WorldWideScience

Sample records for gene btg2 requires

  1. BTG2 Antiproliferative Gene and Prostate Cancer

    National Research Council Canada - National Science Library

    Walden, Paul D

    2008-01-01

    .... During this study we showed that BTG2 protein expression is lost as an early event in prostate carcinogenesis and that prostate cancer cells degrade BTG2 at a greater rate than noncancerous prostate cells...

  2. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-01

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92 LxxLL 96 motif is essential and necessary for these activities of BTG2, while the 20 LxxLL 24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ( 20 LxxLL 24 and 92 LxxLL 96 ), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20 LxxLL 24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92 LxxLL 96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92 LxxLL 96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  3. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xu-Dong [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Meng, Qing-Hui [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Xu, Jia-Ying; Jiao, Yang [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Ge, Chun-Min [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Jacob, Asha; Wang, Ping [North Shore University Hospital-Long Island Jewish Medical Center and The Feinstein Institute for Medical Research, Manhasset, NY 11030 (United States); Rosen, Eliot M [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Fan, Saijun, E-mail: sjfan@suda.edu.cn [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China)

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  4. BTG2 Is Down-Regulated and Inhibits Cancer Stem Cell-Like Features of Side Population Cells in Hepatocellular Carcinoma.

    Science.gov (United States)

    Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu

    2017-12-01

    Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.

  5. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    OpenAIRE

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as...

  6. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal. PMID:22969701

  7. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  8. BTG1 is required to maintain the pool of stem and progenitor cells of dentate gyrus and subventricular zone

    OpenAIRE

    Stefano eFarioli-Vecchioli; Laura eMicheli; Daniele eSaraulli; Manuela eCeccarelli; Sara eCannas; Raffaella eScardigli; Luca eLeonardi; Irene eCinà; Marco eCostanzi; Maria Teresa eCiotti; Pedro eMoreira; Jean-Pierre eRouault; Vincenzo eCestari; Felice eTirone

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons.Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at two months of age the number of these proliferating cells, a...

  9. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation

    International Nuclear Information System (INIS)

    Chen, Yuanfan; Wang, Chenchen; Wu, Jenny; Li, Lingsong

    2015-01-01

    The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1 −/− , Tob2 −/− , and Tob1/2 double knockout (DKO, Tob1 −/− & Tob2 −/− ) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs. - Highlights: • We established mouse Tob1/2 double knockout embryonic stem cells. • Tob1 and Tob2 inhibit the proliferation of ESCs without effect on pluripotency. • Tob1 and Tob2 involved in the degradation of Id3 in mESCs

  10. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanfan; Wang, Chenchen [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191 (China); SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120 (China); Wu, Jenny [SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120 (China); Li, Lingsong, E-mail: lils@sari.ac.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191 (China); SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120 (China)

    2015-07-03

    The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1{sup −/−}, Tob2{sup −/−}, and Tob1/2 double knockout (DKO, Tob1{sup −/−} & Tob2{sup −/−}) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs. - Highlights: • We established mouse Tob1/2 double knockout embryonic stem cells. • Tob1 and Tob2 inhibit the proliferation of ESCs without effect on pluripotency. • Tob1 and Tob2 involved in the degradation of Id3 in mESCs.

  11. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes

    OpenAIRE

    Tajima, Ken; Yae, Toshifumi; Javaid, Sarah; Tam, Oliver; Comaills, Valentine; Morris, Robert; Wittner, Ben S.; Liu, Mingzhu; Engstrom, Amanda; Takahashi, Fumiyuki; Black, Joshua C.; Ramaswamy, Sridhar; Shioda, Toshihiro; Hammell, Molly; Haber, Daniel A.

    2015-01-01

    Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead t...

  12. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  13. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  14. Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toru, E-mail: toru@ims.u-tokyo.ac.jp [Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Kim, Minsoo [Division of Bacterial Infection, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Kozuka-Hata, Hiroko [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Watanabe, Masato [Department of Medical Genome Science, School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562 (Japan); Oyama, Masaaki [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Tsumoto, Kouhei [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Medical Genome Science, School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami, Okinawa 904-0412 (Japan)

    2011-05-27

    Highlights: {yields} Tob/BTG family proteins are monoubiquitinated in the absence of E3s in vitro. {yields} Monoubiquitination sites of Tob are identified by mass spectrometry. {yields} The monoubiquitination event correlates with lower levels of polyubiquitination. -- Abstract: Tob belongs to the anti-proliferative Tob/BTG protein family. The expression level of Tob family proteins is strictly regulated both transcriptionally and through post-translational modification. Ubiquitin (Ub)/proteosome-dependent degradation of Tob family proteins is critical in controlling cell cycle progression and DNA damage responses. Various Ub ligases (E3s) are responsible for degradation of Tob protein. Here, we show that Tob family proteins undergo monoubiquitination even in the absence of E3s in vitro. Determination of the ubiquitination site(s) in Tob by mass spectrometric analysis revealed that two lysine residues (Lys48 and Lys63) located in Tob/BTG homology domain are ubiquitinated. A mutant Tob, in which both Lys48 and Lys63 are substituted with alanine, is more strongly polyubiquitinated than wild-type Tob in vivo. These data suggest that monoubiquitination of Tob family proteins confers resistance against polyubiquitination, which targets proteins for degradation. The strategy for regulating the stability of Tob family proteins suggests a novel role for monoubiquitination.

  15. Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination

    International Nuclear Information System (INIS)

    Suzuki, Toru; Kim, Minsoo; Kozuka-Hata, Hiroko; Watanabe, Masato; Oyama, Masaaki; Tsumoto, Kouhei; Yamamoto, Tadashi

    2011-01-01

    Highlights: → Tob/BTG family proteins are monoubiquitinated in the absence of E3s in vitro. → Monoubiquitination sites of Tob are identified by mass spectrometry. → The monoubiquitination event correlates with lower levels of polyubiquitination. -- Abstract: Tob belongs to the anti-proliferative Tob/BTG protein family. The expression level of Tob family proteins is strictly regulated both transcriptionally and through post-translational modification. Ubiquitin (Ub)/proteosome-dependent degradation of Tob family proteins is critical in controlling cell cycle progression and DNA damage responses. Various Ub ligases (E3s) are responsible for degradation of Tob protein. Here, we show that Tob family proteins undergo monoubiquitination even in the absence of E3s in vitro. Determination of the ubiquitination site(s) in Tob by mass spectrometric analysis revealed that two lysine residues (Lys48 and Lys63) located in Tob/BTG homology domain are ubiquitinated. A mutant Tob, in which both Lys48 and Lys63 are substituted with alanine, is more strongly polyubiquitinated than wild-type Tob in vivo. These data suggest that monoubiquitination of Tob family proteins confers resistance against polyubiquitination, which targets proteins for degradation. The strategy for regulating the stability of Tob family proteins suggests a novel role for monoubiquitination.

  16. On the composition of ISO 25964 hierarchical relations (BTG, BTP, BTI)

    NARCIS (Netherlands)

    Alexiev, A; Isaac, A.H.J.C.A.; Lindenthal, J

    2015-01-01

    Knowledge organization systems (KOS) can use different types of hierarchical relations: broader generic (BTG), broader partitive (BTP), and broader instantial (BTI). The latest ISO standard on thesauri (ISO 25964) has formalized these relations in a corresponding OWL ontology (De Smedt et al., ISO

  17. Association of ESRα Gene Pvu II T>C, XbaI A>G and BtgI G>A Polymorphisms with Knee Osteoarthritis Susceptibility: A Systematic Review and Meta-Analysis Based on 22 Case-Control Studies.

    Science.gov (United States)

    Yazdi, Masoud Mahdinezhad; Jamalaldini, Mohamad H; Sobhan, Mohammad R; Jafari, Mohammadali; Mazaheri, Mahta; Zare-Shehneh, Masoud; Neamatzadeh, Hossein

    2017-11-01

    Many studies have reported the association of estrogen receptor α gene (ESRα) ESRα PvuII T>C, XbaI A>G and BtgI G>A polymorphisms with Knee osteoarthritis (KOA) risk, but the results remained controversial. In order to drive a more precise estimation, the present systematic review and meta-analysis was performed to investigate the association between ESRα polymorphisms and KOA susceptibility. Eligible articles were identified by search of databases including PubMed, ISI Web of Knowledge and Google scholar up to March 1, 2017. Data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated. A total of 22 case-control studies in eleven publications with 6,575 KOA cases and 7,459 controls were included in the meta-analysis. By pooling all the studies, either ESRα PvuII T>C and XbaI A>G polymorphisms was not associated with KOA risk in the overall population. However, ESRα BtgI G>A was significantly associated with KOA risk under all five genetic models. In the subgroup analysis by ethnicity, a significant association was observed between ESRα PvuII T>C polymorphism and KOA risk in Asians under heterozygote model. In addition, significant association was found between ESRα XbaI A>G polymorphism and KOA in Caucasians under allelic, homozygote, dominant and recessive models. The present meta-analysis suggests that ESRα BtgI G>A rather than ESRα PvuII T>C and XbaI A>G polymorphisms is associated with an increased KOA risk in overall population. Moreover, we have found that ESRα PvuII T>C and XbaI A>G polymorphisms associated with KOA susceptibility by ethnicity backgrounds.

  18. Association of ESRα Gene Pvu II T>C, XbaI A>G and BtgI G>A Polymorphisms with Knee Osteoarthritis Susceptibility: A Systematic Review and Meta-Analysis Based on 22 Case-Control Studies

    Directory of Open Access Journals (Sweden)

    Masoud Mehdinejad Yazdi

    2017-11-01

    Full Text Available Background: Many studies have reported the association of estrogen receptor α gene (ESRα ESRα PvuII T>C, XbaI A>G and BtgI G>A polymorphisms with Knee osteoarthritis (KOA risk, but the results remained controversial. In order to drive a more precise estimation, the present systematic review and meta-analysis was performed to investigate the association between ESRα polymorphisms and KOA susceptibility. Methods: Eligible articles were identified by search of databases including PubMed, ISI Web of Knowledge and Google scholar up to March 1, 2017. Data were extracted by two independent authors and pooled odds ratio (OR with 95% confidence interval (CI was calculated. Results: A total of 22 case-control studies in eleven publications with 6,575 KOA cases and 7,459 controls were included in the meta-analysis. By pooling all the studies, either ESRα PvuII T>C and XbaI A>G polymorphisms was not associated with KOA risk in the overall population. However, ESRα BtgI G>A was significantly associated with KOA risk under all five genetic models. In the subgroup analysis by ethnicity, a significant association was observed between ESRα PvuII T>C polymorphism and KOA risk in Asians under heterozygote model. In addition, significant association was found between ESRα XbaI A>G polymorphism and KOA in Caucasians under allelic, homozygote, dominant and recessive models. Conclusion: The present meta-analysis suggests that ESRα BtgI G>A rather than ESRα PvuII T>C and XbaI A>G polymorphisms is associated with an increased KOA risk in overall population. Moreover, we have found that ESRα PvuII T>C and XbaI A>G polymorphisms associated with KOA susceptibility by ethnicity backgrounds.

  19. B-cell translocation gene 3 overexpression inhibits proliferation and invasion of colorectal cancer SW480 cells via Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Mao, D; Qiao, L; Lu, H; Feng, Y

    2016-01-01

    Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/β-catenin signaling pathway. We then used GSK3β specific inhibitor SB-216763 to activate the Wnt/β-catenin signaling pathway. We found that Wnt/β-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/β-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.

  20. C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context.

    Science.gov (United States)

    Snow, J J; Lee, M-H; Verheyden, J; Kroll-Conner, P L; Kimble, J

    2013-05-23

    Vertebrate Tob/BTG proteins inhibit cell proliferation when overexpressed in tissue-culture cells, and they can function as tumor suppressors in mice. The single Caenorhabditis elegans Tob/BTG ortholog, FOG-3, by contrast, was identified from its loss-of-function phenotype as a regulator of sperm fate specification. Here we report that FOG-3 also regulates proliferation in the germline tissue. We first demonstrate that FOG-3 is a positive regulator of germline proliferation. Thus, fog-3 null mutants possess fewer germ cells than normal, a modest but reproducible decrease observed for each of two distinct fog-3 null alleles. A similar decrease also occurred in fog-3/+ heterozygotes, again for both fog-3 alleles, revealing a haplo-insufficient effect on proliferation. Therefore, FOG-3 normally promotes proliferation, and two copies of the fog-3 gene are required for this function. We next overexpressed FOG-3 by removal of FBF, the collective term for FBF-1 and FBF-2, two nearly identical PUF RNA-binding proteins. We find that overexpressed FOG-3 blocks proliferation in fbf-1 fbf-2 mutants; whereas germ cells stop dividing and instead differentiate in fbf-1 fbf-2 double mutants, they continue to proliferate in fog-3; fbf-1 fbf-2 triple mutants. Therefore, like its vertebrate Tob/BTG cousins, overexpressed FOG-3 is 'antiproliferative'. Indeed, some fog-3; fbf-1 fbf-2 mutants possess small tumors, suggesting that FOG-3 can act as a tumor suppressor. Finally, we show that FOG-3 and FBF work together to promote tumor formation in animals carrying oncogenic Notch mutations. A similar effect was not observed when germline tumors were induced by manipulation of other regulators; therefore, this FOG-3 tumor-promoting effect is context dependent. We conclude that FOG-3 can either promote or inhibit proliferation in a manner that is sensitive to both genetic context and gene dosage. The discovery of these FOG-3 effects on proliferation has implications for our understanding of

  1. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  2. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  3. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  4. The Contribution of Transactivation Subdomains 1 and 2 to p53-Induced Gene Expression Is Heterogeneous But Not Subdomain-Specific

    Directory of Open Access Journals (Sweden)

    Jennifer M. Smith

    2007-12-01

    Full Text Available Two adjacent regions within the transactivation domain of p53 are sufficient to support sequence-specific transactivation when fused to a heterologous DNA binding domain. It has been hypothesized that these two subdomains of p53 may contribute to the expression of distinct p53-responsive genes. Here we have used oligonucleotide microarrays to identify transcripts induced by variants of p53 with point mutations within subdomains 1, 2, or 1 and 2 (QS1, QS2, QS1/QS2, respectively. The expression of 254 transcripts was increased in response to wild-type p53 expression but most of these transcripts were poorly induced by these variants of p53. Strikingly, a number of known p53regulated transcripts including TNFRSF10B, BAX, BTG2, POLH were increased to wild-type levels by p53QS1 and p53QS2 but not p53QS1/QS2, indicating that either sub domain 1 or 2 is sufficient for p53-dependent expression of a small subset of p53-responsive genes. Unexpectedly, there was no evidence for p53QS1- or p53QS2-specific gene expression. Taken together, we found heterogeneity in the requirement for transactivation subdomains 1 and 2 of p53 without any subdomain-specific contribution to p53-induced gene expression.

  5. Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program.

    Science.gov (United States)

    Lee, Myon-Hee; Kim, Kyung Won; Morgan, Clinton T; Morgan, Dyan E; Kimble, Judith

    2011-05-31

    FOG-3, the single Caenorhabditis elegans Tob/BTG protein, directs germ cells to adopt the sperm fate at the expense of oogenesis. Importantly, FOG-3 activity must be maintained for the continued production of sperm that is typical of the male sex. Vertebrate Tob proteins have antiproliferative activity and ERK phosphorylation of Tob proteins has been proposed to abrogate "antiproliferative" activity. Here we investigate FOG-3 phosphorylation and its effect on sperm fate specification. We found both phosphorylated and unphosphorylated forms of FOG-3 in nematodes. We then interrogated the role of FOG-3 phosphorylation in sperm fate specification. Specifically, we assayed FOG-3 transgenes for rescue of a fog-3 null mutant. Wild-type FOG-3 rescued both initiation and maintenance of sperm fate specification. A FOG-3 mutant with its four consensus ERK phosphorylation sites substituted to alanines, called FOG-3(4A), rescued partially: sperm were made transiently but not continuously in both sexes. A different FOG-3 mutant with its sites substituted to glutamates, called FOG-3(4E), had no rescuing activity on its own, but together with FOG-3(4A) rescue was complete. Thus, when FOG-3(4A) and FOG-3(4E) were both introduced into the same animals, sperm fate specification was not only initiated but also maintained, resulting in continuous spermatogenesis in males. Our findings suggest that unphosphorylated FOG-3 initiates the sperm fate program and that phosphorylated FOG-3 maintains that program for continued sperm production typical of males. We discuss implications of our results for Tob/BTG proteins in vertebrates.

  6. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  7. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    Science.gov (United States)

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.

  9. Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats.

    Science.gov (United States)

    Dela Peña, Ike; Dela Peña, Irene Joy; de la Peña, June Bryan; Kim, Hee Jin; Shin, Chan Young; Han, Doug Hyun; Kim, Bung-Nyun; Ryu, Jong Hoon; Cheong, Jae Hoon

    2017-09-01

    Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.

  10. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin; Choi, Peter  S.; Casey, Stephanie  C.; Dill, David  L.; Felsher, Dean  W.

    2014-01-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  11. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  12. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Growth hormone receptor C-terminal domains required for growth hormone-induced intracellular free Ca2+ oscillations and gene transcription

    DEFF Research Database (Denmark)

    Billestrup, N; Bouchelouche, P; Allevato, G

    1995-01-01

    of varying frequency and amplitude. GH-induced transcription of the serine protease inhibitor 2.1 gene required the same C-terminal 52-amino acid domain of the receptor as for Ca2+ signaling. Mutation of the four proline residues in the conserved box 1 region of the GHR, which is responsible for binding...

  14. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  16. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  17. Blood transfusion in cardiac surgery does increase the risk of 5-year mortality: results from a contemporary series of 1714 propensity-matched patients.

    Science.gov (United States)

    Shaw, Richard E; Johnson, Christopher K; Ferrari, Giovanni; Brizzio, Mariano E; Sayles, Kathleen; Rioux, Nancy; Zapolanski, Alex; Grau, Juan B

    2014-04-01

    Studies have found that cardiac surgery patients receiving blood transfusions are at risk for increased mortality during the first year after surgery, but risk appears to decrease after the first year. This study compared 5-year mortality in a propensity-matched cohort of cardiac surgery patients. Between July 1, 2004, and June 30, 2011, 3516 patients had cardiac surgery with 1920 (54.6%) requiring blood transfusion. Propensity matching based on 22 baseline characteristics yielded two balanced groups (blood transfusion group [BTG] and nontransfused control group [NCG]) of 857 patients (1714 in total). The type and number of blood products were compared in the BTG. Operative mortality was higher in BTG versus NCG (2.3% vs. 0.4%; p blood (79.6% vs. 88.0%; p transfusion was independently associated with increased risk for 5-year mortality. Patients receiving cryoprecipitate products had a twofold mortality risk increase (adjusted hazard ratio, 2.106; p = 0.002). Blood transfusion, specifically cryoprecipitates, was independently associated with increased 5-year mortality. Transfusion during cardiac surgery should be limited to patients who are in critical need of blood products. © 2013 American Association of Blood Banks.

  18. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis

    Science.gov (United States)

    Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.

    2010-01-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  19. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  20. Methodology to detect and quantify the presence of recycled PET in bottle-grade PET blends: mass spectrometry (MALDI-TOF) and X-ray fluorescence

    International Nuclear Information System (INIS)

    Romao, Wanderson; Franco, Marcos F.; Gozzo, Fabio C.; Iglesias, Amadeu H.; Sanvido, Gustavo B.; Eberlin, Marcos N.; Bueno, Maria I.M.S.; Maretto, Danilo A.; Poppi, Ronei J.; Paoli, Marco-Aurelio de

    2009-01-01

    New methodologies were developed to detect and to quantify the presence of the bottle-grade post-consumption PET (PET pc -btg) in the bottle-grade virgin PET (PET v -btg), preventing frauds and illegal uses of recycled PET pc -btg. MALDI-MS results together with PCA (principal component analysis) was used to classify the samples into several groups: intrinsic viscosity changes; processed and not submitted to some industrial process; wt % PET pc -btg in the PET v -btg; synthesis process change (manufacturer). From these results, it was possible to create a calibration model, that differentiated between PET v -btg and PET pc -btg resins. XRF results show that some manufacturers use one or more catalysts for PET v -btg synthesis, where our prediction model is valid only when the studied resin is known. We observed also that the Fe concentration in PET increase in as a function of the recycling process. Therefore, this variable could be used, in the future work, to create chemometric models including a higher number of variables. (author)

  1. The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    Science.gov (United States)

    Hussein, Hala E.; Bastos, Reginaldo G.; Schneider, David A.; Johnson, Wendell C.; Adham, Fatma K.; Davis, William C.; Laughery, Jacob M.; Herndon, David R.; Alzan, Heba F.

    2017-01-01

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis. PMID:28985216

  2. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.

    Science.gov (United States)

    Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F

    2013-05-01

    Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.

  3. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  4. The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction.

    Directory of Open Access Journals (Sweden)

    Hala E Hussein

    2017-10-01

    Full Text Available Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.

  5. Molecular cloning and characterization of genes required for nucleotide excision repair in yeast

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Nucleotide excision repair in the yeast S. cerevisiae is a complex process which involves a large number of genes. At least five of these genes (RAD1, RAD2, RAD3, RAD4 and RAD10) are absolutely required for this process and mutations in any of these genes result in no detectable excision repair in vivo. In order to understand the function of these genes in DNA repair, the authors isolated a number of them by screening a yeast genomic library for recombinant plasmids which complement the phentoype of sensitivity to ultraviolet (UV) radiation imparted to mutant strains. A plasmid containing the RAD4 gene was isolated by an alternative strategy which will be discussed. The cloned genes have been extensively characterized. It has been determined that the RAD3 gene is essential for the viability of haploid yeast cells in the absence of DNA damage. The RAD2 gene is inducible by treatment of cells with a variety of DNA-damaging agents, including UV radiation and ionizing radiation. The RAD10 gene shares considerable amino acid sequence homology with a cloned gene involved in nucleotide excision repair in human cells. Yeast is a particularly versatile organism for studying gene function by molecular and genetic approaches and emphasis is placed on many of the techniques used in the present studies

  6. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  7. Genome-wide screen for salmonella genes required for long-term systemic infection of the mouse.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available A microarray-based negative selection screen was performed to identify Salmonella enterica serovar Typhimurium (serovar Typhimurium genes that contribute to long-term systemic infection in 129X1/SvJ (Nramp1(r mice. A high-complexity transposon-mutagenized library was used to infect mice intraperitoneally, and the selective disappearance of mutants was monitored after 7, 14, 21, and 28 d postinfection. One hundred and eighteen genes were identified to contribute to serovar Typhimurium infection of the spleens of mice by 28 d postinfection. The negatively selected mutants represent many known aspects of Salmonella physiology and pathogenesis, although the majority of the identified genes are of putative or unknown function. Approximately 30% of the negatively selected genes correspond to horizontally acquired regions such as those within Salmonella pathogenicity islands (SPI 1-5, prophages (Gifsy-1 and -2 and remnant, and the pSLT virulence plasmid. In addition, mutations in genes responsible for outer membrane structure and remodeling, such as LPS- and PhoP-regulated and fimbrial genes, were also selected against. Competitive index experiments demonstrated that the secreted SPI2 effectors SseK2 and SseJ as well as the SPI4 locus are attenuated relative to wild-type bacteria during systemic infection. Interestingly, several SPI1-encoded type III secretion system effectors/translocases are required by serovar Typhimurium to establish and, unexpectedly, to persist systemically, challenging the present description of Salmonella pathogenesis. Moreover, we observed a progressive selection against serovar Typhimurium mutants based upon the duration of the infection, suggesting that different classes of genes may be required at distinct stages of infection. Overall, these data indicate that Salmonella long-term systemic infection in the mouse requires a diverse repertoire of virulence factors. This diversity of genes presumably reflects the fact that

  8. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.

    Science.gov (United States)

    Liu, L; Shaw, P D

    1997-01-01

    The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis. PMID:8990304

  9. Growth conditions determine the DNF2 requirement for symbiosis.

    Directory of Open Access Journals (Sweden)

    Fathi Berrabah

    Full Text Available Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.

  10. Organization of Genes Required for the Oxidation of Methanol to Formaldehyde in Three Type II Methylotrophs

    Science.gov (United States)

    Bastien, C.; Machlin, S.; Zhang, Y.; Donaldson, K.; Hanson, R. S.

    1989-01-01

    Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome cL, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome cL structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed. PMID:16348074

  11. Sea urchin neural alpha2 tubulin gene: isolation and promoter analysis.

    Science.gov (United States)

    Costa, S; Ragusa, M A; Drago, G; Casano, C; Alaimo, G; Guida, N; Gianguzza, F

    2004-04-02

    Expression of Talpha2 gene, during sea urchin Paracentrotus lividus development, is spatially and temporally regulated. In order to characterize this gene, we isolated the relevant genomic sequences and scanned the isolated 5'-flanking region in searching for cis-regulatory elements required for proper expression. Gel mobility shift and footprinting assays, as well as reporter gene (CAT and beta-gal) expression assays, were used to address cis-regulatory elements involved in regulation. Here we report that an upstream 5'-flanking fragment of PlTalpha2 gene drives temporal expression of reporter genes congruent with that of endogenous Talpha2 gene. The fragment contains cis-elements able to bind nuclear proteins from the gastrula stage (at which the Talpha2 gene is expressed) whose sequences could be consistent with the consensus sequences for transcription factors present in data bank.

  12. The UNDP/World Bank monitoring program on small scale biomass gasifiers (BTG's experience on tar measurements)

    Energy Technology Data Exchange (ETDEWEB)

    Knoef, H.A.M. [Biomass Technology Group BTG, Enschede (Netherlands)

    2000-07-01

    By the time that small-scale biomass gasifiers were 'rediscovered' and promoted for use in developing countries (1970s), UNDP and the World Bank were well aware of the pitfalls of previous attempts to diffuse decentralized energy technologies. Therefore they decided to initiate a technology assessment programme before endorsing and/or stimulating a widespread gasifier introduction programme in developing countries. On July 1, 1983, the UNDP/WB worldwide Small-scale biomass gasifier monitoring was initiated, which was to {sup c}ollect uniform data on the actual field performance, economics, safety and public acceptability of biomass gasifiers currently operating in developing countries{sup .} For the UNDP/WB program BTG developed a tar measuring protocol which was used at twenty gasifiers worldwide (Indonesia, Philippines, Brazil, Mali, Seychelles, Vanuatu and Burundi). Other parameters monitored include pressure and temperatures at various spots, gasflow, fuel consumption, lubrication oil analyses, gas-composition analyses, emission measurements. The seven year programme showed that most of donor funded projects failed, mainly because there was not sufficient commitment from involved parties. National programs on the utilization of loca available biomass resources mostly failed because the fuel did not suit the requirements of gasifier reactor. In case of proper project design/set-up most of the small scale biomass gasifiers operated without major problems. Examples of such projects are the ones in Balong and Majalengka (Indonesia) Onesua (Vanuatu), Espara Feliz (Brazil) and Dogofiry (Mali). A motivated team of technicians, operators, managers is one the most important items within this respect. Most of the heat gasifiers are installed commercially and are much more successful compared to the subsidized power gasifiers. Local manufactured gasifiers are generally constructed of low quality materials causing frequent technical problems. However, locally

  13. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    Science.gov (United States)

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  14. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  15. Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide

    Science.gov (United States)

    Hemschemeier, Anja; Düner, Melis; Casero, David; Merchant, Sabeeha S.; Winkler, Martin; Happe, Thomas

    2013-01-01

    Hemoglobins are recognized today as a diverse family of proteins present in all kingdoms of life and performing multiple reactions beyond O2 chemistry. The physiological roles of most hemoglobins remain elusive. Here, we show that a 2-on-2 (“truncated”) hemoglobin, termed THB8, is required for hypoxic growth and the expression of anaerobic genes in Chlamydomonas reinhardtii. THB8 is 1 of 12 2-on-2 hemoglobins in this species. It belongs to a subclass within the 2-on-2 hemoglobin class I family whose members feature a remarkable variety of domain arrangements and lengths. Posttranscriptional silencing of the THB8 gene results in the mis-regulation of several genes and a growth defect under hypoxic conditions. The latter is intensified in the presence of an NO scavenger, which also impairs growth of wild-type cells. As recombinant THB8 furthermore reacts with NO, the results of this study indicate that THB8 is part of an NO-dependent signaling pathway. PMID:23754374

  16. The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato

    NARCIS (Netherlands)

    Ma, L.; Houterman, P.M.; Gawehns, F.; Cao, L.; Sillo, F.; Richter, H.; Clavijo-Ortiz, M.J.; Schmidt, S.M.; Boeren, S.; Vervoort, J.; Cornelissen, B.J.C.; Rep, M.; Takken, F.L.W.

