WorldWideScience

Sample records for gene arg kinase

  1. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    International Nuclear Information System (INIS)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-01-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility

  2. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  3. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    Science.gov (United States)

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  4. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Garner, Emily; Pruden, Amy; Heath, Lenwood S; Vikesland, Peter; Zhang, Liqing

    2018-02-01

    Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The

  5. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  6. Polymorphism Glu389Arg of β1-adrenoreceptor gene and cardiovascular complications of hyperthyroidism

    Directory of Open Access Journals (Sweden)

    A Yu Babenko

    2010-06-01

    Full Text Available Gly389Arg polymorphism β1-adrenoreceptors can influence the cardio-vascular prognosis. Human heart β1-adrenoreceptors perform a crucial role in mediating the cardiostimulant effects of norepinephrine. Understanding the significance of Gly389Arg polymorphism in the human heart is beginning to emerge, but not in adult patients with thyrotoxicosis. We've studied the Gly389Arg polymorphism of β1-adrenoreceptors gene in relation to Echo-cardiography parameters in 136 normotensive patients with a thyrotoxicosis without any CVD. Echo-CG was performed according to standard protocol before and during the thyreostatic treatment. The genotype distribution was as following: Gly/Gly – 25% (1 group (1 gr., Arg/Gly – 75% (2 group (2 gr., Arg/Arg – 0%. There was significant difference between 1 and 2 gr. by relative left ventricle wall thickness, left ventricular mass index, isovolumic relaxation time, Е/А ratio. The frequency of diastolic dysfunction (DD was in gr. 1–10%, in gr. 2–30%, р <0.001. After treatment during a year this damages were saved. These data demonstrate, that Gly/Gly genotype of β1-adrenoreceptors gene can have cardioprotective effect leading to less of LV hypertrophy and diastolic dysfunction in patients with thyrotoxicosis.

  7. The Polymorphism of DNA Repair Gene ERCC2/XPD Arg156Arg and Susceptibility to Breast Cancer in a Chinese Population

    DEFF Research Database (Denmark)

    Yin, J. Y.; Liang, D. H.; Vogel, Ulla Birgitte

    2009-01-01

    Polymorphisms in DNA repair genes are good candidates for modifying cancer risk. ERCC2/XPD, a gene involved in nucleotide excision repair and basal transcription, may influence individual DNA repair capacity, particularly of bulky adducts. This is implicated in cancer susceptibility. To detect...... found between ERCC2/XPD Arg156Arg and risk of breast cancer (AA/AC versus CC: OR = 0.79, 95% CI = 0.49-1.28, P = 0.33; AA versus CC: OR = 0.89, 95% CI = 0.49-1.63, P = 0.72; AC versus CC: OR = 0.74, 95% CI = 0.44-1.24, P = 0.25). Breast cancer cases with the variant AA genotype were marginally younger...

  8. Expression Profiling of Tyrosine Kinase Genes

    National Research Council Canada - National Science Library

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  9. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater

    International Nuclear Information System (INIS)

    Sui, Qianwen; Zhang, Junya; Chen, Meixue; Tong, Juan; Wang, Rui; Wei, Yuansong

    2016-01-01

    Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21–1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention. - Highlights: • Swine farm and the adjacent farmland are hot spots of ARGs. • Mesophilic anaerobic digestion reduced the most detected ARGs quantities. • ARG levels in soils varied with different land application procedures. • Persistent and elevated ARGs in AD and land application need more attention. - Anaerobic digestion reduced the copy number of ARGs in swine wastewater, and winter idle dissipated their quantities in soil.

  10. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater.

    Science.gov (United States)

    Sui, Qianwen; Zhang, Junya; Chen, Meixue; Tong, Juan; Wang, Rui; Wei, Yuansong

    2016-06-01

    Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21-1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  12. Nonorthologous gene displacement of phosphomevalonate kinase

    NARCIS (Netherlands)

    Houten, S. M.; Waterham, H. R.

    2001-01-01

    Phosphomevalonate kinase (PMK; EC 2.7.4.2) catalyzes the phosphorylation of 5-phosphomevalonate into 5-diphosphomevalonate, an essential step in isoprenoid biosynthesis via the mevalonate pathway. So far, two nonorthologous genes encoding PMK have been described, the Saccharomyces cerevisiae ERG8

  13. ADRB3 Gene Trp64Arg Polymorphism and Essential Hypertension: A Meta-Analysis Including 9,555 Subjects.

    Science.gov (United States)

    Li, Yan-Yan; Lu, Xin-Zheng; Wang, Hui; Zhou, Yan-Hong; Yang, Xin-Xing; Geng, Hong-Yu; Gong, Ge; Kim, Hyun Jun

    2018-01-01

    Background: Presence of the β 3-Adrenergic receptor (ADRB3) gene Trp64Arg (T64A) polymorphism may be associated with an increased susceptibility for essential hypertension (EH). A clear consensus, however, has yet to be reached. Objective and methods: To further elucidate the relationship between the ADRB3 gene Trp64Arg polymorphism and EH, a meta-analysis of 9,555 subjects aggregated from 16 individual studies was performed. The combined odds ratios (ORs) and their corresponding 95% confidence intervals (CI) were evaluated using either a random or fixed effect model. Results: We found a marginally significant association between ADRB3 gene Trp64Arg polymorphism and EH in the whole population under the additive genetic model (OR: 1.200, 95% CI: 1.00-1.43, P = 0.049). Association within the Chinese subgroup, however, was significant under allelic (OR: 1.150, 95% CI: 1.002-1.320, P = 0.046), dominant (OR: 1.213, 95% CI: 1.005-1.464, P = 0.044), heterozygous (OR: 1.430, 95% CI:1.040-1.970, P = 0.03), and additive genetic models (OR: 1.280, 95% CI: 1.030-1.580, P = 0.02). A significant association was also found in the Caucasian subgroup under allelic (OR: 1.850, 95% CI: 1. 260-2.720, P = 0.002), dominant (OR: 2.004, 95% CI: 1.316-3.052, P = 0.001), heterozygous (OR: 2.220, 95% CI: 1.450-3.400, P = 0.0002), and additive genetic models (OR: 2.000, 95% CI: 1. 330-3.010, P = 0.0009). Conclusions: The presence of the ADRB3 gene Trp64Arg polymorphism is positively associated with EH, especially in the Chinese and Caucasian population. The Arg allele carriers of ADRB3 gene Trp64Arg polymorphism may be at an increased risk for developing EH.

  14. No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene and polycystic ovary syndrome.

    Science.gov (United States)

    Wang, Kehua; Wang, Leiguang; Zhao, Yueran; Shi, Yuhua; Wang, Laicheng; Chen, Zi-Jiang

    2009-02-01

    Ghrelin plays a role in regulating glucose metabolism and energy balance. Polymorphisms in preproghrelin and ghrelin gene could be responsible for obesity, insulin resistance and low ghrelin levels observed in some individuals. The objective of this study was to evaluate the influence of two single-nucleotide polymorphisms (SNPs) of ghrelin gene on the clinical, the hormonal and metabolic features in women with polycystic ovary syndrome (PCOS) in a Chinese population. A large sample of Chinese PCOS (n = 271) women and a control group (n = 296) of healthy women matched for age were studied. Hormone and metabolic profiles were measured and blood samples were collected for genotype and allelic frequency analysis. Non-synonymous SNPs in the coding region (exon 2) of the preproghrelin gene (Arg51Gln (346 G>A) and Leu72Met (408 C>A) were studied using PCR and restriction fragment length polymorphism analysis. The polymorphism Arg51Gln was not found in the cohorts studied. The distribution of Leu72Met was similar in PCOS group and in healthy controls. There was no significant difference in age, BMI, waist-hip-ratio and levels of FSH, LH, estradiol, testosterone and prolactin between PCOS patients with different genotypes, and the level of plasma glucose and insulin was also similar. No association was found between Leu72Met and Arg51Gln polymorphisms in the ghrelin gene and PCOS in Chinese population.

  15. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the β3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Christiansen, Christian; Bjørnsbo, K.S.

    2006-01-01

    AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin...... and environmental background, the Trp64Arg polymorphism of the beta3AR gene is associated with lower fat mass, fasting insulin levels and an appropriate insulin response to glucose. Thus, heterozygosity for the Trp64Arg variant is unlikely to increase the risk of obesity, insulin resistance or type 2 diabetes....

  16. Trp64Arg polymorphism of the ADRB3 gene associated with maximal fat oxidation and LDL-C levels in non-obese adolescents.

    Science.gov (United States)

    Jesus, Íncare Correa de; Alle, Lupe Furtado; Munhoz, Eva Cantalejo; Silva, Larissa Rosa da; Lopes, Wendell Arthur; Tureck, Luciane Viater; Purim, Katia Sheylla Malta; Titski, Ana Claudia Kapp; Leite, Neiva

    2017-09-21

    To analyze the association between the Trp64Arg polymorphism of the ADRB3 gene, maximal fat oxidation rates and the lipid profile levels in non-obese adolescents. 72 schoolchildren, of both genders, aged between 11 and 17 years, participated in the study. The anthropometric and body composition variables, in addition to total cholesterol, HDL-c, LDL-c, triglycerides, insulin, and basal glycemia, were evaluated. The sample was divided into two groups according to the presence or absence of the polymorphism: non-carriers of the Arg64 allele, i.e., homozygous (Trp64Trp: n=54), and carriers of the Arg64 allele (Trp64Arg+Arg64Arg: n=18), in which the frequency of the Arg64 allele was 15.2%. The maximal oxygen uptake and peak of oxygen uptake during exercise were obtained through the symptom-limited, submaximal treadmill test. Maximal fat oxidation was determined according to the ventilatory ratio proposed in Lusk's table. Adolescents carrying the less frequent allele (Trp64Arg and Arg64Arg) had higher LDL-c levels (p=0.031) and lower maximal fat oxidation rates (p=0.038) when compared with non-carriers (Trp64Trp). Although the physiological processes related to lipolysis and lipid metabolism are complex, the presence of the Arg 64 allele was associated with lower rates of FATMAX during aerobic exercise, as well as with higher levels of LDL-c in adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  17. Gene encoding gamma-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti N; Tripathi, Anil K

    2010-07-04

    Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (gamma-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only gamma-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one beta-CA and two gamma-CAs. One of the putative gamma-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-gamma-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a gamma-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized gamma-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  18. [Correlation of polymorphisms of adiponectin receptor 2 gene +33371Gln/Arg, cytochrome P4502E1 gene Rsa I and smoking with nonalcoholic fatty liver disease].

    Science.gov (United States)

    Zhang, Chaoxian; Guo, Like

    2014-10-01

    To investigate the correlation of the polymorphisms of adiponectin receptor 2 (AdipoR2) gene +33371Gln/;Arg and cytochromes P4502E1 gene Rsa I (CYP2E1-Rsa I) as well as smoking with nonalcoholic fatty liver disease (NAFLD). The polymorphisms of AdipoR2 gene +33371Gln/Arg and CYP2E1-Rsa I were analyzed with PCR technique in peripheral blood leukocytes from 750 NAFLD cases and 750 healthy subjects. The frequencies of AdipoR2 gene +33371Gln/Arg (A/A) and CYP2E1-Rsa I (c2/c2 ) were 39.20% and 71.73% in NAFLD cases, respectively, significantly higher than those in healthy subjects (21.07% and 43.07%, respectively, PRsa I (c2/c2) (OR=3.3547, 95% CI=1.9182-4.5057). Combined analysis of the polymorphisms showed that the percentage of +33371Gln/Arg (A/A)/CYP2E1-Rsa I (c2/c2) was 32. 67% in NAFLD cases, significantly higher than that in the healthy subjects (6.40%, PRsa I (c2/c2) had a high risk of NAFLD (OR=9.9264, 95% CI=4.2928-12.4241). The smoking rate was significantly higher in the case group than in the control group (OR=2.5919, 95% CI=1.4194-4. 9527, PRsa I (c2/c2) to increase the risk of NAFLD (OR=34.6764, 95% CI=18.9076-61.5825). +33371Gln/Arg (A/A), CYP2E1-Rsa I (c2/c2 ) and smoking are risk factors for NAFLD and coordinately contribute to the occurrence of NAFLD.

  19. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: implications for gene therapy of restenosis.

    Science.gov (United States)

    Forbes, Scott P; Alferiev, Ivan S; Chorny, Michael; Adamo, Richard F; Levy, Robert J; Fishbein, Ilia

    2013-09-01

    Gene therapy with viral vectors encoding for NOS enzymes has been recognized as a potential therapeutic approach for the prevention of restenosis. Optimal activity of iNOS is dependent on the intracellular availability of L-Arg and BH4 via prevention of NOS decoupling and subsequent ROS formation. Herein, we investigated the effects of separate and combined L-Arg and BH4 supplementation on the production of NO and ROS in cultured rat arterial smooth muscle and endothelial cells transduced with AdiNOS, and their impact on the antirestenotic effectiveness of AdiNOS delivery to balloon-injured rat carotid arteries. Supplementation of AdiNOS transduced endothelial and vascular smooth muscle cells with L-Arg (3.0 mM), BH4 (10 μM) and especially their combination resulted in a significant increase in NO production as measured by nitrite formation in media. Formation of ROS was dose-dependently increased following transduction with increasing MOIs of AdiNOS. Exposure of RASMC to AdiNOS tethered to meshes via a hydrolyzable cross-linker, modeling viral delivery from stents, resulted in increased ROS production, which was decreased by supplementation with BH4 but not L-Arg or L-Arg/BH4. Enhanced cell death, caused by AdiNOS transduction, was also preventable with BH4 supplementation. In the rat carotid model of balloon injury, intraluminal delivery of AdiNOS in BH4-, L-Arg-, and especially in BH4 and L-Arg supplemented animals was found to significantly enhance the antirestenotic effects of AdiNOS-mediated gene therapy. Fine-tuning of iNOS function by L-Arg and BH4 supplementation in the transduced vasculature augments the therapeutic potential of gene therapy with iNOS for the prevention of restenosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Clinical and ERG data in a family with autosomal dominant RP and Pro-347-Arg mutation in the rhodopsin gene.

    Science.gov (United States)

    Niemeyer, G; Trüb, P; Schinzel, A; Gal, A

    1992-01-01

    In a family with autosomal dominant retinitis pigmentosa, documented over six generations, a previously undescribed point mutation in the rhodopsin gene could be identified. The mutation found in the six affected members examined but in none of the controls, including healthy members of the family, was a point mutation in codon 347 predicting a substitution of the amino acid arginine for proline, designated Pro-347-Arg. Six affected members from two generations were examined clinically and with ganzfeld rod and cone electroretinography. The cone and, more dramatically, the rod electroretinograms were reduced to residual b-wave amplitudes or were non-detectable as early as ages 18 to 22 years. The Pro-347-Arg mutation resulted in a subjectively and clinically homogeneous phenotype: early onset of night blindness before age 11, relatively preserved usable visual fields until about age 30, blindness at ages 40 to 60, and change from an initial apparently sine pigmento to a hyperpigmented and atrophic fundus picture between 30 and 50 years of age.

  1. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Science.gov (United States)

    2010-01-01

    Background Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration. PMID:20598158

  2. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  3. Paraoxonase 1 gene (Gln192–Arg polymorphism and the risk of coronary artery disease in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mohamed Fahmy Elnoamany

    2012-06-01

    Conclusion: Arg allele of PON1 192 gene polymorphism is an independent risk factor for CAD and is associated not only with the presence of CAD but also with its extent and severity and its impact is clearly more pronounced in diabetic patients.

  4. Association Analysis of Arg16Gly Polymorphism of the Beta2-adreneric Receptor Gene in Offspring from Hypertensive and Normotensive Families

    Czech Academy of Sciences Publication Activity Database

    Jindra, A.; Horký, K.; Peleška, Jan; Jáchymová, M.; Bultas, J.; Umnerová, V.; Heller, S.; Hlubocká, Z.

    2002-01-01

    Roč. 11, č. 4 (2002), s. 213-217 ISSN 0803-7051 R&D Projects: GA MZd NA5615 Keywords : Arg16Gly polymorphism of the beta2-adrenergic receptor gene * normotensive offspring * essential hypertension Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.344, year: 2002

  5. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2001-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  6. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2002-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  7. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  8. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    Science.gov (United States)

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  9. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  10. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study

    Science.gov (United States)

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2018-01-01

    Abstract Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5′-kinase fusion genes, combinatorial effects between 3′-KDR kinases and their 5′-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3′-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of ‘effective’ (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3′-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs’ clinical implications. PMID:28013235

  11. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  12. ARG1 Gene Polymorphisms and Their Association in Individuals with Essential Hypertension: A Case-Control Study.

    Science.gov (United States)

    Shah, Syed Fawad Ali; Iqbal, Tahir; Qamar, Raheel; Rafiq, Muhammad Arshad; Hussain, Sabir

    2018-05-14

    The purpose of this study is to investigate the association of variant alleles (rs2781666 and rs2781667) at ARG1 to be involved in the generation of essential hypertension (EH) phenotypes in human subjects. The ARG1 noncoding polymorphisms (rs2781666; Chr6:131572419-G/T and rs2781667; Chr6:131573754-C/T) were investigated in 570 subjects, including 285 individuals diagnosed with EH. Determination of serum arginase activity and concentrations of nitric oxide catabolites were detected by the colorimetric enzymatic assay. Genetic typing of the noncoding polymorphisms, in ARG1, was performed using PCR and restriction digestion strategy. A significant increase in arginase activity was observed in individuals exhibiting EH phenotypes, compared with controls (p < 0.0001). Arginase showed negative correlation with serum nitrite and nitrate (r = -0.446 and r = -0.6075, respectively). A significant difference to be claimed in the distribution of SNPotypes, in rs2781666 and rs2781667, between cases and controls (p = 0.0086 and p = 0.0232; respectively). Interestingly, variant allele T, at both loci, is tightly linked to the disease phenotypes compared to the wild-type allele (p = 0.002; and p = 0.007, respectively). To our knowledge, this report is the first ever that described arginase activity, and the ARG1 polymorphism data of individuals originated in Pakistan, segregating EH phenotypes, thus, highlighting a novel risk factor for the disease.

  13. No association of the neuropeptide Y (Leu7Pro) and ghrelin gene (Arg51Gln, Leu72Met, Gln90Leu) single nucleotide polymorphisms with eating disorders.

    Science.gov (United States)

    Kindler, Jochen; Bailer, Ursula; de Zwaan, Martina; Fuchs, Karoline; Leisch, Friedrich; Grün, Bettina; Strnad, Alexandra; Stojanovic, Mirjana; Windisch, Julia; Lennkh-Wolfsberg, Claudia; El-Giamal, Nadja; Sieghart, Werner; Kasper, Siegfried; Aschauer, Harald

    2011-06-01

    Genetic factors likely contribute to the biological vulnerability of eating disorders. Case-control association study on one neuropeptide Y gene (Leu7Pro) polymorphism and three ghrelin gene (Arg51Gln, Leu72Met and Gln90Leu) polymorphisms. 114 eating disorder patients (46 with anorexia nervosa, 30 with bulimia nervosa, 38 with binge eating disorder) and 164 healthy controls were genotyped. No differences were detected between patients and controls for any of the four polymorphisms in allele frequency and genotype distribution (P > 0.05). Allele frequencies and genotypes had no significant influence on body mass index (P > 0.05) in eating disorder patients. Positive findings of former case-control studies of associations between ghrelin gene polymorphisms and eating disorders could not be replicated. Neuropeptide Y gene polymorphisms have not been investigated in eating disorders before.

