; Tamm, Ernst R

    2008-09-01

    Myocilin is a 55-57kDa secreted glycoprotein and member of the olfactomedin family, which is mutated in some forms of primary open-angle glaucoma. To assess the effects of elevated amounts of myocilin on aqueous humor outflow dynamics in an in vivo system, transgenic betaB1-crystallin-MYOC mice have been developed that strongly overexpress myocilin in their eyes. The transgenic overexpression of myocilin results in an almost five-fold increase of secreted normal myocilin in the aqueous humor of betaB1-crystallin-MYOC mice. In the present study, we wanted to use betaB1-crystallin-MYOC as a tool to identify the response of ocular tissues to the presence of higher than normal amounts of myocilin, and to identify changes in gene expression that could help to shed light on the functional in vivo properties of myocilin. RNA was isolated from ocular tissues of betaB1-crystallin-MYOC mice and wild-type littermates. Changes in gene expression were determined by hybridization of gene microarrays and confirmed by real time RT-PCR and Western blotting. The expression of genes that had been found to be differentially regulated in betaB1-crystallin-MYOC mice was further analyzed in cultured human trabecular meshwork (HTM) cells treated with recombinant myocilin. Although betaB1-crystallin-MYOC mice do not have an obvious phenotype, a statistically significant up- and downregulation of several distinct genes was found when compared to gene expression in wild-type littermates. Among the genes that were found to be differentially regulated were Wasl, Ceacam1, and Spon2, which are involved in cell adhesion and cell-matrix interactions. Differences in expression were also found for Six1 which encodes for a transcription factor, and for Pftk1 whose gene product is a cdc2-related protein kinase. The expression of these genes was also found to be regulated in vitro in HTM cells treated with recombinant myocilin. Substantially higher amounts in ocular tissues of betaB1-crystallin

  17. Equilibration via Gaussification in Fermionic Lattice Systems

    Science.gov (United States)

    Gluza, M.; Krumnow, C.; Friesdorf, M.; Gogolin, C.; Eisert, J.

    2016-11-01

    In this Letter, we present a result on the nonequilibrium dynamics causing equilibration and Gaussification of quadratic noninteracting fermionic Hamiltonians. Specifically, based on two basic assumptions—clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing transport—we prove that non-Gaussian initial states become locally indistinguishable from fermionic Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law independent of the system size. Our argument is general enough to allow for pure and mixed initial states, including thermal and ground states of interacting Hamiltonians on large classes of lattices as well as certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a generalized Gibbs ensemble. Our results allow us to develop an intuition of equilibration that is expected to be more generally valid and relates to current experiments of cold atoms in optical lattices.

  18. Introduction to lattice gauge theory

    Science.gov (United States)

    Gupta, R.

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.

  19. Dark matter on the lattice

    OpenAIRE

    Lewis, Randy

    2014-01-01

    Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.

  20. Fast simulation of lattice systems

    DEFF Research Database (Denmark)

    Bohr, H.; Kaznelson, E.; Hansen, Frank;

    1983-01-01

    A new computer system with an entirely new processor design is described and demonstrated on a very small trial lattice. The new computer simulates systems of differential equations of the order of 104 times faster than present day computers and we describe how the machine can be applied to lattice...

  1. Branes and integrable lattice models

    CERN Document Server

    Yagi, Junya

    2016-01-01

    This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.

  2. Charmed baryons on the lattice

    CERN Document Server

    Padmanath, M

    2015-01-01

    We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.

  3. Quantum phases in optical lattices

    NARCIS (Netherlands)

    Dickerscheid, Dennis Brian Martin

    2006-01-01

    An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the

  4. Differential gene expression of three mastitis-causing Escherichia coli strains grown under planktonic, swimming, and swarming culture conditions

    Science.gov (United States)

    Escherichia coli is a leading cause of intramammary infections in dairy cattle and is typically transient in nature. However, in a minority of cases, E. coli can cause persistent infections. Although the mechanisms that allow for a persistent intramammary E. coli infection are not fully understood...

  5. Lattice Induced Transparency in Metasurfaces

    CERN Document Server

    Manjappa, Manukumara; Singh, Ranjan

    2016-01-01

    Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.

  6. Lattice models of ionic systems

    Science.gov (United States)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  7. Lattice quantum chromodynamics practical essentials

    CERN Document Server

    Knechtli, Francesco; Peardon, Michael

    2017-01-01

    This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.

  8. Host knockout of E-prostanoid 2 receptors reduces tumor growth and causes major alterations of gene expression in prostaglandin E2-producing tumors

    Science.gov (United States)

    Asting, Annika Gustafsson; Iresjö, Britt-Marie; Nilsberth, Camilla; Smedh, Ulrika; Lundholm, Kent

    2017-01-01

    Prostaglandin E2 (PGE2) is elevated in a variety of malignant tumors and has been shown to affect several hallmarks of cancer. Accordingly, the PGE2 receptor, E-prostanoid 2 (EP2), has been reported to be associated with patient survival and reduced tumor growth in EP2-knockout mice. Thus, the aim of the present study was to screen for major gene expression alterations in tumor tissue growing in EP2-knockout mice. EP2-knockout mice were bred and implanted with EP2 receptor-expressing and PGE2-producing epithelial-like tumors. Tumor tissue and plasma were collected and used for analyses with gene expression microarrays and multiplex enzyme-linked immunosorbent assays. Tumor growth, acute phase reactions/systemic inflammation and the expression of interleukin-6 were reduced in EP2-knockout tumor-bearing mice. Several hundreds of genes displayed major changes of expression in the tumor tissue when grown in EP2-knockout mice. Such gene alterations involved several different cellular functions, including stemness, migration and cell signaling. Besides gene expression, several long non-coding RNAs were downregulated in the tumors from the EP2-knockout mice. Overall, PGE2 signaling via host EP2 receptors affected a large number of different genes involved in tumor progression based on signaling between host stroma and tumor cells, which caused reduced tumor growth. PMID:28123585

  9. Resistance to rice blast(Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through agrobacterium method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gene of trichosanthin has been transferred into rice plants through agrobacterium method.The single copy insertion and the expression of foreign gene have been proved in regenerated plants.In antifungal assay the degrees of rice blast (Pyricularia oryzae) infection of the transgenic plants expressing trichosanthin and expressing GUS gene as control have been evaluated.The differences such as the time of disease symptom observed,the number of infected plants and damaged leaves,the growth of infected plants of the two transgenic plants after being inoculated by rice blast (Pyricularia oryzae) are significant.The transgenic plants with trichosanthin gene grew faster than the plants with GUS gene,even when humidity environment was removed.The results show that the transgenic plants that expressed trichosanthin are able to delay the infection of rice blast compared with the plants as control.In addition,no damage caused by the expression of trichosanthin gene in transgenic plants has been observed.