    2015-01-01

    Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called 'effectors'. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared

  17. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  18. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.

    Science.gov (United States)

    Fagard, M; Boutet, S; Morel, J B; Bellini, C; Vaucheret, H

    2000-10-10

    Introduction of transgene DNA may lead to specific degradation of RNAs that are homologous to the transgene transcribed sequence through phenomena named post-transcriptional gene silencing (PTGS) in plants, quelling in fungi, and RNA interference (RNAi) in animals. It was shown previously that PTGS, quelling, and RNAi require a set of related proteins (SGS2, QDE-1, and EGO-1, respectively). Here we report the isolation of Arabidopsis mutants impaired in PTGS which are affected at the Argonaute1 (AGO1) locus. AGO1 is similar to QDE-2 required for quelling and RDE-1 required for RNAi. Sequencing of ago1 mutants revealed one amino acid essential for PTGS that is also present in QDE-2 and RDE-1 in a highly conserved motif. Taken together, these results confirm the hypothesis that these processes derive from a common ancestral mechanism that controls expression of invading nucleic acid molecules at the post-transcriptional level. As opposed to rde-1 and qde-2 mutants, which are viable, ago1 mutants display several developmental abnormalities, including sterility. These results raise the possibility that PTGS, or at least some of its elements, could participate in the regulation of gene expression during development in plants.

  19. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target...

  20. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  1. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.513 Potato Leaf Roll... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  2. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    Science.gov (United States)

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  3. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... type of F. oxysporum f. sp. lycopersici observed commonly which require presence of I1 gene in tomato plant for the incompatibility ... Key words: Fusarium wilt, race, R-gene, resistance, tomato. ... MATERIALS AND METHODS.

  4. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development.

    Science.gov (United States)

    José-Edwards, Diana S; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-06-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.

  5. Bio-Inspired Distributed Decision Algorithms for Anomaly Detection

    Science.gov (United States)

    2017-03-01

    Generation Services (ETG) 3. Replay of Traffic Traces (RTT) BTG creates “ norm ” traffic background with pre-specified distribution, BTG takes in a...a cap on the IP counter to offset this artificial effect. For this reason, we also evaluated the dependence of DIAMoND performance on the IP counter... cap . 3.3.2.10 Performance Evaluation Metrics. Given the local anomaly detector is based on TCP session negotiation protocols, it is natural to

  6. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  7. The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato

    NARCIS (Netherlands)

    Ma, L.; Houterman, P.M.; Gawehns, F.; Cao, L.; Sillo, F.; Richter, H.; Clavijo-Ortiz, M.J.; Schmidt, S.M.; Boeren, J.A.; Vervoort, J.J.M.; Cornelissen, B.J.C.; Rep, M.; Takken, F.L.W.

    2015-01-01

    •Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called ‘effectors’. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared

  8. Gene expression profiling upon 212Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model

    International Nuclear Information System (INIS)

    Yong, Kwon J; Milenic, Diane E; Baidoo, Kwamena E; Kim, Young-Seung; Brechbiel, Martin W

    2013-01-01

    Recent studies have demonstrated that therapy with 212 Pb-TCMC-trastuzumab resulted in (1) induction of apoptosis, (2) G2/M arrest, and (3) blockage of double-strand DNA damage repair in LS-174T i.p. (intraperitoneal) xenografts. To further understand the molecular basis of the cell killing efficacy of 212 Pb-TCMC-trastuzumab, gene expression profiling was performed with LS-174T xenografts 24 h after exposure to 212 Pb-TCMC-trastuzumab. DNA damage response genes (84) were screened using a quantitative real-time polymerase chain reaction array (qRT-PCR array). Differentially regulated genes were identified following exposure to 212 Pb-TCMC-trastuzumab. These included genes involved in apoptosis (ABL, GADD45α, GADD45γ, PCBP4, and p73), cell cycle (ATM, DDIT3, GADD45α, GTSE1, MKK6, PCBP4, and SESN1), and damaged DNA binding (DDB) and repair (ATM and BTG2). The stressful growth arrest conditions provoked by 212 Pb-TCMC-trastuzumab were found to induce genes involved in apoptosis and cell cycle arrest in the G2/M phase. The expression of genes involved in DDB and single-strand DNA breaks was also enhanced by 212 Pb-TCMC-trastuzumab while no modulation of genes involved in double-strand break repair was apparent. Furthermore, the p73/GADD45 signaling pathway mediated by p38 kinase signaling may be involved in the cellular response, as evidenced by the enhanced expression of genes and proteins of this pathway. These results further support the previously described cell killing mechanism by 212 Pb-TCMC-trastuzumab in the same LS-174T i.p. xenograft. Insight into these mechanisms could lead to improved strategies for rational application of radioimmunotherapy using α-particle emitters. The apoptotic response and associated gene modulations have not been clearly defined following exposure of cells to α-particle radioimmunotherapy (RIT). Gene expression profiling was performed with LS-174T i.p. (intraperitoneal) xenografts after exposure to 212 Pb

  9. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    International Nuclear Information System (INIS)

    Kim, Seong K.; Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: → We examine the functional domains of IR2P that mediates negative regulation. → IR2P inhibits at the transcriptional level. → DNA-binding mutant or TFIIB-binding mutant fails to inhibit. → C-terminal aa 707 to 1116 are required for full inhibition. → Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  10. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tissue and serum samples of patients with papillary thyroid cancer with and without benign background demonstrate different altered expression of proteins

    Directory of Open Access Journals (Sweden)

    Mardiaty Iryani Abdullah

    2016-09-01

    Full Text Available Background Papillary thyroid cancer (PTC is mainly diagnosed using fine-needle aspiration biopsy. This most common form of well-differentiated thyroid cancer occurs with or without a background of benign thyroid goiter (BTG. Methods In the present study, a gel-based proteomics analysis was performed to analyse the expression of proteins in tissue and serum samples of PTC patients with (PTCb; n = 6 and without a history of BTG (PTCa; n = 8 relative to patients with BTG (n = 20. This was followed by confirmation of the levels of proteins which showed significant altered abundances of more than two-fold difference (p < 0.01 in the tissue and serum samples of the same subjects using ELISA. Results The data of our study showed that PTCa and PTCb distinguish themselves from BTG in the types of tissue and serum proteins of altered abundance. While higher levels of alpha-1 antitrypsin (A1AT and heat shock 70 kDa protein were associated with PTCa, lower levels of A1AT, protein disulfide isomerase and ubiquitin-conjugating enzyme E2 N seemed apparent in the PTCb. In case of the serum proteins, higher abundances of A1AT and alpha 1-beta glycoprotein were detected in PTCa, while PTCb was associated with enhanced apolipoprotein A-IV and alpha 2-HS glycoprotein (AHSG. The different altered expression of tissue and serum A1AT as well as serum AHSG between PTCa and PTCb patients were also validated by ELISA. Discussion The distinctive altered abundances of the tissue and serum proteins form preliminary indications that PTCa and PTCb are two distinct cancers of the thyroid that are etiologically and mechanistically different although it is currently not possible to rule out that they may also be due other reasons such as the different stages of the malignant disease. These proteins stand to have a potential use as tissue or serum biomarkers to discriminate the three different thyroid neoplasms although this requires further validation in clinically

  12. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    Hui-Ting Luo

    2017-11-01

    Full Text Available A previous report showed that both Pyruvate decarboxylase (PDC genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.

  13. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  14. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    Science.gov (United States)

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  16. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  17. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.

    Science.gov (United States)

    Wargo, Matthew J; Szwergold, Benjamin S; Hogan, Deborah A

    2008-04-01

    Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and (13)C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.

  18. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  19. The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cary

    2017-10-01

    Full Text Available Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δhbx1 mutants did not produce conidiophores. The inability of Δhbx1 mutants to produce conidia was related to downregulation of brlA (bristle and abaA (abacus, regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  20. NHR-23 dependent collagen and hedgehog-related genes required for molting

    International Nuclear Information System (INIS)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W.; Kostrouch, Zdenek; Kostrouchova, Marta

    2011-01-01

    Highlights: → NHR-23 is a critical regulator of nematode development and molting. → The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. → Whole genome expression analysis identifies new potential targets of NHR-23. → Hedgehog-related genes are identified as NHR-23 dependent genes. → New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  1. NHR-23 dependent collagen and hedgehog-related genes required for molting

    Energy Technology Data Exchange (ETDEWEB)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Krause, Michael W. [Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Kostrouch, Zdenek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Kostrouchova, Marta, E-mail: marta.kostrouchova@lf1.cuni.cz [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic)

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  2. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  3. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India

    Directory of Open Access Journals (Sweden)

    Uma Jyothi Kommoju

    2016-01-01

    Interpretation & conclusions: A significant association was seen of all the three SNPs of CDKAL1 and CDKN2A/B genes with T2DM but none of the two SNPs of HHEX. Further studies are required to cross-validate our findings in a relatively larger sample. It is also necessary to explore other SNPs of HHEX gene to unequivocally establish the pattern of association of this gene with T2DM in this population.

  4. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  5. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    Science.gov (United States)

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  6. Comprehensive identification of Vibrio vulnificus genes required for growth in human serum.

    Science.gov (United States)

    Carda-Diéguez, M; Silva-Hernández, F X; Hubbard, T P; Chao, M C; Waldor, M K; Amaro, C

    2018-12-31

    Vibrio vulnificus can be a highly invasive pathogen capable of spreading from an infection site to the bloodstream, causing sepsis and death. To survive and proliferate in blood, the pathogen requires mechanisms to overcome the innate immune defenses and metabolic limitations of this host niche. We created a high-density transposon mutant library in YJ016, a strain representative of the most virulent V. vulnificus lineage (or phylogroup) and used transposon insertion sequencing (TIS) screens to identify loci that enable the pathogen to survive and proliferate in human serum. Initially, genes underrepresented for insertions were used to estimate the V. vulnificus essential gene set; comparisons of these genes with similar TIS-based classification of underrepresented genes in other vibrios enabled the compilation of a common Vibrio essential gene set. Analysis of the relative abundance of insertion mutants in the library after exposure to serum suggested that genes involved in capsule biogenesis are critical for YJ016 complement resistance. Notably, homologues of two genes required for YJ016 serum-resistance and capsule biogenesis were not previously linked to capsule biogenesis and are largely absent from other V. vulnificus strains. The relative abundance of mutants after exposure to heat inactivated serum was compared with the findings from the serum screen. These comparisons suggest that in both conditions the pathogen relies on its Na + transporting NADH-ubiquinone reductase (NQR) complex and type II secretion system to survive/proliferate within the metabolic constraints of serum. Collectively, our findings reveal the potency of comparative TIS screens to provide knowledge of how a pathogen overcomes the diverse limitations to growth imposed by serum.

  7. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    OpenAIRE

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity.

  8. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  9. Gravity driven and in situ fractional crystallization processes in the Centre Hill complex, Abitibi Subprovince, Canada: Evidence from bilaterally-paired cyclic units

    Science.gov (United States)

    Thériault, R. D.; Fowler, A. D.

    1996-12-01

    The formation of layers in mafic intrusions has been explained by various processes, making it the subject of much controversy. The concept that layering originates from gravitational settling of crystals has been superseded in recent years by models involving in situ fractional crystallization. Here we present evidence from the Centre Hill complex that both processes may be operative simultaneously within the same intrusion. The Centre Hill complex is part of the Munro Lake sill, an Archean layered mafic intrusion emplaced in volcanic rocks of the Abitibi Subprovince. The Centre Hill complex comprises the following lithostratigraphic units: six lower cyclic units of peridotite and clinopyroxenite; a middle unit of leucogabbro; six upper cyclic units of branching-textured gabbro (BTG) and clotted-textured gabbro (CTG), the uppermost of these units being overlain by a marginal zone of fine-grained gabbro. The cyclic units of peridotite/clinopyroxenite and BTG/CTG are interpreted to have formed concurrently through fractional crystallization, associated with periodic replenishment of magma to the chamber. The units of peridotite and clinopyroxenite formed by gravitational accumulation of crystals that grew under the roof. The cyclic units of BTG and CTG formed along the upper margin of the sill by two different mechanisms: (1) layers of BTG crystallized in situ along an inward-growing roof and (2) layers of CTG formed by accumulation of buoyant plagioclase crystals. The layers of BTG are characterized by branching pseudomorphs after fayalite up to 50 cm in length that extend away from the upper margin. The original branching crystals are interpreted to have grown from stagnant intercumulus melt in a high thermal gradient resulting from the injection of new magma to the chamber.

  10. Identification of Two Gene Clusters and a Transcriptional Regulator Required for Pseudomonas aeruginosa Glycine Betaine Catabolism▿ †

    Science.gov (United States)

    Wargo, Matthew J.; Szwergold, Benjamin S.; Hogan, Deborah A.

    2008-01-01

    Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-13C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and 13C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa. PMID:17951379

  11. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.

    Science.gov (United States)

    Fischer, Martin; Grossmann, Patrick; Padi, Megha; DeCaprio, James A

    2016-07-27

    Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    Directory of Open Access Journals (Sweden)

    Anders Friberg

    2015-05-01

    Full Text Available Epstein-Barr virus (EBV is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2 is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  13. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    Science.gov (United States)

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity. Images PMID:2405258

  14. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Stephanie E Westcot

    Full Text Available Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP, an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish. In vivo selection for skin-specific expression of gene-break transposon (GBT mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a revealed a novel requirement for a Neuregulin 2a (Nrg2a-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity

  15. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis.

    Science.gov (United States)

    Westcot, Stephanie E; Hatzold, Julia; Urban, Mark D; Richetti, Stefânia K; Skuster, Kimberly J; Harm, Rhianna M; Lopez Cervera, Roberto; Umemoto, Noriko; McNulty, Melissa S; Clark, Karl J; Hammerschmidt, Matthias; Ekker, Stephen C

    2015-01-01

    Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a)-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape

  16. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.

    Directory of Open Access Journals (Sweden)

    Sarah L Kerns

    Full Text Available In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT. As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways.

  17. Mutations of dual oxidase 2 (DUOX2) gene among patients with permanent and transient congenital hypothyroidism

    International Nuclear Information System (INIS)

    Rostampour, N.; Tajaddini, M.H.; Hashemipour, M

    2012-01-01

    Objective: The prevalence of congenital hypothyroidism (CH) is high in Isfahan, Iran. In addition, it has different etiologies compared with other countries. The rate of parental consanguinity is also high in the city. Moreover, DUOX2 gene is effective in transient CH and permanent CH due to dyshormonogenesis. Therefore, the aim of this research was to investigate the mutations of DUOX2 gene in patients with transient CH and permanent CH due to dyshormonogenesis. Methodology: In this descriptive, prospective study, patients diagnosed with transient and permanent CH due to dyshormonogenesis during CH screening program were selected. Venous blood samples were obtained to determine the 3 mutations (Q36H, R376W, and D506N) of DUOX2 gene using polymerase chain reaction (PCR) method by specific primers and complementary methods such as restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP). Results: In this study, 25 patients with transient CH and 33 subjects with permanent CH due to dyshormonogenesis were studied. In addition, 30 children were studied as the control group. We did not find any mutations of the 3 mentioned mutations of DUOX2 gene. Conclusion: Considering the findings of the current study, further studies with other methods are required to evaluate other gene mutations such as pendrin, sodium-iodide symporter (NIS) and thyroglobulin. (author)

  18. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  19. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  20. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  1. Identification of an ovine atadenovirus gene whose product activates the viral E2 promoter: possible involvement of E2F-1

    International Nuclear Information System (INIS)

    Kuemin, Daniel; Hofmann, Christian; Uckert, Wolfgang; Both, Gerald W.; Loeser, Peter

    2004-01-01

    Activation of the adenoviral E2 promoter is an early step in adenovirus gene expression. For members of the mast- and aviadenoviruses, this requires induction of the cellular transcription factor E2F by virally encoded gene products such as E1A, E4orf6/7 and orf22/GAM-1. The newly recognized genus atadenovirus, of which the ovine isolate OAdV is the prototype, lacks any sequence homology to those genes. To find a possible link between E2 promoter activation and OAdV gene expression, we utilized a screening method to search for genes within the OAdV genome that were capable of stimulating the viral E2 promoter. One such gene, E43, was identified within the proposed E4 region toward the right-hand end of the OAdV genome. The E43 gene product was also found to be capable of stimulating E2F-1-dependent gene expression. A closer inspection of the E2 promoter revealed the presence of a non-palindromic E2F binding site within the OAdV E2 promoter. Mutation of this site markedly reduced both E2F-1- and E43-dependent promoter activation. Moreover, a direct protein-protein interaction of the E43 gene product with E2F, but not with the retinoblastoma protein pRb, suggested a possible cooperation between these two proteins in activating the E2 promoter. The importance of the E43 gene product for virus replication is also underlined by the finding that an OAdV recombinant with a functionally inactivated E43 gene showed severely inhibited virus growth

  2. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori.

    Science.gov (United States)

    Cerda, Oscar A; Núñez-Villena, Felipe; Soto, Sarita E; Ugalde, José Manuel; López-Solís, Remigio; Toledo, Héctor

    2011-01-01

    About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat) was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR) by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.

  3. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Oscar A Cerda

    2011-01-01

    Full Text Available About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.

  4. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    Science.gov (United States)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  5. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.

    Science.gov (United States)

    Tanabe, Atsushi; Konno, Junpei; Tanikawa, Kenya; Sahara, Hiroeki

    2014-02-01

    We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. IP3-dependent intracellular Ca2+ release is required for cAMP-induced c-fos expression in hippocampal neurons

    International Nuclear Information System (INIS)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-01-01

    Highlights: ► cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca 2+ pool. ► The submembraneous Ca 2+ pool derives from intracellular ER stores. ► Expression of IP 3 -metabolizing enzymes inhibits cAMP-induced c-fos expression. ► SRE-mediated and CRE-mediated gene expression is sensitive to IP 3 -metabolizing enzymes. ► Intracellular Ca 2+ release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca 2+ and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca 2+ and cAMP signals, including some that are Ca 2+ -responsive, some that are cAMP-responsive and some that detect coincident Ca 2+ and cAMP signals. Because Ca 2+ and cAMP can influence each other’s amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca 2+ are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca 2+ buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP 3 levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements – the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP 3 metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca 2+ stores. Our data indicate that Ca 2+ release from IP 3 -sensitive pools is required for cAMP-induced transcription in hippocampal neurons.

  7. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  8. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  9. Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment

    Directory of Open Access Journals (Sweden)

    O. V. Blazhenko

    2014-02-01

    Full Text Available In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring­ a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.

  10. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  11. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    Science.gov (United States)

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (Pschizophrenia in the Chinese population.

  12. Aberrations of ERBB2 and TOP2A Genes in Breast Cancer

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Vang; Müller, Sven; Møller, Susanne

    2009-01-01

    genes and the other by having amplification of ERBB2 and deletion of TOP2A. The characteristics are compared to findings on paired ERBB2 and TOP2A data from 649 patients with invasive breast cancer from a previously published biomarker study. The physical localization of FISH signals in metaphase...... spreads from cell lines showed that simultaneous amplification is not a simple co-amplification of a whole amplicon containing both genes. Most gene signals are translocated to abnormal marker chromosomes. ERBB2 genes but not TOP2A genes are present in tandem amplicons, leading to a higher ERBB2 ratio....... This observation was confirmed by patient FISH data: among 276 (43% of all patients) abnormal tumors, 67% had different ERBB2 and TOP2A status. ERBB2 amplification with normal TOP2A status was found in 36% of the abnormal tumors (15% of all patients). Simultaneous amplification of both genes was found in 28...

  13. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    Science.gov (United States)

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  14. Association of MBL2 Gene Polymorphism with Dental Caries in Saudi Children.

    Science.gov (United States)

    Alyousef, Yousef M; Borgio, J Francis; AbdulAzeez, Sayed; Al-Masoud, Naif; Al-Ali, Ali A; Al-Shwaimi, Emad; Al-Ali, Amein K

    2017-01-01

    The high prevalence of dental caries in children worldwide is a major oral health problem which requires early intervention. Dental caries is mainly caused by the action of acids produced by bacteria in addition to many other factors. Recent genetic studies have reported that a number of genes are associated with the susceptibility to dental caries. The majority of these genes are associated with inflammation, increased susceptibility to infection, and dentine matrix formation. Using the TaqMan assay and direct DNA sequencing, the prevalence of 6 single-nucleotide polymorphisms (SNPs) in MMP9, MBL2, MMP2, and TIMP2 genes was determined in 102 children with caries and in 100 age-matched caries-free controls. Out of the 6 SNPs tested in the 4 selected genes, only rs11003125 in the MBL2 gene was shown to be associated with a high prevalence of caries in our cohort. In addition, haplotype analysis of the 6 SNPs tested revealed that certain haplotypes, namely GT of rs11003125G and rs7501477T and GT of rs7096206G and rs7501477T, were found to be associated with a high prevalence of dental caries in our cohort, while haplotype AG of rs17576A and rs7501477G was found to have a protective effect against dental caries. In conclusion, the data indicate that rs11003125 in the MBL2 gene was shown to be associated with a high prevalence of caries in our cohort, and 2 haplotypes are also involved in the increased susceptibility to dental caries. © 2016 S. Karger AG, Basel.

  15. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling.

    Science.gov (United States)

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I

    2016-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Goto, Shingo; Kasai, Kouji; Seki, Hikaru; Suzuki, Masashi; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-05-01

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.

  17. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.

    LENUS (Irish Health Repository)

    Spiering, Martin J

    2010-02-01

    Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. DeltaDeltasfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the DeltaDeltasfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, DeltaDeltasfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.

  18. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  19. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wakimoto, B.T.; Hearn, M.G.

    1990-01-01

    The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt + gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements induced by X radiation are described in this report. The authors show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. They discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection

  20. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    Science.gov (United States)

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2013-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627

  1. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2007-10-01

    Full Text Available Abstract Background In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP, generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Results Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Conclusion Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  2. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  3. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  4. Dynein Heavy Chain, Encoded by Two Genes in Agaricomycetes, Is Required for Nuclear Migration in Schizophyllum commune.

    Directory of Open Access Journals (Sweden)

    Melanie Brunsch

    Full Text Available The white-rot fungus Schizophyllum commune (Agaricomycetes was used to study the cell biology of microtubular trafficking during mating interactions, when the two partners exchange nuclei, which are transported along microtubule tracks. For this transport activity, the motor protein dynein is required. In S. commune, the dynein heavy chain is encoded in two parts by two separate genes, dhc1 and dhc2. The N-terminal protein Dhc1 supplies the dimerization domain, while Dhc2 encodes the motor machinery and the microtubule binding domain. This split motor protein is unique to Basidiomycota, where three different sequence patterns suggest independent split events during evolution. To investigate the function of the dynein heavy chain, the gene dhc1 and the motor domain in dhc2 were deleted. Both resulting mutants were viable, but revealed phenotypes in hyphal growth morphology and mating behavior as well as in sexual development. Viability of strain Δdhc2 is due to the higher expression of kinesin-2 and kinesin-14, which was proven via RNA sequencing.

  5. Randomizer for High Data Rates

    Science.gov (United States)

    Garon, Howard; Sank, Victor J.

    2018-01-01

    NASA as well as a number of other space agencies now recognize that the current recommended CCSDS randomizer used for telemetry (TM) is too short. When multiple applications of the PN8 Maximal Length Sequence (MLS) are required in order to fully cover a channel access data unit (CADU), spectral problems in the form of elevated spurious discretes (spurs) appear. Originally the randomizer was called a bit transition generator (BTG) precisely because it was thought that its primary value was to insure sufficient bit transitions to allow the bit/symbol synchronizer to lock and remain locked. We, NASA, have shown that the old BTG concept is a limited view of the real value of the randomizer sequence and that the randomizer also aids in signal acquisition as well as minimizing the potential for false decoder lock. Under the guidelines we considered here there are multiple maximal length sequences under GF(2) which appear attractive in this application. Although there may be mitigating reasons why another MLS sequence could be selected, one sequence in particular possesses a combination of desired properties which offsets it from the others.

  6. PDK2 and ABCG2 genes polymorphisms are correlated with blood glucose levels and uric acid in Tibetan gout patients.

    Science.gov (United States)

    Ren, Y C; Jin, T B; Sun, X D; Geng, T T; Zhang, M X; Wang, L; Feng, T; Kang, L L; Chen, C

    2016-02-11

    Previous studies have shown that the PDK2 and ABCG2 genes play important roles in many aspects of gout development in European populations. However, a detailed genotype-phenotype analysis was not performed. The aim of the present study was to investigate the potential association between variants in these two genes and metabolism-related quantitative phenotypes relevant to gout in a Chinese Tibetan population. In total, 316 Chinese Tibetan gout patients were recruited from rheumatology outpatient clinics and 6 single nucleotide polymorphisms in PDK2 and ABCG2 were genotyped, which were possible etiologic variants as identified in the HapMap Chinese Han Beijing population. A significant difference in blood glucose levels was detected between different genotypes of rs2728109 (P = 0.005) in the PDK2 gene. We also detected a significant difference in the mean serum uric levels between different genotypes of rs3114018 (P = 0.004) in the ABCG2 gene. All P values remained significant after Bonferroni's correction for multiple testing. Our data demonstrate potential roles for PDK2 and ABCG2 polymorphisms in the metabolic phenotypes of Tibetan gout patients, which may provide new insights into the etiology of gout. Further studies are required to confirm these findings.

  7. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    Science.gov (United States)

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  8. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes

    Directory of Open Access Journals (Sweden)

    Johanna Meier-Soelch

    2018-04-01

    Full Text Available The potent proinflammatory cytokine interleukin (IL-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (shRNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.

  9. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  10. Gene2Function: An Integrated Online Resource for Gene Function Discovery

    Directory of Open Access Journals (Sweden)

    Yanhui Hu

    2017-08-01

    Full Text Available One of the most powerful ways to develop hypotheses regarding the biological functions of conserved genes in a given species, such as humans, is to first look at what is known about their function in another species. Model organism databases and other resources are rich with functional information but difficult to mine. Gene2Function addresses a broad need by integrating information about conserved genes in a single online resource.

  11. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2.

    Directory of Open Access Journals (Sweden)

    David A Roeseler

    Full Text Available Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/- mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/- embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.

  12. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2.

    Directory of Open Access Journals (Sweden)

    Jafar Kiani

    2013-05-01

    Full Text Available RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/- mice and that the Sox9 paramutation was also not established in Dnmt2(-/- embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity.

  13. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  14. Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression.

    Science.gov (United States)

    Hussein, Atef G; Mohamed, Randa H; Shalaby, Sally M; Abd El Motteleb, Dalia M

    2018-03-01

    The biological mechanisms behind the association between vitamin K (Vit K) and glucose metabolism are uncertain. We aimed to analyze the expression of insulin 1 (Ins 1), insulin 2 (Ins 2) and cyclin D2, the expression of adiponectin and UCP-1 . In addition, we aimed to estimate the doses of Vit K2 able to affect various aspects of glucose and energy metabolism in type 2 diabetes. Thirty adult male rats were allocated equally into five groups: control group, diabetes mellitus group, and groups 3, 4, and 5, which received Vit K 2 at three daily dose levels (10, 15, and 30 mg/kg, respectively) for 8 wk. At the end of the study, blood samples were collected to quantify total osteocalcin, fasting plasma glucose, fasting insulin, and relevant variables. The expression of OC, Ins 1, Ins 2, cyclin D2, adiponectin, UCP-1 genes was analyzed by real-time polymerase chain reaction. After administration of Vit K 2 , a dose-dependent decrease in fasting plasma glucose, hemoglobin A1c and homeostatic model assessment method insulin resistance, and a dose-dependent increase in fasting insulin and homeostatic model assessment method β cell function levels, when compared with diabetes mellitus rats, were detected. There was significant upregulation of OC, Ins 1, Ins 2, or cyclin D2 gene expression in the three treated groups in a dose-dependent manner when compared with the diabetic rats. However, expression of adiponectin and UCP-1 were significantly increased at the highest dose (30 mg/kg daily) only. Vit K 2 administration could improve glycemic status in type 2 diabetic rats by induction of OC gene expression. Osteocalcin could increase β-cell proliferation, energy expenditure, and adiponectin expression. Different concentrations of Vit K 2 were required to affect glucose metabolism and insulin sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nociceptor-Enriched Genes Required for Normal Thermal Nociception

    Directory of Open Access Journals (Sweden)

    Ken Honjo

    2016-07-01

    Full Text Available Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil. Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  16. Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis

    International Nuclear Information System (INIS)

    Casarin, Alberto; Jimenez-Ortega, Jose Carlos; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Artuch, Rafael; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Ocana, Carlos Santos; Navas, Placido; Salviati, Leonardo

    2008-01-01

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a ∼1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4 null yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ 10 deficiency

  17. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects.