  14. [Mutation in the beta3-adrenergic receptor gene (Trp64Arg) does not influence insulin resistence, energy metabolism, fat distribution and lipid spectrum in young people. Pilot study].

    Science.gov (United States)

    Bendlová, B; Mazura, I; Vcelák, J; Pelikánová, T; Kunesová, M; Hainer, V; Obenberger, J; Palyzová, D

    1999-05-01

    A missence mutation Trp64Arg in the beta3-adrenergic receptor gene is associated with obesity, insulin resistance, a lower metabolic rate and the earlier onset of NIDDM but the published results are controversial. We investigated the effect of this mutation on insulin resistance (euglycemic hyperinsulinemic clamp), on fat mass and fat distribution (anthropometry, bioimpedance, CT) and resting metabolic rate (indirect calorimetry), lipid spectrum and other metabolic disturbances in Czech juveniles recruited from juvenile hypertensives (H, n = 68) and controls (C, n = 81). The frequency of this mutation (determined by digestion of 210 bp PCR product with MvaI) was double in H than in C (14.7%, vs. 7.4%) and the carriers of Arg64 allele had sig. higher fasting glucose (H: p = 0.002. C: p = 0.025). Four Trp64/Arg64 and six Trp64/Trp64 men (age 23 +/- 4.2, vs. 22.5 +/- 1.9 y, BMI 26 +/- 5.5, vs. 22.9 +/- 5.1 kg/m2) took part in a detailed pilot study. But no signif. differences (Horn's method) in fasting glucose (4.6 +/- 0.6, vs. 4.9 +/- 0.4 mmol/l), in parameters of insulin resistance (M-value150-180 min. 9.1 +/- 1.1, vs. 8.9 +/- 1.5 mg glucose/kg.min(-1)), resting metabolic rate/lean body mass (RMR/kg LBM: 78.6 +/- 4.6, vs. 85.6 +/- 23.2 kJ/kg), lipid spectrum and other screened parameters were found. The lowest resting metabolic rate (RMR/kg LBM 55.4; 62.6 kJ/kg) was found in brothers (both C, Trp64/Trp64) who highly differ in body constitution (BMI 19.0 resp. 32.4 kg/m2). We suppose that in this case the energy metabolism is probably determined by other genetic loci and does not correlate with body fat mass. Our pilot study does not confirm the influence of Trp64Arg mutation in heterozygous carriers on insulin resistance, energy metabolism and lipid spectrum.

  15. Arg deficiency does not influence the course of Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Jacobsen, Freja Aksel; Hulst, Camilla; Bäckström, Thomas

    2016-01-01

    Background: Inhibition of Abl kinases has an ameliorating effect on the rodent model for multiple sclerosis, experimental autoimmune encephalomyelitis, and arrests lymphocyte activation. The family of Abl kinases consists of the Abl1/Abl and Abl2/Arg tyrosine kinases. While the Abl kinase has bee...... encephalomyelitis is not dependent on Arg, but Arg plays a role for the number of B cells in immunized mice. This might suggest a novel role for the Arg kinase in B-cell trafficking or regulation. Furthermore, the results suggest that Arg is important for normal embryonic development....

  16. DNA Repair Gene (XRCC1 Polymorphism (Arg399Gln Associated with Schizophrenia in South Indian Population: A Genotypic and Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    S P Sujitha

    Full Text Available This paper depicts the first report from an Indian population on the association between the variant Arg399Gln of XRCC1 locus in the DNA repair system and schizophrenia, the debilitating disease that affects 1% of the world population. Genotypic analysis of a total of 523 subjects (260 patients and 263 controls revealed an overwhelming presence of Gln399Gln in the case subjects against the controls (P < 0.0068, indicating significant level of association of this nsSNP with schizophrenia; the Gln399 allele frequency was also perceptibly more in cases than in controls (p < 0.003; OR = 1.448. The results of the genotypic studies were further validated using pathogenicity and stability prediction analysis employing computational tools [I-Mutant Suite, iStable, PolyPhen2, SNAP, and PROVEAN], with a view toassess the magnitude of deleteriousness of the mutation. The pathogenicity analysis reveals that the nsSNP could be deleterious inasmuch as it could affect the functionality of the gene, and interfere with protein function. Molecular dynamics simulation of 60ns was performed using GROMACS to analyse structural change due to a mutation (Arg399Gln that was never examined before. RMSD, RMSF, hydrogen bonds, radius of gyration and SASA analysis showedthe existence of asignificant difference between the native and the mutant protein. The present study gives astrong indication that the XRCC1 locus deserves serious attention, as it could be a potential candidatecontributing to the etio-pathogenesis of the disease.

  17. Evolutionary diversification of plant shikimate kinase gene duplicates.

    Directory of Open Access Journals (Sweden)

    Geoffrey Fucile

    2008-12-01

    Full Text Available Shikimate kinase (SK; EC 2.7.1.71 catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1 and -2 (SKL2, do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein-protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation.

  18. [Haplotype Analysis of Coagulation Factor VII Gene in a Patient with Congenital Coagulation Factor VII Deficiency with Heterozygous p.Arg337Cys Mutation and o.Aro413Gin Polymorphism..

    Science.gov (United States)

    Suzuki, Keijiro; Yoshioka, Tomoko; Obara, Takehiro; Suwabe, Akira

    2016-05-01

    Congenital coagulation factor VII (FVII) deficiency is a rare hemorrhagic disease with an autosomal reces- sive inheritance pattern. We analyzed coagulation factor VII gene (F7) of a patient with FVII deficiency and used expression studies to investigate the effect of a missense mutation on FVII secretion. The proband, a 69-year-old Japanese woman, had a history of postpartum bleeding and excessive bleeding after dental extrac- tion. She was found to have mildly increased PT-INR (1.17) before an ophthalmic operation. FVII activity and antigen were reduced (29.0% and 32.8%). Suspecting that the proband was FVII deficient, we analyzed F7 of the patient. Sequence analysis revealed that the patient was heterozygous for a point mutation (p.Arg337Cys) in the catalytic domain and polymorphisms: the decanucleotide insertion at the promoter re- gion, dimorphism (c.525C >T) in exon 5, and p.Arg413Gln in exon 8. Haplotype analysis clarified that p.Arg337Cys was located on the p.Arg413 allele (Ml allele). The other allele had the p.Arg413Gln polymor- phism(M2 allele) which is known to produce less FVII. Expression studies revealed that p.Arg337Cys causes impairment of FVII secretion. Insufficient secretion of FVII arising from both the p.Arg337Cys/M1 allele and the p.Arg337/M2 allele might lower the FVII level of this patient(<50%). The FVII level in a heterozygous FVII deficient patient might be influenced by F7 polymorphisms on the normal allele. There- fore, genetic analyses are important for the diagnosis of heterozygous FVII deficiency.

  19. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    International Nuclear Information System (INIS)

    Holzer, Georg W.; Mayrhofer, Josef; Gritschenberger, Werner; Falkner, Falko G.

    2005-01-01

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes

  20. Brachydactyly type A1 associated with unusual radiological findings and a novel Arg158Cys mutation in the Indian hedgehog (IHH) gene.

    Science.gov (United States)

    Stattin, Eva-Lena; Lindén, Bjarne; Lönnerholm, Torsten; Schuster, Jens; Dahl, Niklas

    2009-01-01

    Brachydactyly type A1 (BDA1; MIM 112500) is characterized by shortness or absence of the middle phalanx of the hands and feet. The condition is caused by heterozygous mutations in the Indian hedgehog (IHH) gene or a yet unidentified gene on chromosome 5p13. We investigated six affected members of a large Swedish family segregating autosomal dominant brachymesophalangia. Affected individuals show hypoplasia of the ulnar styloid processes, ulna minus, osteoarthritis, normal length of all distal phalanges and shortening or absence of the middle phalanges. Stationary ossicles or sesamoid bones were observed at the metacarpal heads in all patients. Genetic analysis of the family showed that the IHH-gene was linked to the disease (Z(max) 3.42 at theta 0.00) and sequence analysis of IHH revealed a novel c.472C > T transition in all affected family members. The mutation results in a p.158Arg > Cys substitution located in the highly conserved amino-terminal domain of IHH. This domain is of importance for the interaction between IHH and the Patched receptor. Our combined findings add radiological findings to the BDA1 phenotype and confirm a critical functional domain of IHH.

  1. PRMT5-Mediated Methylation of NF-κB p65 at Arg174 Is Required for Endothelial CXCL11 Gene Induction in Response to TNF-α and IFN-γ Costimulation.

    Directory of Open Access Journals (Sweden)

    Daniel P Harris

    Full Text Available Inflammatory agonists differentially activate gene expression of the chemokine family of proteins in endothelial cells (EC. TNF is a weak inducer of the chemokine CXCL11, while TNF and IFN-γ costimulation results in potent CXCL11 induction. The molecular mechanisms underlying TNF plus IFN-γ-mediated CXCL11 induction are not fully understood. We have previously reported that the protein arginine methyltransferase PRMT5 catalyzes symmetrical dimethylation of the NF-κB subunit p65 in EC at multiple arginine residues. Methylation of Arg30 and Arg35 on p65 is critical for TNF induction of CXCL10 in EC. Here we show that PRMT5-mediated methylation of p65 at Arg174 is required for induction of CXCL11 when EC are costimulated with TNF and IFN-γ. Knockdown of PRMT5 by RNAi reduced CXCL11 mRNA and protein levels in costimulated cells. Reconstitution of p65 Arg174Ala or Arg174Lys mutants into EC that were depleted of endogenous p65 blunted TNF plus IFN-γ-mediated CXCL11 induction. Mass spectrometric analyses showed that p65 Arg174 arginine methylation is enhanced by TNF plus IFN-γ costimulation, and is catalyzed by PRMT5. Chromatin immunoprecipitation assays (ChIP demonstrated that PRMT5 is necessary for p65 association with the CXCL11 promoter in response to TNF plus IFN-γ. Further, reconstitution of p65 Arg174Lys mutant in EC abrogated this p65 association with the CXCL11 promoter. Finally, ChIP and Re-ChIP assays revealed that symmetrical dimethylarginine-containing proteins complexed with the CXCL11 promoter were diminished in p65 Arg174Lys-reconstituted EC stimulated with TNF and IFN-γ. In total, these results indicate that PRMT5-mediated p65 methylation at Arg174 is essential for TNF plus IFN-γ-mediated CXCL11 gene induction. We therefore suggest that the use of recently developed small molecule inhibitors of PRMT5 may present a therapeutic approach to moderating chronic inflammatory pathologies.

  2. MAP kinase genes and colon and rectal cancer

    Science.gov (United States)

    Slattery, Martha L.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation, differentiation, migration and apoptosis. We evaluate genetic variation in the c-Jun-N-terminal kinases, p38, and extracellular regulated kinases 1/2 MAPK-signaling pathways and colon and rectal cancer risk using data from population-based case-control studies (colon: n = 1555 cases, 1956 controls; rectal: n = 754 cases, 959 controls). We assess 19 genes (DUSP1, DUSP2, DUSP4, DUSP6, DUSP7, MAP2K1, MAP3K1, MAP3K2, MAP3K3, MAP3K7, MAP3K9, MAP3K10, MAP3K11, MAPK1, MAPK3, MAPK8, MAPK12, MAPK14 and RAF1). MAP2K1 rs8039880 [odds ratio (OR) = 0.57, 95% confidence interval (CI) = 0.38, 0.83; GG versus AA genotype] and MAP3K9 rs11625206 (OR = 1.41, 95% CI = 1.14, 1.76; recessive model) were associated with colon cancer (P adj value rectal cancer (P adj cancer risk. Genetic variants had unique associations with KRAS, TP53 and CIMP+ tumors. DUSP2 rs1724120 [hazard rate ratio (HRR) = 0.72, 95%CI = 0.54, 0.96; AA versus GG/GA), MAP3K10 rs112956 (HRR = 1.40, 95% CI = 1.10, 1.76; CT/TT versus CC) and MAP3K11 (HRR = 1.76, 95% CI 1.18, 2.62 TT versus GG/GT) influenced survival after diagnosis with colon cancer; MAP2K1 rs8039880 (HRR = 2.53, 95% CI 1.34, 4.79 GG versus AG/GG) and Raf1 rs11923427 (HRR = 0.59 95% CI = 0.40, 0.86; AA versus TT/TA) were associated with rectal cancer survival. These data suggest that genetic variation in the MAPK-signaling pathway influences colorectal cancer risk and survival after diagnosis. Associations may be modified by lifestyle factors that influence inflammation and oxidative stress. PMID:23027623

  3. p.Ser252Trp and p.Pro253Arg mutations in FGFR2 gene causing Apert syndrome: the first clinical and molecular report of Indonesian patients.

    Science.gov (United States)

    Mundhofir, Farmaditya E P; Sistermans, Erik A; Faradz, Sultana M H; Hamel, Ben C J

    2013-03-01

    Apert syndrome (AS) is a rare autosomal dominant disorder characterised by craniosynostosis and limb malformations, and is associated with congenital heart disease and other systemic malformations, including intellectual disability. We report two Indonesian patients with AS, in whom molecular analysis detected p.Ser252Trp (c.755C>G) and p.Pro253Arg (c.758C>G) mutations in the fibroblast growth factor receptor 2 (FGFR2) gene, respectively. Although the syndrome has been frequently described, this is the first clinical report of AS confirmed by molecular analysis in Indonesia. The difference in severity of clinical features in the two patients may be consistent with a genotype-phenotype correlation of the FGFR2mutation. The management of individuals with AS is best achieved within a multidisciplinary setting. However, in most developing countries, early intervention may be delayed due to late diagnosis, a lack of facilities and financial constraints. This report underpins the benefits of early diagnosis for AS management.

  4. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Advances in study of perpes simplex virus type 1-thymidine kinase reporter gene imaging

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Yongxue

    2007-01-01

    Radionuclide reporter gene imaging is an effect way to provide qualitative and quantitative information for gene therapy. There are three systems of reporter gene including kinase reporter gene. perpes simplex virus type 1-thymidine kinase (HSV1-tk) has perfect physical and chemical characteristic which is suit for imaging as reporter gene. It has been widely investigated and intensively researched. Two substrates of HSV1-tk are purine nucleosite derivant and acyclovir derivant, which can also be used as reporter probes of HSV1-tk. (authors)

  6. Molecular cloning and characterization of arginine kinase gene of Toxocara canis

    OpenAIRE

    Sahu, Shivani; Samanta, S.; Harish, D. R.; Sudhakar, N. R.; Raina, O. K.; Shantaveer, S. B.; Madhu, D. N.; Kumar, Ashok

    2013-01-01

    Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcripti...

  7. Association of mRNA expression of TP53 and the TP53 codon 72 Arg/Pro gene polymorphism with colorectal cancer risk in Asian population: a bioinformatics analysis and meta-analysis.

    Science.gov (United States)

    Dong, Zhiyong; Zheng, Longzhi; Liu, Weimin; Wang, Cunchuan

    2018-01-01

    The relationship between TP53 codon 72 Pro/Arg gene polymorphism and colorectal cancer risk in Asians is still controversial, and this bioinformatics analysis and meta-analysis was performed to assess the associations. The association studies were identified from PubMed, and eligible reports were included. RevMan 5.3.1 software, Oncolnc, cBioPortal, and Oncomine online tools were used for statistical analysis. A random/fixed effects model was used in meta-analysis. The data were reported as risk ratios or mean differences with corresponding 95% CI. We confirmed that TP53 was associated with colorectal cancer, the alteration frequency of TP53 was 53% mutation and 7% deep deletion, and TP53 mRNA expression was different in different types of colorectal cancer based on The Cancer Genome Atlas database. Then, 18 studies were included that examine the association of TP53 codon 72 gene polymorphism with colorectal cancer risk in Asians. The meta-analysis indicated that TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asian population, but Arg/Arg genotype was not (Pro allele: odds ratios [OR]=1.20, 95% CI: 1.06 to 1.35, P =0.003; Pro/Pro genotype: OR=1.39, 95% CI: 1.15 to 1.69, P =0.0007; Arg/Arg genotype: OR=0.86, 95% CI: 0.74 to 1.00, P =0.05). Interestingly, in the meta-analysis of the controls from the population-based studies, we found that TP53 codon 72 Pro/Arg gene polymorphism was associated with colorectal cancer risk (Pro allele: OR=1.33, 95% CI: 1.15 to 1.55, P =0.0002; Pro/Pro genotype: OR=1.61, 95% CI: 1.28 to 2.02, P colorectal cancer, but the different value levels of mRNA expression were not associated with survival rate of colon and rectal cancer. TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asians.

  8. DNA Repair Mechanism Gene, XRCC1A (Arg194Trp) but not XRCC3 (Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case–Control Study in Northeastern Region of India

    Science.gov (United States)

    Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.

    2017-01-01

    X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P India which may be beneficial for prognostic purposes. PMID:29332455

  9. The Trp64Arg amino acid polymorphism of the beta3-adrenergic receptor gene does not contribute to the genetic susceptibility of diabetic microvascular complications in Caucasian type 1 diabetic patients

    DEFF Research Database (Denmark)

    Tarnow, L; Urhammer, S A; Mottlau, B

    1999-01-01

    OBJECTIVE: The beta3-adrenergic receptor is involved in regulation of microvascular blood flow. A missense mutation (Trp64Arg) in the beta3-adrenergic receptor gene has been suggested as a risk factor for proliferative retinopathy in Japanese type 2 diabetic patients. The aim of the present study...... was to evaluate the contribution of this polymorphism to the development of microangiopathic complications in Caucasian type 1 diabetic patients. SUBJECTS AND METHODS: We studied the relationship between the Trp64Arg polymorphism in type 1 diabetic patients with nephropathy (204 men/132 women, age 42.8 +/- 11.......0 years, diabetes duration 28 +/- 9 years) and in type 1 diabetic patients with persistent normoalbuminuria (118 men/73 women, age 42.6 +/- 10.2 years, diabetes duration 27 +/- 8 years). Proliferative retinopathy was present in 254 patients (48%), while 66 patients (13%) had no diabetic retinopathy...

  10. Expression of tyrosine kinase gene in mouse thymic stromal cells

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Izon, D. J.; Revilla, C.; Oosterwegel, M.; Bakker, A. Q.; van Ewijk, W.; Kruisbeek, A. M.

    1996-01-01

    Amongst the most important signal transduction molecules involved in regulating growth and differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both

  11. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Science.gov (United States)

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  12. Genetic and biochemical characterization of the thymidine kinase gene from herpesvirus of turkeys

    International Nuclear Information System (INIS)

    Martin, S.L.; Aparisio, D.I.; Bandyopadhyay, P.K.