  10. A single nucleotide deletion of 293delT in SEDL gene causing spondyloepiphyseal dysplasia tarda in a four-generation Chinese family

    DEFF Research Database (Denmark)

    Xiao, Cuiying; Zhang, Sizhong; Wang, Jun

    2003-01-01

    Spondyloepiphyseal Dysplasia Tarda (SEDT; MIM 313400) is a rare genetically heterogeneous disorder of vertebral and epiphyseal growth resulting in disproportionally short-trunked short stature, barrel-shaped chest, and dysplasia of the large joints. It is caused by the mutations of SEDL gene....... The distinctive radiological signs and the X-linked mode of inheritance make it easy to diagnose. Here a four-generation Chinese SEDT family has been analyzed and the disease-causing mutation has been found. After polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis and DNA...... of the gene could be predicted. However, this mutation has not been detected in 50 age and sex matched unrelated controls....

  11. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta.

    Science.gov (United States)

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-06-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder.

  12. [Diversity and genetic stability of yeast flocculation caused by variation of tandem repeats in yeast flocculin genes].

    Science.gov (United States)

    Yue, Feng; Guo, Xuena; He, Xiuping; Zhang, Borun

    2013-07-01

    Yeast flocculation is described as a reversible, asexual and calcium dependent process, in which cells adhere to form flocs by interaction of specific cell surface proteins named flocculins on yeast cells with mannose residues present on the cell wall of adjacent yeast cells. Yeast flocculation provides a very economical and convenient pathway for separation of yeast cells from the fermentation broth or removal of heavy metal ions from effluent. A large number of tandem repeats have been found in genes encoding flocculins, which not only have great regulatory effect on the structure and function of flocculins, generating the diversity of flocculation characteristics, but lead to genetic instability in flocculation as well for driving slippage and recombination reactions within and between FLO genes. Here, the research progress in effect of variation of tandem repeats in FLO genes on flocculation characteristics and genetic stability were reviewed to direct and promote the controllable application of flocculation in industrial fermentation process and environmental remediation.

  13. LOW MOLECULAR MASS POLYPEPTIDE AND TRANSPORTER ANTIGEN PEPTIDE GENES POLYMORPHISM AS THE RISK FACTORS OF CERVICAL CANCER WHICH CAUSED BY HUMAN PAPILLOMAVIRUS TYPE-16 INFECTION IN BALI

    Directory of Open Access Journals (Sweden)

    I N. B. Mahendra

    2015-12-01

    Full Text Available Background: Until recently, cervical cancer is one of the major problem in women’s health issue related to its high incidence and mortality rate. The etiology of cervical cancer is the high risk oncogenic group of Human Papillomavirus (HPV, especially HPV-16 and 18 and its phylogenies. Meanwhile in Bali, more than 50% of infection are caused by HPV-16 infection. The main objective of this study was to investigate the role of LMP-2, LMP-7, TAP-1 and TAP-2 gene polymorphism as the risk factor in the cervical cancer carcinogenesis that is caused by HPV-16 infection. Method: A nested non-paired case-control study was conducted at Obstetric and Gynecologic Department Sanglah General Hospital, Bali-Indonesia from March 1 until August 31, 2013. Laboratory testing was carried out at Laboratory of Histopathology Leiden University Medical Centre, Netherlands,. Results: A total of 40 samples were collected, consist of 20epithelial cervical cancer patients with positive HPV-16 infection as the case group and 20 non-cervical cancer patients with positive HPV-16 infection as the control group. Women infected by HPV-16 with LMP-7 gene polymorphism had a higher risk (OR=7.36, CI 95%=1.38-40.55, p=0.013 to be diagnosed with cervical cancer. Balinese women who were infected by HPV-16 with TAP-2 gene polymorphism had a higher risk (OR= 9.33, CI 95%=2.18-39.96, p=0.001 to be diagnosed with cervical cancer. Meanwhile, Balinese women who were infected by HPV-16 with LMP-7 and TAP-2 genes polymorphism had a higher risk (OR=12.67, CI 95%=1.40-114.42, p=0.020 to be diagnosed with cervical cancer. As the result, it was shown that both of this gene polymorphism was working synergistically. Conclusion: TAP-2 and LMP-7 genes polymorphism play a role in the carcinogenesis mechanism of cervical cancer that is caused by HPV-16 infection in Bali. Meanwhile, LMP-2 and TAP-1 genes polymorphism were not found to play a role in the immunology pathway of cervical cancer that is

  14. Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration--an in vivo animal study.