    Science.gov (United States)

    Sarno, Francesca; Ruiz, María F; Eirín-López, José M; Perondini, André L P; Selivon, Denise; Sánchez, Lucas

    2010-05-13

    In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent

  18. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    Science.gov (United States)

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  19. UTM TCL2 Software Requirements

    Science.gov (United States)

    Smith, Irene S.; Rios, Joseph L.; McGuirk, Patrick O.; Mulfinger, Daniel G.; Venkatesan, Priya; Smith, David R.; Baskaran, Vijayakumar; Wang, Leo

    2017-01-01

    The Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Technical Capability Level (TCL) 2 software implements the UTM TCL 2 software requirements described herein. These software requirements are linked to the higher level UTM TCL 2 System Requirements. Each successive TCL implements additional UTM functionality, enabling additional use cases. TCL 2 demonstrated how to enable expanded multiple operations by implementing automation for beyond visual line-of-sight, tracking operations, and operations flying over sparsely populated areas.

  20. TIS21/(BTG2) negatively regulates estradiol-stimulated expansion of hematopoietic stem cells by derepressing Akt phosphorylation and inhibiting mTOR signal transduction.

    Science.gov (United States)

    Kim, Bong Cho; Ryu, Min Sook; Oh, S Paul; Lim, In Kyoung

    2008-09-01

    It has been known that 12-O-tetradecanoyl phorbol-13-acetate-inducible sequence 21 (TIS21), ortholog of human B-cell translocation gene 2, regulates expansions of stage-specific thymocytes and hematopoietic progenitors. In the present study, lineage-negative (Lin(-))/stem cell antigen-1-positive (Sca-1+)/c-Kit+ (LSK) cell content was significantly elevated in bone marrow (BM) of TIS21-knockout (TIS21(-/-)) female mice, suggesting 17beta-estradiol (E(2))-regulated progenitor expansion. E(2) induced DNA synthesis and cell proliferation of mouse embryonic fibroblasts (MEFs) isolated from TIS21(-/-) mice, but not wild type (WT). In contrast to WT, E(2) failed to activate protein kinase B (Akt) in the TIS21(-/-) MEFs, independent of extracellular signal-regulated kinase 1/2 (Erk1/2) activation. Despite attenuation of Akt activation, mammalian target of rapamycin (mTOR) was constitutively activated in the TIS21(-/-) MEFs. Furthermore, mitogen-activated protein kinase 1/2 inhibitor or knockdown of Erk1 could restore activation of Akt and downregulate mTOR. Immunoprecipitation showed Akt preferentially bound to phosphorylated Erk1/2 (p-Erk1/2) in TIS21(-/-) cells, but reconstitution of TIS21 inhibited their interaction. E(2)-injected TIS21(-/-) male mice also increased LSK cells in BM. Taken together, expansion of hematopoietic progenitors in TIS21(-/-) female mice might be through inhibition of Akt activation, and constitutive activation of mTOR via preferential binding of TIS21 to E(2)-induced p-Erk1/2, compared with that of Akt. Our results suggest that TIS21 plays a pivotal role in maintaining the hematopoietic stem cell compartment and hematopoiesis.

  1. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks.

    Science.gov (United States)

    Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J

    2001-01-01

    The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403

  2. Foxa1 and Foxa2 are required for formation of the intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Jennifer A Maier

    Full Text Available The intervertebral disc (IVD is composed of 3 main structures, the collagenous annulus fibrosus (AF, which surrounds the gel-like nucleus pulposus (NP, and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2, we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-;Foxa2(c/c;ShhcreER(T2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.

  3. Foxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs

    Science.gov (United States)

    Maier, Jennifer A.; Lo, YinTing; Harfe, Brian D.

    2013-01-01

    The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreERT2), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1−/−;Foxa2c/c;ShhcreERT2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord. PMID:23383217

  4. A resource for discovering specific and universal biomarkers for distributed stem cells.

    Directory of Open Access Journals (Sweden)

    Minsoo Noh

    Full Text Available Specific and universal biomarkers for distributed stem cells (DSCs have been elusive. A major barrier to discovery of such ideal DSC biomarkers is difficulty in obtaining DSCs in sufficient quantity and purity. To solve this problem, we used cell lines genetically engineered for conditional asymmetric self-renewal, the defining DSC property. In gene microarray analyses, we identified 85 genes whose expression is tightly asymmetric self-renewal associated (ASRA. The ASRA gene signature prescribed DSCs to undergo asymmetric self-renewal to a greater extent than committed progenitor cells, embryonic stem cells, or induced pluripotent stem cells. This delineation has several significant implications. These include: 1 providing experimental evidence that DSCs in vivo undergo asymmetric self-renewal as individual cells; 2 providing an explanation why earlier attempts to define a common gene expression signature for DSCs were unsuccessful; and 3 predicting that some ASRA proteins may be ideal biomarkers for DSCs. Indeed, two ASRA proteins, CXCR6 and BTG2, and two other related self-renewal pattern associated (SRPA proteins identified in this gene resource, LGR5 and H2A.Z, display unique asymmetric patterns of expression that have a high potential for universal and specific DSC identification.

  5. TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets

    Directory of Open Access Journals (Sweden)

    Trudy Straetemans

    2012-01-01

    Full Text Available Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2 and MAGE-A3243-258/HLA-DP4 (MA3/DP4. We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.

  6. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  7. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    João Sollari Lopes

    Full Text Available Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5 and to other genes related to memory formation (btg2, npas4b, which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.

  9. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.

    Science.gov (United States)

    Pasion, S G; Forsburg, S L

    1999-12-01

    The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.

  10. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    Science.gov (United States)

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  11. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  12. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function.

    Science.gov (United States)

    Firnhaber, Christopher; Hammarlund, Marc

    2013-11-01

    Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.

  13. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum.

    Science.gov (United States)

    James, S J; Shpyleva, Svitlana; Melnyk, Stepan; Pavliv, Oleksandra; Pogribny, I P

    2013-02-19

    The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.

  14. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  15. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  16. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

  17. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  18. LH2 airport requirements study

    Science.gov (United States)

    Brewer, G. D. (Editor)

    1976-01-01

    A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.

  19. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  20. A gene expression profile indicative of early stage HER2 targeted therapy response.

    Science.gov (United States)

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  1. TLR2-dependent inhibition of macrophage responses to IFN-gamma is mediated by distinct, gene-specific mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah A Benson

    2009-07-01

    Full Text Available Mycobacterium tuberculosis uses multiple mechanisms to avoid elimination by the immune system. We have previously shown that M. tuberculosis can inhibit selected macrophage responses to IFN-gamma through TLR2-dependent and -independent mechanisms. To specifically address the role of TLR2 signaling in mediating this inhibition, we stimulated macrophages with the specific TLR2/1 ligand Pam(3CSK(4 and assayed responses to IFN-gamma. Pam(3CSK(4 stimulation prior to IFN-gamma inhibited transcription of the unrelated IFN-gamma-inducible genes, CIITA and CXCL11. Surface expression of MHC class II and secretion of CXCL11 were greatly reduced as well, indicating that the reduction in transcripts had downstream effects. Inhibition of both genes required new protein synthesis. Using chromatin immunoprecipitation, we found that TLR2 stimulation inhibited IFN-gamma-induced RNA polymerase II binding to the CIITA and CXCL11 promoters. Furthermore, TATA binding protein was unable to bind the TATA box of the CXCL11 promoter, suggesting that assembly of transcriptional machinery was disrupted. However, TLR2 stimulation affected chromatin modifications differently at each of the inhibited promoters. Histone H3 and H4 acetylation was reduced at the CIITA promoter but unaffected at the CXCL11 promoter. In addition, NF-kappaB signaling was required for inhibition of CXCL11 transcription, but not for inhibition of CIITA. Taken together, these results indicate that TLR2-dependent inhibition of IFN-gamma-induced gene expression is mediated by distinct, gene-specific mechanisms that disrupt binding of the transcriptional machinery to the promoters.

  2. Cloning of regions required for contact hemolysis and entry into LLC-MK2 cells from Shigella sonnei form I plasmid: virF is a positive regulator gene for these phenotypes.

    OpenAIRE

    Kato, J; Ito, K; Nakamura, A; Watanabe, H

    1989-01-01

    Two distinct regions required for both contact hemolysis and entry into LLC-MK2 cells were cloned into Escherichia coli from the Shigella sonnei form I plasmid, pSS120. The first region was cloned into an E. coli HB101 strain containing noninvasive Tn1 insertion mutants of the form I plasmid, and expression of ipa (invasion plasmid antigen) gene products was restored. The plasmid carrying the first region was then transformed into E. coli lacking the form I plasmid, and additional DNA fragmen...

  3. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  4. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  5. LOS GENES BRCA1 y BRCA2. ESTUDIO MOLECULAR

    Directory of Open Access Journals (Sweden)

    N. Alonso

    2006-11-01

    Full Text Available RESUMENEn los últimos años, se realizaron numerosos estudios para establecer la predisposición hereditaria al cáncer y las alteraciones mutacionales a nivel de genes susceptibles de originar cáncer de mama y ovario. En 1994 se identificaron los genes BRCA1 (Breast Cancer Gene 1 y BRCA2 (Breast Cancer Gene 2 como susceptibles de cáncer de mama y ovario. En la actualidad se sabe que las mutaciones en BRCA1 y BRCA2 están lejos de explicar la totalidad de los casos de cáncer de mama y/o ovario, y a pesar de que se postulan alteraciones mutacionales en otros genes como CHEK2, TP53 y PTEN, el BRCA1 y BRCA2, siguen teniendo su importancia y utilidad en la valoración del riesgo de predisposición hereditaria. Aunque las cifras son variables según los distintos estudios y autores, se trata en cualquier caso de porcentajes importantes. Entre el 15 y el 85% de las mujeres portadoras de mutación BRCA 1 o BRCA 2 tienen riesgo de desarrollar un cáncer de mama y entre un 10 y 60% de desarrollar un cáncer de ovario. ABSTRACT:In the last years, numerous studies were made to establish the hereditary predisposition to the cancer and the mutationals alterations at level of genes susceptible to originate breast and ovarian cancers. In 1994 genes BRCA1 (Breast Cancer Gene 1 and BRCA2 were identified (Breast Cancer Gene 2 as susceptible of both of breast and ovarian cancers. At the present time, it is knows that the mutations in BRCA 1 and BRCA 2 are far from explaining the totality of the cases of breast cancer and/or ovary, and although mutationals alterations in other genes like CHEK2, TP53 and PTEN, the BRCA1 and BRCA2 are postulated, they continue having his importance and utility in the valuation of the risk of hereditary predisposition. Correlations between both BRCA1 and BRCA2 levels with tumour grade metastasis and prognostic accuracy. Between 15 and 85% of the carrying women of mutation BRCA 1 or BRCA 2 have risk of developing a cancer of breast

  6. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    Science.gov (United States)

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  7. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  8. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 might induce a general stress response, but it does not have...... the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers...... and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  9. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-08-01

    Full Text Available Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  10. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2007-07-01

    Full Text Available Abstract Background Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62. FAM62 genes also have a similar domain architecture. Little is known about the functions of the plant genes and animal FAM62 genes. Indeed, many members of the large and diverse Syt gene family await functional characterization. Understanding the evolutionary relationships among these genes will help to realize the full implications of functional studies and lead to improved genome annotation. Results I collected and compared plant Syt-like sequences from the primary nucleotide sequence databases at NCBI. The collection comprises six groups of plant genes conserved in embryophytes: NTMC2Type1 to NTMC2Type6. I collected and compared metazoan FAM62 sequences and identified some similar sequences from other eukaryotic lineages. I found evidence of RNA editing and alternative splicing. I compared the intron patterns of Syt genes. I also compared Rabphilin and Doc2 genes. Conclusion Genes encoding proteins with N-terminal-transmembrane-C2 domain architectures resembling synaptotagmins, are widespread in eukaryotes. A collection of these genes is presented here. The collection provides a resource for studies of intron evolution. I have classified the collection into homologous gene families according to distinctive patterns of sequence conservation and intron position. The evolutionary histories of these gene families are traceable through the appearance of family members in different eukaryotic lineages. Assuming an intron-rich eukaryotic ancestor, the conserved intron patterns distinctive of individual gene families, indicate independent origins of Syt, FAM62 and NTMC2 genes. Resemblances

  11. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    OpenAIRE

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regula...

  12. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.

  13. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  14. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  15. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  16. Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.

    Science.gov (United States)

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K

    2014-11-01

    Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.

    Science.gov (United States)

    Balsanelli, Eduardo; Serrato, Rodrigo V; de Baura, Valter A; Sassaki, Guilherme; Yates, Marshall G; Rigo, Liu Un; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A

    2010-08-01

    In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene

    International Nuclear Information System (INIS)

    Brotcorne-Lannoye, A.; Maenhaut-Michel, G.

    1986-01-01

    Untargeted UV mutagenesis of bacteriophage lambda--i.e., the increased recovery of lambda mutants when unirradiated lambda infects UV-irradiated Escherichia coli--is thought to be mediated by a transient decrease in DNA replication fidelity, generating mutations in the newly synthesized strands. Using the bacteriophage lambda cI857----lambda c mutation system, we provide evidence that the RecA protein, shown previously to be required for this mutagenic pathway, is no longer needed when the LexA protein is inactivated by mutation. We suggest that the error-prone DNA replication responsible for UV-induced untargeted mutagenesis is turned on by the presence of replication-blocking lesions in the host cell DNA and that the RecA protein is required only to derepress the relevant din gene(s). This is in contrast to mutagenesis of irradiated bacteria or irradiated phage lambda, in which activated RecA protein has a second role in mutagenesis in addition to the cleavage of the LexA protein. Among the tested din genes, the dinB gene product (in addition to the uvrA and uvrB gene products) was found to be required for untargeted mutagenesis of bacteriophage lambda. To our knowledge, a phenotype associated with the dinB gene has not been reported previously

  19. Evaluation of Human Epidermal Growth Factor Receptor 2 (HER2) Gene Status in Human Breast Cancer Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Specimens by Fluorescence In Situ Hybridization (FISH).

    Science.gov (United States)

    Hwang, Harry C; Gown, Allen M

    2016-01-01

    Current standard of care requires that HER2 gene testing be performed on all newly diagnosed invasive breast cancers in order to determine eligibility for anti-HER2 antibody therapy and should be performed in accordance with current ASCO-CAP guidelines (Hammond et al., J Clin Oncol 29(15):e458, 2011; Wolff et al., J Clin Oncol 31(31):3997-4013, 2013). Here we describe a HER2 FISH methodology to evaluate HER2 gene status in FFPE breast tumor specimens.

  20. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  1. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population.

    Science.gov (United States)

    Raza, Syed Tasleem; Abbas, Shania; Ahmed, Faisal; Fatima, Jalees; Zaidi, Zeashan Haider; Mahdi, Farzana

    2012-12-15

    Type 2 diabetes mellitus is a multifactorial and polygenic disease, which is considered as a major life threatening problem all over the world. There has been a worldwide effort in the identification of susceptibility genes for type 2 diabetes mellitus and its complications. At present, adequate data is not available dealing with MTHFR (rs1801133) and PPARγ2 (rs1801282) gene polymorphisms and its association with type 2 diabetes mellitus cases among north Indian populations. Thus, we conceived the need for further studies to investigate MTHFR and PPARγ2 gene polymorphisms and their susceptibility to type 2 diabetes mellitus in north Indian population. In this study, a total 175 subjects including 87 type 2 diabetes mellitus cases and 88 controls were enrolled. MTHFR and PPARγ2 gene polymorphisms in the cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The MTHFR gene CC, CT, TT genotype frequencies obtained were 40%, 43%, and 17% in type 2 diabetes mellitus cases and 56%, 29%, and 15% in healthy controls respectively. The OR for CC was 0.54 (95%CI 0.29-0.98, P=0.041, χ(2)=4.18, power=0.98), for CT 1.76 (95%CI 0.94-3.30, P=0.07, χ(2)=3.2, power=0.96), and for TT 1.2 (95%CI 0.53-2.70, P=0.66, χ(2)=0.198, power=0.76). The PPARγ2 gene GG CG, CC genotype frequencies obtained were 28%, 41%, and 31% in cases and 40%, 39%, and 21% in healthy controls respectively. OR for GG was 0.58 (95%CI 0.30-1.09, P=0.08, χ(2)=2.9, power=0.96), for CG 1.12 (95%CI 0.61-2.05, P=0.71, χ(2)=0.137, power=0.778), and for CC 1.63 (95%CI 0.82-3.23, P=0.156, χ(2)=2.01, power=0.92). It might be recommended that MTHFR CC genotype seems to be a good marker for the early identification of population at risk of type 2 diabetes mellitus. While we have detected significant difference in allelic frequencies of PPARγ2 C (Proline) and G (Alanine), but at genotypic level significant difference was not detected in this case

  2. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.

  3. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  4. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  5. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  6. Genomic organization of the rat alpha 2u-globulin gene cluster.

    Science.gov (United States)

    McFadyen, D A; Addison, W; Locke, J

    1999-05-01

    The alpha 2u-globulin are a group of similar proteins, belonging to the lipocalin superfamily of proteins, that are synthesized in a subset of secretory tissues in rats. The many alpha 2u-globulin isoforms are encoded by a multigene family that exhibits extensive homology. Despite a high degree of sequence identity, individual family members show diverse expression patterns involving complex hormonal, tissue-specific, and developmental regulation. Analysis suggests that there are approximately 20 alpha 2u-globulin genes in the rat genome. We have used fluorescence in situ hybridization (FISH) to show that the alpha 2u-globulin genes are clustered at a single site on rat Chromosome (Chr) 5 (5q22-24). Southern blots of rat genomic DNA separated by pulsed field gel electrophoresis indicated that the alpha 2u-globulin genes are contained on two NruI fragments with a total size of 880 kbp. Analysis of three P1 clones containing alpha 2u-globulin genes indicated that the alpha 2u-globulin genes are tandemly arranged in a head-to-tail fashion. The organization of the alpha 2u-globulin genes in the rat as a tandem array of single genes differs from the homologous major urinary protein genes in the mouse, which are organized as tandem arrays of divergently oriented gene pairs. The structure of these gene clusters may have consequences for the proposed function, as a pheromone transporter, for the protein products encoded by these genes.

  7. Informative gene selection using Adaptive Analytic Hierarchy Process (A2HP

    Directory of Open Access Journals (Sweden)

    Abhishek Bhola

    2017-12-01

    Full Text Available Gene expression dataset derived from microarray experiments are marked by large number of genes, which contains the gene expression values at different sample conditions/time-points. Selection of informative genes from these large datasets is an issue of major concern for various researchers and biologists. In this study, we propose a gene selection and dimensionality reduction method called Adaptive Analytic Hierarchy Process (A2HP. Traditional analytic hierarchy process is a multiple-criteria based decision analysis method whose result depends upon the expert knowledge or decision makers. It is mainly used to solve the decision problems in different fields. On the other hand, A2HP is a fused method that combines the outcomes of five individual gene selection ranking methods t-test, chi-square variance test, z-test, wilcoxon test and signal-to-noise ratio (SNR. At first, the preprocessing of gene expression dataset is done and then the reduced number of genes obtained, will be fed as input for A2HP. A2HP utilizes both quantitative and qualitative factors to select the informative genes. Results demonstrate that A2HP selects efficient number of genes as compared to the individual gene selection methods. The percentage of deduction in number of genes and time complexity are taken as the performance measure for the proposed method. And it is shown that A2HP outperforms individual gene selection methods.

  8. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The pluripotency of embryonic stem cells (ESCs is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  9. Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG

    Energy Technology Data Exchange (ETDEWEB)

    Heighway, J.; Betticher, D.C.; Altermatt, H.J. [Univ. Hospital of Berne (Switzerland)] [and others

    1996-07-01

    Analysis of a region of DNA, coamplified in tumors with KRAS2, resulted in the identification of the human homologue of the mouse KRAG gene. The gene was widely expressed in range of cell lines, tumors, and normal tissue and demonstrated a high degree of alternate splicing. A human KRAG cDNA sequence, with a structure similar to that encoded by the amplified gene in mouse Y1 adrenal carcinoma cells, was isolated by RT-PCR. The predicted amino acid similarity between the two sequences was 91%, and hydrophobicity plots suggested a structure closely resembling that of transmembrane 4 superfamily members. Identification of a PCR-based restriction fragment length polymorphism allele-specific splicing differences in tumors. Northern analysis of mRNA derived from a range of tissues suggested high level expression in muscle and confirmed alternate splicing. To facilitate the analysis of exon junctions, a YAC clone encoding the genomic sequence was identified. This allowed the localization of KRAG to human chromosome 12p11.2. Isolation of one end of this nonchimeric clone demonstrated a perfect match with a 247-bp sequence within the 3{prime} untranslated region of the type 2 1,4,5-inositol triphosphate receptor gene. Multiplex PCR confirmed the inclusion of both genes. Multiplex PCR confirmed the inclusion of both genes in the KRAS2 amplicon in human malignancy, suggesting that either may contribute to the malignant phenotypes. 35 refs., 6 figs., 1 tab.

  10. Search for missing schizophrenia genes will require a new ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... causal gene(s)?. The successful search for disease genes is based on a ..... 2010 Mobile interspersed repeats are major structural variants in ... Petronis A., Paterson A. D. and Kennedy J. L. 1999 Schizophrenia: an epigenetic ...

  11. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  12. The human MCP-2 gene (SCYA8): Cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2

    Energy Technology Data Exchange (ETDEWEB)

    Van Coillie, E.; Fiten, P.; Van Damme, J.; Opdenakker, G. [Univ. of Leuven (Belgium)] [and others

    1997-03-01

    Monocyte chemotactic proteins (MCPs) form a subfamily of chemokines that recruit leukocytes to sites of inflammation and that may contribute to tumor-associated leukocyte infiltration and to the antiviral state against HIV infection. With the use of degenerate primers that were based on CC chemokine consensus sequences, the known MIP-1{alpha}/LD78{alpha}, MCP-1, and MCP-3 genes and the previously unidentified eotaxin and MCP-2 genes were isolated from a YAC contig from human chromosome 17q11.2. The amplified genomic MCP-2 fragment was used to isolate an MCP-2 cosmid from which the gene sequence was determined. The MCP-2 gene shares with the MCP-1 and MCP-3 genes a conserved intron-exon structure and a coding nucleotide sequence homology of 77%. By Northern blot analysis the 1.0-kb MCP-2 mRNA was predominantly detectable in the small intestine, peripheral blood, heart, placenta, lung, skeletal muscle, ovary, colon, spinal cord, pancreas, and thymus. Transcripts of 1.5 and 2.4 kb were found in the testis, the small intestine, and the colon. The isolation of the MCP-2 gene from the chemokine contig localized it on YAC clones of chromosome 17q11.2, which also contain the eotaxin, MCP-1, MCP-3, and NCC-1/MCP-4 genes. The combination of using degenerate primer PCR and YACs illustrates that novel genes can efficiently be isolated from gene cluster contigs with less redundancy and effort than the isolation of novel ESTs. 42 refs., 5 figs., 2 tabs.

  13. A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family.

    Science.gov (United States)

    Naseer, Muhammad Imran; Rasool, Mahmood; Jan, Mohammed M; Chaudhary, Adeel G; Pushparaj, Peter Natesan; Abuzenadah, Adel M; Al-Qahtani, Mohammad H

    2016-12-15

    PGAP2 (Post-GPI Attachment to Proteins 2) gene is involved in lipid remodeling steps of Glycosylphosphatidylinositol (GPI)-anchor maturation. At the surface of the cell this gene is required for proper expression of GPI-anchored proteins. Hyperphosphatasia with mental retardation syndrome-3 is an autosomal recessive disorder usually characterized by severe mental retardation. Mutations in the PGAP2 gene cause hyperphosphatasia mental retardation syndrome-3. We have identified a large consanguineous family from Saudi origin segregating developmental delay, intellectual disability, epilepsy and microcephaly. Whole exome sequencing with 100× coverage was performed on two affected siblings of the family. Data analysis in the patient revealed a novel missense mutation c.191C>T in PGAP2 gene resulting in Alanine to Valine substitution (Ala64Val). The mutation was reconfirmed and validated by subsequent Sanger sequencing method. The mutation was ruled out in 100 unrelated healthy controls. We suggest that this pathogenic mutation disrupts the proper function of the gene proteins resulting in the disease state. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  15. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.

    Science.gov (United States)

    Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H

    2001-12-21

    We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.

  16. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance.

    Science.gov (United States)

    Ruggles, Kelly V; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S; Marchadier, Dawn; Valasek, Mark A; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B; Repa, Joyce J; Rader, Dan; Sturley, Stephen L

    2014-02-14

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.

  17. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  18. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    Science.gov (United States)

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  19. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH

    Directory of Open Access Journals (Sweden)

    Bram Vivijs

    2016-10-01

    Full Text Available The survival of some pathotypes of E. coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-β-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA,and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at

  20. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  1. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2) as a predisposing candidate gene in neuroblastoma.

    Science.gov (United States)

    Romania, Paolo; Castellano, Aurora; Surace, Cecilia; Citti, Arianna; De Ioris, Maria Antonietta; Sirleto, Pietro; De Mariano, Marilena; Longo, Luca; Boldrini, Renata; Angioni, Adriano; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.

  2. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2 as a predisposing candidate gene in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Paolo Romania

    Full Text Available Neuroblastoma (NB, the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2 locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.

  3. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population.

    Science.gov (United States)

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana

    2015-01-01

    Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.

  4. The Arabidopsis Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes[C][W][OPEN

    Science.gov (United States)

    Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  5. Association of -330 interleukin-2 gene polymorphism with oral cancer.

    Science.gov (United States)

    Singh, Prithvi Kumar; Kumar, Vijay; Ahmad, Mohammad Kaleem; Gupta, Rajni; Mahdi, Abbas Ali; Jain, Amita; Bogra, Jaishri; Chandra, Girish

    2017-12-01

    Cytokines play an important role in the development of cancer. Several single-nucleotide polymorphisms (SNPs) of cytokine genes have been reported to be associated with the development and severity of inflammatory diseases and cancer predisposition. This study was undertaken to evaluate a possible association of interleukin 2 (IL-2) (- 330A>C) gene polymorphisms with the susceptibility to oral cancer. The SNP in IL-2 (-330A>C) gene was genotyped in 300 oral cancer patients and in similar number of healthy volunteers by polymerase chain reaction (PCR)-restriction fragment length polymorphism and the association of the gene with the disease was evaluated. IL-2 (-330A>C) gene polymorphism was significantly associated with oral cancer whereas it was neither associated with clinicopathological status nor with cancer pain. The AC heterozygous genotype was significantly associated with oral cancer patients as compared to controls [odds ratio (OR): 3.0; confidence interval (CI): 2.14-4.20; Poral cancer (OR: 1.80; CI: 1.39-2.33; PC) gene polymorphism was also associated with oral cancer in tobacco smokers and chewers. Our results showed that oral cancer patients had significantly higher frequency of AA genotype but significantly lower frequency of AC genotype and C allele compared to controls. The IL-2 AC genotype and C allele of IL-2 (-330A>C) gene polymorphisms could be potential protective factors and might reduce the risk of oral cancer in Indian population.

  6. Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity.