    1989-01-01

    The thymidine kinase gene encoded by herpesvirus of turkeys has been identified and characterized. A viral mutant (ATR 0 ) resistant to 1-β-D-arabinofuranosylthymine was isolated. This mutant was also resistant to 1-(2-fluoro-2-deoxy-β-D-arabinofuronosyl)-5-methyluracil and was unable to incorporate [ 125 I]deoxycytidine into DNA. The mutant phenotype was rescued by a cloned region of the turkey herpesvirus genome whose DNA sequence was found to contain an open reading frame similar to that for known thymidine kinases from other viruses. When expressed in Escherichia coli, this open reading frame complemented a thymidine kinase-deficient strain and resulted in thymidine kinase activity in extracts assayed in vitro

  13. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    Science.gov (United States)

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  14. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene

    NARCIS (Netherlands)

    Chalmers, D; Ferrand, C; Apperley, JF; Melo, JV; Ebeling, S; Newton, [No Value; Duperrier, A; Hagenbeek, A; Garrett, E; Tiberghien, P; Garin, M

    Introduction of the Herpes simplex virus thymidine kinase (HSV-tk) gene into target cells renders them susceptible to killing by ganciclovir (GCV). We are studying the use of HSV-tk-transduced T lymphocytes in the context of hematopoietic stem cell transplantation. We have previously shown, in vitro

  15. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  16. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene ...

    Indian Academy of Sciences (India)

    patients show early and severe impairment of pure rod responses (Pagon 1993). ... is characterized by total blindness or greatly impaired vision at birth or within ... gene, Mertk, in the Royal College of Surgeons (RCS) rat (D'Cruz et al 2000) ...

  17. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    The anaplastic lymphoma kinase gene (ALK) is a gene on chromosome 2p23 that has expression restricted to the brain, testis and small intestine but is not expressed in normal lymphoid tissue. It has similarity to the insulin receptor subfamily of kinases and is emerging as having increased pathologic and potential therapeutic importance in malignant disease. This gene was originally established as being implicated in the pathogenesis of rare diseases including inflammatory myofibroblastic tumour (IMT) and ALK-positive anaplastic large cell lymphoma, which is a subtype of non-Hodgkin\\'s lymphoma. Recently the number of diseases in which ALK is implicated in their pathogenesis has increased. In 2007, an inversion of chromosome 2 involving ALK and a fusion partner gene in a subset of non-small cell lung cancer was discovered. In 2008, publications emerged implicating ALK in familial and sporadic cases of neuroblastoma, a childhood cancer of the sympatho-adrenal system. Chromosomal abnormalities involving ALK are translocations, amplifications or mutations. Chromosomal translocations are the longest recognised ALK genetic abnormality. When translocations occur a fusion gene is created between ALK and a gene partner. This has been described in ALK-positive anaplastic large cell lymphoma in which ALK is fused to NPM (nucleolar protein gene) and in non-small cell lung cancer where ALK is fused to EML4 (Echinoderm microtubule-associated protein 4). The most frequently described partner genes in inflammatory myofibroblastic tumour are tropomyosin 3\\/4 (TMP3\\/4), however in IMTs a diversity of ALK fusion partners have been found, with the ability to homodimerise a common characteristic. Point mutations and amplification of the ALK gene occur in the childhood cancer neuroblastoma. Therapeutic targeting of ALK fusion genes using tyrosine kinase inhibition, vaccination using an ALK specific antigen and treatment using viral vectors for RNAi are emerging potential therapeutic

  18. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali

    2018-06-01

    Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals' susceptibility to certain infections. Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p = 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p > 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p > 0.05). Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations.

  19. The pat1 protein kinase controls transcription of the mating-type genes in fission yeast

    DEFF Research Database (Denmark)

    Nielsen, O; Egel, R; Nielsen, Olaf

    1990-01-01

    . This differentiation process is characterized by a transcriptional induction of the mating-type genes. Conjugation can also be induced in pat1-ts mutants by a shift to a semi-permissive temperature. The pat1 gene encodes a protein kinase, which also functions further downstream in the developmental pathway controlling...... of the mating-type genes in the zygote leads to complete loss of pat1 protein kinase activity causing entry into meiosis. Thus, pat1 can promote its own inactivation. We suggest a model according to which a stepwise inactivation of pat1 leads to sequential derepression of the processes of conjugation......The developmental programme of fission yeast brings about a transition from mitotic cell division to the dormant state of ascospores. In response to nitrogen starvation, two cells of opposite mating type conjugate to form a diploid zygote, which then undergoes meiosis and sporulation...

  20. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1.

    Science.gov (United States)

    Hu, H M; Chuang, C K; Lee, M J; Tseng, T C; Tang, T K

    2000-11-01

    We previously reported two novel testis-specific serine/threonine kinases, Aie1 (mouse) and AIE2 (human), that share high amino acid identities with the kinase domains of fly aurora and yeast Ipl1. Here, we report the entire intron-exon organization of the Aie1 gene and analyze the expression patterns of Aie1 mRNA during testis development. The mouse Aie1 gene spans approximately 14 kb and contains seven exons. The sequences of the exon-intron boundaries of the Aie1 gene conform to the consensus sequences (GT/AG) of the splicing donor and acceptor sites of most eukaryotic genes. Comparative genomic sequencing revealed that the gene structure is highly conserved between mouse Aie1 and human AIE2. However, much less homology was found in the sequence outside the kinase-coding domains. The Aie1 locus was mapped to mouse chromosome 7A2-A3 by fluorescent in situ hybridization. Northern blot analysis indicates that Aie1 mRNA likely is expressed at a low level on day 14 and reaches its plateau on day 21 in the developing postnatal testis. RNA in situ hybridization indicated that the expression of the Aie1 transcript was restricted to meiotically active germ cells, with the highest levels detected in spermatocytes at the late pachytene stage. These findings suggest that Aie1 plays a role in spermatogenesis.

  1. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  2. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  3. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

    OpenAIRE

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-01-01

    Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution...

  4. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  5. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  6. Human migration activities drive the fluctuation of ARGs : Case study of landfills in Nanjing, eastern China

    OpenAIRE

    Sun, Mingming; Ye, Mao; Schwab, Arthur P; Li, Xu; Wan, Jinzhong; Wei, Zhong; Wu, Jun; Friman, Ville-Petri; Liu, Kuan; Tian, Da; Liu, Manqiang; Li, Huixin; Hu, Feng; Jiang, Xin

    2016-01-01

    Landfills are perfect sites to study the effect of human migration on fluctuation of antibiotic resistance genes (ARGs) as they are the final destination of municipal waste. For example, large-scale human migration during the holidays is often accompanied by changes in waste dumping having potential effects on ARG abundance. Three landfills were selected to examine fluctuation in the abundance of fifteen ARGs and Intl1 genes for 14 months in Nanjing, eastern China. Mass human migration, the a...

  7. Virus-specific DNA sequences present in cells which carry the herpes simplex virus thymidine kinase gene.

    Science.gov (United States)

    Minson, A C; Darby, G K; Wildy, P

    1979-11-01

    Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.

  8. Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    International Nuclear Information System (INIS)

    Kim, Hani; Gillis, Lisa C; Jarvis, Jordan D; Yang, Stuart; Huang, Kai; Der, Sandy; Barber, Dwayne L

    2011-01-01

    Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions. Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations

  9. Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells.

    Science.gov (United States)

    Kuuluvainen, Emilia; Domènech-Moreno, Eva; Niemelä, Elina H; Mäkelä, Tomi P

    2018-06-01

    In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4. Copyright © 2018 American Society for Microbiology.

  10. Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress

    Directory of Open Access Journals (Sweden)

    Kwang eChoi

    2011-07-01

    Full Text Available Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database (www.stanleygenomics.org and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK, the cyclin-dependent kinase (CDK, the mitogen-activated protein kinase (MAPK, and the protein kinase C (PKC in the prefrontal cortex (PFC of mood disorder patients died with suicide (n=45 and without suicide (N=38. We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (n=46. The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (FDR-adjusted p < 0.05, fold change > 1.1. Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05. These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress-associated neural plasticity and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.

  11. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  12. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    International Nuclear Information System (INIS)

    Upton, C.; McFadden, G.

    1986-01-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively

  13. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  14. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  15. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  16. Evaluation of the frequency of polymorphisms in XRCC1 (Arg399Gln) and XPD (Lys751Gln) genes related to the genome stability maintenance in individuals of the resident population from Monte Alegre, PA/Brazil municipality

    International Nuclear Information System (INIS)

    Duarte, Isabelle Magliano

    2010-01-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on Earth. Ionizing radiation is a known genotoxic agent, which can affect biological molecules, causing DNA damage and genomic instability. The cellular system of DNA repair plays an important role in maintaining genomic stability by repairing DNA damage caused by genotoxic agents. However, genes related to DNA repair may have their role committed when presenting a certain polymorphism. This study intended to analyze the frequency of single nucleotide polymorphisms (SNPs) in genes of DNA repair XRCC1 (Arg39-9Gln) and XPD (Lys751Gln) in a: population of the city of Monte Alegre, that resides in an area of high exposure to natural radioactivity. Samples of saliva were collected from individuals of the population of Monte Alegre, in which 40 samples were of male and 46 female. Through the use of RFLP (length polymorphism restriction fragment) the frequency of homozygous genotypes and / or heterozygous was determined for polymorphic genes. The XRCC1 gene had 65.4% of the presence of the allele 399Gln and XPD gene had 32.9% of the 751Gln allele. These values are similar to those found in previous studies for the XPD gene, whereas XRCC1 showed a frequency much higher than described in the literature. The. influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology for risk assessment of cancer in the population of Monte Alegre. (author)

  17. Molecular cloning and characterization of arginine kinase gene of Toxocara canis.

    Science.gov (United States)

    Sahu, Shivani; Samanta, S; Harish, D R; Sudhakar, N R; Raina, O K; Shantaveer, S B; Madhu, D N; Kumar, Ashok

    2015-06-01

    Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcription was done with oligo dT primers to obtain complementary DNA (cDNA). Polymerase chain reaction (PCR) was carried out using cDNA as template with specific primers which amplified a product of 1,202 bp. The amplicon was cloned into pDrive cloning vector and clone was confirmed by colony PCR and restriction endonuclease analysis. Sequence analysis of the gene showed 99.8 and 77.9 % homology with the published AK gene of T. canis (EF015466.1) and Ascaris suum respectively. Structural analysis shown that the mature AK protein consist of 400 amino acids with a molecular wt of 45360.73 Da. Further expression studies are required for producing the recombinant protein for its evaluation in the diagnosis of T. canis infection in humans as well as in adult dogs.

  18. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  19. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  20. Identification of Phosphoglycerate Kinase 1 (PGK1 as a reference gene for quantitative gene expression measurements in human blood RNA

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2011-09-01

    Full Text Available Abstract Background Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS. Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs, have not been described. Findings Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. Phosphoglycerate kinase 1 (PGK1 was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; Ribosomal protein large, P0 (RPLP0 for PBMC RNA and Peptidylprolyl isomerase B (PPIB for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used. Conclusions We have identified PGK1 as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of

  1. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  2. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  3. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  4. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  5. Evaluation of the frequency of polymorphisms in XRCC1 (Arg399Gln) and XPD (Lys751Gln) genes related to the genome stability maintenance in individuals of the resident population from Monte Alegre, PA/Brazil municipality; Avaliacao da frequencia de polimorfismos nos genes XRCC1 (Arg399Gln) e XPD (Lys751Gln) relacionados a manutencao da estabilidade do genoma em individuos da populacao residente no municipio de Monte Alegre, PA

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Isabelle Magliano

    2010-07-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on Earth. Ionizing radiation is a known genotoxic agent, which can affect biological molecules, causing DNA damage and genomic instability. The cellular system of DNA repair plays an important role in maintaining genomic stability by repairing DNA damage caused by genotoxic agents. However, genes related to DNA repair may have their role committed when presenting a certain polymorphism. This study intended to analyze the frequency of single nucleotide polymorphisms (SNPs) in genes of DNA repair XRCC1 (Arg39-9Gln) and XPD (Lys751Gln) in a: population of the city of Monte Alegre, that resides in an area of high exposure to natural radioactivity. Samples of saliva were collected from individuals of the population of Monte Alegre, in which 40 samples were of male and 46 female. Through the use of RFLP (length polymorphism restriction fragment) the frequency of homozygous genotypes and / or heterozygous was determined for polymorphic genes. The XRCC1 gene had 65.4% of the presence of the allele 399Gln and XPD gene had 32.9% of the 751Gln allele. These values are similar to those found in previous studies for the XPD gene, whereas XRCC1 showed a frequency much higher than described in the literature. The. influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology for risk assessment of cancer in the population of Monte Alegre. (author)

  6. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event.

    Science.gov (United States)

    Hu, Jialin; Zhao, Fuzheng; Zhang, Xu-Xiang; Li, Kan; Li, Chaoran; Ye, Lin; Li, Mei

    2018-02-15

    Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM 2.5 samples, and from 7.61 to 38.49ppm in PM 10 samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Genetic variation in the beta 3-adrenoreceptor gene (Trp64Arg polymorphism) and its influence on anthropometric parameters and insulin resistance under a high monounsaturated versus a high polyunsaturated fat hypocaloric diet.

    Science.gov (United States)

    de Luis, D A; Aller, R; Izaola, O; Conde, R; Eiros Bouza, J M

    2013-01-01

    The aim of our study was to investigate the role of Trp64Arg polymorphism of the beta 3-adrenergic receptor (beta 3-AR) gene on metabolic changes and weight loss secondary to a high monounsaturated fat versus a high polyunsaturated fat hypocaloric diet in obese subjects. A population of 260 obese subjects was analyzed. In the basal visit, patients were randomly allocated for 3 months to either diet M (high monounsaturated fat hypocaloric diet) or diet P (high polyunsaturated fat hypocaloric diet). There were no significant differences between the positive effects (on weight, body mass index, waist circumference, fat mass) in either genotype group with both diets. With diet P and in genotype Trp64Trp, glucose levels (-6.7 ± 12.1 vs. -1.2 ± 2.2 mg/dl; p hypocaloric diets is greatest in subjects with the normal homozygous beta 3-AR gene. Improvements in total cholesterol, LDL cholesterol, triglyceride, glucose, insulin and HOMA-R levels were better than in the heterozygous group. Copyright © 2013 S. Karger AG, Basel.

  8. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  9. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  10. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  11. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family

    NARCIS (Netherlands)

    Baudino, S.; Hansen, S.; Brettschneider, R.; Hecht, V.F.G.; Dresselhaus, T.; Lörz, H.; Dumas, C.; Rogowsky, P.M.

    2001-01-01

    Genes encoding two novel members of the leucine-rich repeat receptor-like kinase (LRR-RLK) superfamily have been isolated from maize (Zea mays L.). These genes have been named ZmSERK1 and ZmSERK2 since features such as a putative leucine zipper (ZIP) and five leucine rich repeats in the

  12. Modulation of Colorectal Cancer Risk by Polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX Gene; 23Gly/Ala of XPA Gene; and 689Ser/Arg of ERCC4 Gene

    Directory of Open Access Journals (Sweden)

    L. Dziki

    2017-01-01

    Full Text Available Polymorphisms in DNA repair genes may affect the activity of the BER (base excision repair and NER (nucleotide excision repair systems. Using DNA isolated from blood taken from patients (n=312 and a control group (n=320 with CRC, we have analyzed the polymorphisms of selected DNA repair genes and we have demonstrated that genotypes 51Gln/His and 148Asp/Glu of APEX gene and 23Gly/Ala of XPA gene may increase the risk of colorectal cancer. At the same time analyzing the gene-gene interactions, we suggest the thesis that the main factor to be considered when analyzing the impact of polymorphisms on the risk of malignant transformation should be intergenic interactions. Moreover, we are suggesting that some polymorphisms may have impact not only on the malignant transformation but also on the stage of the tumor.

  13. Human migration activities drive the fluctuation of ARGs: Case study of landfills in Nanjing, eastern China.

    Science.gov (United States)

    Sun, Mingming; Ye, Mao; Schwab, Arthur P; Li, Xu; Wan, Jinzhong; Wei, Zhong; Wu, Jun; Friman, Ville-Petri; Liu, Kuan; Tian, Da; Liu, Manqiang; Li, Huixin; Hu, Feng; Jiang, Xin

    2016-09-05

    Landfills are perfect sites to study the effect of human migration on fluctuation of antibiotic resistance genes (ARGs) as they are the final destination of municipal waste. For example, large-scale human migration during the holidays is often accompanied by changes in waste dumping having potential effects on ARG abundance. Three landfills were selected to examine fluctuation in the abundance of fifteen ARGs and Intl1 genes for 14 months in Nanjing, eastern China. Mass human migration, the amount of dumped waste and temperature exerted the most significant effects on bimonthly fluctuations of ARG levels in landfill sites. As a middle-sized cosmopolitan city in China, millions of college students and workers migrate during holidays, contributing to the dramatic increases in waste production and fluctuation in ARG abundances. In line with this, mass migration explained most of the variation in waste dumping. The waste dumping also affected the bioaccessibility of mixed-compound pollutants that further positively impacted the level of ARGs. The influence of various bioaccessible compounds on ARG abundance followed the order: antibiotics>nutrients>metals>organic pollutants. Concentrations of bioaccessible compounds were more strongly correlated with ARG levels compared to total compound concentrations. Improved waste classification and management strategies could thus help to decrease the amount of bioaccessible pollutants leading to more effective control for urban ARG dissemination. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  15. Cytological localization of adenosine kinase, nucleoside phosphorylase-1, and esterase-10 genes on mouse chromosome 14

    International Nuclear Information System (INIS)

    Samuelson, L.C.; Farber, R.A.

    1985-01-01

    The authors have determined the regional locations on mouse chromosome 14 of the genes for mouse adenosine kinase (ADK), nucleoside phosphorylase- 1 (NP-1), and esterase-10 (ES-10) by analysis of rearranged mouse chromosomes in gamma-irradiated Chinese hamster X mouse hybrid cell lines. Irradiated clones were screened for expression of the murine forms of these enzymes; segregant clones that expressed only one or two of the three markers were karyotyped. The patterns of enzyme expression in these segregants were correlated with the presence of rearranged chromosomes. The Adk gene was localized to bands A2 to B, Np-1 to bands B to C1, and Es-10 to bands D2 to E2

  16. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region.

    Science.gov (United States)

    Montini, E; Andolfi, G; Caruso, A; Buchner, G; Walpole, S M; Mariani, M; Consalez, G; Trump, D; Ballabio, A; Franco, B

    1998-08-01

    Eukaryotic protein kinases are part of a large and expanding family of proteins. Through our transcriptional mapping effort in the Xp22 region, we have isolated and sequenced the full-length transcript of STK9, a novel cDNA highly homologous to serine-threonine kinases. A number of human genetic disorders have been mapped to the region where STK9 has been localized including Nance-Horan (NH) syndrome, oral-facial-digital syndrome type 1 (OFD1), and a novel locus for nonsyndromic sensorineural deafness (DFN6). To evaluate the possible involvement of STK9 in any of the above-mentioned disorders, a 2416-bp full-length cDNA was assembled. The entire genomic structure of the gene, which is composed of 20 coding exons, was determined. Northern analysis revealed a transcript larger than 9.5 kb in several tissues including brain, lung, and kidney. The mouse homologue (Stk9) was identified and mapped in the mouse in the region syntenic to human Xp. This location is compatible with the location of the Xcat mutant, which shows congenital cataracts very similar to those observed in NH patients. Sequence homologies, expression pattern, and mapping information in both human and mouse make STK9 a candidate gene for the above-mentioned disorders. Copyright 1998 Academic Press.