    Science.gov (United States)

    Guehring, Thorsten; Omlor, Georg W; Lorenz, Helga; Bertram, Helge; Steck, Eric; Richter, Wiltrud; Carstens, Claus; Kroeber, Markus

    2005-11-15

    An external compression model was used to evaluate gene and protein expression in intervertebral discs with moderate disc degeneration. To determine messenger ribonucleic acid and protein expression levels of relevant disc components. An animal model of mechanically induced disc degeneration was developed and characterized histologically. However, little is known at the molecular level in moderate disc degeneration. There were 8 New Zealand white rabbits subjected to monosegmental posterior compression to induce moderate disc degeneration. Twelve animals served as controls or sham controls. Discs were analyzed using immunohistochemistry for collagen type 1 (COL1), COL2, aggrecan, and bone morphogenetic protein-2/4 (BMP-2/4). For gene analysis, conventional and quantitative polymerase chain reactions were used for COL1A2, COL2A1, aggrecan, BMP-2, biglycan, decorin, osteonectin, fibromodulin, fibronectin, matrix metalloproteinase-13 (MMP-13), and tissue inhibitor of MMP-1. Gene expression for nontreated, sham-treated, and compressed discs was quantified in relation to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase. Immunohistochemistry of compressed discs showed a loss of anular architecture, and a significant reduction of BMP-2/4 and COL2 positive cells. Gene expression analysis showed a significant up-regulation of COL1A2, osteonectin, decorin, fibronectin, tissue inhibitor of MMP-1, BMP-2, and MMP-13 in compressed discs. Experimental moderate disc degeneration is characterized by a loss of BMP-2/4 and COL2 positive cells, although gene expression of disc constituents, catabolic enzymes, and growth factors is stimulated to reestablish disc integrity.

  15. Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene.

    Science.gov (United States)

    Shimizu, Akinori; Mito, Takayuki; Hayashi, Chisato; Ogasawara, Emi; Koba, Ryusuke; Negishi, Issei; Takenaga, Keizo; Nakada, Kazuto; Hayashi, Jun-Ichi

    2014-02-25

    We generated transmitochondrial mice (mito-mice) that carry a mutation in the tRNA(Lys) gene encoded by mtDNA for use in studies of its pathogenesis and transmission profiles. Because patients with mitochondrial diseases frequently carry mutations in the mitochondrial tRNA(Lys) and tRNA(Leu(UUR)) genes, we focused our efforts on identifying somatic mutations of these genes in mouse lung carcinoma P29 cells. Of the 43 clones of PCR products including the tRNA(Lys) or tRNA(Leu(UUR)) genes in mtDNA of P29 cells, one had a potentially pathogenic mutation (G7731A) in the tRNA(Lys) gene. P29 subclones with predominant amounts of G7731A mtDNA expressed respiration defects, thus suggesting the pathogenicity of this mutation. We then transferred G7731A mtDNA into mouse ES cells and obtained F0 chimeric mice. Mating these F0 mice with C57BL/6J (B6) male mice resulted in the generation of F1 mice with G7731A mtDNA, named "mito-mice-tRNA(Lys7731)." Maternal inheritance and random segregation of G7731A mtDNA occurred in subsequent generations. Mito-mice-tRNA(Lys7731) with high proportions of G7731A mtDNA exclusively expressed respiration defects and disease-related phenotypes and therefore are potential models for mitochondrial diseases due to mutations in the mitochondrial tRNA(Lys) gene. Moreover, the proportion of mutated mtDNA varied markedly among the pups born to each dam, suggesting that selecting oocytes with high proportions of normal mtDNA from affected mothers with tRNA(Lys)-based mitochondrial diseases may be effective as a primary prevention for obtaining unaffected children.

  16. Guanylyl cyclase/natriuretic peptide receptor-A gene disruption causes increased adrenal angiotensin II and aldosterone levels.

    Science.gov (United States)

    Zhao, Di; Vellaichamy, Elangovan; Somanna, Naveen K; Pandey, Kailash N

    2007-07-01

    Disruption of the guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/NPRA) gene leads to elevated arterial blood pressure and congestive heart failure in mice lacking NPRA. This study was aimed at determining whether Npr1 (coding for GC-A/NPRA) gene copy number affects adrenal ANG II and aldosterone (Aldo) levels in a gene-dose-dependent manner in Npr1 gene-targeted mice. Adrenal ANG II and Aldo levels increased in 1-copy mice compared with 2-copy mice, but decreased in 3-copy and 4-copy mice. In contrast, renal ANG II levels decreased in 1-copy (25%), 3-copy (38%), and 4-copy (39%) mice compared with 2-copy mice. The low-salt diet stimulated adrenal ANG II and Aldo levels in 1-copy (20 and 2,441%), 2-copy (15 and 2,339%), 3-copy (20 and 424%), and 4-copy (31 and 486%) mice, respectively. The high-salt diet suppressed adrenal ANG II and Aldo levels in 1-copy (46 and 29%) and 2-copy (38 and 17%) mice. On the other hand, the low-salt diet stimulated renal ANG II levels in 1-copy (45%), 2-copy (45%), 3-copy (59%), and 4-copy (48%) mice. However, the high-salt diet suppressed renal ANG II levels in 1-copy (28%) and 2-copy (27%) mice. In conclusion, NPRA signaling antagonizes adrenal ANG II and Aldo levels in a gene-dose dependent manner. Increased adrenal ANG II and Aldo levels may play an important role in elevated arterial blood pressure and progressive hypertension, leading to renal and vascular injury in Npr1 gene-disrupted mice.

  17. PLASTIC ZONE OF SEMI-INFINITE CRACK INPLANAR KAGOME AND TRIANGULAR LATTICES

    Institute of Scientific and Technical Information of China (English)

    Xinming Qiu; Lianghong He; Yueqiang Qian; Xiong Zhang

    2009-01-01

    The fracture investigations of the planar lattices made of ductile cell walls are cur-rently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, including Kagome and triangular lattices, are estimated by ana-lyzing their effective yield loci. The normalized in-plane yield loci of these two lattices are almost identical convex curves enclosed by 4 straight lines, which is almost independent of the relative density but is highly sensitive to the principal stress directions. Therefore, the plastic zones around the crack tip of Kagome and triangular are estimated to be quite different to those of the con-tinuum solid and also hexagonal lattice. The plastic zones predictions by convex yield surfaces of both lattices are validated by FE calculations, although the shear lag region caused by non-local bending effect in the Kagome lattice enlarges the plastic zone in cases of small ratio of Tp/l.