    Science.gov (United States)

    Ip, Jacque P K; Nagakura, Ikue; Petravicz, Jeremy; Li, Keji; Wiemer, Erik A C; Sur, Mriganka

    2018-04-18

    Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans five genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP , which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP +/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP +/- mice may serve as a model of MVP function in 16p11.2 microdeletion. Here we show that MVP regulates the homeostatic component of ocular dominance (OD) plasticity in primary visual cortex. MVP +/- mice of both sexes show impairment in strengthening of open-eye responses after several days of monocular deprivation (MD), whereas closed-eye responses are weakened as normal, resulting in reduced overall OD plasticity. The frequency of miniature EPSCs (mEPSCs) in pyramidal neurons is decreased in MVP +/- mice after extended MD, suggesting a reduction of functional synapses. Correspondingly, upregulation of surface GluA1 AMPA receptors is reduced in MVP +/- mice after extended MD, and is accompanied by altered expression of STAT1 and phosphorylated ERK, which have been previously implicated in OD plasticity. Normalization of STAT1 levels by introducing STAT1 shRNA rescues surface GluA1 and open-eye responses, implicating STAT1 as a downstream effector of MVP. These findings demonstrate a specific role for MVP as a key molecule influencing the homeostatic component of activity-dependent synaptic plasticity, and potentially the corresponding phenotypes of 16p11.2 microdeletion syndrome. SIGNIFICANCE STATEMENT Major vault protein (MVP), a candidate gene in 16p11.2 microdeletion syndrome, has been implicated in the regulation of several cellular processes including transport mechanisms and scaffold signaling. However, its role in brain function and

  7. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection

    Directory of Open Access Journals (Sweden)

    Mukesh K. Yadav

    2018-05-01

    Full Text Available Objective:Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM. During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation.Methods:Streptococcus pneumoniae D39 wild-type and an isogenic D39ΔluxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation.Results: The biofilm biomass and density of D39ΔluxS were significantly (p < 0.05 lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39ΔluxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39ΔluxS resulted in ~60% less (p < 0.05 bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39ΔluxS-inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39ΔluxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in

  8. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  9. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  10. Regulation of the cytochrome P450 2A genes

    International Nuclear Information System (INIS)

    Su Ting; Ding Xinxin

    2004-01-01

    Cytochrome P450 monooxygenases of the CYP2A subfamily play important roles in xenobiotic disposition in the liver and in metabolic activation in extrahepatic tissues. Many of the CYP2A transcripts and enzymes are inducible by xenobiotic compounds, and the expression of at least some of the CYP2A genes is influenced by physiological status, such as circadian rhythm, and pathological conditions, such as inflammation, microbial infection, and tumorigenesis. Variability in the expression of the CYP2A genes, which differs by species, animal strain, gender, and organ, may alter the risks of chemical toxicity for numerous compounds that are CYP2A substrates. The mechanistic bases of these variabilities are generally not well understood. However, recent studies have yielded interesting findings in several areas, such as the role of nuclear factor 1 in the tissue-selective expression of CYP2A genes in the olfactory mucosa (OM); the roles of constitutive androstane receptor, pregnane X receptor (PXR), and possibly, peroxisome proliferator-activated receptors in transcriptional regulation of the Cyp2a5 gene; and the involvement of heterogeneous nuclear ribonucleoprotein A1 in pyrazole-induced stabilization of CYP2A5 mRNA. The aims of this minireview are to summarize current knowledge of the regulation of the CYP2A genes in rodents and humans, and to stimulate further mechanistic studies that will ultimately improve our ability to determine, and to understand, these variabilities in humans

  11. Genes associated with Type 2 Diabetes and vascular complications.

    Science.gov (United States)

    Montesanto, Alberto; Bonfigli, Anna Rita; Crocco, Paolina; Garagnani, Paolo; De Luca, Maria; Boemi, Massimo; Marasco, Elena; Pirazzini, Chiara; Giuliani, Cristina; Franceschi, Claudio; Passarino, Giuseppe; Testa, Roberto; Olivieri, Fabiola; Rose, Giuseppina

    2018-02-04

    Type 2 Diabetes (T2D) is a chronic disease associated with a number of micro- and macrovascular complications that increase the morbidity and mortality of patients. The risk of diabetic complications has a strong genetic component. To this end, we sought to evaluate the association of 40 single nucleotide polymorphisms (SNPs) in 21 candidate genes with T2D and its vascular complications in 503 T2D patients and 580 healthy controls. The genes were chosen because previously reported to be associated with T2D complications and/or with the aging process. We replicated the association of T2D risk with I GF2BP rs4402960 and detected novel associations with TERT rs2735940 and rs2736098. The addition of these SNPs to a model including traditional risk factors slightly improved risk prediction. After stratification of patients according to the presence/absence of vascular complications, we found significant associations of variants in the CAT , FTO , and UCP1 genes with diabetic retinopathy and nephropathy. Additionally, a variant in the ADIPOQ gene was found associated with macrovascular complications. Notably, these genes are involved in some way in mitochondrial biology and reactive oxygen species regulation. Hence, our findings strongly suggest a potential link between mitochondrial oxidative homeostasis and individual predisposition to diabetic vascular complications.

  12. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle.

    Science.gov (United States)

    Modrzynska, Katarzyna; Pfander, Claudia; Chappell, Lia; Yu, Lu; Suarez, Catherine; Dundas, Kirsten; Gomes, Ana Rita; Goulding, David; Rayner, Julian C; Choudhary, Jyoti; Billker, Oliver

    2017-01-11

    A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. 17 CFR 41.2 - Required records.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Required records. 41.2 Section 41.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SECURITY FUTURES PRODUCTS General Provisions § 41.2 Required records. A designated contract market or registered derivatives...

  14. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    Science.gov (United States)

    Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M

    1998-06-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.

  15. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers, Libyan. Journal of Medicine .... For molecular modeling of NAT2 protein, visualized ..... cal clustering. .... cular dynamics simulation.

  16. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  17. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  18. The genetic alteration of MTS1/CDKN2 gene in esophageal cancer

    International Nuclear Information System (INIS)

    Zo, Jae Ill; Paik, Hee Jong; Park, Jong Ho; Kim, Mi Hee

    1996-12-01

    MTS1/CDKN2 gene plays a key role in cell cycle regulation, and there have been many studies about the significance of this gene in tumorigenesis. To investigate the frequency of MTS1/CDKN2 gene alteration in Korean esophageal cancer, we studied 36 esophageal cancer tissues with paired PCR analysis to detect homozygous deletion and PCR-SSCP methods to find minute mutations, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. And in cases without RB gene a alterations, direct sequence analysis was also done. There was no homozygous deletions. Mobility shift by PCR-SSCP was observed in four cases at exon 2, which showed 1 bp deletion in codon 97 of mutation in codon 100 which changed TAT (Tyr) from GAT (Asp). But there were not MTS1/CDKN2 gene alterations in cases without Rb gene alterations. Analysis of clinical data did not show any differences depending upon MTS1/CDKN2 gene alterations. Therefore the MTS1/CDKN2 gene mutations were infrequent events and do not play a major role in the group of patients examined. More study for contribution of methylation in MTS1/CDKN2 gene for inactivation of p16 should be done before evaluation and application of MTS1/CDKN2 gene in tumorigenesis and as an candidate of gene therapy. (author). 15 refs

  19. The genetic alteration of MTS1/CDKN2 gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zo, Jae Ill; Paik, Hee Jong; Park, Jong Ho; Kim, Mi Hee [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    MTS1/CDKN2 gene plays a key role in cell cycle regulation, and there have been many studies about the significance of this gene in tumorigenesis. To investigate the frequency of MTS1/CDKN2 gene alteration in Korean esophageal cancer, we studied 36 esophageal cancer tissues with paired PCR analysis to detect homozygous deletion and PCR-SSCP methods to find minute mutations, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. And in cases without RB gene a alterations, direct sequence analysis was also done. There was no homozygous deletions. Mobility shift by PCR-SSCP was observed in four cases at exon 2, which showed 1 bp deletion in codon 97 of mutation in codon 100 which changed TAT (Tyr) from GAT (Asp). But there were not MTS1/CDKN2 gene alterations in cases without Rb gene alterations. Analysis of clinical data did not show any differences depending upon MTS1/CDKN2 gene alterations. Therefore the MTS1/CDKN2 gene mutations were infrequent events and do not play a major role in the group of patients examined. More study for contribution of methylation in MTS1/CDKN2 gene for inactivation of p16 should be done before evaluation and application of MTS1/CDKN2 gene in tumorigenesis and as an candidate of gene therapy. (author). 15 refs.

  20. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy.

    Science.gov (United States)

    Tse, Chun Hing; Hwang, Harry C; Goldstein, Lynn C; Kandalaft, Patricia L; Wiley, Jesse C; Kussick, Steven J; Gown, Allen M

    2011-11-01

    The ratio of human epidermal growth factor receptor 2 (HER2) to CEP17 by fluorescent in situ hybridization (FISH) with the centromeric probe CEP17 is used to determine HER2 gene status in breast cancer. Increases in CEP17 copy number have been interpreted as representing polysomy 17. However, pangenomic studies have demonstrated that polysomy 17 is rare. This study tests the hypothesis that the use of alternative chromosome 17 reference genes might more accurately assess true HER2 gene status. In all, 171 patients with breast cancer who had HER2 FISH that had increased mean CEP17 copy numbers (> 2.6) were selected for additional chromosome 17 studies that used probes for Smith-Magenis syndrome (SMS), retinoic acid receptor alpha (RARA), and tumor protein p53 (TP53) genes. A eusomic copy number exhibited in one or more of these loci was used to calculate a revised HER2-to-chromosome-17 ratio by using the eusomic gene locus as the reference. Of 132 cases classified as nonamplified on the basis of their HER2:CEP17 ratios, 58 (43.9%) were scored as amplified by using alternative chromosome 17 reference gene probes, and 13 (92.9%) of 14 cases scored as equivocal were reclassified as amplified. Among the cases with mean HER2 copy number of 4 to 6, 41 (47.7%) of 86 had their HER2 gene status upgraded from nonamplified to amplified, and four (4.7%) of 86 were upgraded from equivocal to amplified. Our results support the findings of recent pangenomic studies that true polysomy 17 is uncommon. Additional FISH studies that use probes to the SMS, RARA, and TP53 genes are an effective way to determine the true HER2 amplification status in patients with polysomy 17 and they have important potential implications for guiding HER2-targeted therapy in breast cancer.

  2. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    Science.gov (United States)

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  4. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9

    Science.gov (United States)

    The CRISPR/Cas9 system is known for its precise and efficient gene-editing of a targeted region in a variety of organisms including plants. We targeted FAD2 gene region to perform CRISPR/Cas9 gene-editing in peanut. The FAD2 gene encodes fatty acid desaturase which catalyzes the conversion of oleic ...

  5. Comparative analysis of vertebrate EIF2AK2 (PKR genes and assignment of the equine gene to ECA15q24–q25 and the bovine gene to BTA11q12–q15

    Directory of Open Access Journals (Sweden)

    Zharkikh Andrey A

    2006-09-01

    Full Text Available Abstract The structures of the canine, rabbit, bovine and equine EIF2AK2 genes were determined. Each of these genes has a 5' non-coding exon as well as 15 coding exons. All of the canine, bovine and equine EIF2AK2 introns have consensus donor and acceptor splice sites. In the equine EIF2AK2 gene, a unique single nucleotide polymorphism that encoded a Tyr329Cys substitution was detected. Regulatory elements predicted in the promoter region were conserved in ungulates, primates, rodents, Afrotheria (elephant and Insectifora (shrew. Western clawed frog and fugu EIF2AK2 gene sequences were detected in the USCS Genome Browser and compared to those of other vertebrate EIF2AK2 genes. A comparison of EIF2AK2 protein domains in vertebrates indicates that the kinase catalytic domains were evolutionarily more conserved than the nucleic acid-binding motifs. Nucleotide substitution rates were uniform among the vertebrate sequences with the exception of the zebrafish and goldfish EIF2AK2 genes, which showed substitution rates about 20% higher than those of other vertebrates. FISH was used to physically assign the horse and cattle genes to chromosome locations, ECA15q24–q25 and BTA11q12–15, respectively. Comparative mapping data confirmed conservation of synteny between ungulates, humans and rodents.

  6. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  7. Ellis van Creveld2 is required for postnatal craniofacial bone development

    Science.gov (United States)

    Badri, Mohammed K.; Zhang, Honghao; Ohyama, Yoshio; Venkitapathi, Sundharamani; Kamiya, Nobuhiro; Takeda, Haruko; Ray, Manas; Scott, Greg; Tsuji, Takehito; Kunieda, Tetsuo; Mishina, Yuji; Mochida, Yoshiyuki

    2016-01-01

    Ellis-van Creveld (EvC) syndrome is a genetic disorder with mutations in either EVC or EVC2 gene. Previous case studies reported that EvC patients underwent orthodontic treatment, suggesting the presence of craniofacial bone phenotypes. To investigate whether a mutation in EVC2 gene causes a craniofacial bone phenotype, Evc2 knockout (KO) mice were generated and cephalometric analysis was performed. The heads of wild type (WT), heterozygous (Het) and homozygous Evc2 KO mice (1-, 3- and 6-week-old) were prepared and cephalometric analysis based on the selected reference points on lateral X-ray radiographs was performed. The linear and angular bone measurements were then calculated, compared between WT, Het and KO and statistically analyzed at each time point. Our data showed that length of craniofacial bones in KO was significantly lowered by ~20% to that of WT and Het, the growth of certain bones, including nasal bone, palatal length and premaxilla was more affected in KO, and the reduction in these bone length was more significantly enhanced at later postnatal time points (3 and 6 weeks) than early time point (1 week). Furthermore, bone-to-bone relationship to cranial base and cranial vault in KO was remarkably changed, i.e. cranial vault and nasal bone were depressed and premaxilla and mandible were developed in a more ventral direction. Our study was the first to show the cause-effect relationship between Evc2 deficiency and craniofacial defects in EvC syndrome, demonstrating that Evc2 is required for craniofacial bone development and its deficiency leads to specific facial bone growth defect. PMID:27090777

  8. A Functional, Genome-wide Evaluation of Liposensitive Yeast Identifies the “ARE2 Required for Viability” (ARV1) Gene Product as a Major Component of Eukaryotic Fatty Acid Resistance*

    Science.gov (United States)

    Ruggles, Kelly V.; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S.; Marchadier, Dawn; Valasek, Mark A.; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B.; Repa, Joyce J.; Rader, Dan; Sturley, Stephen L.

    2014-01-01

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the “ARE2 required for viability” (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease. PMID:24273168

  9. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  10. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ajimura, M.; Lee, S.H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed

  11. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that pre......A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...... for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect...

  12. Advances in gene therapy for muscular dystrophies [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hayder Abdul-Razak

    2016-08-01

    Full Text Available Duchenne muscular dystrophy (DMD is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  13. MMS sensitivity of all amino acid-requiring mutants in aspergillus and its suppression by mutations in a single gene.

    Science.gov (United States)

    Käfer, E

    1987-04-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS.

  14. [Effects of canine IL-2 and IL-7 genes on enhancing immunogenicity of canine parvovirus VP2 gene vaccine in mice].

    Science.gov (United States)

    Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P vaccine.

  15. The GABA A-Receptor γ2 (GABRG2 Gene in obsessive-compulsive disorder O gene do receptor GABA A- γ2 (GABRG2 no transtorno obsessivo-compulsivo

    Directory of Open Access Journals (Sweden)

    Margaret A. Richter

    2009-12-01

    Full Text Available OBJECTIVE: The γ-aminobutyric acid type A (GABA A system may be implicated in obsessive-compulsive disorder, based on its major role in modulation of anxiety and its function as the principal inhibitory neurotransmitter system in the cortex. In addition, glutamatergic/GABAergic mechanisms appear to play a role in the pathophysiology of obsessive-compulsive disorder, making the GABA A receptor-γ2 (GABργ2 gene a good candidate for susceptibility in this disorder. METHOD: 118 probands meeting DSM-IV criteria for primary obsessive-compulsive disorder and their available parents were recruited for participation in this study and informed consent was obtained. An NciI restriction site polymorphism in the second intron was genotyped and data was analyzed using the Transmission Disequilibrium Test. RESULTS: In total, 61 of the participating families were informative (i.e., with at least one heterozygous parent. No biases were observed in the transmission of either of the two alleles (χ2 = 0.016, 1 d.f., p = 0.898 to the affected probands in the total sample. CONCLUSION/DISCUSSION: While these results do not provide support for a major role for the GABA A receptor-γ2 in obsessive-compulsive disorder, further investigations of this gene in larger samples are warranted.OBJETIVO: O sistema gabaérgico tipo A (GABA A pode estar implicado no transtorno obsessivo-compulsivo devido ao seu grande papel na modulação da ansiedade e da sua função como o principal neurotransmissor inibidor no córtex. Além disso, mecanismos glutamatérgicos/gabaérgicos parecem desempenhar um papel na fisiopatologia do transtorno obsessivo-compulsivo, tornando o gene do receptor GABA A-γ2 (GABRG2 um bom gene candidato para a suscetibilidade genética a este transtorno. MÉTODO: 118 probandos que preencheram os critérios do DSM-IV para transtorno obsessivo-compulsivo primário e seus pais (quando disponíveis foram recrutados para a participação neste estudo

  16. UCP2 muscle gene transfer modifies mitochondrial membrane potential.

    Science.gov (United States)

    Marti, A; Larrarte, E; Novo, F J; Garcia, M; Martinez, J A

    2001-01-01

    The aim of this work was to evaluate the effect of uncoupling protein 2 (UCP2) muscle gene transfer on mitochondrial activity. Five week-old male Wistar rats received an intramuscular injection of plasmid pXU1 containing UCP2 cDNA in the right tibialis anterior muscles. Left tibialis anterior muscles were injected with vehicle as control. Ten days after DNA injection, tibialis anterior muscles were dissected and muscle mitochondria isolated and analyzed. There were two mitochondrial populations in the muscle after UCP2 gene transfer, one of low fluorescence and complexity and the other, showing high fluorescence and complexity. UCP2 gene transfer resulted in a 3.6 fold increase in muscle UCP2 protein levels compared to control muscles assessed by Western blotting. Furthermore, a significant reduction in mitochondria membrane potential assessed by spectrofluorometry and flow cytometry was observed. The mitochondria membrane potential reduction might account for a decrease in fluorescence of the low fluorescence mitochondrial subpopulation. It has been demonstrated that UCP2 muscle gene transfer in vivo is associated with a lower mitochondria membrane potential. Our results suggest the potential involvement of UCP2 in uncoupling respiration. International Journal of Obesity (2001) 25, 68-74

  17. Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells

    DEFF Research Database (Denmark)

    Agger, Karl; Miyagi, Satoru; Pedersen, Marianne Terndrup

    2016-01-01

    Acute myeloid leukemias (AMLs) with a rearrangement of the mixed-linage leukemia (MLL) gene are aggressive hematopoietic malignancies. Here, we explored the feasibility of using the H3K9- and H3K36-specific demethylases Jmjd2/Kdm4 as putative drug targets in MLL-AF9 translocated leukemia. Using...... a mechanism involving removal of H3K9me3 from the promoter of the Il3ra gene. Importantly, ectopic expression of Il3ra in Jmjd2/Kdm4 knockout cells alleviates the requirement of Jmjd2/Kdm4 for the survival of AML cells, showing that Il3ra is a critical downstream target of Jmjd2/Kdm4 in leukemia...

  18. Microarray Analysis of Transposon Insertion Mutants in Bacillus Anthracis: Global Identification of Genes Required for Sporulation and Germination

    National Research Council Canada - National Science Library

    Day , Jr., William A; Rasmussen, Suzanne L; Carpenter, Beth M; Peterson, Scott N; Friedlander, Arthur M

    2007-01-01

    .... The system, used to identify genes required for generation of the infectious anthrax spore, spore germination and optimal growth on rich medium, was predictive of the contribution of two conserved...

  19. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    Science.gov (United States)

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  20. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum.

    Science.gov (United States)

    Jacob, Tiago R; Peres, Nalu T A; Persinoti, Gabriela F; Silva, Larissa G; Mazucato, Mendelson; Rossi, Antonio; Martinez-Rossi, Nilce M

    2012-05-01

    The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.

  1. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    DEFF Research Database (Denmark)

    hart, Leen M; Hansen, Torben; Rietveld, Ingrid

    2005-01-01

    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase...... gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations...... in the Netherlands and Denmark. A -109 g/a variant was not associated with type 2 diabetes. Allele frequencies for the other variant, H324Q, were 3.5% in type 2 diabetic and 2.7% in control subjects, respectively. The common odds ratio across all four studies was 1.40 (95% CI 1.12-1.76), P = 0.004. There were...

  2. 12 CFR 932.2 - Total capital requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Total capital requirement. 932.2 Section 932.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT AND CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.2 Total capital requirement. (a) Each Bank shall...

  3. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Science.gov (United States)

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  4. KIR And HLA Haplotype Analysis in a Family Lacking The KIR 2DL1-2DP1 Genes

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2015-06-01

    Full Text Available The killer cell immunoglobulin-like receptor (KIR gene cluster exhibits extensive allelic and haplotypic diversity that is observed as presence/absence of genes, resulting in expansion and contraction of KIR haplotypes and by allelic variation of individual KIR genes. We report a case of KIR pseudogene 2DP1 and 2DL1 gene absence in members of one family with the children suffering from acute myelogenous leukemia (AML. Killer cell immunoglo-bulin-like receptor low resolution genotyping was performed by the polymerase chain reaction (PCR-sequencespecific primers (SSP/sequence-specific oligonucleotide (SSO method and haplotype assignment was done by gene content analysis. Both parents and the maternal grandfather, shared the same Cen-B2 KIR haplotype, containing KIR 3DL3, -2DS2, -2DL2 and -3DP1 genes. The second haplotype in the KIR genotype of the mother and grandfather was Tel-A1 with KIR 2DL4 (normal and deleted variant, -3DL1, -22 bp deletion variant of the 2DS4 gene and -3DL2, while the second haplotype in the KIR genotype of the father was Tel-B1 with 2DL4 (normal variant, -3DS1, -2DL5, -2DS5, -2DS1 and 3DL2 genes. Haplotype analysis in all three offsprings revealed that the children inherited the Cen-B2 haplotype with the same gene content but two of the children inherited a deleted variant of the 2DL4 gene, while the third child inherited a normal one. The second haplotype of all three offspring contained KIR 2DL4, -2DL5, -2DS1, -2DS4 (del 22bp variant, -2DS5, -3DL1 and -3DL2 genes, which was the basis of the assumption that there is a hybrid haplotype and that the present 3DL1 gene is a variant of the 3DS1 gene. Due to consanguinity among the ancestors, the results of KIR segregation analysis showed the existence of a very rare KIR genotype in the offspring. The family who is the subject of this case is even more interesting because the father was 10/10 human leukocyte antigen (HLA-matched to his daughter, all members of the family have

  5. Detection of Lsr2 gene of Mycobacterium leprae in nasal mucus

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Custodio

    2012-06-01

    Full Text Available In the present study, nasal mucus from patients with leprosy were analyzed by PCR using specific primers for Lsr2 gene of Mycobacterium leprae. The presence of Lsr2 gene in the nasal mucus was detected in 25.80% of patients with paucibacillari leprosy, and 23.07% of contacts. Despite the absence of clinical features in the contact individuals, it was possible to detect the presence of Lsr2 gene in the nasal mucus of these individuals. Therefore, PCR detection of M. leprae targeting Lsr2 gene using nasal mucus samples could contribute to early diagnosis of leprosy.

  6. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  7. Overexpression of mouse TTF-2 gene causes cleft palate

    Science.gov (United States)

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  8. 16 CFR 307.2 - Required warnings.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Required warnings. 307.2 Section 307.2 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS REGULATIONS UNDER... Comprehensive Smokeless Tobacco Health Education Act of 1986 is the law that requires the enactment of these...

  9. ROS signalling – Specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian Max; Sweetlove, Lee J

    2011-01-01

    The production of reactive oxygen species (ROS) increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 may induce a general stress response, but it does...... messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. (This is a new project funded by FNU) References: Møller, I.M. & Sweetlove, L.J. 2010. ROS signalling – Specificity is required. Trends Plant Sci. 15: 370-374...... not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g., in chloroplasts or mitochondria. We here argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS...

  10. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  11. Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production.

    Science.gov (United States)

    Masud, H M Abdullah Al; Watanabe, Takahiro; Yoshida, Masahiro; Sato, Yoshitaka; Goshima, Fumi; Kimura, Hiroshi; Murata, Takayuki

    2017-12-01

    Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. Although disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions. IMPORTANCE Although the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus 68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious

  12. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Keun Oh

    2014-09-01

    Full Text Available Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD. To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA, jasmonic acid (JA, and ethylene (ET in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  13. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.

    Science.gov (United States)

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A

    2013-05-15

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The Immediate Early Gene Egr3 Is Required for Hippocampal Induction of Bdnf by Electroconvulsive Stimulation

    Directory of Open Access Journals (Sweden)

    Kimberly T. Meyers

    2018-05-01

    Full Text Available Early growth response 3 (Egr3 is an immediate early gene (IEG that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/- mice compared to their wildtype (WT littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR validated the microarray results (performed in males and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl

  15. A gene-protein assay for human epidermal growth factor receptor 2 (HER2: brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17 in formalin-fixed, paraffin-embedded breast cancer tissue sections

    Directory of Open Access Journals (Sweden)

    Nitta Hiroaki

    2012-05-01

    Full Text Available Abstract Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH or immunohistochemistry (IHC, respectively. Our objective was to combine the US Food and Drug Administration (FDA-approved HER2 & chromosome 17 centromere (CEN17 brightfield ISH (BISH and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative] and Calu-3 [HER2 positive (amplified gene, protein positive]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5 and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene

  16. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    International Nuclear Information System (INIS)

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-01-01

    Highlights: ► Corepressor Alien interacts with histone methyltransferase ESET in vivo. ► Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TRβ1. ► ESET-mediated H3K9 methylation is required for liganded TRβ1-repressed transcription. ► ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TRβ1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TRβ1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TRβ1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TRβ1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  17. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  18. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  19. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    Directory of Open Access Journals (Sweden)

    Yi-Bing Zhang

    Full Text Available Gig2 (grass carp reovirus (GCRV-induced gene 2 is first identified as a novel fish interferon (IFN-stimulated gene (ISG. Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose polymerases (PARPs, and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  20. Identification of suitable reference genes for gene expression studies of shoulder instability.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially

  1. 37 CFR 2.51 - Drawing required.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Drawing required. 2.51... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Drawing § 2.51 Drawing required. (a) In an application under section 1(a) of the Act, the drawing of the mark must be a substantially exact representation of the mark...

  2. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation.

    Science.gov (United States)

    Monfared, Mona M; Carles, Cristel C; Rossignol, Pascale; Pires, Helena R; Fletcher, Jennifer C

    2013-09-01

    The epigenetic regulation of gene expression is critical for ensuring the proper deployment and stability of defined genome transcription programs at specific developmental stages. The cellular memory of stable gene expression states during animal and plant development is mediated by the opposing activities of Polycomb group (PcG) factors and trithorax group (trxG) factors. Yet, despite their importance, only a few trxG factors have been characterized in plants and their roles in regulating plant development are poorly defined. In this work, we report that the closely related Arabidopsis trxG genes ULTRAPETALA1 (ULT1) and ULT2 have overlapping functions in regulating shoot and floral stem cell accumulation, with ULT1 playing a major role but ULT2 also making a minor contribution. The two genes also have a novel, redundant activity in establishing the apical–basal polarity axis of the gynoecium, indicating that they function in differentiating tissues. Like ULT1 proteins, ULT2 proteins have a dual nuclear and cytoplasmic localization, and the two proteins physically associate in planta. Finally, we demonstrate that ULT1 and ULT2 have very similar overexpression phenotypes and regulate a common set of key development target genes, including floral MADS-box genes and class I KNOX genes. Our results reveal that chromatin remodeling mediated by the ULT1 and ULT2 proteins is necessary to control the development of meristems and reproductive organs. They also suggest that, like their animal counterparts, plant trxG proteins may function in multi-protein complexes to up-regulate the expression of key stage- and tissue-specific developmental regulatory genes.

  3. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Ramos Paula S

    2012-06-01

    Full Text Available Abstract Background A growing number of clinical and basic research studies have implicated immunological abnormalities as being associated with and potentially responsible for the cognitive and behavioral deficits seen in autism spectrum disorder (ASD children. Here we test the hypothesis that immune-related gene loci are associated with ASD. Findings We identified 2,012 genes of known immune-function via Ingenuity Pathway Analysis. Family-based tests of association were computed on the 22,904 single nucleotide polymorphisms (SNPs from the 2,012 immune-related genes on 1,510 trios available at the Autism Genetic Resource Exchange (AGRE repository. Several SNPs in immune-related genes remained statistically significantly associated with ASD after adjusting for multiple comparisons. Specifically, we observed significant associations in the CD99 molecule-like 2 region (CD99L2, rs11796490, P = 4.01 × 10-06, OR = 0.68 (0.58-0.80, in the jumonji AT rich interactive domain 2 (JARID2 gene (rs13193457, P = 2.71 × 10-06, OR = 0.61 (0.49-0.75, and in the thyroid peroxidase gene (TPO (rs1514687, P = 5.72 × 10-06, OR = 1.46 (1.24-1.72. Conclusions This study suggests that despite the lack of a general enrichment of SNPs in immune function genes in ASD children, several novel genes with known immune functions are associated with ASD.