  17. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse.

    Science.gov (United States)

    Do, Kyong-Tak; Cho, Hyun-Woo; Badrinath, Narayanasamy; Park, Jeong-Woong; Choi, Jae-Young; Chung, Young-Hwa; Lee, Hak-Kyo; Song, Ki-Duk; Cho, Byung-Wook

    2015-12-01

    Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.

  18. Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.).

    Science.gov (United States)

    Glynn, Neil C; Comstock, Jack C; Sood, Sushma G; Dang, Phat M; Chaparro, Jose X

    2008-01-01

    Resistance gene analogues (RGAs) have been isolated from many crops and offer potential in breeding for disease resistance through marker-assisted selection, either as closely linked or as perfect markers. Many R-gene sequences contain kinase domains, and indeed kinase genes have been reported as being proximal to R-genes, making kinase analogues an additionally promising target. The first step towards utilizing RGAs as markers for disease resistance is isolation and characterization of the sequences. Sugarcane clone US01-1158 was identified as resistant to yellow leaf caused by the sugarcane yellow leaf virus (SCYLV) and moderately resistant to rust caused by Puccinia melanocephala Sydow & Sydow. Degenerate primers that had previously proved useful for isolating RGAs and kinase analogues in wheat and soybean were used to amplify DNA from sugarcane (Saccharum spp.) clone US-01-1158. Sequences generated from 1512 positive clones were assembled into 134 contigs of between two and 105 sequences. Comparison of the contig consensuses with the NCBI sequence database using BLASTx showed that 20 had sequence homology to nuclear binding site and leucine rich repeat (NBS-LRR) RGAs, and eight to kinase genes. Alignment of the deduced amino acid sequences with similar sequences from the NCBI database allowed the identification of several conserved domains. The alignment and resulting phenetic tree showed that many of the sequences had greater similarity to sequences from other species than to one another. The use of degenerate primers is a useful method for isolating novel sugarcane RGA and kinase gene analogues. Further studies are needed to evaluate the role of these genes in disease resistance.

  19. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes

    NARCIS (Netherlands)

    Cha, Hoon-Suk; Boyle, David L.; Inoue, Tomoyuki; Schoot, Reineke; Tak, Paul P.; Pine, Polly; Firestein, Gary S.

    2006-01-01

    Spleen tyrosine kinase (Syk) is a key regulator of cell signaling induced by cytokines or Fc receptor engagement. However, the role of Syk in rheumatoid arthritis (RA) is not known yet. We investigated the pathways activated by Syk in tumor necrosis factor-alpha (TNFalpha)-stimulated fibroblast-like

  20. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia.

    Science.gov (United States)

    Chen, Jiwei; Zhang, Qian; Wang, Qigang; Feng, Ming; Li, Yang; Meng, Yonglu; Zhang, Yi; Liu, Guoqin; Ma, Zhimin; Wu, Hongzhi; Gao, Junping; Ma, Nan

    2017-02-23

    Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.

  1. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    Science.gov (United States)

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  2. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle.

    Science.gov (United States)

    Chen, Ting; Moore, Timothy M; Ebbert, Mark T W; McVey, Natalie L; Madsen, Steven R; Hallowell, David M; Harris, Alexander M; Char, Robin E; Mackay, Ryan P; Hancock, Chad R; Hansen, Jason M; Kauwe, John S; Thomson, David M

    2016-04-15

    Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response. Copyright © 2016 the American Physiological Society.

  3. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  4. GENETIC VARIATION IN THE BETA-3-ADRENORECEPTOR GENE (TRP64ARG POLYMORPHISM) AND THEIR INFLUENCE ON ANTHROPOMETRIC PARAMETERS AND INSULIN RESISTANCE AFTER A HIGH PROTEIN/LOW CARBOHYDRATE VERSUS A STANDARD HYPOCALORIC DIET.

    Science.gov (United States)

    de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; de la Fuente, Beatriz; Romero, Enrique

    2015-08-01

    the Trp64Arg variant in Beta receptor has been reported to be associated with increased body weight and insulin resistance Objective: the aim of our study was to investigate the influence of polymorphism (rs 4994) in Beta-3-adrenergic receptor gene on metabolic response and weight loss in a medium-term intervention study secondary's to a high protein/low carbohydrate vs. a standard hypocaloric diets (1000 kcal/day). a population of 284 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high protein/low carbohydrate vs diet S: standard diet). there were no significant differences between the positive effects (on weight, BMI, waist circumference, fat mass, systolic blood pressure and leptin levels) in either genotype group with both diets. With both diets and only in wild genotype (diet HP vs diet S), total cholesterol (-10.1 ± 3.9 mg/dl vs -10.1 ± 2.2 mg/dl;p>0.05), LDL cholesterol (-9.5 ± 2.1 mg/dl vs -8.5 ± 2.3 mg/dl;p>0.05) and triglycerides (-19.1 ± 2.1 mg/dl vs -14.3 ± 2.1 mg/dl;p>0.05) decreased. The improvement in these parameters was similar in subjects with diet HP than HS. With diet HP and only in wild genotype, insulin levels (-3.7 ± 1.9 UI/L;phypocaloric diets is the greatest in subjects with normal homozygous beta 3-AR gene. Improvement in total cholesterol, LDL-cholesterol, triglyceride, glucose, insulin and HOMA-R levels is better than in the heterozygous group. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Huiquan Liu

    2015-06-01

    Full Text Available Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data

  6. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    Science.gov (United States)

    Liu, Huiquan; Zhang, Shijie; Ma, Jiwen; Dai, Yafeng; Li, Chaohui; Lyu, Xueliang; Wang, Chenfang; Xu, Jin-Rong

    2015-06-01

    Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle

  7. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Ya-Li [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-09-15

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on

  8. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min, E-mail: wmtian9110@126.com

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  9. EXPRESSION OF CALCIUM-DEPENDENT PROTEIN KINASE (CDPK GENES IN VITIS AMURENSIS UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dubrovina A.S.

    2012-08-01

    Full Text Available Abiotic stresses, such as extreme temperatures, soil salinity, or water deficit, are one of the major limiting factors of crop productivity worldwide. Examination of molecular and genetic mechanisms of abiotic stress tolerance in plants is of great interest to plant biologists. Calcium-dependent protein kinases (CDPKs, which are the most important Ca2+ sensors in plants, are known to play one of the key roles in plant adaptation to abiotic stress. CDPK is a multigene family of enzymes. Analysis of CDPK gene expression under various abiotic stress conditions would help identify those CDPKs that might play important roles in plant adaptation to abiotic stress. We focused on studying CDPK gene expression under osmotic, water deficit, and temperature stress conditions in a wild-growing grapevine Vitis amurensis Rurp., which is native to the Russian Far East and is known to possess high adaptive potential and high level of resistance against adverse environmental conditions. Healthy V. amurensis cuttings (excised young stems with one healthy leaf were used for the treatments. For the non-stress treatment, we placed the cuttings in distilled water for 12 h at room temperature. For the water-deficit stress, detached cuttings were laid on a paper towel for 12 h at room temperature. For osmotic stress treatments, the cuttings were placed in 0.4 М NaCl and 0.4 М mannitol solutions for 12 h at room temperature. To examine temperature stress tolerance, the V. amurensis cuttings were placed in a growth chamber at +10oC and +37oC for 12 h. The total expression of VaCDPK genes was examined by semiquantitative RT-PCR with degenerate primers designed to the CDPK kinase domain. The total level of CDPK gene expression increased under salt and decreased under low temperature stress conditions. We sequenced 300 clones of the amplified part of different CDPK transcripts obtained from the analyzed cDNA probes. Analysis of the cDNA sequences identified 8 different

  10. Preliminary validation of varicella zoster virus thymidine kinase as a novel reporter gene for PET

    International Nuclear Information System (INIS)

    Deroose, Christophe M.; Chitneni, Satish K.; Gijsbers, Rik; Vermaelen, Peter; Ibrahimi, Abdelilah; Balzarini, Jan; Baekelandt, Veerle; Verbruggen, Alfons; Nuyts, Johan; Debyser, Zeger; Bormans, Guy M.

    2012-01-01

    Introduction: Imaging of gene expression with positron emission tomography (PET) has emerged as a powerful tool for biomedical research during the last decade. The prototypical herpes simplex virus type 1 thymidine kinase (HSV1-TK) PET reporter gene (PRG) is widely used and many other PRGs have also been validated. We investigated varicella zoster virus thymidine kinase (VZV-tk) as new PRG with radiolabeled bicyclic nucleoside analogues (BCNAs) as PET tracers. Methods: The uptake and washout of four different radiolabeled BCNAs was evaluated in cells expressing VZV-tk after lentiviral vector (LV) transduction and in control cells. Metabolism of the tracers was assayed by high pressure liquid chromatography (HPLC). Mice bearing VZV-TK expressing xenografts were imaged with PET. Results: High uptake in VZV-tk expressing cells was seen for 3 of the 4 tracers tested. The uptake of the tracers could be blocked by the presence of excess thymidine in the incubation solution. Cellular retention was variable, with one tracer showing an acceptable half-life of ∼ 1 hour. The amount of intracellular tracer correlated with the titer of LV used to transduce the cells. VZV-TK dependent conversion into metabolites was shown by HPLC. No specific accumulation was observed in cells expressing a fusion protein containing an HSV1-TK moiety. VZV-tk expression in xenografts resulted in a 60% increase in uptake in vivo as measured with PET. Conclusions: We have validated the combination of VZV-tk and radiolabeled BCNAs as new PRG/PRP system. Further optimization of the PRPs and the PRG are warranted to increase the signal.

  11. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    Science.gov (United States)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  12. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure.

    Science.gov (United States)

    Tokuhiro, Shinji; Uda, Kouji; Yano, Hiroko; Nagataki, Mitsuru; Jarilla, Blanca R; Suzuki, Tomohiko; Agatsuma, Takeshi

    2013-04-01

    Phosphagen kinases (PKs) play a major role in the regulation of energy metabolism in animals. Creatine kinase (CK) is the sole PK in vertebrates, whereas several PKs are present in invertebrates. Here, we report the enzymatic properties and gene structure of PK in the trematode Schistosoma japonicum (Sj). SjPK has a unique contiguous dimeric structure comprising domain 1 (D1) and domain 2 (D2). The three states of the recombinant SjPK (D1, D2, and D1D2) show a specific activity for the substrate taurocyamine. The comparison of the two domains of SjPK revealed that D1 had a high turnover rate (kcat=52.91) and D2 exhibited a high affinity for taurocyamine (Km(Tauro) =0.53±0.06). The full-length protein exhibited higher affinity for taurocyamine (Km(Tauro) =0.47±0.03) than the truncated domains (D1=1.30±0.10, D2=0.53±0.06). D1D2 also exhibited higher catalytic efficiency (kcat/Km(Tauro) =82.98) than D1 (40.70) and D2 (29.04). These results demonstrated that both domains of SjTKD1D2 interacted efficiently and remained functional. The three-dimensional structure of SjPKD1 was constructed by the homology modeling based on the transition state analog complex state of Limulus AK. This protein model of SjPKD1 suggests that the overall structure is almost conserve between SjPKD1 and Limulus AK except for the flexible loops, that is, particularly guanidino-specificity (GS) region, which is associated with the recognition of the corresponding guanidino substrate. The constructed NJ tree and the comparison of exon/intron organization suggest that SjTK has evolved from an arginine kinase (AK) gene. SjTK has potential as a novel antihelminthic drug target as it is absent in mammals and its strong activity may imply a significant role for this protein in the energy metabolism of the parasite. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Arg1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — In this study transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity-1 (Arg1) a gene known to affect...

  14. Organization and post-transcriptional processing of focal adhesion kinase gene

    Directory of Open Access Journals (Sweden)

    Enslen Hervé

    2006-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. Results A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31, previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a

  15. Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1

    NARCIS (Netherlands)

    Fairley, Jennifer A.; Mitchell, Louise E.; Berg, Tracy; Kenneth, Niall S.; von Schubert, Conrad; Sillje, Herman H. W.; Medema, Rene H.; Nigg, Erich A.; White, Robert J.

    2012-01-01

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase Ill (pol Ill) through direct binding and phosphorylation of transcription factor Brit During interphase, Plk1 promotes

  16. Mutation pattern in the Bruton's tyrosine kinase gene in 26 unrelated patients with X-linked agammaglobulinemia

    DEFF Research Database (Denmark)

    Vorechovský, I; Luo, L; Hertz, Jens Michael

    1997-01-01

    Mutation pattern was characterized in the Bruton's tyrosine kinase gene (BTK) in 26 patients with X-linked agammaglobulinemia, the first described immunoglobulin deficiency, and was related to BTK expression. A total of 24 different mutations were identified. Most BTK mutations were found to result...

  17. Novel homozygous mutation, c.400C>T (p.Arg134*), in the PVRL1 gene underlies cleft lip/palate-ectodermal dysplasia syndrome in an Asian patient.

    Science.gov (United States)

    Yoshida, Kazue; Hayashi, Ryota; Fujita, Hideki; Kubota, Masaya; Kondo, Mai; Shimomura, Yutaka; Niizeki, Hironori

    2015-07-01

    Cleft lip/palate-ectodermal dysplasia syndrome is a rare, autosomal recessive disorder caused by homozygous loss-of-function mutations of the poliovirus receptor-like 1 (PVRL1) gene encoding nectin-1. Nectin-1 is a cell-cell adhesion molecule that is important for the initial step in the formation of adherens junctions and tight junctions; it is expressed in keratinocytes, neurons, and the developing face and palate. Clinical manifestations comprise a unique facial appearance with cleft lip/palate, ectodermal dysplasia, cutaneous syndactyly of the fingers and/or toes, and in some cases, mental retardation. We present the first report, to our knowledge, of an Asian individual with cleft lip/palate-ectodermal dysplasia syndrome with a novel PVRL1 mutation. A 7-year-old Japanese boy, the first child of a consanguineous marriage, showed hypohidrotic ectodermal dysplasia with sparse, brittle, fine, dry hair and hypodontia, the unique facial appearance with cleft lip/palate, cutaneous syndactyly of the fingers and mild mental retardation. Scanning electron microscopic examination of the hair demonstrated pili torti and pili trianguli et canaliculi. Mutation analysis of exon 2 of PVRL1 revealed a novel homozygous nonsense mutation, c.400C>T (p.Arg134*). His parents were heterozygous for the mutant alleles. All four PVRL1 mutations identified in cleft lip/palate-ectodermal dysplasia syndrome to date, including this study, resulted in truncated proteins that lack the transmembrane domain and intracellular domain of nectin-1, which is necessary to initiate the cell-cell adhesion process. © 2015 Japanese Dermatological Association.

  18. Cyclin-dependent Kinase 5: Novel role of gene variants identified in ADHD.

    Science.gov (United States)

    Maitra, Subhamita; Chatterjee, Mahasweta; Sinha, Swagata; Mukhopadhyay, Kanchan

    2017-07-28

    Cortical neuronal migration and formation of filamentous actin cytoskeleton, needed for development, normal cell growth and differentiation, are regulated by the cyclin-dependent kinase 5 (Cdk5). Attention deficit hyperactivity disorder (ADHD) is associated with delayed maturation of the brain and hence we hypothesized that cdk5 may have a role in ADHD. Eight functional CDK5 gene variants were analyzed in 848 Indo-Caucasoid individuals including 217 families with ADHD probands and 250 healthy volunteers. Only three variants, rs2069454, rs2069456 and rs2069459, predicted to affect transcription, were found to be bimorphic. Significant difference in rs2069456 "AC" genotype frequency was noticed in the probands, more specifically in the males. Family based analysis revealed over transmission of rs2069454 "C" and rs2069456 "A" to the probands. Quantitative trait analysis exhibited association of haplotypes with inattention, domain specific impulsivity, and behavioral problem, though no significant contribution was noticed on the age of onset of ADHD. Gene variants also showed significant association with cognitive function and co-morbidity. Probands having rs2069459 "TT" showed betterment during follow up. It may be inferred from this pilot study that CDK5 may affect ADHD etiology, possibly by attenuating synaptic neurotransmission and could be a useful target for therapeutic intervention.

  19. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  20. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mai Yamauchi

    Full Text Available PURPOSE: To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. PATIENTS AND METHODS: Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM. "Gefitinib-sensitive" genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. RESULTS: The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS with a hazard ratio (HR of 7.16 (P = 0.029 and 3.26 (P = 0.0072, respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC histology in a Japanese cohort for OS and recurrence-free survival (RFS with HRs of 8.79 (P = 0.001 and 3.72 (P = 0.0049, respectively. CONCLUSION: The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. TRIAL REGISTRATION: The Gene Expression Omnibus (GEO GSE31210.

  1. Assignment of the murine protein kinase gene DLK to chromosome 15 in the vicinity of the bt/Koa locus by genetic linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshio; Yanagisawa, Masahiro; Matsubara, Nobumichi [Tokyo Univ. (Japan)] [and others

    1997-03-01

    We have cloned protein kinase genes from murine primordial germ cell-derived EG cells by a PCR-based strategy using degenerate primers corresponding to the conserved sequences in the catalytic domain of protein kinases. One of these clones, designated Gek2 (germ cell kinase 2), was used as a probe for screening of a mouse brain cDNA library and obtained clones contained an entire coding sequence. Comparison of the sequence of Gek2 with those in databases revealed that it was identical to a previously reported protein kinase gene, DLK. 8 refs., 1 fig.

  2. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    Science.gov (United States)

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  3. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2016-08-01

    Full Text Available Mitogen-activated protein kinases (MAPKs play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars.

  4. F-18-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression : in-vitro comparison with other PET tracers

    NARCIS (Netherlands)

    Buursma, AR; Rutgers, [No Value; Hospers, GAP; Mulder, NH; Vaalburg, W; de Vries, EFJ

    Objective The herpes simplex virus thymidine kinase (HSVtk) gene has frequently been applied as a reporter gene for monitoring transgene expression in animal models. In clinical gene therapy protocols, however, extremely low expression levels of the transferred gene are generally observed.

  5. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    International Nuclear Information System (INIS)

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana; Pfeilschifter, Josef; Huwiler, Andrea

    2008-01-01

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1α and HIF-2α, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1α or HIF-2α by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression

  7. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  8. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene

    International Nuclear Information System (INIS)

    Knight, G.B.; Gudas, J.M.; Pardee, A.B.