  18. Q289p Mutation In Fgfr2 Gene Causes Saethre-chotzen Syndrome: Some Considerations About Familial Heterogeneity.

    OpenAIRE

    2015-01-01

    Objective: To describe the first report on a three-generation family presenting typical features of Saethre-Chotzen syndrome, in which the Q289P mutation in the FGFR2 gene was detected. Design: Dysmorphological evaluation was performed by a clinical geneticist. Direct sequencing of the polymerase chain reaction-amplified coding region of TWIST and screening for the P250R mutation in the FGFR3 gene were performed. Exons IIIa and IIIc of FGFR2 were sequenced also. The mutation was confirmed by ...

  19. Three-factor reciprocal cross mapping of a gene that causes expression of feedback-resistant acetohydroxy acid synthase in Escherichia coli K-12.

    Science.gov (United States)

    Jackson, J H; Davis, E J; Madu, A C; Braxter, S E

    1981-01-01

    The ilv-662 allele was previously identified as a mutation that caused acetohydroxy acid synthase activity to be resistant to feedback inhibition by valine (Davis et al. 1977). This allele was mapped between thr and leu by cotransduction analysis and labeled ilvJ. This report describes the mapping of ilvJ relative to genes that lie between thr and leu (ara, carA and pdxA) by three factor reciprocal cross analyses. We find that the probable gene order is thr-carA-pdxA-ilvJ-ara-leu. Although the phenotypic properties of ilvJ662 appear to be quite distinct from brnS, a gene reported to involve branched chain amino acid transport (Guardiola et al. 1974), we do not rule out possible allelism because of the uncertainty of the map position of brnS.

  20. Brd2 gene disruption causes ‘metabolically healthy’ obesity: Epigenetic and chromatin-based mechanisms that uncouple obesity from Type 2 diabetes

    OpenAIRE

    WANG, Fangnian; Deeney, Jude T.; Denis, Gerald V.

    2013-01-01

    Disturbed body energy balance can lead to obesity and obesity-driven diseases such as Type 2 diabetes, which have reached an epidemic level. Evidence indicates that obesity induced inflammation is a major cause of insulin resistance and Type 2 diabetes. Environmental factors, such as nutrients, affect body energy balance through epigenetic or chromatin-based mechanisms. As a bromodomain and external domain family transcription regulator, Brd2 regulates expression of many genes through interpr...

  1. Founder mutations in NDRG1 and HK1 genes are common causes of inherited neuropathies among Roma/Gypsies in Slovakia.

    Science.gov (United States)

    Gabrikova, Dana; Mistrik, Martin; Bernasovska, Jarmila; Bozikova, Alexandra; Behulova, Regina; Tothova, Iveta; Macekova, Sona

    2013-11-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (CMT) account for less than 10 % of all CMT cases, but are more frequent in the populations with a high rate of consanguinity. Roma (Gypsies) are a transnational minority with an estimated population of 10 to 14 million, in which a high degree of consanguineous marriages is a generally known fact. Similar to the other genetically isolated founder populations, the Roma harbour a number of unique or rare autosomal recessive disorders, caused by "private" founder mutations. There are three subtypes of autosomal recessive CMT with mutations private to the Roma population: CMT4C, CMT4D and CMT4G. We report on the molecular examination of four families of Roma origin in Slovakia with early-onset demyelinating neuropathy and autosomal recessive inheritance. We detected mutation p.R148X (g.631C>T) in the NDRG1 (NM_006096.3) gene in two families and mutation g.9712G>C in the HK1 (NM_033498) gene in the other two families. These mutations cause CMT4D and CMT4G, respectively. The success of molecular genetic analysis in all families confirms that autosomal recessive forms of CMT caused by mutations on the NDRG1 and HK1 genes are common causes of inherited neuropathies among Slovak Roma. Providing genetic analysis of these genes for patients with Roma origin as a common part of diagnostic procedure would contribute to a better rate of diagnosed cases of demyelinating neuropathy in Slovakia and in other countries with a Roma minority.

  2. GCK gene mutations are a common cause of childhood‐onset MODY (maturity‐onset diabetes of the young) in Turkey

    OpenAIRE

    Haliloglu, Belma; Hysenaj, Gerald; Atay, Zeynep; Guran, Tulay; Abalı, Saygın; Turan, Serap; Bereket, Abdullah; Ellard, Sian

    2016-01-01

    Summary Objective Inactivating heterozygous mutations in the GCK gene are a common cause of MODY and result in mild fasting hyperglycaemia, which does not require treatment. We aimed to identify the frequency, clinical and molecular features of GCK mutations in a Turkish paediatric cohort. Design and Patients Fifty‐four unrelated probands were selected based on the following criteria: age of diagnosis ≤17 years, family history of diabetes in at least two generations, anti‐GAD/ICA negative, BM...

  3. [Clinical phenotype of a Japanese family with primary open-angle glaucoma caused by a Ala 363 Thr mutation in the MYOC gene].

    Science.gov (United States)

    Ohyama, Akihiro; Fujimaki, Takuro; Kimura, Tairoh; Kawabata, Kiho; Fujiki, Keiko; Ishikawa, Karin; Mashima, Yukihiko; Murakami, Akira

    2006-01-01

    Myocilin is a gene that causes primary open-angle glaucoma (POAG). We report a family whose members had an Ala 363 Thr mutation in the myocilin gene. We present the clinical phenotype of this family. The proband was a 57-year-old man diagnosed with POAG. His younger sister (50 years old) was also diagnosed with POAG. Visual field impairment did not worsen and ocular pressure decreased with eyedrop treatment. Although two of their children in their 30s had ocular hypertension, they did not have any sign of glaucomatous optic neuropathy. Genetic analysis revealed that all four family members had an Ala 363 Thr mutation in myocilin gene. Ala 363 Thr mutation was considered to be the cause of open-angle glaucoma. In this family, age at onset was comparatively high The two patients in their 30s had high intraocular pressure but no loss in visual acuity. The family members who had POAG and those who did not have POAG were not different from each other in the results of standard ocular examinations, only in age. Patients with this mutation will develop high intraocular pressure after 30 years of age and glaucomatous neuropathy after 50 years of age. When this gene mutation is detected in juvenile patients, careful follow-up and early therapy are necessary.