  4. Inhibition of Grape Crown Gall by Agrobacterium vitis F2/5 Requires Two Nonribosomal Peptide Synthetases and One Polyketide Synthase.

    Science.gov (United States)

    Zheng, Desen; Burr, Thomas J

    2016-02-01

    Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.

  5. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases.

    Directory of Open Access Journals (Sweden)

    Ana Blanco

    Full Text Available BACKGROUND: The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3-4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer. METHODS: 132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification. RESULTS: Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop previously reported, and c.3362del (p.Gly1121ValfsX3 which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%. CONCLUSIONS: The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s involved in the development of breast/pancreatic cancer families is required.

  6. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  7. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  8. Gene conversion and DNA sequence polymorphism in the sex-determination gene fog-2 and its paralog ftr-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Rane, Hallie S; Smith, Jessica M; Bergthorsson, Ulfar; Katju, Vaishali

    2010-07-01

    Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male-female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations.

  9. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lylah D Deady

    2015-02-01

    Full Text Available Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells ("trimming" and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a "corpus luteum (CL" at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2, a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.

  10. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin

    DEFF Research Database (Denmark)

    Hougaard Christensen, Mette Marie; Pedersen, Rasmus Steen; Stage, Tore Bjerregaard

    2013-01-01

    The aim of this study was to determine the association between the renal clearance (CL(renal)) of metformin in healthy Caucasian volunteers and the single-nucleotide polymorphism (SNP) c.808G>T (rs316019) in OCT2 as well as the relevance of the gene-gene interactions between this SNP and (a) the ...

  12. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth.

    Science.gov (United States)

    Michiels, J; Moris, M; Dombrecht, B; Verreth, C; Vanderleyden, J

    1998-07-01

    The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN gene copy in R. etli, rpoN2, encoding a 54.0-kDa protein which displays 59% amino acid identity with the R. etli RpoN1 protein. The rpoN2 gene is cotranscribed with a short open reading frame, orf180, which codes for a protein with a size of 20.1 kDa that is homologous to several prokaryotic and eukaryotic proteins of similar size. In contrast to the R. etli rpoN1 mutant strain, inactivation of the rpoN2 gene did not produce any phenotypic defects during free-living growth. However, symbiotic nitrogen fixation was reduced by approximately 90% in the rpoN2 mutant, whereas wild-type levels of nitrogen fixation were observed in the rpoN1 mutant strain. Nitrogen fixation was completely abolished in the rpoN1 rpoN2 double mutant. Expression of rpoN1 was negatively autoregulated during aerobic growth and was reduced during microaerobiosis and symbiosis. In contrast, rpoN2-gusA and orf180-gusA fusions were not expressed aerobically but were strongly induced at low oxygen tensions or in bacteroids. Expression of rpoN2 and orf180 was abolished in R. etli rpoN1 rpoN2 and nifA mutants under all conditions tested. Under free-living microaerobic conditions, transcription of rpoN2 and orf180 required the RpoN1 protein. In symbiosis, expression of rpoN2 and orf180 occurred independently of the rpoN1 gene, suggesting the existence of an alternative symbiosis-specific mechanism of transcription activation.

  13. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    Science.gov (United States)

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  14. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma

    Science.gov (United States)

    Rusiniak, Michael E.; Kunnev, Dimiter; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.

    2011-01-01

    Mini-chromosome maintenance (Mcm) proteins are part of the replication licensing complex that is loaded onto chromatin during the G1-phase of the cell cycle and required for initiation of DNA replication in the subsequent S-phase. Mcm proteins are typically loaded in excess of the number of locations that are utilized during S-phase. Nonetheless, partial depletion of Mcm proteins leads to cancers and stem cell deficiencies. Mcm2 deficient mice, on a 129Sv genetic background, display a high rate of thymic lymphoblastic lymphoma. Here array comparative genomic hybridization (aCGH) is utilized to characterize the genetic damage accruing in these tumors. The predominant events are deletions averaging less than 0.5 Mb, considerably shorter than observed in prior studies using alternative mouse lymphoma models or human tumors. Such deletions facilitate identification of specific genes and pathways responsible for the tumors. Mutations in many genes that have been implicated in human lymphomas are recapitulated in this mouse model. These features, and the fact that the mutation underlying the accelerated genetic damage does not target a specific gene or pathway a priori, are valuable features of this mouse model for identification of tumor suppressor genes. Genes affected in all tumors include Pten, Tcfe2a, Mbd3 and Setd1b. Notch1 and additional genes are affected in subsets of tumors. The high frequency of relatively short deletions is consistent with elevated recombination between nearby stalled replication forks in Mcm2 deficient mice. PMID:22158038

  15. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  16. Increased expression of ID2, PRELP and SMOC2 genes in patients with endometriosis

    Directory of Open Access Journals (Sweden)

    F.M. Araujo

    Full Text Available Endometriosis is a benign, estrogen-dependent disease with symptoms such as pelvic pain and infertility, and it is characterized by the ectopic distribution of endometrial tissue. The expression of the ID2, PRELP and SMOC2 genes was compared between the endometrium of women without endometriosis in the proliferative phase of their menstrual cycle and the eutopic and ectopic endometrium of women with endometriosis in the proliferative phase. Paired tissue samples from 20 women were analyzed: 10 from endometrial and peritoneal endometriotic lesions and 10 from endometrial and ovarian endometriotic lesions. As controls, 16 endometrium samples were collected from women without endometriosis in the proliferative phase of menstrual cycle. Analysis was performed by real-time polymerase chain reaction (PCR. There was no significant difference between gene expression in the endometrium of women with and without endometriosis. The ID2 gene expression was increased in the most advanced stage of endometriosis and in ovarian endometriomas, the PRELP was more expressed in peritoneal lesions, and the SMOC2 was highly expressed in both peritoneal and endometrioma lesions. Considering that the genes studied participate either directly or indirectly in cellular processes that can lead to cell migration, angiogenesis, and inappropriate invasion, it is possible that the deregulation of these genes caused the development and maintenance of ectopic tissue.

  17. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    Science.gov (United States)

    Li, P; Chen, X; Sun, F; Dong, H

    2017-07-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  19. Cytotoxic effect of the Her-2/Her-1 inhibitor PKI-166 on renal cancer cells expressing the connexin 32 gene.

    Science.gov (United States)

    Fujimoto, Eriko; Yano, Tomohiro; Sato, Hiromi; Hagiwara, Kiyokazu; Yamasaki, Hiroshi; Shirai, Sumiko; Fukumoto, Keiko; Hagiwara, Hiromi; Negishi, Etsuko; Ueno, Koichi

    2005-02-01

    We have reported that connexin (Cx) 32 acts as a tumor suppressor gene in renal cancer cells partly due to Her-2 inactivation. Here, we determined if a Her-2/Her-1 inhibitor (PKI-166) can enhance the tumor-suppressive effect of Cx32 in Caki-2 cells from human renal cell carcinoma. The expression of Cx32 in Caki-2 cells was required for PKI-166-induced cytotoxic effect at lower doses. The cyctotoxicity was dependent on the occurrence of apoptosis and partly mediated by Cx32-driven gap junction intercellular communications. These results suggest that PKI-166 further supports the tumor-suppressive effect of the Cx32 gene in renal cancer cells through the induction of apoptosis.

  20. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat.

    Science.gov (United States)

    Sun, Qing-Ming; Zhou, Rong-Hua; Gao, Li-Feng; Zhao, Guang-Yao; Jia, Ji-Zeng

    2009-04-01

    The frequency and distribution of the major vernalization requirement genes and their effects on growth habits were studied. Of the 551 bread wheat genotypes tested, seven allelic combinations of the three Vrn-1 genes were found to be responsible for the spring habit, three for the facultative habit and one for the winter habit. The three Vrn-1 genes behaved additively with the dominant allele of Vrn-A1 exerting the strongest effect. The allele combinations of the facultative genotypes and the discovery of spring genotypes with "winter" allele of Vrn-1 implied the presence of as yet unidentified alleles/genes for vernalization response. The dominant alleles of the three Vrn-1 genes were found in all ten ecological regions where wheat is cultivated in China, with Vrn-D1 as the most common allele in nine and Vrn-A1 in one. The combination of vrn-A1vrn-B1Vrn-D1 was the predominant genotype in seven of the regions. Compared with landraces, improved varieties contain a higher proportion of the spring type. This was attributed by a higher frequency of the dominant Vrn-A1 and Vrn-B1 alleles in the latter. Correlations between Vrn-1 allelic constitutions and heading date, spike length, plant type as well as cold tolerance were established.

  2. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    Science.gov (United States)

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  3. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  4. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  5. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  6. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  7. Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2015-08-01

    Full Text Available The Tet family of methylcytosine dioxygenases (Tet1, Tet2, and Tet3 convert 5-methylcytosine to 5-hydroxymethylcytosine. To date, functional overlap among Tet family members has not been examined systematically in the context of embryonic development. To clarify the potential for overlap among Tet enzymes during development, we mutated the zebrafish orthologs of Tet1, Tet2, and Tet3 and examined single-, double-, and triple-mutant genotypes. Here, we identify Tet2 and Tet3 as the major 5-methylcytosine dioxygenases in the zebrafish embryo and uncover a combined requirement for Tet2 and Tet3 in hematopoietic stem cell (HSC emergence. We demonstrate that Notch signaling in the hemogenic endothelium is regulated by Tet2/3 prior to HSC emergence and show that restoring expression of the downstream gata2b/scl/runx1 transcriptional network can rescue HSCs in tet2/3 double mutant larvae. Our results reveal essential, overlapping functions for tet genes during embryonic development and uncover a requirement for 5hmC in regulating HSC production.

  8. Human-specific SNP in obesity genes, adrenergic receptor beta2 (ADRB2, Beta3 (ADRB3, and PPAR γ2 (PPARG, during primate evolution.

    Directory of Open Access Journals (Sweden)

    Akiko Takenaka

    Full Text Available UNLABELLED: Adrenergic-receptor beta2 (ADRB2 and beta3 (ADRB3 are obesity genes that play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. The Glu27 allele in ADRB2 and the Arg64 allele in ADRB3 are associated with abdominal obesity and early onset of non-insulin-dependent diabetes mellitus (NIDDM in many ethnic groups. Peroxisome proliferator-activated receptor γ (PPARG is required for adipocyte differentiation. Pro12Ala mutation decreases PPARG activity and resistance to NIDDM. In humans, energy-expense alleles, Gln27 in ADRB2 and Trp64 in ADRB3, are at higher frequencies than Glu27 and Arg64, respectively, but Ala12 in PPARG is at lower frequency than Pro12. Adaptation of humans for lipolysis, thermogenesis, and reduction of fat accumulation could be considered by examining which alleles in these genes are dominant in non-human primates (NHP. All NHP (P. troglodytes, G. gorilla, P. pygmaeus, H. agilis and macaques had energy-thrifty alleles, Gly16 and Glu27 in ADRB2, and Arg64 in ADRB3, but did not have energy-expense alleles, Arg16, Gln27 and Trp64 alleles. In PPARG gene, all NHP had large adipocyte accumulating type, the Pro12 allele. CONCLUSIONS: These results indicate that a tendency to produce much more heat through the energy-expense alleles developed only in humans, who left tropical rainforests for savanna and developed new features in their heat-regulation systems, such as reduction of body hair and increased evaporation of water, and might have helped the protection of entrails from cold at night, especially in glacial periods.

  9. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among ...

    African Journals Online (AJOL)

    Yazun Bashir Jarrar

    2017-11-26

    Nov 26, 2017 ... Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers. Yazun Bashir Jarrar, Ayat Ahmed Balasmeh and Wassan Jarrar. Department of Pharmacy, College of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan. ABSTRACT. The present study aimed to identify ...

  10. Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients

    International Nuclear Information System (INIS)

    Liang, Zhiyong; Zeng, Xuan; Gao, Jie; Wu, Shafei; Wang, Peng; Shi, Xiaohua; Zhang, Jing; Liu, Tonghua

    2008-01-01

    The EGFR and HER2 genes are located on chromosomes 7 and 17, respectively. They are therapeutic targets in some tumors. The TOP2A gene, which is located near HER2 on chromosome 17, is the target of many chemotherapeutic agents, and co-amplification of HER2 and TOP2A has been described in several tumor types. Herein, we investigated the gene status of EGFR, HER2, and TOP2A in Chinese gastric carcinoma patients. We determined the rate of polysomy for chromosomes 7 and 17, and we attempted to clarify the relationship between EGFR, HER2, and TOP2A gene copy number and increased expression of their encoded proteins. Furthermore, we tried to address the relationship between alterations in EGFR, HER2, and TOP2A and chromosome polysomy. One hundred cases of formalin fixed and paraffin embedded tumor tissues from Chinese gastric carcinoma patients were investigated by immunohistochemistry and fluorescence in situ hybridization (FISH) methods. Forty-two percent of the cases showed EGFR overexpression; 16% showed EGFR FISH positive; 6% showed HER2 overexpression; and 11% showed HER2 gene amplification, including all six HER2 overexpression cases. TOP2A nuclear staining (nuclear index, NI) was determined in all 100 tumors: NI values ranged from 0.5 – 90%. Three percent of the tumors showed TOP2A gene amplification, which were all accompanied by HER2 gene amplification. Nineteen percent of the tumors showed chromosome 7 polysomy, and 16% showed chromosome 17 polysomy. Chromosome 7 polysomy correlated significantly with EGFR FISH-positivity, but was not associated with EGFR overexpression. HER2 overexpression associated significantly with HER2 gene amplification. TOP2A gene amplification was significantly associated with HER2 gene amplification. No relationship was found between alterations in the EGFR, HER2, and TOP2A genes and clinicopathologic variables of gastric carcinoma. The data from our study suggest that chromosome 7 polysomy may be responsible for increased EGFR

  11. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  12. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene.

    Science.gov (United States)

    Sabet, Salwa; George, Marina A; El-Shorbagy, Haidan M; Bassiony, Heba; Farroh, Khaled Y; Youssef, Tareq; Salaheldin, Taher A

    2017-01-01

    Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.

  13. 12 CFR 567.2 - Minimum regulatory capital requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum regulatory capital requirement. 567.2... Regulatory Capital Requirements § 567.2 Minimum regulatory capital requirement. (a) To meet its regulatory capital requirement a savings association must satisfy each of the following capital standards: (1) Risk...

  14. Recode-2: new design, new search tools, and many more genes.

    LENUS (Irish Health Repository)

    Bekaert, Michaël

    2010-01-01

    \\'Recoding\\' is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of \\'recoded\\' genes lags far behind annotation of \\'standard\\' genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression--a factor of approximately three increase over the previous version of the database. Recode-2 is available at http:\\/\\/recode.ucc.ie.

  15. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  16. Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation.

    Science.gov (United States)

    Jacoby, Meagan A; Virgin, Herbert W; Speck, Samuel H

    2002-02-01

    Infection of mice with murine gammaherpesvirus 68 (gamma HV68; also referred to as MHV68) provides a tractable small-animal model with which to address the requirements for the establishment and maintenance of gammaherpesvirus infection in vivo. The M2 gene of gamma HV68 is a latency-associated gene that encodes a protein lacking discernible homology to any known viral or cellular proteins. M2 gene transcripts have been detected in latently infected splenocytes (S. M. Husain, E. J. Usherwood, H. Dyson, C. Coleclough, M. A. Coppola, D. L. Woodland, M. A. Blackman, J. P. Stewart, and J. T. Sample, Proc. Natl. Acad. Sci. USA 96:7508-7513, 1999; H. W. Virgin IV, R. M. Presti, X. Y. Li, C. Liu, and S. H. Speck, J. Virol. 73:2321-2332, 1999) and peritoneal exudate cells (H. W. Virgin IV, R. M. Presti, X. Y. Li, C. Liu, and S. H. Speck, J. Virol. 73:2321-2332, 1999), as well as in a latently gamma HV68-infected B-lymphoma cell line (S. M. Husain, E. J. Usherwood, H. Dyson, C. Coleclough, M. A. Coppola, D. L. Woodland, M. A. Blackman, J. P. Stewart, and J. T. Sample, Proc. Natl. Acad. Sci. USA 96:7508-7513, 1999). Here we describe the generation of gamma HV68 mutants with disruptions in the M2 gene. Mutation of the M2 gene did not affect the ability of the virus to replicate in tissue culture, nor did it affect gamma HV68 virulence in B6.Rag1 deficient mice. However, we found that M2 was differentially required for acute replication in vivo. While mutation of M2 did not affect acute phase of virus replication in the lungs of mice following intranasal inoculation, acute-phase virus replication in the spleen was decreased compared to that of the wild-type and marker rescue viruses following intraperitoneal inoculation. Upon intranasal inoculation, M2 mutant viruses exhibited a significant decrease in the establishment of latency in the spleen on day 16 postinfection, as measured by the frequency of viral genome-positive cells. In addition, M2 mutant viral genome

  17. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2 gene in Arabidopsis delays flowering and enhances freezing tolerance.

    Directory of Open Access Journals (Sweden)

    Amadou Diallo

    Full Text Available The vernalization gene 2 (VRN2, is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2 is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  18. High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation.

    Directory of Open Access Journals (Sweden)

    Baerbel Klauke

    Full Text Available Cardiomyopathies might lead to end-stage heart disease with the requirement of drastic treatments like bridging up to transplant or heart transplantation. A not precisely known proportion of these diseases are genetically determined. We genotyped 43 index-patients (30 DCM, 10 ARVC, 3 RCM with advanced or end stage cardiomyopathy using a gene panel which covered 46 known cardiomyopathy disease genes. Fifty-three variants with possible impact on disease in 33 patients were identified. Of these 27 (51% were classified as likely pathogenic or pathogenic in the MYH7, MYL2, MYL3, NEXN, TNNC1, TNNI3, DES, LMNA, PKP2, PLN, RBM20, TTN, and CRYAB genes. Fifty-six percent (n = 24 of index-patients carried a likely pathogenic or pathogenic mutation. Of these 75% (n = 18 were familial and 25% (n = 6 sporadic cases. However, severe cardiomyopathy seemed to be not characterized by a specific mutation profile. Remarkably, we identified a novel homozygous PKP2-missense variant in a large consanguineous family with sudden death in early childhood and several members with heart transplantation in adolescent age.

  19. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Roy R Chaudhuri

    2009-07-01

    Full Text Available Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH, has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input with equivalent data produced after passage of the library through mice (output enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.

  20. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    T. W. Hoffman

    2016-01-01

    Full Text Available Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes.

  1. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Koch, Christian A; Brouwers, Frederieke M; Vortmeyer, Alexander O; Tannapfel, Andrea; Libutti, Steven K; Zhuang, Zhengping; Pacak, Karel; Neumann, Hartmut PH; Paschke, Ralf

    2006-01-01

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  2. Bcıı--RFLP profiles for serum amiloid A1 and mutated MEFV gene prevalence in chronic renal failure patients requiring long-term hemodialysis.

    Science.gov (United States)

    Ozdemir, Ozturk; Kayatas, Mansur; Cetinkaya, Selma; Yildirim, Malik Ejder; Silan, Fatma; Kurtulgan, Hande Kucuk; Koksal, Binnur; Urfali, Mine; Candan, Ferhan

    2015-03-01

    There is an increased mortality risk in long-term hemodialysis patients of renal failure due to the chronic inflammation. The relationship between the chronic renal failure (CRF) and the role of familial genetic markers remains incompletely understood. In the current study, it was aimed to find out the prevalence of common MEFV gene mutations and BcII polymorphism in serum amyloid A1 (SAA1) gene in chronic renal patients (CRF) who require long-term hemodialysis. Current cohort includes 242 CRF patients and 245 healthy individuals from the same population. Total genomic DNA was isolated from peripheral blood-EDTA samples and genotyping of target MEFV gene was carried out by reverse hybridization Strip Assay and real-time techniques. The SAA1 gene was genotyped by the BclI-RFLP method. Increased mutated MEFV genotypes were found in current CRF patients when compared with the control group from the same ethnicity and the difference was statistically significant (Table 2) (OR: 4.9401, 95% CI: 3.0694-7.9509), pchronic inflammation.

  3. Association of angiotensin receptor 2 gene polymorphisms with pregnancy induced hypertension risk.

    Science.gov (United States)

    Li, Chenyang; Peng, Weijun; Zhang, Heng; Yan, Weirong

    2018-05-01

    To investigate the association of polymorphisms and haplotypes of angiotensin receptor 2 (AT2R) gene with pregnancy induced hypertension (PIH) in Chinese Han women. A case-control study was designed with 446 cases (gestational hypertension, GH: 124; pre-eclampsia, PE + eclampsia, E: 322) and 650 controls. rs5193, rs1403543 and rs12710567 of AT2R gene were genotyped. A logistic regression approach was applied to estimate the relationship between the polymorphisms and haplotypes of AT2Rgene with PIH risk. No relationship between AT2R gene polymorphisms and PIH was detected. The haplotype analysis also showed a negative result. rs5193, rs1403543 and rs12710567 of AT2R gene might have no effect on PIH risk among Chinese Han women.

  4. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes

    Directory of Open Access Journals (Sweden)

    Angela Toss

    2015-01-01

    Full Text Available More than one-fifth of ovarian tumors have hereditary susceptibility and, in about 65–85% of these cases, the genetic abnormality is a germline mutation in BRCA genes. Nevertheless, several other suppressor genes and oncogenes have been associated with hereditary ovarian cancers, including the mismatch repair (MMR genes in Lynch syndrome, the tumor suppressor gene, TP53, in the Li-Fraumeni syndrome, and several other genes involved in the double-strand breaks repair system, such as CHEK2, RAD51, BRIP1, and PALB2. The study of genetic discriminators and deregulated pathways involved in hereditary ovarian syndromes is relevant for the future development of molecular diagnostic strategies and targeted therapeutic approaches. The recent development and implementation of next-generation sequencing technologies have provided the opportunity to simultaneously analyze multiple cancer susceptibility genes, reduce the delay and costs, and optimize the molecular diagnosis of hereditary tumors. Particularly, the identification of mutations in ovarian cancer susceptibility genes in healthy women may result in a more personalized cancer risk management with tailored clinical and radiological surveillance, chemopreventive approaches, and/or prophylactic surgeries. On the other hand, for ovarian cancer patients, the identification of mutations may provide potential targets for biologic agents and guide treatment decision-making.

  5. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Nakajima, S.; Sugiyama, M.; Iwai, S.; Hitomi, K.; Otoshi, E.; Kim SangTae; Jiang CaiZhong; Todo, T.; Britt, A.B.; Yamamoto, K.

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  6. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-01-01

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  7. The RNase PD2 gene of almond (Prunus dulcis) represents an evolutionarily distinct class of S-like RNase genes.

    Science.gov (United States)

    Ma, R C; Oliveira, M M

    2000-07-01

    A cDNA for an S-like RNase (RNase PD2) has been isolated from a pistil cDNA library of Prunus dulcis cv. Ferragnés. The cDNA encodes an acidic protein of 226 amino acid residues with a molecular weight of 25 kDa. A potential N-glycosylation site is present at the N-terminus in RNase PD2. A signal peptide of 23 amino acid residues and a transmembrane domain are predicted. The two active-site histidines present in enzymes of the T2/S RNase superfamily were detected in RNase PD2. Its amino acid sequence shows 71.2% similarity to RNSI of Arabidopsis and RNase T2 of chickpea, respectively. Northern blotting and RT-PCR analyses indicate that PD2 is expressed predominantly in petals, pistils of open flowers and leaves of the almond tree. Analyses of shoots cultured in vitro suggested that the expression of RNase PD2 is associated with phosphate starvation. Southern analysis detected two sequences related to RNase PD2 in the P. dulcis genome. RFLP analysis showed that S-like RNase genes are polymorphic in different almond cultivars. The PD2 gene sequence was amplified by PCR and two introns were shown to interrupt the coding region. Based on sequence analysis, we have defined three classes of S-like RNase genes, with the PD2 RNase gene representing a distinct class. The significance of the structural divergence of S-like RNase genes is further discussed.

  8. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available The productivity of maize (Zea mays L. depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59 were divided into seven groups (I-VII. By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.

  9. The organization and expression of the mdm2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Montes De Oca Luna, R.; Tabor, A.D.; Eberspaecher, H. [Univ. of Texas, Houston, TX (United States)] [and others

    1996-05-01

    The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequences of normal BalbC/J DNA and the original cosmid clone is isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues. 25 refs., 3 figs., 2 tabs.

  10. Isolation and characterization of PEP3, a gene required for vacuolar biogenesis in Saccharomyces cerevisiae.

    OpenAIRE

    Preston, R A; Manolson, M F; Becherer, K; Weidenhammer, E; Kirkpatrick, D; Wright, R; Jones, E W

    1991-01-01

    The Saccharomyces cerevisiae PEP3 gene was cloned from a wild-type genomic library by complementation of the carboxypeptidase Y deficiency in a pep3-12 strain. Subclone complementation results localized the PEP3 gene to a 3.8-kb DNA fragment. The DNA sequence of the fragment was determined; a 2,754-bp open reading frame predicts that the PEP3 gene product is a hydrophilic, 107-kDa protein that has no significant similarity to any known protein. The PEP3 predicted protein has a zinc finger (CX...

  11. Association of fatty acid-binding protein 2 and fat mass and obesity-associated gene polymorphism with primary open-angle glaucoma

    Science.gov (United States)

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Singh, Luxmi; Mahdi, Farzana

    2017-01-01

    PURPOSE: The present study was carried out to investigate the association of fatty acid-binding protein 2 (FABP2) and fat mass and obesity-associated (FTO) gene polymorphism with primary open-angle glaucoma (POAG) cases and controls. MATERIALS AND METHODS: This study includes 122 POAG cases and 112 controls. FABP2 and FTO gene polymorphisms in cases and controls were evaluated by polymerase chain reaction-restriction fragment length polymorphism method. RESULTS: The mean ages were 49.88 ± 12.34 and 53.74 ± 11.87 years in POAG cases and control groups, respectively. The FABP2 gene AA, AT, TT genotype frequencies were 12.90%, 62.40%, 24.80% in POAG cases and 20.60%, 64.70%, 14.70% in healthy controls, respectively. The frequencies of A and T allele in POAG cases were 44.06% and 55.94% as compared to 52.94% and 47.06% in the controls. The FTO gene AA, AT, TT genotype frequencies were 2.00%, 79.20%, 18.80% in cases and 0%, 75.50%, 24.50% in healthy controls, respectively. The frequencies of A and T allele in POAG cases were 41.58% and 58.42% as compared to 37.75% and 62.25% in the controls. No significant difference in the frequencies of FABP2 and FTO genotype was found between POAG cases and controls. CONCLUSION: We could not identify the possible association of FABP2 and FTO gene polymorphism with POAG; however, further studies with larger sample size in different population are require to clarify the role of FABP2 and FTO genes in susceptibility to POAG. PMID:29034152

  12. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  13. Genes required for Lactococcus garvieae survival in a fish host.

    Science.gov (United States)

    Menéndez, Aurora; Fernández, Lucia; Reimundo, Pilar; Guijarro, José A

    2007-10-01

    Lactococcus garvieae is considered an emergent pathogen in aquaculture and it is also associated with mastitis in domestic animals as well as human endocarditis and septicaemia. In spite of this, the pathogenic mechanisms of this bacterium are poorly understood. Signature-tagged mutagenesis was used to identify virulence factors and to establish the basis of pathogen-host interactions. A library of 1250 L. garvieae UNIUD074-tagged Tn917 mutants in 25 pools was screened for the ability to grow in fish. Among them, 29 mutants (approx. 2.4 %) were identified which could not be recovered from rainbow trout following infection. Sequence analysis of the tagged Tn917-interrupted genes in these mutants indicated the participation in pathogenesis of the transcriptional regulatory proteins homologous to GidA and MerR; the metabolic enzymes asparagine synthetase A and alpha-acetolactate synthase; the ABC transport system of glutamine and a calcium-transporting ATPase; the dltA locus involved in alanylation of teichoic acids; and hypothetical proteins containing EAL and Eis domains, among others. Competence index experiments in several of the selected mutants confirmed the relevance of the Tn917-interrupted genes in the development of the infection process. The results suggested some of the metabolic routes and enzymic systems necessary for the complete virulence of this bacterium. This work is believed to represent the first report of a genome-wide scan for virulence factors in L. garvieae. The identified genes will further our understanding of the pathogenesis of L. garvieae infections and may provide targets for intervention or lead to the development of novel therapies.