    1987-01-01

    Induction of thymidine kinase parallels the onset of DNA synthesis. To investigate the transcriptional regulation of the thymidine kinase gene, the authors have examined whether specific nuclear factors interact in a cell-cycle-dependent manner with sequences upstream of this gene. Two inverted CCAAT boxes near the transcriptional initiation sites were observed to form complexes with nuclear DNA-binding proteins. The nature of the complexes changes dramatically as the cells approach DNA synthesis and correlates well with the previously reported transcriptional increase of the thymidine kinase gene

  9. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    Science.gov (United States)

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. ArgR of Streptomyces coelicolor Is a Pleiotropic Transcriptional Regulator: Effect on the Transcriptome, Antibiotic Production, and Differentiation in Liquid Cultures

    Science.gov (United States)

    Botas, Alma; Pérez-Redondo, Rosario; Rodríguez-García, Antonio; Álvarez-Álvarez, Rubén; Yagüe, Paula; Manteca, Angel; Liras, Paloma

    2018-01-01

    ArgR is a well-characterized transcriptional repressor controlling the expression of arginine and pyrimidine biosynthetic genes in bacteria. In this work, the biological role of Streptomyces coelicolor ArgR was analyzed by comparing the transcriptomes of S. coelicolor ΔargR and its parental strain, S. coelicolor M145, at five different times over a 66-h period. The effect of S. coelicolor ArgR was more widespread than that of the orthologous protein of Escherichia coli, affecting the expression of 1544 genes along the microarray time series. This S. coelicolor regulator repressed the expression of arginine and pyrimidine biosynthetic genes, but it also modulated the expression of genes not previously described to be regulated by ArgR: genes involved in nitrogen metabolism and nitrate utilization; the act, red, and cpk genes for antibiotic production; genes for the synthesis of the osmotic stress protector ectoine; genes related to hydrophobic cover formation and sporulation (chaplins, rodlins, ramR, and whi genes); all the cwg genes encoding proteins for glycan cell wall biosynthesis; and genes involved in gas vesicle formation. Many of these genes contain ARG boxes for ArgR binding. ArgR binding to seven new ARG boxes, located upstream or near the ectA-ectB, afsS, afsR, glnR, and redH genes, was tested by DNA band-shift assays. These data and those of previously assayed fragments permitted the construction of an improved model of the ArgR binding site. Interestingly, the overexpression of sporulation genes observed in the ΔargR mutant in our culture conditions correlated with a sporulation-like process, an uncommon phenotype. PMID:29545785

  11. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  12. D-Arg0-Bradykinin-Arg-Arg, a Latent Vasoactive Bradykinin B2 Receptor Agonist Metabolically Activated by Carboxypeptidases

    Directory of Open Access Journals (Sweden)

    Hélène Bachelard

    2018-03-01

    Full Text Available We previously reported hypotensive and vasodilator effects from C-terminally extended bradykinin (BK sequences that behave as B2 receptor (B2R agonists activated by vascular or plasma peptidases. D-Arg0-BK-Arg-Arg (r-BK-RR is a novel prodrug peptide hypothetically activated by two catalytic cycles of Arg-carboxypeptidases (CPs to release the direct agonist D-Arg0-BK. N-terminally extending the BK sequence with D-Arg0 in the latter peptide was meant to block the second kinin inactivation pathway in importance, aminopeptidase P. The affinity of r-BK and r-BK-RR for recombinant B2R was assessed using a [3H]BK binding displacement assay. Their pharmacology was evaluated in human isolated umbilical vein, a contractile bioassay for the B2R, in a morphological assay involving the endocytosis of B2R-green fusion protein (GFP and in anesthetized rats instrumented to record hemodynamic responses to bolus intravenous injection of both peptides. r-BK exhibited an affinity equal to that of BK for the rat B2R, while r-BK-RR was 61-fold less potent. In the vein and the B2R-GFP internalization assay, r-BK was a direct agonist unaffected by the blockade of angiotensin converting enzyme (ACE with enalaprilat, or Arg-CPs with Plummer’s inhibitor. However, the in vitro effects of r-BK-RR were reduced by these inhibitors, more so by enalaprilat. In anesthetized rats, r-BK and r-BK-RR were equipotent hypotensive agents and their effects were inhibited by icatibant (a B2R antagonist. The hypotensive effects of r-BK were potentiated by enalaprilat, but not influenced by the Arg-CPs inhibitor, which is consistent with a minor role of Arg-CPs in the metabolism of r-BK. However, in rats pretreated with both enalaprilat and Plummer’s inhibitor, the hypotensive responses and the duration of the hypotensive episode to r-BK were significantly potentiated. The hypotensive responses to r-BK-RR were not affected by enalaprilat, but were reduced by pre-treatment with the Arg

  13. Molecular insight into mitochondrial DNA depletion syndrome in two patients with novel mutations in the deoxyguanosine kinase and thymidine kinase 2 genes.

    Science.gov (United States)

    Wang, Liya; Limongelli, Anna; Vila, Maya R; Carrara, Franco; Zeviani, Massimo; Eriksson, Staffan

    2005-01-01

    Thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) are the two key enzymes in mitochondrial DNA (mtDNA) precursor synthesis. Deficiencies in TK2 or dGK activity, due to genetic alteration, have been shown to cause tissue-specific depletion of mtDNA. In the case of TK2 deficiency, affected individuals suffer severe myopathy and, in the case of dGK deficiency, devastating liver or multi-systemic disease. Here, we report clinical and biochemical findings from two patients with mtDNA depletion syndrome. Patient A was a compound heterozygote carrying the previously reported T77M mutation and a novel mutation (R161K) in the TK2 gene. Patient B carried a novel mutation (L250S) in the dGK gene. The clinical symptoms of patient A included muscular weakness and exercise intolerance due to a severe mitochondrial myopathy associated with a 92% reduction in mtDNA. There was minimal involvement of other organs. Patient B suffered from rapidly progressive, early onset fatal liver failure associated with profoundly decreased mtDNA levels in liver and, to a lesser extent, in skeletal muscle. Site-directed mutagenesis was used to introduce the mutations detected in patients A and B into the TK2 and dGK cDNAs, respectively. We then characterized each of these recombinant enzymes. Catalytic activities of the three mutant enzymes were reduced to about 2-4% for TK2 and 0.5% for dGK as compared to the wild-type enzymes. Altered competition between dCyd and dThd was observed for the T77M mutant. The residual activities of the two mitochondrial enzymes correlated directly with disease development.

  14. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  15. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  16. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-10-01

    Full Text Available Objective Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form in equine skeletal muscle to gain insight(s into the role of each alternative transcript during exercise. Methods We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR, and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR. Results Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3 and immunoglobin (Ig domain was different between two alternative isoforms. Conclusion It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s and significance of the alternative splicing isoforms in race horse skeletal muscle.

  17. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene.

    Science.gov (United States)

    Park, Jeong-Woong; Song, Ki-Duk; Kim, Nam Young; Choi, Jae-Young; Hong, Seul A; Oh, Jin Hyeog; Kim, Si Won; Lee, Jeong Hyo; Park, Tae Sub; Kim, Jin-Kyoo; Kim, Jong Geun; Cho, Byung-Wook

    2017-10-01

    Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase ( AXL ) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

  18. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    Science.gov (United States)

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  19. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana.

    Science.gov (United States)

    Mottram, J C; McCready, B P; Brown, K G; Grant, K M

    1996-11-01

    The generation of homozygous null mutants for the crk1 Cdc2-Related Kinase of Leishmania mexicana was attempted using targeted gene disruption. Promastigote mutants heterozygous for crk1 were readily isolated with a hyg-targeting fragment, but attempts to create null mutants by second-round transfections with a bie-targeting fragment yielded two classes of mutant, neither of which was null. First, the transfected fragment formed an episome; second, the cloned transfectants were found to contain wild-type crk1 alleles as well as hyg and ble integrations. DNA-content analysis revealed that these mutants were triploid or tetraploid. Plasticity in chromosome number following targeting has been proposed as a means by which Leishmania avoids deletion of essential genes. These data support this theory and implicate crk1 as an essential gene, validating CRK1 as a potential drug target. L mexicana transfected with a Trypanosoma brucel homologue, tbcrk1, was shown to be viable in an immcrk1 null background, thus showing complementation of function between these trypanosomatid genes. The expression of crk1 was further manipulated by engineering a six-histidine tag at the C-terminus of the kinase, allowing purification of the active complex by affinity selection on Nl(2+)-nitriloacetic acid (NTA) agarose.

  20. Tank-Binding Kinase 1 (TBK1) Gene and Open-Angle Glaucomas (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Fingert, John H; Robin, Alan L; Scheetz, Todd E; Kwon, Young H; Liebmann, Jeffrey M; Ritch, Robert; Alward, Wallace L M

    2016-08-01

    To investigate the role of TANK-binding kinase 1 ( TBK1 ) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas-juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)-using a quantitative polymerase chain reaction assay. No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma.

  1. SNPs within the beta myosin heavy chain (MYH7 and the pyruvate kinase muscle (PKM2 genes in horse

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2010-01-01

    Full Text Available Two highly expressed skeletal muscle genes (the MYH7 gene encoding the myosin heavy chain slow/β-cardiac isoform and the PKM2 gene encoding the pyruvate kinase muscle isoforms were investigated with the objective to identify DNA markers in horses. A panel of DNA samples from different horse breeds was analysed using a PCR-single strand conformation polymorphism (SSCP approach. Four and two alleles were identified for the MYH7 and PKM2 loci, respectively. Mendelian inheritance of alleles of the two investigated genes was confirmed analysing horse families. Sequencing of PCR products obtained from the MYH7 and PKM2 genes made it possible to characterise two SSCP alleles for each gene. The polymorphisms found in the MYH7 and PKM2 genes were further studied in 61 and 68 horses of three (Italian Heavy Draught Horse, Italian Saddler and Murgese and five (Franches-Montagnes, Haflinger, Italian Heavy Draught Horse, Murgese and Standardbred breeds, respectively. Allele frequencies of the two loci varied among the considered breeds. The SNPs discovery in MYH7 and PKM2 genes makes it possible to locate new molecular markers to ECA1. The identified markers could be used in association analysis with performance traits in horses.

  2. A Single-Nucleotide Polymorphism in Serine-Threonine Kinase 11, the Gene Encoding Liver Kinase B1, Is a Risk Factor for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne I. Boullerne

    2015-02-01

    Full Text Available We identified a family in which five siblings were diagnosed with multiple sclerosis (MS or clinically isolated syndrome. Several women in the maternal lineage have comorbidities typically associated with Peutz Jeghers Syndrome, a rare autosomal-dominant disease caused by mutations in the serine-threonine-kinase 11 (STK11 gene, which encodes liver kinase B1. Sequence analysis of DNA from one sibling identified a single-nucleotide polymorphism (SNP within STK11 intron 5. This SNP (dbSNP ID: rs9282860 was identified by TaqMan polymerase chain reaction (PCR assays in DNA samples available from two other siblings. Further screening was carried out in samples from 654 relapsing-remitting MS patients, 100 primary progressive MS patients, and 661 controls. The STK11-SNP has increased frequency in all female patients versus controls (odds ratio = 1.66, 95% CI = 1.05, 2.64, p = .032. The STK11-SNP was not associated with disease duration or onset; however, it was significantly associated with reduced severity (assessed by MS severity scores, with the lowest scores in patients who also harbored the HLA-DRB1*1501 allele. In vitro studies showed that peripheral blood mononuclear cells from members of the family were more sensitive to the mitochondrial inhibitor metformin than cells from MS patients with the major STK11 allele. The increased association of SNP rs9282860 in women with MS defines this variant as a genetic risk factor. The lower disease severity observed in the context of HLA-DRB1*1501 combined with limited in vitro studies raises the provocative possibility that cells harboring the STK11-SNP could be targeted by drugs which increase metabolic stress.

  3. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-01-01

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna H222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna H222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna H222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna H222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  4. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  5. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  6. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    KAUST Repository

    Meier, Stuart; Ruzvidzo, Oziniel; Morse, Monique; Donaldson, Lara; Kwezi, Lusisizwe; Gehring, Christoph A

    2010-01-01

    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  7. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    KAUST Repository

    Meier, Stuart

    2010-01-26

    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  8. The Effect of the Arg389Gly Beta-1 Adrenoceptor Polymorphism on Plasma Renin Activity and Heart Rate and the Genotype-Dependent Response to Metoprolol Treatment

    DEFF Research Database (Denmark)

    Petersen, Morten; Andersen, Jon T; Jimenez-Solem, Espen

    2012-01-01

    A gene-drug interaction has been indicated between beta-1 selective beta-blockers and the Arg389Gly polymorphism (rs1801253) in the adrenergic beta-1 receptor gene (ADRB1). We studied the effect of the ADRB1 Arg389Gly polymorphism on plasma renin activity (PRA) and heart rate (HR) and the genotype...

  9. Sampling the genomic pool of protein tyrosine kinase genes using the polymerase chain reaction with genomic DNA.

    Science.gov (United States)

    Oates, A C; Wollberg, P; Achen, M G; Wilks, A F

    1998-08-28

    The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.

  10. Synthesis of 5-radioiodoarabinosyl uridine analog for probing HSV-1 thymidine kinase gene: an unexpected chelating effect

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.-S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)]. E-mail: csyu@mx.nthu.edu.tw; Chiang, L.-W. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Wu, C.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Wang, R.-T. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Chen, S.-W. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Wang, H.-Y. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Yeh, C.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2006-04-15

    Tumor cells transduced with herpes simplex virus thymidine kinase gene has been intensively applied to the field of positron emission tomography via imaging of its substrate. As a pilot synthesis approach, a facial preparation of 5-[{sup 125}I]iodoarabinosyl uridine starting from commercial available uridine is reported herein. Interestingly, the tin group in 5-trimethylstannyl arabinosyluridine was easily removed during purification. The destannylation through the formation of a six-ligand coordination involving 2'-hydroxyl and tin was thereby proposed.

  11. Expression of the benign HEXA mutations, Arg247Trp and Arg249Trp, associated with beta-hexosaminidase A pseudodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z.; Petroulakis, E.; Salo, T. [Univ. of Manitoba (Canada)] [and others

    1994-09-01

    {beta}-Hexosaminidase (Hex A) is a heterodimer of {alpha} and {beta} subunits encoded by the HEXA and HEXB genes, respectively. Mutations in the HEXA gene typically cause Tay-Sachs disease or less severe forms of G{sub M2} gangliosidosis. However, two benign mutations (Arg247Trp and Arg249Trp) in the {alpha}-subunit of Hex A account for Hex A deficiency in {approximately}36% of non-Jewish enzyme-defined Tay-Sachs disease carriers. These mutations do not result in any apparent clinical phenotype in individuals who are genetic compounds with a second disease-causing mutation. We expressed the {alpha}-subunit harboring each of the benign mutations separately to study activity toward the synthetic substrate, 4-MUGS, for comparison to activity from enzymes containing mutations associated with other forms of G{sub M2} gangliosidosis. The C739T (Arg247Trp;benign), C745T (Arg 249Trp; benign), G805A (Gly269Ser; adult-onset), G749A (Gly250Asp; juvenile), and C508T (Arg170Trp; infantile) mutations were introduced into the {alpha}-subunit cDNA. These were transfected alone, or with the {beta}-subunit cDNA, to generate Hex S ({alpha}{alpha}) or Hex A ({alpha}{beta}), respectively. The activities were monitored using 4-MUGS, and the levels of {alpha}-subunit protein were assessed by Western blotting. Repeated experiments show that the benign mutations produce approximately 35% of normal Hex S and 40% of normal Hex A activity. This level is much higher than that of Hex A harbouring the Gly169Ser adult-onset mutation (12%). A sequential decrease in expressed Hex A activity is observed as mutations associated with more severe phenotypes are expressed. The benign mutations also result in lower levels of mature {alpha}-subunit protein compared to normal, and slightly reduced levels of {alpha}-subunit precursor protein. The Hex A deficiency resulting from benign mutations is not as great as that associated with disease-causing mutations.

  12. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  13. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo, E-mail: libochen888@hotmail.com [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Guo Guoying [Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Liu Tianjing; Guo Lihe [Division of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-07-15

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated {sup 125}I{sup -} up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T{sub 1/2eff} of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or {sup 131}I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%{+-}2.5%, 43.4%{+-}2.8% and 8.6%{+-}1.2% after exposure to {sup 131}I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  14. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    International Nuclear Information System (INIS)

    Chen Libo; Guo Guoying; Liu Tianjing; Guo Lihe; Zhu Ruisen

    2011-01-01

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated 125 I - up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T 1/2eff of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or 131 I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%±2.5%, 43.4%±2.8% and 8.6%±1.2% after exposure to 131 I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  15. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Christiansen, Louise Slot; Clausen, Anders R.

    2016-01-01

    , among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of d...... substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs...

  16. LRRK2 Kinase Activity and Biology are Not Uniformly Predicted by its Autophosphorylation and Cellular Phosphorylation Site Status

    Directory of Open Access Journals (Sweden)

    April eReynolds

    2014-06-01

    Full Text Available Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2 gene are the most common genetic predisposition to develop Parkinson’s disease (PD LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.

  17. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  18. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  19. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients.

    Science.gov (United States)

    Lesmana, Harry; Dyer, Lisa; Li, Xia; Denton, James; Griffiths, Jenna; Chonat, Satheesh; Seu, Katie G; Heeney, Matthew M; Zhang, Kejian; Hopkin, Robert J; Kalfa, Theodosia A

    2018-03-01

    Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD. © 2017 Wiley Periodicals, Inc.

  20. Association of a Network of Interferon-Stimulated Genes with a Locus Encoding a Negative Regulator of Non-conventional IKK Kinases and IFNB1

    Directory of Open Access Journals (Sweden)

    Saloua Jeidane

    2016-10-01

    Full Text Available Functional genomic analysis of gene expression in mice allowed us to identify a quantitative trait locus (QTL linked in trans to the expression of 190 gene transcripts and in cis to the expression of only two genes, one of which was Ypel5. Most of the trans-expression QTL genes were interferon-stimulated genes (ISGs, and their expression in mouse macrophage cell lines was stimulated in an IFNB1-dependent manner by Ypel5 silencing. In human HEK293T cells, YPEL5 silencing enhanced the induction of IFNB1 by pattern recognition receptors and phosphorylation of TBK1/IKBKE kinases, whereas co-immunoprecipitation experiments revealed that YPEL5 interacted physically with IKBKE. We thus found that the Ypel5 gene (contained in a locus linked to a network of ISGs in mice is a negative regulator of IFNB1 production and innate immune responses that interacts functionally and physically with TBK1/IKBKE kinases.

  1. The development of herpes simplex virus thymidine kinase suicide gene imaging

    International Nuclear Information System (INIS)

    Xing Yan; Zhao Jinhua

    2006-01-01

    Suicide gene treatment of tumor catches more and more attention in recent years. Cells transferred with suicide gene from virus or bacteria will express specific enzymes and transform innocuous prodrugs into highly toxic chemotherapeutic drugs. As a result, the cells will be killed. Radionuclide labeled probe can display the biologic characteristics of suicide gene in vivo. This article reviews the development of HSV-tk gene imaging. (authors)

  2. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....

  3. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    Energy Technology Data Exchange (ETDEWEB)

    Venkitachalam, Srividya; Chueh, Fu-Yu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States); Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.

  4. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism.