  4. Investigating the Potential Influence of Cause of Death and Cocaine Levels on the Differential Expression of Genes Associated with Cocaine Abuse

    Science.gov (United States)

    Bannon, Michael J.; Savonen, Candace L.; Hartley, Zachary J.; Johnson, Magen M.; Schmidt, Carl J.

    2015-01-01

    The development of new therapeutic strategies for the treatment of complex brain disorders such as drug addiction is likely to be advanced by a more complete understanding of the underlying molecular pathophysiology. Although the study of postmortem human brain represents a unique resource in this regard, it can be challenging to disentangle the relative contribution of chronic pathological processes versus perimortem events to the observed changes in gene expression. To begin to unravel this issue, we analyzed by quantitative PCR the midbrain expression of numerous candidate genes previously associated with cocaine abuse. Data obtained from chronic cocaine abusers (and matched control subjects) dying of gunshot wounds were compared with a prior study of subjects with deaths directly attributable to cocaine abuse. Most of the genes studied (i.e., tyrosine hydroxylase, dopamine transporter, forkhead box A2, histone variant H3 family 3B, nuclear factor kappa B inhibitor alpha, growth arrest and DNA damage-inducible beta) were found to be differentially expressed in chronic cocaine abusers irrespective of immediate cause of death or perimortem levels of cocaine, suggesting that these may represent core pathophysiological changes arising with chronic drug abuse. On the other hand, chemokine C-C motif ligand 2 and jun proto-oncogene expression were unaffected in cocaine-abusing subjects dying of gunshot wounds, in contrast to the differential expression previously reported in cocaine-related fatalities. The possible influence of cause of death and other factors on the cocaine-responsiveness of these genes is discussed. PMID:25658879

  5. Decreased Necrotizing Fasciitis Capacity Caused by a Single Nucleotide Mutation That Alters a Multiple Gene Virulence Axis

    National Research Council Canada - National Science Library

    Randall J. Olsen; Izabela Sitkiewicz; Ara A. Ayeras; Vedia E. Gonulal; Concepcion Cantu; Stephen B. Beres; Nicole M. Green; Benfang Lei; Tammy Humbird; Jamieson Greaver; Ellen Chang; Willie P. Ragasa; Charles A. Montgomery; Joiner Cartwright; Allison McGeer; Donald E. Low; Adeline R. Whitney; Philip T. Cagle; Terry L. Blasdel; Frank R. DeLeo; James M. Musser; Richard Krause

    2010-01-01

    ... ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates...

  6. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing

    Science.gov (United States)

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris

    2013-01-01

    Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492

  7. Common variation in oxidative phosphorylation genes is not a major cause of insulin resistance or type 2 diabetes

    DEFF Research Database (Denmark)

    Snogdal, L S; Wod, M; Grarup, Niels;

    2012-01-01

    There is substantial evidence that mitochondrial dysfunction is linked to insulin resistance and is present in several tissues relevant to the pathogenesis of type 2 diabetes. Here, we examined whether common variation in genes involved in oxidative phosphorylation (OxPhos) contributes to type 2...... diabetes susceptibility or influences diabetes-related metabolic traits....

  8. Severe myocardial fibrosis caused by a deletion of the 5' end of the lamin A/C gene

    NARCIS (Netherlands)

    van Tintelen, J. Peter; Tio, Rene A.; Kerstjens-Frederikse, Wilhelmina S.; van Berlo, Jop H.; Boven, Ludolf G.; Suurmeijer, Albert J. H.; White, Stefan J.; den Dunnen, Johan T.; te Meerman, Gerard J.; Vos, Yvonne J.; van der Hout, Annemarie H.; Osinga, Jan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Buys, Charles H. C. M.; Hofstra, Robert M. W.; Pinto, Yigal M.

    2007-01-01

    Objectives The goal of this study was to identify the underlying gene defect in a family with inherited myocardial fibrosis. Background A large family with an autosomal dominantly inherited form of myocardial fibrosis with a highly malignant clinical outcome has been investigated. Because myocardial

  9. Severe myocardial fibrosis caused by a deletion of the 5' end of the lamin A/C gene

    NARCIS (Netherlands)

    van Tintelen, J. Peter; Tio, Rene A.; Kerstjens-Frederikse, Wilhelmina S.; van Berlo, Jop H.; Boven, Ludolf G.; Suurmeijer, Albert J. H.; White, Stefan J.; den Dunnen, Johan T.; te Meerman, Gerard J.; Vos, Yvonne J.; van der Hout, Annemarie H.; Osinga, Jan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Buys, Charles H. C. M.; Hofstra, Robert M. W.; Pinto, Yigal M.

    2007-01-01

    Objectives The goal of this study was to identify the underlying gene defect in a family with inherited myocardial fibrosis. Background A large family with an autosomal dominantly inherited form of myocardial fibrosis with a highly malignant clinical outcome has been investigated. Because myocardial

  10. Presence of the KPC carbapenemase gene in Enterobacteriaceae causing bacteremia, and the correlation with in vitro carbapenem susceptibility

    Science.gov (United States)

    During six months, we obtained Enterobacteriaceae isolates from patients with Gram-negative bacteremia at a 1250-bed teaching hospital in St. Louis, Missouri, and compared carbapenem susceptibility with the presence of blaKPC, a transferable carbapenemase gene. Three (1.2%) out of 243 isolates were ...

  11. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana.

    Science.gov (United States)

    Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James

    2012-04-17

    In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.

  12. Targeted knockdown of Cerkl, a retinal dystrophy gene, causes mild affectation of the retinal ganglion cell layer

    NARCIS (Netherlands)

    Garanto, A.; Vicente-Tejedor, J.; Riera, M.; Villa, P. de la; Gonzalez-Duarte, R.; Blanco, R.; Marfany, G.

    2012-01-01

    In order to approach the function of the retinal dystrophy CERKL gene we generated a novel knockout mouse model by cre-mediated targeted deletion of the Cerkl first exon and proximal promoter. The excised genomic region (2.3kb) encompassed the first Cerkl exon, upstream sequences including the proxi

  13. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne;

    2004-01-01

    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-...