  14. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  15. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  16. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Fu, Guang-Qing; Jin, Qi-Jiang; Lin, Yu-Ting; Feng, Jian-Fei; Nie, Li; Shen, Wen-Biao; Zheng, Tian-Qing

    2011-11-01

    Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.

  17. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sakai, Yasuyoshi

    2016-05-01

    The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.

  18. PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Partha Pratim Das

    2015-09-01

    Full Text Available Polycomb Repressive Complex 2 (PRC2 function and DNA methylation (DNAme are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs and long non-coding RNAs (lncRNAs from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs. Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.

  19. PRC2 is required to maintain expression of the maternal Gtl2-Rian-Mirg locus by preventing de novo DNA methylation in mouse embryonic stem cells

    Science.gov (United States)

    Das, Partha Pratim; Hendrix, David A.; Apostolou, Effie; Buchner, Alice H.; Canver, Matthew C.; Beyaz, Semir; Ljuboja, Damir; Kuintzle, Rachael; Kim, Woojin; Karnik, Rahul; Shao, Zhen; Xie, Huafeng; Xu, Jian; De Los Angeles, Alejandro; Zhang, Yingying; Choe, Junho; Jun, Don Leong Jia; Shen, Xiaohua; Gregory, Richard I.; Daley, George Q.; Meissner, Alexander; Kellis, Manolis; Hochedlinger, Konrad; Kim, Jonghwan; Orkin, Stuart H.

    2017-01-01

    SUMMARY Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with the gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2 the entire locus becomes transcriptionally repressed due to gain of DNA methylation at the intergenic differentially methylated regions (IG-DMR). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Mechanistic study reveals that PRC2 interacts physically with Dnmt3 methyltransferases and prevents their recruitment and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations provide a novel mechanism by which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency. PMID:26299972

  20. Hb Dartmouth (HBA2: c.200T>C): An α2-Globin Gene Associated with Hb H Disease in One Homozygous Patient.

    Science.gov (United States)

    Farashi, Samaneh; Faramarzi Garous, Negin; Ashki, Mehri; Vakili, Shadi; Zeinali, Fatemah; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    Hb H (β4) disease is caused by deletion or inactivation of three out of four α-globin genes. A high incidence of Hb H disease has been reported all over the world. There is a wide spectrum of phenotypic presentations, from clinically asymptomatic to having significant hepatosplenomegaly and requiring occasional or even regular blood transfusions, even more severe anemia, Hb Bart's (γ4) hydrops fetalis syndrome that can cause death in the affected fetuses late in gestation. We here present a case who was diagnosed with Hb H disease that represents a new genotype for this hereditary disorder. Hb Dartmouth is a variant caused by a missense mutation at codon 66 of the α2-globin gene (HBA2: c.200T>C), resulting in the substitution of leucine by proline. We here emphasize the importance of this point mutation involving Hb H disease and also the necessity for prenatal diagnosis (PND) for those who carry this point mutation in the heterozygous state.

  1. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    Science.gov (United States)

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  2. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  3. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    Science.gov (United States)

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  4. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  5. 48 CFR 52.204-2 - Security Requirements.

    Science.gov (United States)

    2010-10-01

    ... Agreement (DD Form 441), including the National Industrial Security Program Operating Manual (DOD 5220.22-M... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Security Requirements. 52....204-2 Security Requirements. As prescribed in 4.404(a), insert the following clauses: Security...

  6. 20 CFR 650.2 - Federal law requirements.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Federal law requirements. 650.2 Section 650.2 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR STANDARD FOR APPEALS... Security Act requires that a State law include provision for: Such methods of administration * * * as are...

  7. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Directory of Open Access Journals (Sweden)

    David Judah

    2010-11-01

    Full Text Available Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1 promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  8. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Science.gov (United States)

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  9. FOXI2: a possible gene contributing to ectodermal dysplasia.

    Science.gov (United States)

    Kurban, Mazen; Zeineddine, Savo Bou; Hamie, Lamiaa; Safi, Remi; Abbas, Ossama; Kibbi, Abdul Ghani; Bitar, Fadi; Nemer, Georges

    2017-12-01

    Cardio-facio-cutaneous syndrome (CFC), Noonan syndrome (NS), and Costello syndrome are a group of diseases that belong to the RASopathies. The syndromes share clinical features making diagnosis a challenge. To investigate the phenotype and genotype of a 10-year-old Iraqi girl with overlapping features of CFC, NS, and Costello syndromes, with additional features of ectodermal dysplasia. DNA was examined by exome sequencing and protein expression by immunohistochemistry. Exome sequencing identified a mutation in the SOS1 gene and a de novo deletion in the FOXI2 gene which was neither present in the international databases, nor in 400 chromosomes from the same population. Based on immunohistochemical staining, FOXI2 was identified in the basal cell layer of the skin and overlapped with the expression of P63, a major player in ectodermal dysplasia. We therefore suggest screening for FOXI2 mutation in the setting of ectodermal features that are not associated with genes known to contribute to ectodermal dysplasia.

  10. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  11. Clinicopathological differences between variants of the NAB2-STAT6 fusion gene in solitary fibrous tumors of the meninges and extra-central nervous system.

    Science.gov (United States)

    Nakada, Satoko; Minato, Hiroshi; Nojima, Takayuki

    2016-07-01

    Investigations on the NAB2-STAT6 fusion gene in solitary fibrous tumors (SFTs) and hemangiopericytomas (HPCs) have increased since its discovery in 2013. Although several SFTs reported without NAB2-STAT6 fusion gene analysis, we reviewed 546 SFTs/HPCs with NAB2-STAT6 fusion gene analysis in this study and investigated differences between the gene variants. In total, 452 cases tested positive for the NAB2-STAT6 fusion gene, with more than 40 variants being detected. The most frequent of these were NAB2 exon 6-STAT6 exon 16/17/18 and NAB2 exon 4-STAT6 exon 2/3, with the former occurring most frequently in SFTs in meninges, soft tissues, and head and neck; the latter predominated in SFTs in the pleura and lung. There was no difference between the histology of SFTs and fusion gene variants. A follow-up analysis of SFTs showed that 51 of 202 cases had a recurrence, with 18 of 53 meningeal SFTs having a local recurrence and/or metastasis within 0-19 years. In meninges and soft tissue, SFTs with the NAB2 exon 6-STAT6 exon 16/17/18 tended to recur more frequently than SFTs with the NAB2 exon 4-STAT6 exon 2/3. Clinicopathological data, including yearly follow-ups, are required for meningeal SFTs/HPCs to define the correlation of variants of NAB2-STAT6 fusion gene.

  12. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome.

    Science.gov (United States)

    van Otterdijk, Sanne D; Binder, Alexandra M; Szarc Vel Szic, Katarzyna; Schwald, Julia; Michels, Karin B

    2017-01-01

    The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.

  13. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Sanne D van Otterdijk

    Full Text Available The prevalence of type 2 diabetes (T2D and the metabolic syndrome (MetS is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS.Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders.No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels.Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.

  14. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Novel genes in LDL metabolism

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Tybjærg-Hansen, Anne

    2015-01-01

    PURPOSE OF REVIEW: To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS: The genetic loci for ATP-binding cassette......-exome sequencing and 'exome chip' studies have additionally suggested several novel genes in LDL metabolism including insulin-induced gene 2, signal transducing adaptor family member 1, lysosomal acid lipase A, patatin-like phospholipase domain-containing protein 5 and transmembrane 6 superfamily member 2. Most...... of these findings still require independent replications and/or functional studies to confirm the exact role in LDL metabolism and the clinical implications for human health. SUMMARY: GWAS, exome sequencing studies, and recently 'exome chip' studies have suggested several novel genes with effects on LDL cholesterol...

  16. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D3 and is required for optimal cell differentiation

    International Nuclear Information System (INIS)

    Wang Xuening; Wang, T.-T.; White, John H.; Studzinski, George P.

    2007-01-01

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D 3 (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation

  17. Transportin-SR is required for proper splicing of resistance genes and plant immunity.

    Directory of Open Access Journals (Sweden)

    Shaohua Xu

    2011-06-01

    Full Text Available Transportin-SR (TRN-SR is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14, a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R protein snc1 (suppressor of npr1-1, constitutive 1. MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.

  18. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  19. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  20. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  1. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  2. Novel SNPs polymorphism of bovine CACNA2D1 gene and their ...

    African Journals Online (AJOL)

    In this study, the bovine CACNA2D1 gene was taken as a candidate gene for mastitis resistance. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the bovine CACNA2D1 gene and evaluate the association of these SNPs with mastitis in cattle. Through DNA sequencing and PCR-RFLP ...

  3. FunGene: the functional gene pipeline and repository.

    Science.gov (United States)

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  4. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  5. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  6. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    Science.gov (United States)

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  7. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  8. Assessment of association between lipoxygenase genes variants in elderly Greek population and type 2 diabetes mellitus.

    Science.gov (United States)

    Tsekmekidou, Xanthippi A; Kotsa, Kalliopi D; Tsetsos, Fotis S; Didangelos, Triantafyllos P; Georgitsi, Marianthi A; Roumeliotis, Athanasios K; Panagoutsos, Stylianos A; Thodis, Elias D; Theodoridis, Marios T; Papanas, Nikolaos P; Papazoglou, Dimitrios A; Pasadakis, Ploumis S; Eustratios, Maltezos S; Paschou, Peristera I; Yovos, John G

    2018-02-01

    Inflammation plays a pivotal role in the pathogenesis of diabetes and its complications. Arachidonic acid lipoxygenases have been intensively studied in their role in inflammation in metabolic pathways. Thus, we aimed to explore variants of lipoxygenase genes (arachidonate lipoxygenase genes) in a diabetes adult population using a case-control study design. Study population consisted of 1285 elderly participants, 716 of whom had type 2 diabetes mellitus. The control group consisted of non-diabetes individuals with no history of diabetes history and with a glycated haemoglobin <6.5% (<48 mmol/mol)] and fasting plasma glucose levels <126 mg/dL. Blood samples were genotyped on Illumina Infinium PsychArray. Variants of ALOX5, ALOX5AP, ALOX12, ALOX15 were selected. All statistical analyses were undertaken within PLINK and SPSS packages utilising permutation analysis tests. Our findings showed an association of rs9669952 (odds ratio = 0.738, p = 0.013) and rs1132340 (odds ratio = 0.652, p = 0.008) in ALOX5AP and rs11239524 in ALOX5 gene with disease (odds ratio = 0.808, p = 0.038). Rs9315029 which is located near arachidonate ALOX5AP also associated with type 2 diabetes mellitus ( p = 0.025). No variant of ALOX12 and ALOX15 genes associated with disease. These results indicate a potential protective role of ALOX5AP and 5-arachidonate lipoxygenase gene in diabetes pathogenesis, indicating further the importance of the relationship between diabetes and inflammation. Larger population studies are required to replicate our findings.

  9. An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function.

    Directory of Open Access Journals (Sweden)

    Jenny U Johansson

    2008-11-01

    Full Text Available Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes.

  10. Exclusion of RAI2 as the causative gene for Nance-Horan syndrome.

    Science.gov (United States)

    Walpole, S M; Ronce, N; Grayson, C; Dessay, B; Yates, J R; Trump, D; Toutain, A

    1999-05-01

    Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, microphthalmia and/or microcornea, unusual dental morphology, dysmorphic facial features, and developmental delay in some cases. Recent linkage studies have mapped the NHS disease gene to a 3.5-cM interval on Xp22.2 between DXS1053 and DXS443. We previously identified a human homologue of a mouse retinoic-acid-induced gene (RAI2) within the NHS critical flanking interval and have tested the gene as a candidate for Nance-Horan syndrome in nine NHS-affected families. Direct sequencing of the RAI2 gene and predicted promoter region has revealed no mutations in the families screened; RAI2 is therefore unlikely to be associated with NHS.

  11. 47 CFR 2.1047 - Measurements required: Modulation characteristics.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Modulation characteristics. 2.1047 Section 2.1047 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY... Certification § 2.1047 Measurements required: Modulation characteristics. (a) Voice modulated communication...

  12. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks

    Science.gov (United States)

    Chiappino-Pepe, Anush; Ataman, Meriç

    2017-01-01

    Novel antimalarial therapies are urgently needed for the fight against drug-resistant parasites. The metabolism of malaria parasites in infected cells is an attractive source of drug targets but is rather complex. Computational methods can handle this complexity and allow integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic model (iPfa) of the deadliest malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis (TFA). Using previous absolute concentration data of the intraerythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and 26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and reported in the literature, and 28 have not been experimentally tested and include previously hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics data, four of the genes would have been incorrectly predicted to be non-essential. TFA also indicated that substrate channeling should exist in two metabolic pathways to ensure the thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. falciparum led to the identification of both the minimal nutritional requirements and the genes that can become indispensable upon substrate inaccessibility. This model provides novel insight into the metabolic needs and capabilities of the malaria parasite and highlights metabolites and pathways that should be measured and characterized to identify potential thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to guide experimental studies to facilitate a better understanding of the parasite metabolism and the identification of targets for more efficient intervention. PMID:28333921

  13. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks.

    Directory of Open Access Journals (Sweden)

    Anush Chiappino-Pepe

    2017-03-01

    Full Text Available Novel antimalarial therapies are urgently needed for the fight against drug-resistant parasites. The metabolism of malaria parasites in infected cells is an attractive source of drug targets but is rather complex. Computational methods can handle this complexity and allow integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic model (iPfa of the deadliest malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis (TFA. Using previous absolute concentration data of the intraerythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and 26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and reported in the literature, and 28 have not been experimentally tested and include previously hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics data, four of the genes would have been incorrectly predicted to be non-essential. TFA also indicated that substrate channeling should exist in two metabolic pathways to ensure the thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. falciparum led to the identification of both the minimal nutritional requirements and the genes that can become indispensable upon substrate inaccessibility. This model provides novel insight into the metabolic needs and capabilities of the malaria parasite and highlights metabolites and pathways that should be measured and characterized to identify potential thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to guide experimental studies to facilitate a better understanding of the parasite metabolism and the identification of targets for more efficient intervention.

  14. ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment.

    Directory of Open Access Journals (Sweden)

    William B Hamilton

    Full Text Available Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification.

  15. Association of Forced Vital Capacity with the Developmental Gene NCOR2.

    Directory of Open Access Journals (Sweden)

    Cosetta Minelli

    Full Text Available Forced Vital Capacity (FVC is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes.Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA. The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia and 5,062 children (ALSPAC. Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25, with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium, with further functional investigation performed using public epigenomic profiling data (ENCODE.NCOR2-rs12708369 showed strong replication in children (p = 0.0002, with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036 and children (p = 0.045, while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026. The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561.We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing

  16. KDM2B recruitment of the Polycomb group complex, PRC1.1, requires cooperation between PCGF1 and BCORL1

    OpenAIRE

    Wong, Sarah J.; Gearhart, Micah D.; Taylor, Alexander B.; Nanyes, David R.; Ha, Daniel J.; Robinson, Angela K.; Artigas, Jason A.; Lee, Oliver J.; Demeler, Borries; Hart, P. John; Bardwell, Vivian J.; Kim, Chongwoo A.

    2016-01-01

    KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and the ...

  17. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  18. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  19. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population.

    Science.gov (United States)

    Méndez, Claudia; Rey, Mauricio

    2015-12-30

    Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism.

  20. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Dufour Virginie

    2011-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.

  1. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Law, Alice Y.S. [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, Chris K.C., E-mail: ckcwong@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-02-01

    Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1{alpha} dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.

  2. USH2A Gene Editing Using the CRISPR System

    Directory of Open Access Journals (Sweden)

    Carla Fuster-García

    2017-09-01

    Full Text Available Usher syndrome (USH is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH. Keywords: Usher syndrome, USH2A, c.2299delG, CRISPR, gene editing, RNPs

  3. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila.

    Directory of Open Access Journals (Sweden)

    Michelle T Juarez

    2011-12-01

    Full Text Available The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating

  4. Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models.

    Directory of Open Access Journals (Sweden)

    Véronique Dorval

    Full Text Available Mutations in leucine-rich repeat kinase 2 (LRRK2 are the most frequent cause of genetic Parkinson's disease (PD. The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT or the PD-associated R1441G mutation (hLRRK2-R1441G. We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold. By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin and miRNAs (e.g., miR-16, miR-25. Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.

  5. Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene.

    Science.gov (United States)

    Petit, F G; Métivier, R; Valotaire, Y; Pakdel, F

    1999-01-01

    In all oviparous, liver represents one of the main E2-target tissues where estrogen receptor (ER) constitutes the key mediator of estrogen action. The rainbow trout estrogen receptor (rtER) gene expression is markedly up-regulated by estrogens and the sequences responsible for this autoregulation have been located in a 0.2 kb upstream transcription start site within - 40/- 248 enhancer region. Absence of interference with steroid hormone receptors and tissue-specific factors and a conserved basal transcriptional machinery between yeast and higher eukaryotes, make yeast a simple assay system that will enable determination of important cis-acting regulatory sequences within rtER gene promoter and identification of transcription factors implicated in the regulation of this gene. Deletion analysis allowed to show a synergistic effect between an imperfect estrogen-responsive element (ERE) and a consensus half-ERE to achieve a high hormone-dependent transcriptional activation of the rtER gene promoter in the presence of stably expressed rtER. As in mammalian cells, here we observed a positive regulation of the rtER gene promoter by the chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) through enhancing autoregulation. Using a point mutation COUP-TFI mutant unable to bind DNA demonstrates that enhancement of rtER gene autoregulation requires the interaction of COUP-TFI to the DNA. Moreover, this enhancement of transcriptional activation by COUP-TFI requires specifically the AF-1 transactivation function of ER and can be observed in the presence of E2 or 4-hydroxytamoxifen but not ICI 164384. Thus, this paper describes the reconstitution of a hormone-responsive transcription unit in yeast in which the regulation of rtER gene promoter could be enhanced by the participation of cis-elements and/or trans-acting factors, such as ER itself or COUP-TF.

  6. Impact of viral E2-gene status on outcome after radiotherapy for patients with human papillomavirus 16-positive cancer of the uterine cervix

    International Nuclear Information System (INIS)

    Lindel, Katja; Villiers, Ethel-Michele de; Burri, Philipp; Studer, Ueli; Altermatt, Hans J.; Greiner, Richard H.; Gruber, Guenther

    2006-01-01

    Purpose: Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. Methods and Materials: Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). Results: Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). Conclusion: E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors

  7. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on.

    Science.gov (United States)

    Bergö, Martin; Wu, Gengshu; Ruge, Toralph; Olivecrona, Thomas

    2002-04-05

    During short term fasting, lipoprotein lipase (LPL) activity in rat adipose tissue is rapidly down-regulated. This down-regulation occurs on a posttranslational level; it is not accompanied by changes in LPL mRNA or protein levels. The LPL activity can be restored within 4 h by refeeding. Previously, we showed that during fasting there is a shift in the distribution of lipase protein toward an inactive form with low heparin affinity. To study the nature of the regulatory mechanism, we determined the in vivo turnover of LPL activity, protein mass, and mRNA in rat adipose tissue. When protein synthesis was inhibited with cycloheximide, LPL activity and protein mass decreased rapidly and in parallel with half-lives of around 2 h, and the effect of refeeding was blocked. This indicates that maintaining high levels of LPL activity requires continuous synthesis of new enzyme protein. When transcription was inhibited by actinomycin, LPL mRNA decreased with half-lives of 13.3 and 16.8 h in the fed and fasted states, respectively, demonstrating slow turnover of the LPL transcript. Surprisingly, when actinomycin was given to fed rats, LPL activity was not down-regulated during fasting, indicating that actinomycin interferes with the transcription of a gene that blocks the activation of newly synthesized LPL protein. When actinomycin was given to fasted rats, LPL activity increased 4-fold within 6 h, even in the absence of refeeding. The same effect was seen with alpha-amanitin, another inhibitor of transcription. The response to actinomycin was much less pronounced in aging rats, which are obese and insulin-resistant. These data suggest a default state where LPL protein is synthesized on a relatively stable mRNA and is processed into its active form. During fasting, a gene is switched on whose product prevents the enzyme from becoming active even though synthesis of LPL protein continues unabated.

  8. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene

    International Nuclear Information System (INIS)

    Mavrothalassitis, G.J.; Watson, D.K.; Papas, T.S.

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical TATA and CAAT elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1,400 base pairs (bp) upstream from the first major transcription initiation site. A G+C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with TATA-less promoters

  9. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  10. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    Science.gov (United States)

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  11. Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    DEFF Research Database (Denmark)

    Vogel, Lotte K.; Saebo, Mona; Hoyer, Helle

    2014-01-01

    Background & Aims: Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation...

  12. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1.

    Science.gov (United States)

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-05-15

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral.

  13. 15 CFR 806.2 - Recordkeeping requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Recordkeeping requirements. 806.2 Section 806.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.2 Recordkeeping...

  14. NDRG2 gene copy number is not altered in colorectal carcinoma

    DEFF Research Database (Denmark)

    Lorentzen, Anders Blomkild; Mitchelmore, Cathy

    2017-01-01

    AIM To investigate if the down-regulation of N-myc Downstream Regulated Gene 2 (NDRG2) expression in colorectal carcinoma (CRC) is due to loss of the NDRG2 allele(s). METHODS The following were investigated in the human colorectal cancer cell lines DLD-1, LoVo and SW-480: NDRG2 mRNA expression...... levels using quantitative reverse transcription-polymerase chain reaction (qRT-PCR); interaction of the MYC gene-regulatory protein with the NDRG2 promoter using chromatin immunoprecipitation; and NDRG2 promoter methylation using bisulfite sequencing. Furthermore, we performed qPCR to analyse the copy...... numbers of NDRG2 and MYC genes in the above three cell lines, 8 normal colorectal tissue samples and 40 CRC tissue samples. RESULTS As expected, NDRG2 mRNA levels were low in the three colorectal cancer cell lines, compared to normal colon. Endogenous MYC protein interacted with the NDRG2 core promoter...

  15. Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.

    OpenAIRE

    Lyons, E M; Thiel, T

    1995-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by...

  16. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  17. Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells

    International Nuclear Information System (INIS)

    Chen, Jie; Li, Jian-Liang; Chen, Zirong; Griffin, James D.; Wu, Lizi

    2015-01-01

    Mucoepidermoid carcinoma (MEC) arises from multiple organs and accounts for the most common types of salivary gland malignancies. Currently, patients with unresectable and metastatic MEC have poor long-term clinical outcomes and no targeted therapies are available. The majority of MEC tumors contain a t(11;19) chromosomal translocation that fuses two genes, CRTC1 and MAML2, to generate the chimeric protein CRTC1-MAML2. CRTC1-MAML2 displays transforming activity in vitro and is required for human MEC cell growth and survival, partially due to its ability to constitutively activate CREB-mediated transcription. Consequently, CRTC1-MAML2 is implicated as a major etiologic molecular event and a therapeutic target for MEC. However, the molecular mechanisms underlying CRTC1-MAML2 oncogenic action in MEC have not yet been systematically analyzed. Elucidation of the CRTC1-MAML2-regulated transcriptional program and its underlying mechanisms will provide important insights into MEC pathogenesis that are essential for the development of targeted therapeutics. Transcriptional profiling was performed on human MEC cells with the depletion of endogenous CRTC1-MAML2 fusion or its interacting partner CREB via shRNA-mediated gene knockdown. A subset of target genes was validated via real-time RT-PCR assays. CRTC1-MAML2-perturbed molecular pathways in MEC were identified through pathway analyses. Finally, comparative analysis of CRTC1-MAML2-regulated and CREB-regulated transcriptional profiles was carried out to assess the contribution of CREB in mediating CRTC1-MAML2-induced transcription. A total of 808 differentially expressed genes were identified in human MEC cells after CRTC1-MAML2 knockdown and a subset of known and novel fusion target genes was confirmed by real-time RT-PCR. Pathway Analysis revealed that CRTC1-MAML2-regulated genes were associated with network functions that are important for cell growth, proliferation, survival, migration, and metabolism. Comparison of CRTC

  18. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus.

    OpenAIRE

    Sommer, J M; Newton, A

    1989-01-01

    We have identified mutations in three pleiotropic genes, pleA, pleC, and pleD, that are required for differentiation in Caulobacter crescentus. pleA and pleC mutants were isolated in an extensive screen for strains defective in both motility and adsorption of polar bacteriophage phi CbK; using temperature-sensitive alleles, we determined the time at which the two genes act. pleA was required for a short period at 0.7 of the swarmer cell cycle for flagellum biosynthesis, whereas pleC was requi...

  19. Common Variants of Homocysteine Metabolism Pathway Genes and Risk of Type 2 Diabetes and Related Traits in Indians

    Directory of Open Access Journals (Sweden)

    Ganesh Chauhan

    2012-01-01

    Full Text Available Hyperhomocysteinemia, a risk factor for cardiovascular disorder, obesity, and type 2 diabetes, is prevalent among Indians who are at high risk of these metabolic disorders. We evaluated association of common variants of genes involved in homocysteine metabolism or its levels with type 2 diabetes, obesity, and related traits in North Indians. We genotyped 90 variants in initial phase (2.115 subjects and replicated top signals in an independent sample set (2.085 subjects. The variant MTHFR-rs1801133 was the top signal for association with type 2 diabetes (OR=0.78 (95%  CI=0.67–0.92, P=0.003 and was also associated with 2 h postload plasma glucose (P=0.04, high-density lipoprotein cholesterol (P=0.004, and total cholesterol (P=0.01 in control subjects. These associations were neither replicated nor significant after meta-analysis. Studies involving a larger study population and different ethnic groups are required before ruling out the role of these important candidate genes in type 2 diabetes, obesity, and related traits.

  20. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2011-10-01

    Full Text Available Abstract Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  1. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2.

    Science.gov (United States)

    Schmidt, Paul J; Fleming, Mark D

    2012-06-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2(Y245X/Y245X) mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, coimmunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  2. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  3. Reactivation of CDX2 in Gastric Cancer as Mark for Gene Silencing Memory

    International Nuclear Information System (INIS)

    Kameoka, Yuri; Kitazawa, Riko; Ariasu, Kanazu; Tachibana, Ryosuke; Mizuno, Yosuke; Haraguchi, Ryuma; Kitazawa, Sohei

    2015-01-01

    To explore the epigenetic mechanism that reactivates CDX2 (a homeobox transcription factor that serves as a tumor-suppressor gene) in intestinal-type gastric cancer during cancer progression, we examined the methylation status of the CDX2 gene promoter and the expression pattern of methyl-CpG binding protein-2 (MeCP2). From archives of the pathology records of surgically excised advanced stomach cancer cases in the Department of Molecular Pathology, Ehime University in a past decate (n=265), 10 cases of intestinal-type tubular adenocarcinoma, well-differentiated type (wel) with minor poorly-differentiated adenocarcinoma (por) components were selected. The expression pattern of CDX2, MUC2 and MeCP2 in these 10 cases was analyzed by immunohistochemistry. The cancerous and non-cancerous areas were selectively obtained by microdissection, and the methylation status of the CDX2 promoter of each area was assessed by methylation-specific polymerase chain reaction (MSP). In all 10 cases, CDX2 expression was clearly observed in the nucleus of the non-cancerous background of the intestinal metaplasic area, where the unmethylation pattern of the CDX2 gene promoter prevailed with reduced MeCP2 expression. In this metaplastic area, CDX2 expression was co-localized with its target gene, MUC2. CDX2 expression then disappeared from the deep invasive wel area. Reflecting the reduced CDX2 expression, microdissected samples from all the wel areas showed hypermethylation of the CDX2 gene promoter by MSP, with prominent MeCP2 expression. Interestingly, while hypermethylation of the CDX2 gene promoter was maintained in the por area in 8 of the 10 cases, CDX2 expression was restored in por areas where MeCP2 expression was markedly and selectively reduced. The other two cases, however, showed a constant MeCP2 expression level comparable to the surrounding deep invasive wel area with negative CDX2 expression. Therefore, gene silencing by hypermethylation may be overcome by the reduction of

  4. Evaluation the COL9A2 gene with high myopia

    Science.gov (United States)

    Zhang, Dingding; Huang, Maomin

    2017-11-01

    This paper investigates the association of the COL9A2 gene between high myopia and normal controls in the Han Chinese population. It shows that the frameshift mutation (D281fs) in the COL9A2 gene is not associated with high myopia in the Han Chinese population, and the two novel variants(c.143G>C and c.884G>A) may contribute to the development of high myopia.