    Science.gov (United States)

    Philippi, A; Roschmann, E; Tores, F; Lindenbaum, P; Benajou, A; Germain-Leclerc, L; Marcaillou, C; Fontaine, K; Vanpeene, M; Roy, S; Maillard, S; Decaulne, V; Saraiva, J P; Brooks, P; Rousseau, F; Hager, J

    2005-10-01

    Autism is a developmental disorder characterized by impairments in social interaction and communication associated with repetitive patterns of interest or behavior. Autism is highly influenced by genetic factors. Genome-wide linkage and candidate gene association approaches have been used to try and identify autism genes. A few loci have repeatedly been reported linked to autism. Several groups reported evidence for linkage to a region on chromosome 16p. We have applied a direct physical identity-by-descent (IBD) mapping approach to perform a high-density (0.85 megabases) genome-wide linkage scan in 116 families from the AGRE collection. Our results confirm linkage to a region on chromosome 16p with autism. High-resolution single-nucleotide polymorphism (SNP) genotyping and analysis of this region show that haplotypes in the protein kinase c-beta gene are strongly associated with autism. An independent replication of the association in a second set of 167 trio families with autism confirmed our initial findings. Overall, our data provide evidence that the PRKCB1 gene on chromosome 16p may be involved in the etiology of autism.

  5. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    Science.gov (United States)

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex.

    Directory of Open Access Journals (Sweden)

    Yan Hao

    2011-05-01

    Full Text Available Elevation of the second messenger cGMP by nitric oxide (NO activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1-dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response.

  7. Cloning of the koi herpesvirus (KHV gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis

    Directory of Open Access Journals (Sweden)

    Gilad Oren

    2005-03-01

    Full Text Available Abstract Background Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV. Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. Results A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV and the channel catfish virus (CCV. The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. Conclusion The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions.

  8. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  9. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain

    OpenAIRE

    Nelms, Keats; O'Neill, Thomas J.; Li, Shiqing; Hubbard, Stevan R.; Gustafson, Thomas A.; Paul, William E.

    1999-01-01

    . The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the ...

  10. In vivo PET imaging with 18F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    International Nuclear Information System (INIS)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo

    2007-01-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines

  11. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    Directory of Open Access Journals (Sweden)

    Agarwala Usha

    2011-06-01

    Full Text Available Abstract Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6 are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP. An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with

  12. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Directory of Open Access Journals (Sweden)

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  13. Arg25Pro polymorphism of transforming growth factor-beta1 and its role in the pathogenesis of essential hypertension in Russian population of the Central Chernozem Region.

    Science.gov (United States)

    Ivanov, V P; Solodilova, M A; Polonnikov, A V; Belugin, D A; Shestakov, A M; Ushachev, D V; Khoroshaya, I V; Katargina, L N; Kozhukhov, M A; Kolesnikova, O E

    2007-07-01

    We studied the relationship between Arg25Pro polymorphism of TGFbeta1 gene and predisposition to essential hypertension in the Russian population of Central Chernozem Region (n=402). An association was found between 25Pro allele and 25ArgPro genotype with low risk of essential hypertension in male individuals.

  14. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    Science.gov (United States)

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  15. Organization and alternative splicing of the Caenorhabditis elegans cAMP-dependent protein kinase catalytic-subunit gene (kin-1).

    Science.gov (United States)

    Tabish, M; Clegg, R A; Rees, H H; Fisher, M J

    1999-04-01

    The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.

  16. Genes influenced by the non-muscle isoform of Myosin light chain kinase impact human cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available The multifunctional non-muscle isoform of myosin light chain kinase (nmMLCK is critical to the rapid dynamic coordination of the cytoskeleton involved in cancer cell proliferation and migration. We identified 45 nmMLCK-influenced genes by bioinformatic filtering of genome-wide expression in wild type and nmMLCK knockout (KO mice exposed to preclinical models of murine acute inflammatory lung injury, pathologies that are well established to include nmMLCK as an essential participant. To determine whether these nmMLCK-influenced genes were relevant to human cancers, the 45 mouse genes were matched to 38 distinct human orthologs (M38 signature (GeneCards definition and underwent Kaplan-Meier survival analysis in training and validation cohorts. These studies revealed that in training cohorts, the M38 signature successfully identified cancer patients with poor overall survival in breast cancer (P<0.001, colon cancer (P<0.001, glioma (P<0.001, and lung cancer (P<0.001. In validation cohorts, the M38 signature demonstrated significantly reduced overall survival for high-score patients of breast cancer (P = 0.002, colon cancer (P = 0.035, glioma (P = 0.023, and lung cancer (P = 0.023. The association between M38 risk score and overall survival was confirmed by univariate Cox proportional hazard analysis of overall survival in the both training and validation cohorts. This study, providing a novel prognostic cancer gene signature derived from a murine model of nmMLCK-associated lung inflammation, strongly supports nmMLCK-involved pathways in tumor growth and progression in human cancers and nmMLCK as an attractive candidate molecular target in both inflammatory and neoplastic processes.

  17. Fine mapping of the sunflower resistance locus Pl(ARG) introduced from the wild species Helianthus argophyllus.

    Science.gov (United States)

    Wieckhorst, S; Bachlava, E; Dussle, C M; Tang, S; Gao, W; Saski, C; Knapp, S J; Schön, C-C; Hahn, V; Bauer, E

    2010-11-01

    Downy mildew, caused by Plasmopara halstedii, is one of the most destructive diseases in cultivated sunflower (Helianthus annuus L.). The dominant resistance locus Pl(ARG) originates from silverleaf sunflower (H. argophyllus Torrey and Gray) and confers resistance to all known races of P. halstedii. We mapped Pl(ARG) on linkage group (LG) 1 of (cms)HA342 × ARG1575-2, a population consisting of 2,145 F(2) individuals. Further, we identified resistance gene candidates (RGCs) that cosegregated with Pl(ARG) as well as closely linked flanking markers. Markers from the target region were mapped with higher resolution in NDBLOS(sel) × KWS04, a population consisting of 2,780 F(2) individuals that does not segregate for Pl(ARG). A large-insert sunflower bacterial artificial chromosome (BAC) library was screened with overgo probes designed for markers RGC52 and RGC151, which cosegregated with Pl(ARG). Two RGC-containing BAC contigs were anchored to the Pl(ARG) region on LG 1.

  18. Fine mapping of the sunflower resistance locus PlARG introduced from the wild species Helianthus argophyllus

    Science.gov (United States)

    Wieckhorst, S.; Bachlava, E.; Dußle, C. M.; Tang, S.; Gao, W.; Saski, C.; Knapp, S. J.; Schön, C.-C.; Hahn, V.

    2010-01-01

    Downy mildew, caused by Plasmopara halstedii, is one of the most destructive diseases in cultivated sunflower (Helianthus annuus L.). The dominant resistance locus PlARG originates from silverleaf sunflower (H. argophyllus Torrey and Gray) and confers resistance to all known races of P. halstedii. We mapped PlARG on linkage group (LG) 1 of (cms)HA342 × ARG1575-2, a population consisting of 2,145 F2 individuals. Further, we identified resistance gene candidates (RGCs) that cosegregated with PlARG as well as closely linked flanking markers. Markers from the target region were mapped with higher resolution in NDBLOSsel × KWS04, a population consisting of 2,780 F2 individuals that does not segregate for PlARG. A large-insert sunflower bacterial artificial chromosome (BAC) library was screened with overgo probes designed for markers RGC52 and RGC151, which cosegregated with PlARG. Two RGC-containing BAC contigs were anchored to the PlARG region on LG 1. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1416-4) contains supplementary material, which is available to authorized users. PMID:20700574

  19. Effect of lipopolysaccharide and chlorpromazine on glucocorticoid receptor-mediated gene transcription and immunoreactivity: a possible involvement of p38-MAP kinase

    Czech Academy of Sciences Publication Activity Database

    Basta-Kaim, A.; Budziszewska, B.; Jaworska-Feil, L.; Tetich, M.; Kubera, M.; Zajícová, Alena; Holáň, Vladimír; Lasoń, W.

    2004-01-01

    Roč. 14, č. 6 (2004), s. 521-528 ISSN 0924-977X R&D Projects: GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : p38-MAP kinase, cytokines, gene transcription Subject RIV: EC - Immunology Impact factor: 3.545, year: 2004

  20. Premilinary studies for optimiziing a protocol for obtaining embryogenic calluses in two rubber (Hevea brasiliensis Mull. Arg clones from different geographical origins Estudios preliminares en la estandarización de un protocolo para la obtención de callos embriogénicos en dos clones de caucho (Hevea brasiliensis Müll. Arg. de diferentes orígenes geográficos

    Directory of Open Access Journals (Sweden)

    Medina S. Marisol

    2006-07-01

    Full Text Available The influence of growth regulators on obtaining friable rubber (Hevea brasiliensis Müll. Arg. calluses with no plant regeneration as investigated. Two clones having different geographical origin were used in all trails carried out in this study: FX 3864 (South-American and PB 254 (Asian. Young leaves and eight- to ten-week-old seed integument from both clones were used as explants in several experiments; they were initially cultured in MH medium (Carron, et ál., 1989, modified MH medium (Montoro, et ál., 1993, 2000 and modified MS medium (Carron, et at,. 1992, no positive response being obtained by days 25 or 50. However, other trials were carried out with the integument in modified MS medium (1962, 0.67 mg/L BAP and 0.66 mg/L 2-4 D being added as medium for initiating embryogenesis, the formation of white, friable calluses being observed by day 25 in the two selected clones. These calluses were sub-cultured in MS supplemented with 0.35 mg/L BAP and 0.2 mg/L 2-4 D as callogenesis expression medium, embryogenic expression being observed in both clones by day 50. Equally friable white calluses were obtained from young leaves in the two clones in MS medium supplemented with 1.0 mg/L BAP, 1.0 mg/L ANA but without IBA and kinetin by day 25. Calluses sub-cultured in the same medium supplemented with 0.5 mg/L BAP and 0.5 mg/L ANA began to show increased friability after 50 days. culture. This work is a partial report of a macro-project for optimising a protocol for rubber (Hevea brasiliensis  multiplication by somatic embryogenesis.Se investigó la influencia de los reguladores de crecimiento para la obtención de callos friables en caucho (Hevea brasiliensis Müll. Arg. sin llegar a obtenerse regeneración de plántulas. En todos los ensayos realizados en este estudio, se utilizaron dos clones de diferentes orígenes geográficos: el FX 3864 (suramericano y el PB 254 (asiático. Para los diferentes tratamientos se utilizaron como explantes hojas j

  1. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  2. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.

    2017-11-06

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  3. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.; Hong, Pei-Ying

    2017-01-01

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  4. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  5. Variation in the PTEN-induced putative kinase 1 gene associated ...

    Indian Academy of Sciences (India)

    with the increase risk of type 2 diabetes in northern Chinese. YANCHUN QU1†∗ ... and genetic variation analysis have indicated the involvement of PINK1 gene in the ... Qualitative variables were analysed by a chi-squared test. The level of ...

  6. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Cardiotropic activity of synthetic peptide CH3CO-Lys-Lys-Arg-Arg-NH2 (protectin)].

    Science.gov (United States)

    Sazhin, A I; Zaĭtseva, M A; Melikhova, M E; Ezhov, N F; Sadovnikov, V B; Navolotskaia, E V

    2011-01-01

    Peptide CH3CO-Lys-Lys-Arg-Arg-NH2 (protectin) was synthesized and its activity was studied on the model of experimental myocardial infarction in rats in comparison to the reference antihypoxant drug riboxin. Intranasal injections ofprotectin at doses within 2-20 microg/kg once a day by course of 7 days produced a pronounced anti-ischemic action, improved coronary circulation of the blood, increases contractile activity of myocardium, reduced intensity of lipid peroxidation, and improved antioxidant protection. In some respects (improved coronary circulation of the blood, increased antioxidant protection), protectin was more effective than riboxin.

  8. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Kingo, Külli; Karelson, Maire

    2010-01-01

    MYG1 (Melanocyte proliferating gene 1, also C12orf10 in human) is a ubiquitous nucleo-mitochondrial protein, involved in early developmental processes and in adult stress/illness conditions. We recently showed that MYG1 mRNA expression is elevated in the skin of vitiligo patients. Our aim...... was to examine nine known polymorphisms in the MYG1 gene, to investigate their functionality, and to study their association with vitiligo susceptibility....

  9. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  10. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    Science.gov (United States)

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.

  11. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  12. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  13. A gene-based analysis of variants in the serum/glucocorticoid regulated kinase (SGK genes with blood pressure responses to sodium intake: the GenSalt Study.

    Directory of Open Access Journals (Sweden)

    Changwei Li

    Full Text Available Serum and glucocorticoid regulated kinase (SGK plays a critical role in the regulation of renal sodium transport. We examined the association between SGK genes and salt sensitivity of blood pressure (BP using single-marker and gene-based association analysis.A 7-day low-sodium (51.3 mmol sodium/day followed by a 7-day high-sodium intervention (307.8 mmol sodium/day was conducted among 1,906 Chinese participants. BP measurements were obtained at baseline and each intervention using a random-zero sphygmomanometer. Additive associations between each SNP and salt-sensitivity phenotypes were assessed using a mixed linear regression model to account for family dependencies. Gene-based analyses were conducted using the truncated p-value method. The Bonferroni-method was used to adjust for multiple testing in all analyses.In single-marker association analyses, SGK1 marker rs2758151 was significantly associated with diastolic BP (DBP response to high-sodium intervention (P = 0.0010. DBP responses (95% confidence interval to high-sodium intervention for genotypes C/C, C/T, and T/T were 2.04 (1.57 to 2.52, 1.79 (1.42 to 2.16, and 0.85 (0.30 to 1.41 mmHg, respectively. Similar trends were observed for SBP and MAP responses although not significant (P = 0.15 and 0.0026, respectively. In addition, gene-based analyses demonstrated significant associations between SGK1 and SBP, DBP and MAP responses to high sodium intervention (P = 0.0002, 0.0076, and 0.00001, respectively. Neither SGK2 nor SGK3 were associated with the salt-sensitivity phenotypes in single-maker or gene-based analyses.The current study identified association of the SGK1 gene and BP salt-sensitivity in the Han Chinese population. Further studies are warranted to identify causal SGK1 gene variants.

  14. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors. Part 3: modifications at the Arg position.

    Science.gov (United States)

    Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie

    2003-01-01

    The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.

  15. The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance.

    Directory of Open Access Journals (Sweden)

    Hermann Bauer

    Full Text Available The t-haplotype, a variant form of the t-complex region on mouse chromosome 17, acts as selfish genetic element and is transmitted at high frequencies (> 95% from heterozygous (t/+ males to their offspring. This phenotype is termed transmission ratio distortion (TRD and is caused by the interaction of the t-complex responder (Tcr with several quantitative trait loci (QTL, the t-complex distorters (Tcd1 to Tcd4, all located within the t-haplotype region. Current data suggest that the distorters collectively impair motility of all sperm derived from t/+ males; t-sperm is rescued by the responder, whereas (+-sperm remains partially dysfunctional. Recently we have identified two distorters as regulators of RHO small G proteins. Here we show that the nucleoside diphosphate kinase gene Nme3 acts as a QTL on TRD. Reduction of the Nme3 dosage by gene targeting of the wild-type allele enhanced the transmission rate of the t-haplotype and phenocopied distorter function. Genetic and biochemical analysis showed that the t-allele of Nme3 harbors a mutation (P89S that compromises enzymatic activity of the protein and genetically acts as a hypomorph. Transgenic overexpression of the Nme3 t-allele reduced t-haplotype transmission, proving it to be a distorter. We propose that the NME3 protein interacts with RHO signaling cascades to impair sperm motility through hyperactivation of SMOK, the wild-type form of the responder. This deleterious effect of the distorters is counter-balanced by the responder, SMOK(Tcr, a dominant-negative protein kinase exclusively expressed in t-sperm, thus permitting selfish behaviour and preferential transmission of the t-haplotype. In addition, the previously reported association of NME family members with RHO signaling in somatic cell motility and metastasis, in conjunction with our data involving RHO signaling in sperm motility, suggests a functional conservation between mechanisms for motility control in somatic cells and

  16. Anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related human papillary thyroid carcinoma after the Chernobyl accident.

    Science.gov (United States)

    Arndt, Annette; Steinestel, Konrad; Rump, Alexis; Sroya, Manveer; Bogdanova, Tetiana; Kovgan, Leonila; Port, Matthias; Abend, Michael; Eder, Stefan

    2018-04-06

    Childhood radiation exposure has been associated with increased papillary thyroid carcinoma (PTC) risk. The role of anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related PTC remains unclear, but STRN-ALK fusions have recently been detected in PTCs from radiation exposed persons after Chernobyl using targeted next-generation sequencing and RNA-seq. We investigated ALK and RET gene rearrangements as well as known driver point mutations in PTC tumours from 77 radiation-exposed patients (mean age at surgery 22.4 years) and PTC tumours from 19 non-exposed individuals after the Chernobyl accident. ALK rearrangements were detected by fluorescence in situ hybridisation (FISH) and confirmed with immunohistochemistry (IHC); point mutations in the BRAF and RAS genes were detected by DNA pyrosequencing. Among the 77 tumours from exposed persons, we identified 7 ALK rearrangements and none in the unexposed group. When combining ALK and RET rearrangements, we found 24 in the exposed (31.2%) compared to two (10.5%) in the unexposed group. Odds ratios increased significantly in a dose-dependent manner up to 6.2 (95%CI: 1.1, 34.7; p = 0.039) at Iodine-131 thyroid doses >500 mGy. In total, 27 cases carried point mutations of BRAF or RAS genes, yet logistic regression analysis failed to identify significant dose association. To our knowledge we are the first to describe ALK rearrangements in post-Chernobyl PTC samples using routine methods such as FISH and IHC. Our findings further support the hypothesis that gene rearrangements, but not oncogenic driver mutations, are associated with ionizing radiation-related tumour risk. IHC may represent an effective method for ALK-screening in PTCs with known radiation aetiology, which is of clinical value since oncogenic ALK activation might represent a valuable target for small molecule inhibitors. © 2018 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and

  17. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Zita Garate

    2015-12-01

    Full Text Available Pyruvate kinase deficiency (PKD is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs from peripheral blood mononuclear cells (PB-MNCs of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR. Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.

  18. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Kingo, Külli; Karelson, Maire

    2010-01-01

    MYG1 (Melanocyte proliferating gene 1, also C12orf10 in human) is a ubiquitous nucleo-mitochondrial protein, involved in early developmental processes and in adult stress/illness conditions. We recently showed that MYG1 mRNA expression is elevated in the skin of vitiligo patients. Our aim...

  19. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    DEFF Research Database (Denmark)

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.

    2001-01-01

    Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine ki......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  20. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.