  14. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    Science.gov (United States)

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  15. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    NARCIS (Netherlands)

    Drenth, J.P.H.; Waxman, S.G.

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pa

  16. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    NARCIS (Netherlands)

    Drenth, J.P.H.; Waxman, S.G.

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pa

  17. Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds

    NARCIS (Netherlands)

    Wasmann, Rosemarie A.; Wassink-Ruiter, Jolien S. Klein; Sundin, Olof H.; Morales, Elisa; Verheij, Joke B. G. M.; Pott, Jan Willem R.

    2014-01-01

    Abstract. Purpose: We present a genetic and clinical analysis of two sisters, 3 and 4 years of age, with nanophthalmos and macular folds. Methods: Ophthalmological examination, general paediatric examination and molecular genetic analysis of the MFRP gene were performed in both affected siblings. Re

  18. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    Science.gov (United States)

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype

  19. Ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae carrying multiple metallo-beta-lactamase genes

    Directory of Open Access Journals (Sweden)

    Dwivedi Mayank

    2009-07-01

    Full Text Available Context: Ventilator-associated pneumonia (VAP is a leading nosocomial infection in the intensive care unit (ICU. Members of Enterobacteriaceae are the most common causative agents and carbapenems are the most commonly used antibiotics. Metallo-beta-lactamase (MBL production leading to treatment failure may go unnoticed by routine disc diffusion susceptibility testing. Moreover, there is not much information on association of MBL-producing Enterobacteriaceae with ICU-acquired VAP. Therefore, a study was undertaken to find out the association of MBL-producing Enterobacteriaceae with VAP. Settings: This study was conducted in a large tertiary care hospital of North India with an eight-bed critical care unit. Materials and Methods: The respiratory samples (bronchoalveolar lavage, protected brush catheter specimens and endotracheal or transtracheal aspirates obtained from VAP patients (during January 2005-December 2006 were processed, isolated bacteria identified and their antibiotic susceptibilities tested as per standard protocols. The isolates of Enterobacteriaceae resistant to carbapenem were subjected to phenotypic and genotypic tests for the detection of MBLs. Results: Twelve of 64 isolates of Enterobacteriaceae were detected as MBL producers, bla IMP being the most prevalent gene. Additionally, in three strains, simultaneous coexistence of multiple MBL genes was detected. Conclusion: The coexistence of multiple MBL genes in Enterobacteriaceae is an alarming situation. As MBL genes are associated with integrons that can be embedded in transposons, which in turn can be accommodated on plasmids thereby resulting in a highly mobile genetic apparatus, the further spread of these genes in different pathogens is likely to occur.

  20. X-linked familial exudative vitreoretinopathy caused by an arginine to leucine substitution in exon 3 of the Norrie gene

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.; Perry, Y.M.; Ferrell, R.E. [Univ. of Pittsburg, PA (United States)] [and others

    1994-09-01

    Familial exudative vitreoretinopathy (FEVR) is a disorder characterized by abnormal vascularization of the peripheral retina affecting both the retina and the vitreous body. This is a bilateral disorder and leads to a clinical phenotype resembling retinopathy of prematurity, but affected individuals experience a normal gestational period, and they do not have a history of oxygen therapy. Manifestations of the disorder may include retinal folds, retinal traction, sub- or intraretinal exudates, and in severe cases enophthalmos or phthisis ultimately leading to blindness. Autosomal dominant and X-linked patterns of segregation have been reported. We studied a large three-generation family in which FEVR segregated as an X-linked recessive trait. The Norrie gene was examined because of a prior report of mutation in this gene in a small X-linked FEVR family. Exons 1-3 of the Norrie gene were amplified and screened for mutations by single stranded conformational analysis. A variant conformer of exon 3 was observed in an affected male and in combination with the normal conformer in an obligate carrier female. Sequence analysis revealed a G{r_arrow}T transversion destroying an MspI restriction site. The mutation was present in all affected males, and all obligate carrier females were heterozygous for the mutation. The mutation was not present in unaffected males or in 108 randomly selected normal females. The G{r_arrow}T mutation leads to the substitution of a hydrophobic leucine residue for the positively charged arginine normally present at position 121 of the Norrie gene product. This study confirms that mutation in the Norrie gene can lead to the FEVR phenotype and the existence of allelic heterogeneity.

  1. Irreversible stochastic processes on lattices

    Energy Technology Data Exchange (ETDEWEB)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed.

  2. Lattice topology dictates photon statistics

    CERN Document Server

    Kondakci, H Esat; Saleh, Bahaa E A

    2016-01-01

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice satisfies chiral symmetry. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity -- whether the number of sites is even or odd, while the same quantities are insensitive to the parity of a linear lattice. Adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a chiral-symmetric lattice, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice th...

  3. Lattice parameter, lattice disorder and resistivity of carbohydrate doped MgB2 and their correlation with the transition temperature.

    Science.gov (United States)

    Kim, J H; Oh, Sangjun; Xu, X; Joo, Jinho; Rindfleisch, M; Tomsic, M; Dou, S X

    2009-12-01

    The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the transition temperature by carbon doping in MgB2. In this work, an extensive investigation on the effects of carbohydrate doping has been carried out. It is found that not only the a-axis but also the c-axis lattice parameter increases with the sintering temperature. A linear relation between the unit cell volume and the critical temperature is observed. Compared with the well known correlation between the lattice strain and the critical temperature, the X-ray peak broadening itself shows a closer correlation with the transition temperature. The residual resistivity and the critical temperature are linearly correlated with each other as well and its implication is further discussed.

  4. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    Directory of Open Access Journals (Sweden)

    Sumit Rishi

    2012-06-01

    Full Text Available Abstract Background Nonhost resistance (NHR provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of

  5. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure.

    Science.gov (United States)

    Karimi, Ashkan; Milewicz, Dianna M

    2016-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta.