  5. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.

    Science.gov (United States)

    Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V

    2003-12-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.

  6. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  7. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction.

    Science.gov (United States)

    Tetteh, Antonia Y; Sun, Katherine H; Hung, Chiu-Yueh; Kittur, Farooqahmed S; Ibeanu, Gordon C; Williams, Daniel; Xie, Jiahua

    2014-01-01

    Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  8. Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Ma, G J; Long, Y M; Hulke, B S; Gong, L; Markell, S G

    2015-03-01

    The rust resistance gene R 2 was reassigned to linkage group 14 of the sunflower genome. DNA markers linked to R 2 were identified and used for marker-assisted gene pyramiding in a confection type genetic background. Due to the frequent evolution of new pathogen races, sunflower rust is a recurring threat to sunflower production worldwide. The inbred line Morden Cross 29 (MC29) carries the rust resistance gene, R 2 , conferring resistance to numerous races of rust fungus in the US, Canada, and Australia, and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments and SSR marker analyses on the 117 F2 individuals derived from a cross of HA 89 with MC29 (USDA), R 2 was mapped to linkage group (LG) 14 of the sunflower, and not to the previously reported location on LG9. The closest SSR marker HT567 was located at 4.3 cM distal to R 2 . Furthermore, 36 selected SNP markers from LG14 were used to saturate the R 2 region. Two SNP markers, NSA_002316 and SFW01272, flanked R 2 at a genetic distance of 2.8 and 1.8 cM, respectively. Of the three closely linked markers, SFW00211 amplified an allele specific for the presence of R 2 in a marker validation set of 46 breeding lines, and SFW01272 was also shown to be diagnostic for R 2 . These newly developed markers, together with the previously identified markers linked to the gene R 13a , were used to screen 524 F2 individuals from a cross of a confection R 2 line and HA-R6 carrying R 13a . Eleven homozygous double-resistant F2 plants with the gene combination of R 2 and R 13a were obtained. This double-resistant line will be extremely useful in confection sunflower, where few rust R genes are available, risking evolution of new virulence phenotypes and further disease epidemics.

  9. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    Science.gov (United States)

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  10. DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.

    Science.gov (United States)

    Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario

    2008-06-25

    In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.

  11. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan

    2015-01-01

    genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association......, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest...... that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene....

  12. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Rahnella aquatilis strain HX2 has the ability to promote maize growth and suppress sunflower crown gall disease caused by Agrobacterium vitis, A. tumefaciens, and A. rhizogenes. Pyrroloquinoline quinone (PQQ, a cofactor of aldose and alcohol dehydrogenases, is required for the synthesis of an antibacterial substance, gluconic acid, by HX2. Mutants of HX2 unable to produce PQQ were obtained by in-frame deletion of either the pqqA or pqqB gene. In this study, we report the independent functions of pqqA and pqqB genes in relation to PQQ synthesis. Interestingly, both the pqqA and pqqB mutants of R. aquatilis eliminated the ability of strain HX2 to produce antibacterial substance, which in turn, reduced the effectiveness of the strain for biological control of sunflower crown gall disease. The mutation also resulted in decreased mineral phosphate solubilization by HX2, which reduced the efficacy of this strain as a biological fertilizer. These functions were restored by complementation with the wild-type pqq gene cluster. Additionally, the phenotypes of HX2 derivatives, including colony morphology, growth dynamic, and pH change of culture medium were impacted to different extents. Our findings suggested that pqqA and pqqB genes individually play important functions in PQQ biosynthesis and are required for antibacterial activity and phosphorous solubilization. These traits are essential for R. aquatilis efficacy as a biological control and plant growth promoting strain. This study enhances our fundamental understanding of the biosynthesis of an environmentally significant cofactor produced by a promising biocontrol and biological fertilizer strain.

  13. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    Science.gov (United States)

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  14. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.

    Science.gov (United States)

    Brayton, Kelly A; Palmer, Guy H; Lundgren, Anna; Yi, Jooyoung; Barbet, Anthony F

    2002-03-01

    The rickettsial pathogen Anaplasma marginale establishes lifelong persistent infection in the mammalian reservoir host, during which time immune escape variants continually arise in part because of variation in the expressed copy of the immunodominant outer membrane protein MSP2. A key question is how the small 1.2 Mb A. marginale genome generates sufficient variants to allow long-term persistence in an immunocompetent reservoir host. The recombination of whole pseudogenes into the single msp2 expression site has been previously identified as one method of generating variants, but is inadequate to generate the number of variants required for persistent infection. In the present study, we demonstrate that recombination of a whole pseudogene is followed by a second level of variation in which small segments of pseudogenes recombine into the expression site by gene conversion. Evidence for four short sequential changes in the hypervariable region of msp2 coupled with the identification of nine pseudogenes from a single strain of A. marginale provides for a combinatorial number of possible expressed MSP2 variants sufficient for lifelong persistence.

  15. An AP-2 element acts synergistically with the cyclic AMP- and Phorbol ester-inducible enhancer of the human proenkephalin gene

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, S.E.; Comb, M.; Pearlberg, J.; Goodman, H.M.

    1989-01-01

    An enhancer with two DNA elements, one containing the sequence CGTCA, is required for cyclic AMP-and phorbol ester-inducible transcription of the human proenkephalin gene. The authors report that an AP-2 element located adjacent to the enhancer acts synergistically with it to confer maximal response to cyclic AMP and phorbol esters.

  16. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  17. Hemoglobin alpha 2 gene +861 G>A polymorphism in Turkish ...

    African Journals Online (AJOL)

    Dilay Ciglidag Dungul

    carrying individuals with intact beta globin gene. DNA was extracted from peripheral blood sam- ples of seven healthy carrier individuals who have abnormal hemoglobin variants and 16 control individuals from Turkey. Complete coding and intronic sequences of HBA1 and HBA2 genes were amplified by polymerase chain ...

  18. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    owner

    2012-07-17

    Jul 17, 2012 ... These nucleotide and protein sequence analysis of the putative swrW gene provides vital information on the versatility .... chain reaction (PCR) products were stored at 4°C. Presence of ... identical to the same gene with an E-value of 0.0. .... The Prokaryotes-A Handbook on the Biol. of Bacteria:Ecophysiol.

  19. 13 CFR 306.2 - Award requirements.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Award requirements. 306.2 Section 306.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE...; (b) Benefits distressed Regions; (c) Demonstrates innovative approaches to stimulate economic...

  20. 13 CFR 305.2 - Award requirements.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Award requirements. 305.2 Section 305.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE...) Acquisition, design and engineering, construction, rehabilitation, alteration, expansion, or improvement of...

  1. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  2. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

    Science.gov (United States)

    Cavazzana-Calvo, Marina; Payen, Emmanuel; Negre, Olivier; Wang, Gary; Hehir, Kathleen; Fusil, Floriane; Down, Julian; Denaro, Maria; Brady, Troy; Westerman, Karen; Cavallesco, Resy; Gillet-Legrand, Beatrix; Caccavelli, Laure; Sgarra, Riccardo; Maouche-Chrétien, Leila; Bernaudin, Françoise; Girot, Robert; Dorazio, Ronald; Mulder, Geert-Jan; Polack, Axel; Bank, Arthur; Soulier, Jean; Larghero, Jérôme; Kabbara, Nabil; Dalle, Bruno; Gourmel, Bernard; Socie, Gérard; Chrétien, Stany; Cartier, Nathalie; Aubourg, Patrick; Fischer, Alain; Cornetta, Kenneth; Galacteros, Frédéric; Beuzard, Yves; Gluckman, Eliane; Bushman, Frederick; Hacein-Bey-Abina, Salima; Leboulch, Philippe

    2010-09-16

    The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The β(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated β(E)-globin with partial instability. When this is compounded with a non-functional β(0) allele, a profound decrease in β-globin synthesis results, and approximately half of β(E)/β(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe β(E)/β(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.

  3. Association of −330 interleukin-2 gene polymorphism with oral cancer

    Directory of Open Access Journals (Sweden)

    Prithvi Kumar Singh

    2017-01-01

    >Results: IL-2 (−330A>C gene polymorphism was significantly associated with oral cancer whereas it was neither associated with clinicopathological status nor with cancer pain. The AC heterozygous genotype was significantly associated with oral cancer patients as compared to controls [odds ratio (OR: 3.0; confidence interval (CI: 2.14-4.20; PC gene polymorphism was also associated with oral cancer in tobacco smokers and chewers. >Interpretation & conclusions: Our results showed that oral cancer patients had significantly higher frequency of AA genotype but significantly lower frequency of AC genotype and C allele compared to controls. The IL-2 AC genotype and C allele of IL-2 (−330A>C gene polymorphisms could be potential protective factors and might reduce the risk of oral cancer in Indian population.

  4. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

    Science.gov (United States)

    Swanson, Lianna E; Yu, Marcus; Nelson, Kevin S; Laprise, Patrick; Tepass, Ulrich; Beitel, Greg J

    2009-04-01

    Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

  5. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3.

    Science.gov (United States)

    Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M

    2017-05-15

    Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of

  6. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Shihua Zhang

    2018-02-01

    Full Text Available Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black, compound type, target gene(s of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  7. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds.

    Science.gov (United States)

    Zhang, Shihua; Zhang, Liang; Wang, Yijun; Yang, Jian; Liao, Mingzhi; Bi, Shoudong; Xie, Zhongwen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs) and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target) based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black), compound type, target gene(s) of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  8. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  9. The normal chain length distribution of the O antigen is required for the interaction of Shigella flexneri 2a with polarized Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Anilei Hoare

    2012-01-01

    Full Text Available Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS O antigen in the ability of S. flexneri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg regulated by the WzzB protein and a very long O antigen (VL-OAg regulated by Wzz pHS2. Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.

  10. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    International Nuclear Information System (INIS)

    Depto, A.S.; Stenberg, R.M.

    1989-01-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene

  11. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    Science.gov (United States)

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  12. TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas.

    Science.gov (United States)

    Lotan, Tamara L; Toubaji, Antoun; Albadine, Roula; Latour, Mathieu; Herawi, Mehsati; Meeker, Alan K; DeMarzo, Angelo M; Platz, Elizabeth A; Epstein, Jonathan I; Netto, George J

    2009-03-01

    Ductal adenocarcinoma of the prostate is an unusual subtype that may be associated with a more aggressive clinical course, and is less responsive to conventional therapies than the more common prostatic acinar adenocarcinoma. However, given its frequent association with an acinar component at prostatectomy, some have challenged the concept of prostatic ductal adenocarcinoma as a distinct clinicopathologic entity. We studied the occurrence of the TMPRSS2-ERG gene fusion, in 40 surgically resected ductal adenocarcinoma cases, and in their associated acinar component using fluorescence in situ hybridization. A group of 38 'pure' acinar adenocarcinoma cases matched with the ductal adenocarcinoma group for pathological grade and stage was studied as a control. Compared with the matched acinar adenocarcinoma cases, the TMPRSS2-ERG gene fusion was significantly less frequently observed in ductal adenocarcinoma (45 vs 11% of cases, P=0.002, Fisher's exact test). Here, of the ductal adenocarcinoma cases with the gene fusion, 75% were fused through deletion, and the remaining case was fused through translocation. The TMPRSS2-ERG gene fusion was also rare in the acinar component of mixed ductal-acinar tumors when compared with the pure acinar adenocarcinoma controls (5 vs 45%, P=0.001, Fisher's exact test). In 95% of the ductal adenocarcinoma cases in which a concurrent acinar component was analyzed, there was concordance for presence/absence of the TMPRSS2-ERG gene fusion between the different histologic subtypes. In the control group of pure acinar adenocarcinoma cases, 59% were fused through deletion and 41% were fused through translocation. The presence of the TMPRSS2-ERG gene fusion in some cases of prostatic ductal adenocarcinoma supports the concept that ductal adenocarcinoma and acinar adenocarcinoma may be related genetically. However, the significantly lower rate of the gene fusion in pure ductal adenocarcinoma cases underscores the fact that genetic and biologic

  13. 12 CFR 563g.2 - Offering circular requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Offering circular requirement. 563g.2 Section 563g.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.2 Offering circular requirement. (a) General. No savings association shall offer or sell, directly...

  14. The "Novelty" Requirements for Gene and Genetically-Modified Organisms Inventions and the Potential Benefits of a Peer-to-Patent System

    NARCIS (Netherlands)

    Margoni, T.

    2012-01-01

    The paper focuses on the patentability requirements applicable to the case of biotechnological inventions (gene patents and other genetically modified organisms). The paper takes a comparative standpoint and analyzes North-American, European, and Japanese landscapes. Attention will be also paid to

  15. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    Science.gov (United States)

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  16. Hemoglobin alpha 2 gene +861 G>A polymorphism in Turkish ...

    African Journals Online (AJOL)

    Thalassemia is an inherited blood disorder which is divided into two groups: alpha and beta. HBA1 and HBA2 are the two genes associated with alpha thalassemia. The aim of this study is to investigate abnormal hemoglobin variants of alpha globin gene in healthy abnormal hemoglobin carrying individuals with intact beta ...

  17. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning.

    Science.gov (United States)

    Van Otterloo, Eric; Li, Hong; Jones, Kenneth L; Williams, Trevor

    2018-01-25

    The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders. © 2018. Published by The Company of Biologists Ltd.

  18. Understanding the links among neuromedin U gene, beta2-adrenoceptor gene and bone health: an observational study in European children.

    Directory of Open Access Journals (Sweden)

    Francesco Gianfagna

    Full Text Available Neuromedin U, encoded by the NMU gene, is a hypothalamic neuropeptide that regulates both energy metabolism and bone mass. The beta-2 adrenergic receptor, encoded by the ADRB2 gene, mediates several effects of catecholamine hormones and neurotransmitters in bone. We investigated whether NMU single nucleotide polymorphisms (SNPs and haplotypes, as well as functional ADRB2 SNPs, are associated with bone stiffness in children from the IDEFICS cohort, also evaluating whether NMU and ADRB2 interact to affect this trait. A sample of 2,274 subjects (52.5% boys, age 6.2 ± 1.8 years from eight European countries, having data on calcaneus bone stiffness index (SI, mean of both feet and genotyping (NMU gene: rs6827359, rs12500837, rs9999653; ADRB2 gene: rs1042713, rs1042714, was studied. After false discovery rate adjustment, SI was significantly associated with all NMU SNPs. rs6827359 CC homozygotes showed the strongest association (recessive model, Δ= -1.8, p=0.006. Among the five retrieved haplotypes with frequencies higher than 1% (range 2.0-43.9%, the CCT haplotype (frequency=39.7% was associated with lower SI values (dominant model, Δ= -1.0, p=0.04 as compared to the most prevalent haplotype. A non-significant decrease in SI was observed in in ADRB2 rs1042713 GG homozygotes, while subjects carrying SI-lowering genotypes at both SNPs (frequency = 8.4% showed much lower SI than non-carriers (Δ= -3.9, p<0.0001; p for interaction=0.025. The association was more evident in preschool girls, in whom SI showed a curvilinear trend across ages. In subgroup analyses, rs9999653 CC NMU or both GG ADRB2 genotypes were associated with either lower serum calcium or β-CrossLaps levels (p=0.01. This study in European children shows, for the first time in humans, a role for NMU gene through interaction with ADRB2 gene in bone strength regulation, more evident in preschool girls.

  19. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering.

    Science.gov (United States)

    Han, Tae-Un; Park, John; Domingues, Carlos F; Moretti-Ferreira, Danilo; Paris, Emily; Sainz, Eduardo; Gutierrez, Joanne; Drayna, Dennis

    2014-09-01

    A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of

  20. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings.

    Science.gov (United States)

    Veerappan, Vijaykumar; Chen, Naichong; Reichert, Angelika I; Allen, Randy D

    2014-11-01

    The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.

  1. The expression characteristics of mt-ND2 gene in chicken.

    Science.gov (United States)

    Zhang, Wenwen; Hou, Lingling; Wang, Ting; Lu, Weiwei; Tao, Yafei; Chen, Wen; Du, Xiaohui; Huang, Yanqun

    2016-09-01

    Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p chicken age (p chicken age (p chicken age.

  2. Genotyping of BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes in a male patient with secondary breast cancer

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Novakovic, Srdjan; Stegel, Vida; Jereb, Berta

    2011-01-01

    Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer. Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes. Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer

  3. A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2 genes

    International Nuclear Information System (INIS)

    Hondow, Heather L; Fox, Stephen B; Mitchell, Gillian; Scott, Rodney J; Beshay, Victoria; Wong, Stephen Q; Dobrovic, Alexander

    2011-01-01

    Detection of mutations by DNA sequencing can be facilitated by scanning methods to identify amplicons which may have mutations. Current scanning methods used for the detection of germline sequence variants are laborious as they require post-PCR manipulation. High resolution melting (HRM) is a cost-effective rapid screening strategy, which readily detects heterozygous variants by melting curve analysis of PCR products. It is well suited to screening genes such as BRCA1 and BRCA2 as germline pathogenic mutations in these genes are always heterozygous. Assays for the analysis of all coding regions and intron-exon boundaries of BRCA1 and BRCA2 were designed, and optimised. A final set of 94 assays which ran under identical amplification conditions were chosen for BRCA1 (36) and BRCA2 (58). Significant attention was placed on primer design to enable reproducible detection of mutations within the amplicon while minimising unnecessary detection of polymorphisms. Deoxyinosine residues were incorporated into primers that overlay intronic polymorphisms. Multiple 384 well plates were used to facilitate high throughput. 169 BRCA1 and 239 BRCA2 known sequence variants were used to test the amplicons. We also performed an extensive blinded validation of the protocol with 384 separate patient DNAs. All heterozygous variants were detected with the optimised assays. This is the first HRM approach to screen the entire coding region of the BRCA1 and BRCA2 genes using one set of reaction conditions in a multi plate 384 well format using specifically designed primers. The parallel screening of a relatively large number of samples enables better detection of sequence variants. HRM has the advantages of decreasing the necessary sequencing by more than 90%. This markedly reduced cost of sequencing will result in BRCA1 and BRCA2 mutation testing becoming accessible to individuals who currently do not undergo mutation testing because of the significant costs involved

  4. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    Science.gov (United States)

    Shopan, Jannat; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-06-01

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the Potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Association of polymorphisms of the ADIPOQ, ADIPOR1 and ADIPOR2 genes with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Dmitry Sergeevich Khodyrev

    2015-03-01

    Full Text Available The study of hereditary predisposition to multifactorial diseases is essential for diagnosis and selection of the optimal treatment. The study of polymorphisms of candidate genes whose products are involved in the pathogenesis of multifactorial diseases is of great clinical importance. Aim. The aim of this study was to investigate the association of rs2241766 and rs1501299 polymorphisms in the ADIPOQ gene, rs2275737 and rs2275738 polymorphisms in the ADIPOR1 gene and rs11061971 and rs16928751 polymorphisms in the ADIPOR2 gene with the development of type 2 diabetes mellitus (T2DM in the Russian population. Materials and methods. The study included a group of 500 patients with T2DM diagnosed based on standard diagnostic criteria (T2DM+. The control group (T2DM- was a random sample of 500 patients with no evidence of the disease and was matched to the T2DM+ group for gender, age and body mass index. The determination of alleles and genotypes was performed using real-time polymerase chain reaction with TaqMan probes. The X2 test and contingency tables were used to compare the distribution of allele and genotype frequencies. A p-value of

  6. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels

    2007-01-01

    could be identified. Comparison with forskolin- and nerve growth factor (NGF)-treated PC12 cells showed that CCK induced a separate set of target genes. Taken together, we propose that neuronal CCK may have a role in the regulation of the circadian rhythm, the metabolism of cerebral cholesterol...... of neuronal CCK are incompletely understood. To identify genes regulated by neuronal CCK, we generated neuronal PC12 cells stably expressing the CCK-2 receptor (CCK-2R) and treated the cells with sulphated CCK-8 for 2-16 h, before the global expression profile was examined. The changes in gene expression...... peaked after 2 h, with 67 differentially expressed transcripts identified. A pathway analysis indicated that CCK was implicated in the regulation of the circadian clock system, the plasminogen system and cholesterol metabolism. But transcripts encoding proteins involved in dopamine signaling, ornithine...

  8. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  9. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  10. Association of CYP17 and SRD5A2 gene polymorphisms with Prostate cancer risk among Iranian and Indian populations

    Directory of Open Access Journals (Sweden)

    kh onsory

    2016-02-01

    Full Text Available Aims and objectives: Prostate cancer is a complicated disease that genetics and environmental factors may be playing a promoting role in its progression. Polymorphism of genes such as steroid hormone receptors are having very important role in developing this disease. One such gene, CYP17 is playing role in hydroxylation and SRD5A2 gene, the predominant 5&alpha-reductase isozyme in prostate, catalyzes the conversion of testosterone into the more potent androgen, dihydrotestosterone (DHT, which is required for the normal growth and development of the prostate gland. The purpose of this study was to investigate association of CYP17 and SRD5A2 genes polymorphisms with prostate cancer risk. Materials and methods: PCR-RFLP analysis of CYP17 and SRD5A2 genes were performed on 100 prostate cancer patients admitted to the Department of Urology, Postgraduate Institute of Medical Science and Research (PGIMER, Chandigarh, India, and 150 patients from Imam Khomeini Hospital, Tehran, Iran, compared with equal number of matching controls for each group visiting same centers for other reason. The data was analyzed using the computer software SPSS for windows (version 19, using logistic regression. Results: In this case-control study, there was a significant increase with risk of prostate cancer association for individuals carrying one copy of CYP17 A2 allele in Iranian (OR= 2.10 95% CI, 1.03-4.27 P=0.041 and Indian populations (OR= 2.16 95% CI, 1.08-4.33 P=0.029. While the risk was decreased in individuals having two A2 alleles in both groups. Compared with men having the VV genotype of SRD5A2 gene, there was no significant association between the VL genotype and the risk of prostate cancer among Iranian (OR, 0.87 95% CI, 0.49 -1.56 P=0.661 and Indian (OR, 0.99 95% CI, 0.54 -1.81 P=0.989 patients. Also there was no difference in the occurrence of the genotype LL between prostate cancer patients and control groups in both studied populations therefore, there

  11. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  12. Methylation and silencing of the retinoic acid receptor-β2 gene in cervical cancer

    International Nuclear Information System (INIS)

    Ivanova, Tatyana; Petrenko, Anatolii; Gritsko, Tatyana; Vinokourova, Svetlana; Eshilev, Ernest; Kobzeva, Vera; Kisseljov, Fjodor; Kisseljova, Natalia

    2002-01-01

    Expression of the retinoic acid receptor β2 (RAR-β2), a putative tumor suppressor gene, is reduced in various human cancers, including squamous cell carcinomas (SCC) of the uterine cervix. The mechanism of the inhibition of RAR-β2 expression remains obscure. We examined whether methylation of RAR-β2 gene could be responsible for this silencing in cervical SCC. Expression of RAR-β2 mRNA and methylation status of the 5' region of RAR-β2 gene were examined in 20 matched specimens from patients with cervical SCC and in three cervical cancer cell lines by Northern blot analysis and methylation-specific PCR (MSP) assay or Southern blot analysis respectively. In 8 out 20 cervical SCC (40%) the levels of RAR-β2 mRNA were decreased or undetectable in comparison with non-neoplastic cervix tissues. All 8 tumors with reduced levels of RAR-β2 mRNA expression showed methylation of the promoter and the first exon expressed in the RAR-β2 transcript. The RAR-β2 gene from non-neoplastic cervical tissues was mostly unmethylated and expressed, but methylated alleles of the gene were found in three samples of the morphologically normal tissues adjacent to the tumors. Three cervical cancer cell lines with extremely low level of RAR-β2 mRNA expression, SiHA, HeLA and CaSki, also showed methylation of this region of the RAR-β2 gene. These findings suggest that methylation of the 5' region of RAR-β2 gene may contribute to gene silencing and that methylation of this region may be an important and early event in cervical carcinogenesis. These findings may be useful to make retinoids more effective as preventive and therapeutic agents in combination with inhibitors of DNA methylation

  13. Planossolos e Gleissolos Utilizados na Fabricação de Cerâmica Artesanal no Semiárido de Minas Gerais

    Directory of Open Access Journals (Sweden)

    Diana Ferreira de Freitas

    2015-06-01

    Full Text Available O conhecimento etnopedológico tem fornecido informações importantes sobre o modo de vida das populações rurais a respeito de suas tradições ancestrais, como a arte de elaborar peças artesanais a partir do barro advindo de solos com características próprias a esse uso. O objetivo deste trabalho foi avaliar física, química e mineralogicamente Planossolos e Gleissolos explorados para a produção de artefatos de cerâmica artesanal em Minas Gerais. Nos barreiros, foram coletados dois perfis de Planossolos (P1 e P2 e um Gleissolo (P3 usados como matéria-prima na produção artesanal de cerâmica. Foram realizadas análises físicas e químicas, limites de liquidez (LL e plasticidade (LP, índice de plasticidade (IP e de atividade coloidal (IA, além da mineralogia da fração argila. Os horizontes selecionados pelos ceramistas para a fabricação de cerâmica artesanal (BA, Btg e BCg, do P1; Btg1 e Btg2, do P2; e C2g e C3g, do P3 apresentaram os maiores teores de argila e silte, IP e IA, importantes para a qualidade final da cerâmica. O horizonte Cg do perfil P1 possui potencial de ser utilizado para a produção artesanal, em virtude do seu IP, superior aos dos horizontes normalmente usados, além dos teores de argila, silte e areia fina e suas características mineralógicas. A proporção ideal das frações areia, silte e argila e a porcentagem de matéria orgânica na definição de um bom material para cerâmica são difíceis de estabelecer e variam principalmente em razão de aspectos quantitativos e qualitativos da argila nos solos.

  14. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  15. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Science.gov (United States)

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  16. CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network.

    Directory of Open Access Journals (Sweden)

    Sashidhar S Nakerakanti

    Full Text Available Connective tissue growth factor (CCN2 is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(vβ(3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(vβ(3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.

  17. The study of mutability of RYS2 gene in diploid yeast Saccharomyces

    International Nuclear Information System (INIS)

    Chernov, Yu.O.; Gordenin, D.A.; Soldatov, S.P.; Glazer, V.M.

    1985-01-01

    More than 3000 spontaneous X-ray and ultraviolet-radiation induced mutants have been obtained by LYSD gene in haploid and diploid yeast Saccharcomyces. Mutants were selected using Chattu et cet. method. Comparison of mutant frequency in haploidy and diploidy and analysis of pho 1 marker closely related with LYS2 gene allow to conclude that the main mechanism causing spontaneous and induced mutants in diploidy is mutation of LYS2 gene in one of homologues and the following mitotic homozygotization of originating mutation

  18. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    Directory of Open Access Journals (Sweden)

    Antonia Y. Tetteh

    2014-01-01

    Full Text Available Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0, but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3 treatment and then used quantitative real-time PCR (qRT-PCR to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  19. Id-1 and Id-2 genes and products as markers of epithelial cancer

    Science.gov (United States)

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  20. Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle.

    Science.gov (United States)

    Arnold, Daniel R; Gaspar, Roberta C; da Rocha, Carlos V; Sangalli, Juliano R; de Bem, Tiago H C; Corrêa, Carolina A P; Penteado, João C T; Meirelles, Flavio V; Lopes, Flavia L

    2017-03-01

    Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P<0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P<0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.

  1. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  2. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  3. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  4. Association of Pro12Ala polymorphism of PPAR-γ2 Gene and diabetic retinopathy in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yong-Qing Liu

    2013-06-01

    Full Text Available AIM: To observe the relationship between Prol2Ala polymorphism of peroxisome proliferator activated receptor-γ2(PPAR-γ2gene and diabetic retinopathy(DRwith type 2 diabetic mellitus(T2DMof the Han nationality in Shanxi province. METHODS: Totally 90 patients with T2DM were selected into our research, who were at the age of 40 to 70 years old, diabetic duration from 10 to 20 years, blood pressure PPAR-γ2 gene were determined by polymerase chain reaction-restriction fragment length polymorphisms(PCR-RFLPassay in all the patients. RESULTS: PCR results showed that there were 2 alleles and 3 genotypes in the groups. The frequency of genotype PP, PA, AA were 40.0%, 53.3%, 6.7% in NDR group, 70.0%, 30.0%, 0.0% in BDR group, 76.7%, 23.3%, 0% in PDR group, respectively. The allele frequency(χ2=10.208and gene frequency(χ2=10.351were statistically significant(PCONCLUSION: The alanine variant of Prol2Ala polymorphism of PPAR-γ2 gene is associated with DR in type 2 diabetes among the Hans in Shanxi area, and the Ala allele might be a protective factor for the development of diabetic retinopathy.