    Science.gov (United States)

    Ikematsu, Shuka; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki

    2017-03-01

    Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Dinucleotide repeat polymorphism in Fms-like tyrosine kinase-1 (Flt-1 gene is not associated with preeclampsia

    Directory of Open Access Journals (Sweden)

    Park So-Yeon

    2008-07-01

    Full Text Available Abstract Background Preeclampsia is a major cause of maternal and perinatal mortality and morbidity. The etiology of preeclampsia remains unclear. Recently, it was shown that misregulation of fms-like tyrosine kinase-1 (Flt-1 in the peripheral blood mononuclear cells of pregnant women results in over-expression of the soluble splice variant of Flt-1, sFlt-1, producing an additional (extra-placental source of sFlt-1 that can contribute to the etiology of preeclampsia. The aim of this study was to investigate the relationship between preeclampsia and a dinucleotide (threonine-glycine; TGn repeat polymorphism in the 3' non-coding region of the Flt-1 gene. Methods The number of the d(TGn repeats was analyzed in 170 patients with preeclampsia and in 202 normotensive pregnancies. The region containing the dinucleotide repeat polymorphism of the Flt-1 gene was amplified by polymerase chain reaction (PCR from the DNA samples and was analyzed by direct PCR sequencing. Results We found 10 alleles of the dinucleotide repeat polymorphism and designated these as allele*12 (A1 through allele*23 (A12 according to the number of the TG repeats, from 12 to 23. The frequency of the 14-repeat allele (A3 was most abundant (63.82% in preeclampsia and 69.06% in controls, followed by the 21-repeat allele (A10; 28.53% in preeclampsia and 23.76% in controls. There was no significant difference in the allele frequency between patients with preeclampsia and normal controls. The most common genotype in preeclamptic and normotensive pregnancies was heterozygous (TG14/(TG21 (41.76% and homozygous (TG14/(TG14 (45.05%, respectively. However, the genotype frequencies were not significantly different between preeclamptic patients and controls. Conclusion This is the first study to characterize the dinucleotide repeat polymorphism of the Flt-1 gene in patients with preeclampsia. We found no differences in the allele or genotype frequencies between patients with preeclampsia and

  2. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Xiaomin Deng

    Full Text Available Calcineurin B-like protein-interacting protein kinases (CIPKs have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV, abscisic acid (ABA and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+/Na(+ ratios and Ca(2+ content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT and peroxidase (POD under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS homeostasis.

  3. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems.

    Science.gov (United States)

    Wang, Jian-Hua; Lu, Jian; Zhang, Yu-Xuan; Wu, Jun; Luo, Yongming; Liu, Hao

    2018-04-01

    The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    Science.gov (United States)

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  5. In vitro uptakes of radiolabeled IVDU and IVFRU in herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene transduced morris hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Choi, Tae Hyun; Ahn, Soon Hyuk; Woo, Kwang Sun; Jeong, Wee Sup; Kwon, Hee Chung; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Awh, Ok Doo [College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of)

    2004-02-01

    The herpes simplex virus type 1 thymidine kinase gene(HSV1-tk) is an attractive candidate as a reporter gene in noninvasive reporter gene monitoring system. The HSV1-tk gene was chosen as a reporter gene, because it has been extensively studied, and there are appropriate reporter probes, substrates of HSV1-tk gene product, to apply for HSV1-tk gene imaging. We used radiolabeled 5-iodovinyl-2'-deoxyuridine (IVDU) and 5-lodovinyl-2'-fluoro-2'-deoxyuridine (IVFRU) as reporter probes for HSV1-tk gene monitoring system. We prepared HSV1-tk gene transduced Morris hepatoma cell line using retroviral vector, MOLTEN containing HSV1-tk gene. And we confirmed the HSV1-tk gene expression by Northern blotting and Western blotting. We compared in vitro uptakes of radioiodinated IVDU and IVFRU to monitor HSV1-tk gene expression in Morris hepatoma cell line (MCA) and HSV1-tk gene tranduced MCA (MAC-tk) cells until 480 minutes. We also performed correlation analysis between percentage of HSV1-tk gene tranduced MCA cell % (MCA-tk%) and uptakes of radiolabeled IVDU or IVFRU. MCA-tk cell expressed HSV1-tk mRNA and HSV1-TK protein. Two compounds showed minimal uptake in MCA, but increased uptake was observed in MCA-tk. IVDU showed 4-fold higher accumulation than IVFRU at 480 min in MCA-tk (p<0.01). Both IVDU and IVFRU uptake were linearly correlated (R{sup 2}>0.96) with increasing MCA-tk%. The rediolabeld IVDU and IVFRU showed higher specific accumulation in retrovirally HSV1-tk gene transfected Morris hepatoma cell line. Both IVDU and IVFRU could be used as good substrates for evaluation of HSV1-tk gene expression.

  6. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes.

    Science.gov (United States)

    Sun, Jiangmei; Li, Leiting; Wang, Peng; Zhang, Shaoling; Wu, Juyou

    2017-10-10

    Leucine-rich repeat receptor-like protein kinase (LRR-RLK) is the largest gene family of receptor-like protein kinases (RLKs) and actively participates in regulating the growth, development, signal transduction, immunity, and stress responses of plants. However, the patterns of LRR-RLK gene family evolution in the five main Rosaceae species for which genome sequences are available have not yet been reported. In this study, we performed a comprehensive analysis of LRR-RLK genes for five Rosaceae species: Fragaria vesca (strawberry), Malus domestica (apple), Pyrus bretschneideri (Chinese white pear), Prunus mume (mei), and Prunus persica (peach), which contained 201, 244, 427, 267, and 258 LRR-RLK genes, respectively. All LRR-RLK genes were further grouped into 23 subfamilies based on the hidden Markov models approach. RLK-Pelle_LRR-XII-1, RLK-Pelle_LRR-XI-1, and RLK-Pelle_LRR-III were the three largest subfamilies. Synteny analysis indicated that there were 236 tandem duplicated genes in the five Rosaceae species, among which subfamilies XII-1 (82 genes) and XI-1 (80 genes) comprised 68.6%. Our results indicate that tandem duplication made a large contribution to the expansion of the subfamilies. The gene expression, tissue-specific expression, and subcellular localization data revealed that LRR-RLK genes were differentially expressed in various organs and tissues, and the largest subfamily XI-1 was highly expressed in all five Rosaceae species, suggesting that LRR-RLKs play important roles in each stage of plant growth and development. Taken together, our results provide an overview of the LRR-RLK family in Rosaceae genomes and the basis for further functional studies.

  7. Impaired 8-Hydroxyguanine Repair Activity of MUTYH Variant p.Arg109Trp Found in a Japanese Patient with Early-Onset Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Kazuya Shinmura

    2014-01-01

    Full Text Available Purpose. The biallelic inactivation of the 8-hydroxyguanine repair gene MUTYH leads to MUTYH-associated polyposis (MAP, which is characterized by colorectal multiple polyps and carcinoma(s. However, only limited information regarding MAP in the Japanese population is presently available. Since early-onset colorectal cancer (CRC is a characteristic of MAP and might be caused by the inactivation of another 8-hydroxyguanine repair gene, OGG1, we investigated whether germline MUTYH and OGG1 mutations are involved in early-onset CRC in Japanese patients. Methods. Thirty-four Japanese patients with early-onset CRC were examined for germline MUTYH and OGG1 mutations using sequencing. Results. Biallelic pathogenic mutations were not found in any of the patients; however, a heterozygous p.Arg19*  MUTYH variant and a heterozygous p.Arg109Trp MUTYH variant were detected in one patient each. The p.Arg19* and p.Arg109Trp corresponded to p.Arg5* and p.Arg81Trp, respectively, in the type 2 nuclear-form protein. The defective DNA repair activity of p.Arg5* is apparent, while that of p.Arg81Trp has been demonstrated using DNA cleavage and supF forward mutation assays. Conclusion. These results suggest that biallelic MUTYH or OGG1 pathogenic mutations are rare in Japanese patients with early-onset CRC; however, the p.Arg19* and p.Arg109Trp MUTYH variants are associated with functional impairments.

  8. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

    Science.gov (United States)

    Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat

    2009-04-10

    The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.

  9. Comparative analysis of Homo sapiens and Mus musculus cyclin-dependent kinase (CDK) inhibitor genes p16 (MTS1) and p15 (MTS2).

    Science.gov (United States)

    Jiang, P; Stone, S; Wagner, R; Wang, S; Dayananth, P; Kozak, C A; Wold, B; Kamb, A

    1995-12-01

    Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.

  10. Familial hypofibrinogenaemia associated with heterozygous substitution of a conserved arginine residue; Bbeta255 Arg-->His (Fibrinogen Merivale).

    Science.gov (United States)

    Maghzal, Ghassan J; Brennan, Stephen O; Fellowes, Andrew P; Spearing, Ruth; George, Peter M

    2003-02-21

    Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.

  11. In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early kinetics of radiolabelled FIAU

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, R.; Avril, N.; Schwaiger, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Hantzopoulos, P.A.; Gansbacher, B. [Inst. of Experimental Oncology, Technische Univ. Muenchen (Germany)

    2000-03-01

    The aim of our study was to examine the early kinetics of I*-FIAU and the possibility of utilising iodine-123-labelled FIAU for imaging of gene expression. CMS-5 fibrosarcoma cells were transduced in vitro with the retroviral vector STK containing the HSV1-tk gene. BALB/c mice were inoculated subcutaneously with HSV1-tk(+) and tk(-) cells into both flanks. FAU (2'-fluoro-2'-deoxy-1-{beta}-d-arabinofuranosyluracil was radioiodinated ({sup 123}I, {sup 125}I)) using the iodogen method. High-performance liquid chromatography purification resulted in high specific activity and radiochemical purity for both tracers ([{sup 123}I]FIAU and [{sup 125}I]FIAU). Biodistribution studies and gamma camera imaging were performed at 0.5, 1, 2 and 4 h p.i. In addition, the genomic DNA of the tumours was isolated for measurement of the activity accumulation resulting from the [{sup 125}I]FIAU incorporation. Biodistribution studies 0.5 h p.i. showed tumour/blood and tumour/muscle ratios of 3.8 and 7.2, respectively, for the HSV1-tk(+) tumours, and 0.6 and 1.2, respectively, for negative control tumours. Fast renal elimination of the tracer from the body resulted in rapidly increasing tumour/blood and tumour/muscle ratios which reached values of 32 and 88 at 4 h p.i., respectively. Tracer clearance from blood was bi-exponential, with an initial half-life of 0.6 h followed by a half-life of 4.6 h. The tracer half-life in herpes simplex viral thymidine kinase-expressing tumours was 35.7 h. The highest activity accumulation (20.3%{+-}5.7% ID/g) in HSV1-tk(+) tumours was observed 1 h p.i. At that time, about 46% of the total activity found in HSV1-tk(+) tumours was incorporated into genomic DNA. Planar gamma camera imaging showed a distinct tracer accumulation as early as 0.5 h p.i., with an increase in contrast over time. These results suggest that sufficient tumour/background ratios for in vivo imaging of HSV1-tk expression with [{sup 123}I]FIAU are reached as early as 1 h p

  12. Serine/threonine kinase 15 gene polymorphism and risk of digestive system cancers: A meta-analysis.

    Science.gov (United States)

    Luo, Jianfei; Yan, Ruicheng; Zou, Li

    2015-01-01

    Previous studies have reported an association between the two coding polymorphisms (91T>A and 169G>A) of the serine/threonine kinase 15 (STK15) gene and the risk of digestive system cancers; however, the results are inconsistent. In the present study, a meta-analysis was carried out to assess the association between the two STK15 polymorphisms and the risk of digestive system cancers. Relevant studies were identified using PubMed, Web of Science, China National Knowledge Infrastructure, WanFang and VIP databases up to February 18, 2014. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated using the fixed or random effects model. A total of 15 case-control studies from 14 publications were included. Of these, 15 studies concerned the 91T>A polymorphism and included 7,619 cases and 7,196 controls and four studies concerned the 161G>A polymorphism and included 826 cases and 713 controls. A significantly increased risk of digestive system cancers was observed for the 91T>A polymorphism (recessive model: OR, 1.19; 95% CI, 1.07-1.31). In subgroup analysis by ethnicity, a significant association was detected in Asian populations (recessive model: OR, 1.21; 95% CI, 1.08-1.36) but not in Caucasian and mixed populations. Stratification by tumor type indicated that the 91T>A polymorphism was associated with an increased risk of esophageal and colorectal cancers under the recessive model (OR, 1.19; 95% CI, 1.03-1.38; and OR, 1.24; 95% CI, 1.04-1.46; respectively); however, no significant association was observed between the 169G>A polymorphism and the risk of digestive system cancers in any of the genetic models. Furthermore, in subgroup analysis by ethnicity, similar results were observed in the Asian and Caucasian populations. The present meta-analysis demonstrated that the STK15 gene 91T>A polymorphism, but not the 169G>A polymorphism, may be a risk factor for digestive system cancers, particularly for esophageal and colorectal cancers.

  13. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson's Disease Susceptibility?

    Science.gov (United States)

    Yılmaz, Şenay Görücü; Geyik, Sırma; Neyal, Ayşe Münife; Soko, Nyarai D; Bozkurt, Hakan; Dandara, Collet

    2016-04-01

    Parkinson's disease (PD) is a frequently occurring neurodegenerative motor disorder adversely impacting global health. There is a paucity of biomarkers and diagnostics that can forecast susceptibility to PD. A new research frontier for PD pathophysiology is the study of variations in microRNA (miRNA) expression whereby miRNAs serve as "upstream regulators" of gene expression in relation to functioning of the dopamine neuronal pathways. Leucine-Rich Repeat Kinase 2 (LRRK2) is a frequently studied gene in PD. Little is known about the ways in which expression of miRNAs targeting LRKK2 impact PD susceptibility. In a sample of 204 unrelated subjects (102 persons with PD and 102 healthy controls), we report here candidate miRNA expression in whole blood samples as measured by real-time PCR (hsa-miR-4671-3p, hsa-miR-335-3p, hsa-miR-561-3p, hsa-miR-579-3p, and hsa-miR-3143) that target LRRK2. Using step-wise logistic regression, and controlling for covariates such as age, gender, PD disease severity, concomitant medications, and co-morbidity, we found that the combination of has-miR-335-3p, has-miR-561-3p, and has-miR-579-3p account for 50% of the variation in regards to PD susceptibility (p<0.0001). Notably, the hsa-miR-561-3p expression was the most robust predictor of PD in both univariate and multivariate analyses (p<0.001). Moreover, the biological direction (polarity) of the association was plausible in that the candidate miRNAs displayed a diminished expression in patients. This is consistent with the hypothesis that decreased levels of miRNAs targeting LRRK2 might result in a gain of function for LRRK2, and by extension, loss of neuronal viability. To the best of our knowledge, this is the first clinical association study of the above candidate miRNAs' expression in PD using peripheral samples. These observations may guide future clinical diagnostics research on PD.

  14. Characterization of a thrombin cleavage site mutation (Arg 1689 to Cys) in the factor VIII gene of two unrelated patients with cross-reacting material-positive hemophilia A.

    Science.gov (United States)

    Arai, M; Higuchi, M; Antonarakis, S E; Kazazian, H H; Phillips, J A; Janco, R L; Hoyer, L W

    1990-01-15

    The molecular defect responsible for moderate and severe hemophilia A has been identified for two unrelated patients with the CRM-positive form of this disorder (factor VIII activity of 0.02 and 0.05 U/mL with factor VIII antigen of 0.87 and 2.20 U/mL). In both cases, the immunopurified dysfunctional factor VIII protein is abnormal, in that the 80 Kd light chain is not cleaved by thrombin at arginine-1689. The basis for this failure was identified by polymerase chain reaction amplification of exon 14 of the variant factor VIII genes and direct sequencing of the amplified products. In both cases, a single base substitution (C to T) was identified that produces an arginine to cysteine substitution at amino acid residue 1689. These data identify the molecular defects of the two identical factor VIII variant proteins. The dysfunctional factor VIII has been designated "Factor VIII-East Hartford," the residence of the patient in whom the defect was first identified.

  15. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6.

    Science.gov (United States)

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

  17. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    Science.gov (United States)

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  18. Functional implications of the p.Cys680Arg mutation in the MLH1 mismatch repair protein

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Drost, Mark; Therkildsen, Christina

    2014-01-01

    >C missense mutation in exon 18 of the human MLH1 gene and biochemically characterization of the p.Cys680Arg mutant MLH1 protein to implicate it in the pathogenicity of the Lynch syndrome (LS). We show that the mutation is deficient in DNA mismatch repair and, therefore, contributing to LS in the carriers....

  19. Mcm1p binding sites in ARG1 positively regulate Gcn4p binding and SWI/SNF recruitment

    OpenAIRE

    Yoon, Sungpil; Hinnebusch, Alan G.

    2009-01-01

    Transcription of the arginine biosynthetic gene ARG1 is activated by Gcn4p, a transcription factor induced by starvation for any amino acid. Previously we showed that Gcn4p binding stimulates the recruitment of Mcm1p and co-activator SWI/SNF to ARG1 in cells via Gcn4p induction through amino acid starvation. Here we report that Gcn4p binding is reduced by point mutations of the Mcm1p binding site and increased by overexpression of Mcm1p. This result suggests that Mcm1p plays a positive role i...

  20. Polycystic ovary syndrome: association of a C/T single nucleotide polymorphism at tyrosine kinase domain of insulin receptor gene with pathogenesis among lean Japanese women.

    Science.gov (United States)

    Kashima, Katsunori; Yahata, Tetsuro; Fujita, Kazuyuki; Tanaka, Kenichi

    2013-01-01

    To assess whether the insulin receptor (INSR) gene contributes to genetic susceptibility to polycystic ovary syndrome (PCOS) in a Japanese population. We ex-amined the frequency of the His 1058 C/T single nucleotide polymorphism (SNP) found in exon 17 of the INSR gene in 61 Japanese PCOS patients and 99 Japanese healthy controls. In addition, we analyzed the association between the genotype of this SNP and the clinical phenotypes. The frequency of the C/C genotype was not significantly different between all PCOS patients (47.5%) and controls (35.4%). However, among the lean cases (body mass index PCOS patients (65.0%) as compared with controls (36.6%). We concluded that the His 1058 C/T polymorphism at the tyrosine kinase domain of the INSR gene had a relationship to the pathogenesis of lean PCOS patients in a Japanese population.