  6. Steroidogenic factor-1 (SF-1 gene mutation as a frequent cause of primary amenorrhea in 46,XY female adolescents with low testosterone concentration

    Directory of Open Access Journals (Sweden)

    Servant Nadège

    2010-03-01

    Full Text Available Abstract Background Primary amenorrhea due to 46,XY disorders of sex differentiation (DSD is a frequent reason for consultation in endocrine and gynecology clinics. Among the genetic causes of low-testosterone primary amenorrhea due to 46,XY DSD, SRY gene is reported to be frequently involved, but other genes, such as SF1 and WT1, have never been studied for their prevalence. Methods We directly sequenced SRY, SF1 and WT1 genes in 15 adolescent girls with primary amenorrhea, low testosterone concentration, and XY karyotype, to determine the prevalence of mutations. We also analyzed the LH receptor gene in patients with high LH and normal FSH concentrations. Results Among the 15 adolescents with primary amenorrhea and low testosterone concentration, we identified two new SRY mutations, five new SF1 mutations and one new LH receptor gene mutation. Our study confirms the 10-15% prevalence of SRY mutations and shows the high prevalence (33% of SF1 abnormalities in primary amenorrhea due to 46,XY DSD with low plasma testosterone concentration. Conclusions The genetic analysis of low-testosterone primary amenorrhea is complex as several factors may be involved. This work underlines the need to systematically analyze the SF1 sequence in girls with primary amenorrhea due to 46,XY DSD and low testosterone, as well as in newborns with 46,XY DSD.

  7. Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population.

    Science.gov (United States)

    Zhou, Yu; Saikia, Bibhuti B; Jiang, Zhilin; Zhu, Xiong; Liu, Yuqing; Huang, Lulin; Kim, Ramasamy; Yang, Yin; Qu, Chao; Hao, Fang; Gong, Bo; Tai, Zhengfu; Niu, Lihong; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun

    2015-10-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 50 genes. To identify genetic mutations underlying autosomal recessive RP (arRP), we performed whole-exome sequencing study on two consanguineous marriage Indian families (RP-252 and RP-182) and 100 sporadic RP patients. Here we reported novel mutation in FAM161A in RP-252 and RP-182 with two patients affected with RP in each family. The FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. By whole-exome sequencing we identified several homozygous genomic regions, one of which included the recently identified FAM161A gene mutated in RP28-linked arRP. Sequencing analysis revealed the presence of a novel homozygous frameshift mutation p.R592FsX2 in both patients of family RP-252 and family RP-182. In 100 sporadic Indian RP patients, this novel homozygous frameshift mutation p.R592FsX2 was identified in one sporadic patient ARRP-S-I-46 by whole-exome sequencing and validated by Sanger sequencing. Meanwhile, this homozygous frameshift mutation was absent in 1000 ethnicity-matched control samples screened by direct Sanger sequencing. In conclusion, we identified a novel homozygous frameshift mutations of RP28-linked RP gene FAM161A in Indian population.

  8. Differential expression of genes in HepG2 cells caused by UC001kfo RNAi as shown by RNA-seq.

    Science.gov (United States)

    Pan, Yan-Feng; Su, Tong; Chen, Li-Dan; Qin, Tao

    2017-08-01

    The differential expression of genes in HepG2 cells caused by UC001kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-shUC001kfo lentivirus particles. The expression of UC001kfo mRNA in the HepG2-shUC001kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lncRNA UC001kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different mRNAs. The results showed that mRNAs were differentially expressed between the HepG2-shUC001kfo cell line and the HepG2 cell line. The UC001kfo mRNA was significantly down-regulated in the stable cell line HepG2-shUC001kfo (PHepG2 cell line after the down-regulation of lncRNA-UC001kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed mRNAs may participate in cell invasion and metastasis.

  9. Novel nonsense mutation (p.Ile411Metfs*12) in the SLC19A2 gene causing Thiamine Responsive Megaloblastic Anemia in an Indian patient.

    Science.gov (United States)

    Manimaran, Paramasivam; Subramanian, Veedamali S; Karthi, Sellamuthu; Gandhimathi, Krishnan; Varalakshmi, Perumal; Ganesh, Ramasamy; Rathinavel, Andiappan; Said, Hamid M; Ashokkumar, Balasubramaniem

    2016-01-15

    Thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive disorder, is caused by mutations in SLC19A2 gene encodes a high affinity thiamine transporter (THTR-1). The occurrence of TRMA is diagnosed by megaloblastic anemia, diabetes mellitus, and sensorineural deafness. Here, we report a female TRMA patient of Indian descent born to 4th degree consanguineous parents presented with retinitis pigmentosa and vision impairment, who had a novel homozygous mutation (c.1232delT/ter422; p.Ile411Metfs*12) in 5th exon of SLC19A2 gene that causes premature termination of hTHTR-1. PROSITE analysis predicted to abrogate GPCRs family-1 signature motif in the variant by this mutation c.1232delT/ter422, suggesting uncharacteristic rhodopsin function leading to cause RP clinically. Thiamine transport activity by the clinical variant was severely inhibited than wild-type THTR-1. Confocal imaging had shown that the variant p.I411Mfs*12 is targeted to the cell membrane and showed no discrepancy in membrane expression than wild-type. Our findings are the first report, to the best of our knowledge, on this novel nonsense mutation of hTHTR-1 causing TRMA in an Indian patient through functionally impaired thiamine transporter activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  11. Lattice Boltzmann model for nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)

    2005-01-01

    A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)

  12. Localized structures in Kagome lattices

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  13. Lattice sums then and now

    CERN Document Server

    Borwein, J M; McPhedran, R C

    2013-01-01

    The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of

  14. Lattice Trace Operators

    Directory of Open Access Journals (Sweden)

    Brian Jefferies

    2014-01-01

    Full Text Available A bounded linear operator T on a Hilbert space ℋ is trace class if its singular values are summable. The trace class operators on ℋ form an operator ideal and in the case that ℋ is finite-dimensional, the trace tr(T of T is given by ∑jajj for any matrix representation {aij} of T. In applications of trace class operators to scattering theory and representation theory, the subject is complicated by the fact that if k is an integral kernel of the operator T on the Hilbert space L2(μ with μ a σ-finite measure, then k(x,x may not be defined, because the diagonal {(x,x} may be a set of (μ⊗μ-measure zero. The present note describes a class of linear operators acting on a Banach function space X which forms a lattice ideal of operators on X, rather than an operator ideal, but coincides with the collection of hermitian positive trace class operators in the case of X=L2(μ.