  5. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Izumi Kaneko

    2015-05-01

    Full Text Available Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors.

  6. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  7. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  8. Mapping of Leaf Rust Resistance Genes and Molecular Characterization of the 2NS/2AS Translocation in the Wheat Cultivar Jagger.

    Science.gov (United States)

    Xue, Shulin; Kolmer, James A; Wang, Shuwen; Yan, Liuling

    2018-04-19

    Winter wheat cultivar 'Jagger' was recently found to have an alien chromosomal segment 2NS that has Lr37 , a gene conferring resistance against leaf rust caused by Puccinia triticina The objective of this study was to map and characterize the gene(s) for seedling leaf rust resistance in Jagger. The recombinant inbred line (RIL) population of Jagger × '2174' was inoculated with leaf rust pathogen THBJG and BBBDB, and evaluated for infection type (IT) response. A major quantitative trait locus (QTL) for THBJG and BBBDB was coincidently mapped to chromosome arm 2AS, and the QTL accounted for 56.6% - 66.2% of total phenotypic variation in infection type (IT) response to THBJG, and 72.1% - 86.9% to BBBDB. The causal gene for resistance to these rust races was mapped to the 2NS segment in Jagger. The 2NS segment was located in a region of approximately 27.8 Mb starting from the telomere of chromosome arm 2AS, based on the sequences of the A genome in tetraploid wheat. The Lr17a gene on chromosome arm 2AS was delimited to 3.1 Mb in the genomic region, which was orthologous to the 2NS segment. Therefore, the Lr37 gene in the 2NS segment can be pyramided with other effective resistance genes, rather than Lr17a in wheat, to improve resistance to rust diseases. Copyright © 2018, G3: Genes, Genomes, Genetics.

  9. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    NARCIS (Netherlands)

    L.M. 't Hart (Leen); H.A.P. Pols (Huib); T. Hansen (Torben); I. Rietveld (Ingrid); J.M. Dekker (Jacqueline); J.A. Maassen (Johannes); M.G.A.A.M. Nijpels (Giel); G.M.C. Janssen (George); P.P. Arp (Pascal); R.J. Heine (Robert); A.G. Uitterlinden (André); T. Jorgensen (Torben); C.M. van Duijn (Cornelia); K. Borch-Johnsen; O. Pedersen (Oluf)

    2005-01-01

    textabstractPreviously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA

  10. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  11. [Correlation of angiotensin-converting enzyme 2 gene polymorphism with antihypertensive effects of benazepril].

    Science.gov (United States)

    Chen, Qing; Tang, Xun; Yu, Can-qing; Chen, Da-fang; Tian, Jun; Cao, Yang; Fan, Wen-yi; Cao, Wei-hua; Zhan, Si-yan; Lv, Jun; Guo, Xiao-xia; Li, Li-ming; Hu, Yong-hua

    2010-06-18

    To explore the correlation of rs2106809 from angiotensin-converting enzyme 2 gene with antihypertensive effects of benazepril, as well as its interactions with polymorphisms of angiotensinogen(AGT) and angiotensin II type 1 receptor(AGTR1) gene. Correlation between rs2106809 and blood pressure reduction was estimated based on a field trail with 1 831 hypertensive patients using benazepril for 2 weeks. Generalized multifactor dimensionality reduction (GMDR) was used to explore the interactions of rs2106809 and 8 single nucleotide polymorphisms (SNPs) of AGTR1 gene and 3 SNPs of AGT gene. rs2106809 was found to be associated with reduction in systolic blood pressure and pulse pressure in women, as well as pulse pressure reduction in men. T allele carriers presented more blood pressure reduction (1.4, 1.3 and 0.9 mmHg/T allele respectively). Gene-gene interactions involving rs2106809 were found in systolic blood pressure reduction of men, and the response to benazepril of non-sensitive genotypes carriers was 8.2 (95% confidence interval: 6.6-9.7) mmHg, lower than that of sensitive genotypes carriers. rs2106809 might act as an independent influencing factor or component of gene-gene interaction in blood pressure reducing effects of benazepril.

  12. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  13. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Takashi S Miki

    2016-09-01

    Full Text Available XRN2 is a conserved 5'→3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs. In Caenorhabditis elegans (C. elegans, the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2',5'-bisphosphate nucleotidase 1 (BPNT1 through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP. Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.

  14. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Precision requirements for space-based X(CO2) data

    International Nuclear Information System (INIS)

    Miller, C.E.; Crisp, D.; Miller, C.E.; Salawitch, J.; Sander, S.P.; Sen, B.; Toon, C.; DeCola, P.L.; Olsen, S.C.; Randerson, J.T.; Michalak, A.M.; Alkhaled, A.; Michalak, A.M.; Rayner, P.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jones, D.B.A.; Denning, A.S.; Nicholls, M.E.; O'Brien, D.; Doney, S.C.; Pawson, S.; Pawson, S.; Connor, B.J.; Fung, I.Y.; Tans, P.; Wennberg, P.O.; Yung, Y.L.; Law, R.M.

    2007-01-01

    Precision requirements are determined for space-based column-averaged CO 2 dry air mole fraction X(CO 2 ) data. These requirements result from an assessment of spatial and temporal gradients in X(CO 2 ), the relationship between X(CO 2 ) precision and surface CO 2 flux uncertainties inferred from inversions of the X(CO 2 ) data, and the effects of X(CO 2 ) biases on the fidelity of CO 2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these X(CO 2 ) data precision requirements. (authors)

  16. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Hummon Amanda B

    2012-01-01

    Full Text Available Abstract Background Colorectal carcinomas (CRC carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. Results A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH, a protein recently linked to regulation of the AKT1/ß-catenin pathway. Conclusions We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of

  17. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells.

    Science.gov (United States)

    Hummon, Amanda B; Pitt, Jason J; Camps, Jordi; Emons, Georg; Skube, Susan B; Huppi, Konrad; Jones, Tamara L; Beissbarth, Tim; Kramer, Frank; Grade, Marian; Difilippantonio, Michael J; Ried, Thomas; Caplen, Natasha J

    2012-01-04

    Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH.

  18. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  19. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-05-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. Methods To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. Results The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR = 1.25, 95% confidence interval (CI = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17. We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively. In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively. However, no association was seen between MDM2 SNP309 and tumor susceptibility

  20. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Science.gov (United States)

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, ppopulation. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  1. Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2

    NARCIS (Netherlands)

    Stokkers, P. C.; Huibregtse, K.; Leegwater, A. C.; Reitsma, P. H.; Tytgat, G. N.; van Deventer, S. J.

    2000-01-01

    Genome scans have identified a region spanning 40 cM on the long arm of chromosome 12 as a susceptibility locus for inflammatory bowel disease (IBD). This locus contains several candidate genes for IBD, one of which is the gene for the natural resistance associated macrophage protein 2 (NRAMP2).

  2. A Pectate Lyase-Coding Gene Abundantly Expressed during Early Stages of Infection Is Required for Full Virulence in Alternaria brassicicola.

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    Full Text Available Alternaria brassicicola causes black spot disease of Brassica species. The functional importance of pectin digestion enzymes and unidentified phytotoxins in fungal pathogenesis has been suspected but not verified in A. brassicicola. The fungal transcription factor AbPf2 is essential for pathogenicity and induces 106 genes during early pathogenesis, including the pectate lyase-coding gene, PL1332. The aim of this study was to test the importance and roles of PL1332 in pathogenesis. We generated deletion strains of the PL1332 gene, produced heterologous PL1332 proteins, and evaluated their association with virulence. Deletion strains of the PL1332 gene were approximately 30% less virulent than wild-type A. brassicicola, without showing differences in colony expansion on solid media and mycelial growth in nutrient-rich liquid media or minimal media with pectins as a major carbon source. Heterologous PL1332 expressed as fusion proteins digested polygalacturons in vitro. When the fusion proteins were injected into the apoplast between leaf veins of host plants the tissues turned dark brown and soft, resembling necrotic leaf tissue. The PL1332 gene was the first example identified as a general toxin-coding gene and virulence factor among the 106 genes regulated by the transcription factor, AbPf2. It was also the first gene to have its functions investigated among the 19 pectate lyase genes and several hundred putative cell-wall degrading enzymes in A. brassicicola. These results further support the importance of the AbPf2 gene as a key pathogenesis regulator and possible target for agrochemical development.

  3. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    Science.gov (United States)

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  4. A spindle pole antigen gene MoSPA2 is important for polar cell growth of vegetative hyphae and conidia, but is dispensable for pathogenicity in Magnaporthe oryzae.

    Science.gov (United States)

    Li, Chao; Yang, Jun; Zhou, Wei; Chen, Xiao-Lin; Huang, Jin-Guang; Cheng, Zhi-Hua; Zhao, Wen-Sheng; Zhang, Yan; Peng, You-Liang

    2014-11-01

    Spa2 is an important component of the multiprotein complex polarisome, which is involved in the establishment, maintenance, termination of polarized cell growth and is important for defining tip growth of filamentous fungi. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that formed smaller colony and conidia compared with the wild type. In the mutant, a spindle pole antigen gene MoSPA2 was disrupted by the integration of an exogenous plasmid. Targeted gene deletion and complementation assays demonstrated the gene disruption was responsible for the defects of the insertional mutant. Interestingly, the MoSpa2-GFP fusion protein was found to accumulate as a spot at hyphal tips, septa of hyphae and conidial tip cells where germ tubes are usually produced, but not in appressoria, infection hyphae or at the septa of conidia. Furthermore, the deletion mutants of MoSPA2 exhibited slower hyphal tip growth, more hyphal branches, and smaller size of conidial tip cells. However, MoSPA2 is not required for plant infection. These results indicate that MoSPA2 is required for vegetative hyphal growth and maintaining conidium morphology and that spotted accumulation of MoSpa2 is important for its functions during cell polar growth.

  5. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  6. Does the KIR2DS5 gene protect from some human diseases?

    Directory of Open Access Journals (Sweden)

    Izabela Nowak

    Full Text Available BACKGROUND: KIR2DS5 gene encodes an activating natural killer cell receptor whose ligand is not known. It was recently reported to affect the outcome of hematopoietic stem cell transplantation. METHODOLOGY/PRINCIPAL FINDINGS: In our studies on KIR2DS5 gene associations with human diseases, we compared the frequencies of this gene in patients and relevant controls. Typing for KIR2DS5 gene was performed by either individual or multiplex polymerase chain reactions which, when compared in the same samples, gave concordant results. We noted an apparently protective effect of KIR2DS5 gene presence in several clinical conditions, but not in others. Namely, this effect was observed in ankylosing spondylitis (p=0.003, odds ratio [OR]=0.47, confidence interval [CI]=0.28-0.79, endometriosis (p=0.03, OR=0.25, CI = 0.07-0.82 and acute rejection of kidney graft (p=0.0056, OR=0.44, CI=0.24-0.80, but not in non-small-cell lung carcinoma, rheumatoid arthritis, spontaneous abortion, or leukemia (all p>0.05. In addition, the simultaneous presence of KIR2DS5 gene and HLA-C C1 allotype exhibited an even stronger protective effect on ankylosing spondylitis (p=0.0003, OR=0.35, CI=0.19-0.65, whereas a lack of KIR2DS5 and the presence of the HLA-C C2 allotype was associated with ankylosing spondylitis (p=0.0017, OR=1.92, CI=1.28-2.89, whereas a lack of KIR2DS5 and presence of C1 allotype was associated with rheumatoid arthritis (p=0.005, OR=1.47, CI=1.13-1.92. The presence of both KIR2DS5 and C1 seemed to protect from acute kidney graft rejection (p=0.017, OR=0.47, CI=0.25-0.89, whereas lack of KIR2DS5 and presence of C2 seemed to favor rejection (p=0.0015, OR=2.13, CI=1.34-3.37. CONCLUSIONS/SIGNIFICANCE: Our results suggest that KIR2DS5 may protect from endometriosis, ankylosing spondylitis, and acute rejection of kidney graft.

  7. Possible association of the Plasmodium falciparum T1526C resa2 gene mutation with severe malaria

    Directory of Open Access Journals (Sweden)

    Durand Rémy

    2012-04-01

    Full Text Available Abstract Background Plasmodium falciparum exports proteins that remodel the erythrocyte membrane. One such protein, called Pf155/RESA (RESA1 contributes to parasite fitness, optimizing parasite survival during febrile episodes. Resa1 gene is a member of a small family comprising three highly related genes. Preliminary evidence led to a search for clues indicating the involvement of RESA2 protein in the pathophysiology of malaria. In the present study, cDNA sequence of resa2 gene was obtained from two different strains. The proportion of P. falciparum isolates having a non-stop T1526C mutation in resa2 gene was evaluated and the association of this genotype with severity of malaria was investigated. Methods Resa2 cDNAs of two different strains (a patient isolate and K1 culture adapted strain was obtained by RT-PCR and DNA sequencing was performed to confirm its gene structure. The proportion of isolates having a T1526C mutation was evaluated using a PCR-RFLP methodology on groups of severe malaria and uncomplicated patients recruited in 1991–1994 in Senegal and in 2009 in Benin. Results A unique ORF with an internal translation stop was found in the patient isolate (Genbank access number : JN183870, while the K1 strain harboured the T1526C mutation (Genbank access number : JN183869 which affects the internal stop codon and restores a full length coding sequence. About 14% of isolates obtained from Senegal and Benin harboured mutant T1526C parasites. Some isolates had both wild and mutant resa alleles. The analysis excluding those mixed isolates showed that the resa2 T1526C mutation was found more frequently in severe malaria cases than in uncomplicated cases (p = 0.008. The association of the presence of the mutant allele and parasitaemia >4% was shown in multivariate analysis (p = 0.03 in the group of Beninese children. Conclusions All T1526C mutant parasites theoretically have the ability to give rise to a full-length RESA2 protein

  8. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Directory of Open Access Journals (Sweden)

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II Rubis

  9. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Directory of Open Access Journals (Sweden)

    Shafat Ali

    Full Text Available Type 2 diabetes (T2D is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04 with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08 in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59 when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  10. Molecular Evolution of the Nuclear Factor (Erythroid-Derived 2)-Like 2 Gene Nrf2 in Old World Fruit Bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Yin, Qiuyuan; Zhu, Lei; Liu, Di; Irwin, David M; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Mammals developed antioxidant systems to defend against oxidative damage in their daily life. Enzymatic antioxidants and low molecular weight antioxidants (LMWAs) constitute major parts of the antioxidant systems. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, encoded by the Nrf2 gene) is a central transcriptional regulator, regulating transcription, of many antioxidant enzymes. Frugivorous bats eat large amounts of fruits that contain high levels of LMWAs such as vitamin C, thus, a reliance on LMWAs might greatly reduce the need for antioxidant enzymes in comparison to insectivorous bats. Therefore, it is possible that frugivorous bats have a reduced need for Nrf2 function due to their substantial intake of diet-antioxidants. To test whether the Nrf2 gene has undergone relaxed evolution in fruit-eating bats, we obtained Nrf2 sequences from 16 species of bats, including four Old World fruit bats (Pteropodidae) and one New World fruit bat (Phyllostomidae). Our molecular evolutionary analyses revealed changes in the selection pressure acting on Nrf2 gene and identified seven specific amino acid substitutions that occurred on the ancestral lineage leading to Old World fruit bats. Biochemical experiments were conducted to examine Nrf2 in Old World fruit bats and showed that the amount of catalase, which is regulated by Nrf2, was significantly lower in the brain, heart and liver of Old World fruit bats despite higher levels of Nrf2 protein in Old World fruit bats. Computational predictions suggest that three of these seven amino acid replacements might be deleterious to Nrf2 function. Therefore, the results suggest that Nrf2 gene might have experienced relaxed constraint in Old World fruit bats, however, we cannot rule out the possibility of positive selection. Our study provides the first data on the molecular adaptation of Nrf2 gene in frugivorous bats in compensation to the increased levels of LWMAs from their fruit-diet.

  11. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-01-01

    The life-time drinking profiles of Japanese alcoholics have shown that gastrectomy increases susceptibility to alcoholism. We investigated the trends in gastrectomy and alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genotypes and their interactions in alcoholics. This survey was conducted on 4879 Japanese alcoholic men 40 years of age or older who underwent routine gastrointestinal endoscopic screening during the period 1996-2010. ADH1B/ALDH2 genotyping was performed in 3702 patients. A history of gastrectomy was found in 508 (10.4%) patients. The reason for the gastrectomy was peptic ulcer in 317 patients and gastric cancer in 187 patients. The frequency of gastrectomy had gradually decreased from 13.3% in 1996-2000 to 10.5% in 2001-2005 and to 7.8% in 2006-2010 (P alcoholism-susceptibility genotypes, ADH1B*1/*1 and ALDH2*1/*1, modestly but significantly tended not to occur in the same individual (P = 0.026). The frequency of ADH1B*1/*1 decreased with ascending age groups. The high frequency of history of gastrectomy suggested that gastrectomy is still a risk factor for alcoholism, although the percentage decreased during the period. The alcoholism-susceptibility genotype ADH1B*1/*1 was less frequent in the gastrectomy group, suggesting a competitive gene-gastrectomy interaction for alcoholism. A gene-gene interaction and gene-age interactions regarding the ADH1B genotype were observed.

  12. Expression of the genes dual oxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease

    DEFF Research Database (Denmark)

    Csillag, C.; Nielsen, O.H.; Vainer, Ben

    2007-01-01

    colonoscopically from 33 CD patients and from 17 control subjects. All controls and 10 CD patients were medication-free at the time of colonoscopy. The Human Genome U133 Plus 2.0 GeneChip Array was used for gene profiling. Hybridization data were analysed with dChip software. Results were confirmed by real......-time reverse transcriptase polymerase chain reaction (RT-PCR). Protein product expression of selected genes was assessed by immunohistochemistry using the Envision+ visualization technique. RESULTS: The expression profile was not homogeneous with the statistical cut-point settings applied. In comparison......, fold change 3.9), codes for a mitogenic protein; this could not be confirmed by RT-PCR. Medication-free patients had no differentially expressed genes as compared with controls. Immunohistochemistry indicated that these proteins were produced by epithelial cells (REG1A, LCN2) and leucocytes (DUOX2...

  13. The role of ERBB2 gene polymorphisms in leprosy susceptibility

    Directory of Open Access Journals (Sweden)

    Jamile Leão Rêgo

    2015-03-01

    Full Text Available Mycobacterium leprae infects skin and peripheral nerves causing deformities and disability. The M. leprae bacterium binds to ErbB2 on the Schwann cell surface causing demyelination and favoring spread of the bacilli and causing nerve injury. Polymorphisms at the ERBB2 gene were previously investigated as genetic risk factors for leprosy in two Brazilian populations but with inconsistent results. Herein we extend the analysis of ERBB2 variants to a third geographically distinct population in Brazil. Our results show that there is no association between the genotyped SNPs and the disease (p > 0.05 in this population. A gene set or pathway analysis under the genomic region of ERBB2 will be necessary to clarify its regulation under M. leprae stimulus.

  14. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    Science.gov (United States)

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  15. Two genes in Balbiani ring 2 with metabolically different 75S transcripts

    OpenAIRE

    Galler, R.; Saiga, H.; Widmer, R. M.; Lezzi, M.; Edström, J.-E.

    1985-01-01

    Balbiani ring 2 (BR2) in salivary glands of Chironomus pallidivittatus and C. tentans (two sibling species of the subgenus Camptochironomus) is a favoured model system for studies of gene organization and transcript formation. Here we show that BR2 is more complex than hitherto believed, containing two 75S RNA-producing genes, BR2a and BR2b, present in different 35–40 kb blocks of DNA. The transcripts hybridizing to two different repeat units originating in BR2 differ in size. Further support...

  16. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    : Taken together, these results suggest that CD38 activity is required for 7-Ket-induced Ca2+ and consequently O2-. production in CAMs, which increases Nrf2 activity to maintain their differentiated status. When CD38 gene expression and function are deficient, the Nrf2 activity is suppressed, thereby leading to phenotypic switching of CAMs.

  17. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  18. The BRCA1 and BRCA2 Genes in Early-Onset Breast Cancer Patients.

    Science.gov (United States)

    Saleem, Mohamed; Ghazali, Mohd Bazli; Wahab, Md Azlan Mohamed Abdul; Yusoff, Narazah Mohd; Mahsin, Hakimah; Seng, Ch'ng Ewe; Khalid, Imran Abdul; Rahman, Mohd Nor Gohar; Yahaya, Badrul Hisham

    2018-04-24

    Approximately 5-10% of breast cancers are attributable to genetic susceptibility. Mutations in the BRCA1 and BRCA2 genes are the best known genetic factors to date. The goal of this study was to determine the structure and distribution of haplotypes of the BRCA1 and BRCA2 genes in early-onset breast cancer patients. We enrolled 70 patients diagnosed with early-onset breast cancer. A total of 21 SNPs (11 on BRCA1 and 10 on BRCA2) and 1 dinucleotide deletion on BRCA1 were genotyped using nested allele-specific PCR methods. Linkage disequilibrium (LD) analysis was conducted, and haplotypes were deduced from the genotype data. Two tightly linked LD blocks were observed on each of the BRCA1 and BRCA2 genes. Variant-free haplotypes (TAT-AG for BRCA1 and ATA-AAT for BRCA2) were observed at a frequency of more than 50% on each gene along with variable frequencies of derived haplotypes. The variant 3'-subhaplotype CGC displayed strong LD with 5'-subhaplotypes GA, AA, and GG on BRCA1 gene. Haplotypes ATA-AGT, ATC-AAT, and ATA-AAC were the variant haplotypes frequent on BRCA2 gene. Although the clinical significance of these derived haplotypes has not yet been established, it is expected that some of these haplotypes, especially the less frequent subhaplotypes, eventually will be shown to be indicative of a predisposition to early-onset breast cancer.

  19. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action.

    Directory of Open Access Journals (Sweden)

    Inês Barroso

    2003-10-01

    Full Text Available Type 2 diabetes is an increasingly common, serious metabolic disorder with a substantial inherited component. It is characterised by defects in both insulin secretion and action. Progress in identification of specific genetic variants predisposing to the disease has been limited. To complement ongoing positional cloning efforts, we have undertaken a large-scale candidate gene association study. We examined 152 SNPs in 71 candidate genes for association with diabetes status and related phenotypes in 2,134 Caucasians in a case-control study and an independent quantitative trait (QT cohort in the United Kingdom. Polymorphisms in five of 15 genes (33% encoding molecules known to primarily influence pancreatic beta-cell function-ABCC8 (sulphonylurea receptor, KCNJ11 (KIR6.2, SLC2A2 (GLUT2, HNF4A (HNF4alpha, and INS (insulin-significantly altered disease risk, and in three genes, the risk allele, haplotype, or both had a biologically consistent effect on a relevant physiological trait in the QT study. We examined 35 genes predicted to have their major influence on insulin action, and three (9%-INSR, PIK3R1, and SOS1-showed significant associations with diabetes. These results confirm the genetic complexity of Type 2 diabetes and provide evidence that common variants in genes influencing pancreatic beta-cell function may make a significant contribution to the inherited component of this disease. This study additionally demonstrates that the systematic examination of panels of biological candidate genes in large, well-characterised populations can be an effective complement to positional cloning approaches. The absence of large single-gene effects and the detection of multiple small effects accentuate the need for the study of larger populations in order to reliably identify the size of effect we now expect for complex diseases.

  20. Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III Results.

    Science.gov (United States)

    Schimmer, Joshua; Breazzano, Steven

    2015-12-01

    Spark Therapeutics recently reported positive phase III results for SPK-RPE65 targeting the treatment of visual impairment caused by RPE65 gene mutations (often referred to as Leber congenital amaurosis type 2, or LCA2, but may include other retinal disorders), marking an important inflection point for the field of gene therapy. The results highlight the ability to successfully design and execute a randomized trial of a gene therapy and also reinforce the potentially predictive nature of early preclinical and clinical data. The results are expected to pave the way for the first approved gene therapy product in the United States and should sustain investor interest and confidence in gene therapy for many approaches, including retina targeting and beyond.

  1. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  2. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  3. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified ...

  4. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  5. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  6. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Science.gov (United States)

    Zhang, Yanfeng; Huang, Shuhua; Wang, Xuefang; Liu, Jianwei; Guo, Xupeng; Mu, Jianxin; Tian, Jianhua; Wang, Xiaofeng

    2018-01-01

    Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm). DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops. PMID:29616073

  7. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    2018-03-01

    Full Text Available Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm. DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2 that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops.

  8. Fiscal 1998 research report. Feasibility study on the CO{sub 2} reduction project by residue power generation at the oil refinery in China; 1998 nendo chosa hokokusho. Chugoku no seiyusho ni okeru zansa hatsuden ni yoru CO{sub 2} sakugen project ni kansuru F/S chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As a part of the basic research on joint project promotion, this feasibility study supposed introduction of IGCC (integrated gasification combined cycle) to Nanjing oil refinery of Jinling Petrochemical Corp. (JPC) in China, estimated the CO{sub 2} emission reduction effect by in-refinery efficient power generation using petroleum coke residue as fuel, and assessed the feasibility of the project together with a cost benefit. The feasibility study result showed the effectiveness of IGCC introduction to the oil refinery for reducing CO{sub 2} emissions, occupying the interest of JPC. However, Nanjing oil refinery already making a decision to adopt another system (BTG) answered that early adoption of this project is difficult. The feasibility study result also showed that efficient operation of IGCC is difficult because of lower generation efficiency of petroleum coke residue, and achievement of the supposed CO{sub 2} emission reduction effect and profitability is difficult. The project based on this feasibility study result is probably difficult to be realized. (NEDO)

  9. Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2.

    Science.gov (United States)

    Dong, Lanlan; Zhou, Simin; He, Yuan; Jia, Yan; Bai, Qunhua; Deng, Peng; Gao, Jieying; Li, Yingli; Xiao, Hong

    2018-05-01

    This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

  10. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  11. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  12. 9 CFR 2.35 - Recordkeeping requirements.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.35 Recordkeeping requirements. (a) The research... include: (i) The species and breed or type of animal; (ii) The sex; (iii) The date of birth or approximate...

  13. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Shah, Viral N; Cheema, Balneek Singh; Sharma, Rajni

    2013-01-01

    Patients with type 2 diabetes (T2DM) are usually obese and concurrent obesity results into activation of the renin-angiotensin-system (RAS) which is a risk factor for diabetic nephropathy (DN). Gene-gene interaction between acetyl-coenzymeA carboxylase beta (ACACβ) gene, which is involved in fatt...

  14. Association between genes on chromosome 19p13.2 and panic disorder

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Buttenschøn, Henriette Nørmølle; Hedemand, Anne

    2016-01-01

    .2 as a candidate region. To further investigate this chromosomal region for association with PD, we analysed eight single nucleotide polymorphisms (SNPs) in three candidate genes - small-nuclear RNA activating complex, polypeptide 2 (SNAPC2), mitogen-activated protein kinase kinase 7 (MAP2K7) and leucine......-rich repeat containing 8 family, member E (LRRC8E) - these genes have previously been directly or indirectly implicated in other mental disorders. A total of 511 patients with PD and 1029 healthy control individuals from the Faroe Islands, Denmark and Germany were included in the current study. SNPs covering...... the gene region of SNAPC2, MAP2K7 and LRRC8E were genotyped and tested for association with PD. In the Faroese cohort, rs7788 within SNAPC2 was significantly associated with PD, whereas rs3745383 within LRRC8E was nominally associated. No association was observed between the analysed SNPs and PD...

  15. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia.

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    Full Text Available The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2 is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445 and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445 and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605, in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605 may be involved in the susceptibility to paranoid

  16. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia.

    Science.gov (United States)

    Lin, Zheng; Su, Yousong; Zhang, Chengfang; Xing, Mengjuan; Ding, Wenhua; Liao, Liwei; Guan, Yangtai; Li, Zezhi; Cui, Donghong

    2013-01-01

    The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2) is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia) and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445) and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445) and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605), in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605) may be involved in the susceptibility to paranoid schizophrenia.

  17. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ......We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M...... that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further...

  18. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene

    DEFF Research Database (Denmark)

    Honoré, B

    2000-01-01

    The hnRNP 2H9 gene products are involved in the splicing process and participate in early heat shock-induced splicing arrest. By combining low/high stringency hybridisation, database search, Northern and Western blotting it is shown that the gene is alternatively spliced into at least six...

  19. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    Science.gov (United States)

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  20. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and