  15. A novel Ehrlichia genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations associated with ehrlichiosis.

    Science.gov (United States)

    Aguiar, Daniel M; Ziliani, Thayza F; Zhang, Xiaofeng; Melo, Andreia L T; Braga, Isis A; Witter, Rute; Freitas, Leodil C; Rondelli, André L H; Luis, Michele A; Sorte, Eveline C B; Jaune, Felipe W; Santarém, Vamilton A; Horta, Mauricio C; Pescador, Carolina A; Colodel, Edson M; Soares, Herbert S; Pacheco, Richard C; Onuma, Selma S M; Labruna, Marcelo B; McBride, Jere W

    2014-09-01

    A novel Ehrlichia genotype most closely related to E. canis was reported in North American cattle in 2010, and a similar agent was subsequently identified in the hemolymph of Brazilian Rhipicephalus (Boophilus) microplus ticks and isolated in 2012. The purpose of this study was to determine whether this or other novel ehrlichial agents naturally infect Brazilian cattle. Using PCR targeting the genus-conserved dsb gene, DNA from this novel ehrlichial agent in Brazilian cattle was detected. Attempts to isolate the organism in vitro were performed using DH82 cells, but morulae and ehrlichial DNA could only be detected for approximately one month. In order to further molecularly characterize the organism, PCR was performed using primers specific for multiple E. canis genes (dsb, rrs, and trp36). Sequence obtained from the conserved rrs and dsb genes demonstrated that the organism was 99-100% identical to the novel Ehrlichia genotypes previously reported in North American cattle (rrs gene) and Brazilian ticks (rrs and dsb genes). However, analysis of the trp36 gene revealed substantial strain diversity between these Ehrlichia genotypes strains, including divergent tandem repeat sequences. In order to obtain preliminary information on the potential pathogenicity of this ehrlichial agent and clinical course of infection, a calf was experimentally infected. The calf showed clinical signs of ehrlichiosis, including fever, depression, lethargy, thrombocytopenia, and morulae were observed in peripheral blood monocytes. This study reports a previously unrecognized disease-causing Ehrlichia sp. in Brazilian cattle that is consistent with the genotype previously described in North America cattle and ticks from Brazil. Hence, it is likely that this is the organism previously identified as Ehrlichia bovis in Brazil in 1982. Furthermore, we have concluded that strains of these Ehrlichia genotypes can be molecularly distinguished by the trp36 gene, which has been widely utilized to

  16. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes

    DEFF Research Database (Denmark)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders;

    2009-01-01

    of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families...... negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls......). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely...

  17. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype.

    OpenAIRE

    Gianluca Occhi; Daniela Regazzo; Giampaolo Trivellin; Francesca Boaretto; Denis Ciato; Sara Bobisse; Sergio Ferasin; Filomena Cetani; Elena Pardi; Márta Korbonits; Pellegata, Natalia S.; Viktoryia Sidarovich; Alessandro Quattrone; Giuseppe Opocher; Franco Mantero

    2013-01-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27(KIP1), an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27(KIP1) expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome ch...

  18. Analysis of the cbhE' plasmid gene from acute disease-causing isolates of Coxiella burnetii.

    Science.gov (United States)

    Minnick, M F; Small, C L; Frazier, M E; Mallavia, L P

    1991-07-15

    A gene termed cbhE' was cloned from the QpH1 plasmid of Coxiella burnetii. Expression of recombinants containing cbhE' in vitro and in Escherichia coli maxicells, produced an insert-encoded polypeptide of approx. 42 kDa. The CbhE protein was not cleaved when intact maxicells were treated with trypsin. Hybridizations of total DNA isolated from the six strains of C. burnetii indicate that this gene is unique to C. burnetii strains associated with acute disease, i.e., Hamilton[I], Vacca[II], and Rasche[III]. The cbhE' gene was not detected in strains associated with chronic disease (Biotzere[IV] and Corazon[V]) or the Dod[VI] strain. The cbhE' open reading frame (ORF) is 1022 bp in length and is preceded by a predicted promoter/Shine-Dalgarno (SD) region of TCAACT(-35)-N16-TAAAAT(-10)-N14-AGAAGGA (SD) located 10 nucleotides (nt) before the presumed AUG start codon. The ORF ends with a single UAA stop codon and has no apparent Rho-factor-independent terminator following it. The cbhE' gene codes for the CbhE protein of 341 amino acid (aa) residues with a deduced Mr of 39,442. CbhE is predominantly hydrophilic with a predicted pI of 4.43. The function of CbhE is unknown. No nt or aa sequences with homology to cbhE' or CbhE, respectively, were found in searches of a number of data bases.

  19. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes

    OpenAIRE

    2013-01-01

    Background Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene muta...

  20. Meiotic recombination in the beta globin gene cluster causing an error in prenatal diagnosis of beta thalassaemia.

    OpenAIRE

    Camaschella, C.; Serra, A.; Saglio, G; Bertero, M T; Mazza, U; Terzoli, S; Brambati, B; Cremonesi, L.; Travi, M; Ferrari, M

    1988-01-01

    In the course of a prenatal diagnosis for beta thalassaemia by linkage analysis of restriction fragment length polymorphisms, a homozygous beta thalassaemia fetus was misdiagnosed as beta thalassaemia trait. Extensive studies of the polymorphic sites within the beta globin gene cluster in all the members of the family resulted in the conclusion that the paternal chromosome 11 of the newborn was different from that expected. Paternity was confirmed by HLA typing and blood group studies. The an...