  1. Nemo-like kinase as a negative regulator of nuclear receptor Nurr1 gene transcription in prostate cancer

    International Nuclear Information System (INIS)

    Wang, Jian; Yang, Zhi-Hong; Chen, Hua; Li, Hua-Hui; Chen, Li-Yong; Zhu, Zhu; Zou, Ying; Ding, Cong-Cong; Yang, Jing; He, Zhi-Wei

    2016-01-01

    Nurr1, a member of the orphan receptor family, plays an important role in several types of cancer. Our previous work demonstrated that increased expression of Nurr1 plays a significant role in the initiation and progression of prostate cancer (PCa), though the mechanisms for regulation of Nurr1 expression remain unknown. In this study, we investigated the hypothesis that Nemo-like kinase (NLK) is a key regulator of Nurr1 expression in PCa. Immunohistochemistry and Western blot analysis were used to evaluate levels of NLK and Nurr1 in prostatic tissues and cell lines. The effects of overexpression or knockdown of Nurr1 were evaluated in PCa cells through use of PCR, Western blots and promoter reporter assays. The role of Nurr1 promoter cis element was studied by creation of two mutant Nurr1 promoter luciferase constructs, one with a mutated NF-κB binding site and one with a mutated CREB binding site. In addition, three specific inhibitors were used to investigate the roles of these proteins in transcriptional activation of Nurr1, including BAY 11–7082 (NF-κB inhibitor), KG-501 (CREB inhibitor) and ICG-001 (CREB binding protein, CBP, inhibitor). The function of CBP in NLK-mediated regulation of Nurr1 expression was investigated using immunofluorescence, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation assays (ChIPs). NLK expression was inversely correlated with Nurr1 expression in prostate cancer tissues and cell lines. Overexpression of NLK suppressed Nurr1 promoter activity, leading to downregulation of Nurr1 expression. In contrast, knockdown of NLK demonstrated opposite results, leading to upregulation of Nurr1. When compared with the wild-type Nurr1 promoter, mutation of NF-κB- and CREB-binding sites of the Nurr1 promoter region significantly reduced the upregulation of Nurr1 induced by knockdown of NLK in LNCaP cells; treatment with inhibitors of CREB, CBP and NF-κB led to similar results. We also found that NLK directly interacts with CBP

  2. Serine/Threonine Kinase 35, a Target Gene of STAT3, Regulates the Proliferation and Apoptosis of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2018-01-01

    Full Text Available Background/Aims: Serine/threonine kinase 35 (STK35 may be associated with Parkinson disease and human colorectal cancer, but there have been no reports on the expression levels or roles of STK35 in osteosarcoma. Methods: STK35 mRNA expression was determined in osteosarcoma and bone cyst tissues by real-time PCR. Cell proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8 assay and flow cytometry analysis, respectively. Results: STK35 was up-regulated in osteosarcoma tissues as indicated by analyzing publicly available expression data (GEO dataset E-MEXP-3628 and real-time PCR analysis on our own cohort. We subsequently investigated the effects of STK35 knockdown on two osteosarcoma cell lines, MG63 and U2OS. STK35 knockdown inhibited the growth of osteosarcoma cells in vitro and in xenograft tumors. Meanwhile, STK35 knockdown enhanced apoptosis. Expression of the active forms and the activity of two major executioner caspases, caspase 3 and caspase 7, were also increased in osteosarcoma cells with STK35 silenced. Additionally, Gene Set Enrichment Analysis (GSEA identified that the JAK/STAT signaling pathway was positively correlated with STK35 expression. The mRNA expression of STK35 was repressed by STAT3 small interfering RNA (siRNA, but not by siRNA of STAT4, STAT5A or STAT6. A luciferase reporter assay further demonstrated that STAT3 transcriptionally regulated STK35 expression. A chromatin immunoprecipitation (ChIP assay confirmed the direct recruitment of STAT3 to the STK35 promoter. The promotion effects of STAT3 knockdown on cell apoptosis were partially abolished by STK35 overexpression. Furthermore, STK35 mRNA expression was positively correlated with STAT3 mRNA expression in osteosarcoma tissues by Pearson correlation analysis. Conclusions: These results collectively reveal that STAT3 regulates the transcription of STK35 in osteosarcoma. STK35 may exert an oncogenic role in osteosarcoma.

  3. Evidence of an association between the Arg72 allele of the peptide YY and increased risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Torekov, Signe S; Larsen, Lesli H; Glümer, Charlotte

    2005-01-01

    We tested the hypothesis that variants in the gene encoding the prepropeptide YY (PYY) associate with type 2 diabetes and/or obesity. Mutation analyses of DNA from 84 patients with obesity and familial type 2 diabetes identified two polymorphisms, IVS3 + 68C>T and Arg72Thr, and one rare variant......, +151C>A of PYY. The common allele of the Arg72Thr variant associated with type 2 diabetes with an allele frequency of the Arg allele of 0.667 (95% CI 0.658-0.677) among 4,639 glucose-tolerant subjects and 0.692 (0.674-0.710) among 1,326 patients with type 2 diabetes (P = 0.005, odds ratio 1.19 [95% CI...... tolerance test (OGTT) (P = 0.03), an increased area under the curve for the post-OGTT plasma glucose level (P = 0.03), and a lower insulinogenic index (P = 0.01). In conclusion, the common Arg allele of the PYY Arg72Thr variant modestly associates with type 2 diabetes and with type 2 diabetes...

  4. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor.

    Directory of Open Access Journals (Sweden)

    Shantashri Vaidya

    Full Text Available BACKGROUND: Mutations in the ABL kinase domain and SH3-SH2 domain of the BCR/ABL gene and amplification of the Philadelphia chromosome are the two important BCR/ABL dependent mechanisms of imatinib resistance. Here, we intended to study the role played by TKI, imatinib, in selection of gene mutations and development of chromosomal abnormalities in Indian CML patients. METHODS: Direct sequencing methodology was employed to detect mutations and conventional cytogenetics was done to identify Philadelphia duplication. RESULTS: Among the different mechanisms of imatinib resistance, kinase domain mutations (39% of the BCR/ABL gene were seen to be more prevalent, followed by mutations in the SH3-SH2 domain (4% and then BCR/ABL amplification with the least frequency (1%. The median duration of occurrence of mutation was significantly shorter for patients with front line imatinib than those pre-treated with hydroxyurea. Patients with high Sokal score (p = 0.003 showed significantly higher incidence of mutations, as compared to patients with low/intermediate score. Impact of mutations on the clinical outcome in AP and BC was observed to be insignificant. Of the 94 imatinib resistant patients, only 1 patient exhibited duplication of Philadelphia chromosome, suggesting a less frequent occurrence of this abnormality in Indian CML patients. CONCLUSION: Close monitoring at regular intervals and proper analysis of the disease resistance would facilitate early detection of resistance and thus aid in the selection of the most appropriate therapy.

  5. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  6. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta...... and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two...

  7. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum.

    Science.gov (United States)

    Jin, Kai; Ming, Yue; Xia, Yu Xian

    2012-12-01

    Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

  8. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

    Science.gov (United States)

    Zhang, Xueying; Wang, Liman; Xu, Xiaoyang; Cai, Caiping; Guo, Wangzhen

    2014-12-10

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

  9. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats.

    Science.gov (United States)

    Yao, Gaoyi; Yue, Huifeng; Yun, Yang; Sang, Nan

    2015-02-01

    Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances. Copyright © 2014 Elsevier Inc

  10. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability

    NARCIS (Netherlands)

    Küry, Sébastien; van Woerden, Geeske M; Besnard, Thomas; Proietti Onori, Martina; Latypova, Xénia; Towne, Meghan C; Cho, Megan T.; Prescott, Trine E; Ploeg, Melissa A; Sanders, Jan-Stephan; Stessman, Holly A F; Pujol, Aurora; Distel, Ben; Robak, Laurie A; Bernstein, Jonathan A; Denommé-Pichon, Anne-Sophie; Lesca, Gaëtan; Sellars, Elizabeth A; Berg, Jonathan; Carré, Wilfrid; Busk, Øyvind Løvold; van Bon, Bregje W M; Waugh, Jeff L; Deardorff, Matthew; Hoganson, George E; Bosanko, Katherine B; Johnson, Diana S; Dabir, Tabib; Holla, Øystein Lunde; Sarkar, Ajoy; Tveten, Kristian; de Bellescize, Julitta; Braathen, Geir J; Terhal, Paulien A; Grange, Dorothy K; van Haeringen, Arie; Lam, Christina; Mirzaa, Ghayda; Burton, Jennifer; Bhoj, Elizabeth J.; Douglas, Jessica; Santani, Avni B; Nesbitt, Addie I; Helbig, Katherine L; Andrews, Marisa V; Begtrup, Amber; Tang, Sha; van Gassen, Koen L I; Juusola, Jane; Foss, Kimberly; Enns, Gregory M; Moog, Ute; Hinderhofer, Katrin; Paramasivam, Nagarajan; Lincoln, Sharyn; Kusako, Brandon H; Lindenbaum, Pierre; Charpentier, Eric; Nowak, Catherine B; Cherot, Elouan; Simonet, Thomas; Ruivenkamp, Claudia A L; Hahn, Sihoun; Brownstein, Catherine A; Xia, Fan; Schmitt, Sébastien; Deb, Wallid; Bonneau, Dominique; Nizon, Mathilde; Quinquis, Delphine; Chelly, Jamel; Rudolf, Gabrielle; Sanlaville, Damien; Parent, Philippe; Gilbert-Dussardier, Brigitte; Toutain, Annick; Sutton, Vernon R; Thies, Jenny; Peart-Vissers, Lisenka E L M; Boisseau, Pierre; Vincent, Marie; Grabrucker, Andreas M; Dubourg, Christèle; Tan, Wen-Hann; Verbeek, Nienke E; Granzow, Martin; Santen, Gijs W E; Shendure, Jay; Isidor, Bertrand; Pasquier, Laurent; Redon, Richard; Yang, Yaping; State, Matthew W; Kleefstra, Tjitske; Cogné, Benjamin; Petrovski, Slavé; Retterer, Kyle; Eichler, Evan E.; Rosenfeld, Jill A; Agrawal, Pankaj B; Bézieau, Stéphane; Odent, Sylvie; Elgersma, Ype; Mercier, Sandra

    2017-01-01

    Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a

  11. Deciphering the Arginine-binding preferences at the substrate-binding groove of Ser/Thr kinases by computational surface mapping.

    Directory of Open Access Journals (Sweden)

    Avraham Ben-Shimon

    2011-11-01

    Full Text Available Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P-2 and P-5, commonly occupied by Arginine (Arg in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P-2/P-5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P-5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering. The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P-2 and P-5 positions.

  12. Potential inhibitors of dapE and argE enzymes as the new antimicrobial agents: Synthesis and characterization

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Pícha, Jan; Vaněk, Václav; Jiráček, Jiří; Slaninová, Jiřina; Fučík, Vladimír; Holz, R. C.

    2008-01-01

    Roč. 14, č. 8 (2008), s. 83-84 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] R&D Projects: GA AV ČR IAA400550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial agents * dapE and argE inhibitors * synthesis and activity Subject RIV: CC - Organic Chemistry

  13. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, H.; Galili, G.; Sørensen, K.

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance...... the accumulation of the corresponding amino acids, we have generated transgenic barley plants that constitutively express mutant Escherichia coli genes encoding lysine feed-back insensitive forms of AK and DHPS. As a result, leaves of primary transformants (T0) exhibited a 14-fold increase of free lysine and an 8......, no differences were observed in the composition of total amino acids. The introduced genes were inherited in the T1 generation where enzymic activities revealed a 2.3-fold increase of AK activity and a 4.0-9.5-fold increase for DHPS. T1 seeds of DHPS transformants showed the same changes in free amino acids...

  14. Meta-analyses of KIF6 Trp719Arg in coronary heart disease and statin therapeutic effect.

    Directory of Open Access Journals (Sweden)

    Ping Peng

    Full Text Available The goal of our study is to assess the contribution of KIF6 Trp719Arg to both the risk of CHD and the efficacy of statin therapy in CHD patients.Meta-analysis of 8 prospective studies among 77,400 Caucasians provides evidence that 719Arg increases the risk of CHD (P<0.001, HR = 1.27, 95% CI = 1.15-1.41. However, another meta-analysis of 7 case-control studies among 65,200 individuals fails to find a significant relationship between Trp719Arg and the risk of CHD (P = 0.642, OR = 1.02, 95% CI = 0.95-1.08. This suggests that the contribution of Trp719Arg to CHD varies in different ethnic groups. Additional meta-analysis also shows that statin therapy only benefit the vascular patients carry 719Arg allele (P<0.001, relative ratio (RR = 0.60, 95% CI = 0.54-0.67. To examine the role of this genetic variant in CHD risk in Han Chinese, we have conducted a case-control study with 289 CHD cases, 193 non-CHD controls, and 329 unrelated healthy volunteers as healthy controls. On post hoc analysis, significant allele frequency difference of 719Arg is observed between female CHD cases and female total controls under the dominant model (P = 0.04, χ(2 = 4.228, df = 1, odd ratio (OR = 1.979, 95% confidence interval (CI = 1.023-3.828. Similar trends are observed for post hoc analysis between female CHD cases and female healthy controls (dominant model: P = 0.04, χ(2 = 4.231, df = 1, OR = 2.015, 95% CI = 1.024-3.964. Non-genetic CHD risk factors are not controlled in these analyses.Our meta-analysis demonstrates the role of Trp719Arg of KIF6 gene in the risk of CHD in Caucasians. The meta-analysis also suggests the role of this variant in statin therapeutic response in vascular diseases. Our case-control study suggests that Trp719Arg of KIF6 gene is associated with CHD in female Han Chinese through a post hoc analysis.

  15. [Study of androgen receptor and phosphoglycerate kinase gene polymorphism in major cellular components of the so-called pulmonary sclerosing hemangioma].

    Science.gov (United States)

    Qi, Feng-jie; Zhang, Xiu-wei; Zhang, Yong-xing; Dai, Shun-dong; Wang, En-hua

    2006-05-01

    To study the clonality of polygonal cells and surface cuboidal cells in the so-called pulmonary sclerosing hemangioma (PSH). 17 female surgically resected PSH were found. The polygonal cells and surface cuboidal cells of the 17 PSH cases were microdissected from routine hematoxylin and eosin-stained sections. Genomic DNA was extracted, pretreated through incubation with methylation-sensitive restrictive endonuclease HhaI or HpaII, and amplified by nested polymerase chain reaction for X chromosome-linked androgen receptor (AR) and phosphoglycerate kinase (PGK) genes. The length polymorphism of AR gene was demonstrated by denaturing polyacrylamide gel electrophoresis and silver staining. The PGK gene products were treated with Bst XI and resolved on agarose gel. Amongst the 17 female cases of PSH, 15 samples were successfully amplified for AR and PGK genes. The rates of polymorphism were 53% (8/15) and 27% (4/15) for AR and PGK genes respectively. Polygonal cells and surface cuboidal cells of 10 cases which were suitable for clonality study, showed the same loss of alleles (clonality ratio = 0) or unbalanced methylation pattern (clonality ratio < 0.25). The polygonal cells and surface cuboidal cells in PSH demonstrate patterns of monoclonal proliferation, indicating that both represent true neoplastic cells.

  16. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Marina Kemmerer

    Full Text Available AMP-activated protein kinase (AMPK maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO. The transcription factor peroxisome proliferator-activated receptor δ (PPARδ also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  17. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    Science.gov (United States)

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    Science.gov (United States)

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  19. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  20. Rearranged anaplastic lymphoma kinase (ALK) gene found for the first time in adult-onset papillary thyroid cancer cases among atomic bomb survivors

    International Nuclear Information System (INIS)

    Hamatani, K.; Mukai, M.; Takahashi, K.; Nakachi, K.; Kusunoki, Y.; Hayashi, Y.

    2012-01-01

    Full text of the publication follows: Thyroid cancer is one of the malignancies most strongly associated with ionizing radiation in humans. Epidemiology studies of atomic bomb (A-bomb) survivors have indicated that excess relative risk of papillary thyroid cancer per Gy was remarkably high in the survivors. We therefore aim to clarify mechanisms linking A-bomb radiation exposure and development of papillary thyroid cancer. Toward this end, we intend to clarify characteristics of gene alterations occurring in radiation-associated adult-onset papillary thyroid cancer from the Life Span Study cohort of A-bomb survivors. We have thus far found that with increased radiation dose, papillary thyroid cancer cases with chromosomal rearrangements (mainly RET/PTC rearrangements) significantly increased and papillary thyroid cancer cases with point mutations (mainly BRAF-V600E) significantly decreased. Papillary thyroid cancer cases with non-detected gene alterations that carried no mutations in RET, NTRK1, BRAF or RAS genes tended to increase with increased radiation dose. In addition, we found that relative frequency of these papillary thyroid cancer cases significantly decreased with time elapsed since exposure. Through analysis of papillary thyroid cancer cases with non-detected gene alterations, we recently discovered a new type of rearrangement for the first time in papillary thyroid cancer, i.e., rearranged anaplastic lymphoma kinase (ALK) gene, although identification of any partner gene(s) is needed. Specifically, rearrangement of ALK was found in 10 of 19 exposed papillary thyroid cancer cases with non-detected gene alterations but not in any of the six non-exposed papillary thyroid cancer cases. Furthermore, papillary thyroid cancer with ALK rearrangement was frequently found in the cases with high radiation dose or with short time elapsed since A-bomb exposure. These results suggest that chromosomal rearrangement, typically of RET and ALK, may play an important

  1. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1).

    Science.gov (United States)

    Zhu, Xiang-Yu; Liu, Ning; Liu, Wei; Song, Shao-Wei; Guo, Ke-Jian

    2012-04-01

    Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  2. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhu

    2012-01-01

    Full Text Available Integrin-linked kinase (ILK is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1 cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  3. Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: the role of protein kinase B

    Czech Academy of Sciences Publication Activity Database

    Blaha, Milan; Procházka, Radek; Adámková, K.; Nevoral, J.; Němcová, Lucie

    2017-01-01

    Roč. 130, č. 2 (2017), s. 38-46 ISSN 1098-8823 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : cumulus * oocyte * prostaglandin E2 * protein kinase B Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 2.640, year: 2016

  4. Recurrent and founder mutations in the Netherlands Plakophilin-2 p.Arg79X mutation causing arrhythmogenic right ventricular cardiomyopathy/dysplasia

    NARCIS (Netherlands)

    van der Zwaag, P. A.; Cox, M. G. P. J.; van der Werf, C.; Wiesfeld, A. C. P.; Jongbloed, J. D. H.; Dooijes, D.; Bikker, H.; Jongbloed, R.; Suurmeijer, A. J. H.; van den Berg, M. P.; Hofstra, R. M. W.; Hauer, R. N. W.; Wilde, A. A. M.; van Tintelen, J. P.

    2010-01-01

    Background. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited cardiac disease with reduced penetrance and a highly variable expression. Mutations in the gene encoding the plakophilin-2 gene (PKP2) are detected in about 50% of ARVC/D patients. The p. Arg79X mutation

  5. Recurrent and founder mutations in the Netherlands Plakophilin-2 p.Arg79X mutation causing arrhythmogenic right ventricular cardiomyopathy/dysplasia

    NARCIS (Netherlands)

    van der Zwaag, P. A.; Cox, M. G. P. J.; van der Werf, C.; Wiesfeld, A. C. P.; Jongbloed, J. D. H.; Dooijes, D.; Bikker, H.; Jongbloed, R.; Suurmeijer, A. J. H.; van den Berg, M. P.; Hofstra, R. M. W.; Hauer, R. N. W.; Wilde, A. A. M.; van Tintelen, J. P.

    Background. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited cardiac disease with reduced penetrance and a highly variable expression. Mutations in the gene encoding the plakophilin-2 gene (PKP2) are detected in about 50% of ARVC/D patients. The p. Arg79X mutation

  6. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  7. ADH1B Arg47His polymorphism is associated with esophageal cancer risk in high-incidence Asian population: evidence from a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Guohong Zhang

    Full Text Available BACKGROUND AND OBJECTIVES: Incidence of Esophageal squamous cell carcinoma (ESCC is prevalent in Asian populations, especially in the ones from the "Asian esophageal cancer belt" along the Silk Road and the ones from East Asia (including Japan. Silk Road and Eastern Asia population genetics are relevant to the ancient population migration from central China. The Arg47His (rs1229984 polymorphism of ADH1B is the highest in East Asians, and ancient migrations along the Silk Road were thought to be contributive to a frequent ADH1B*47His allele in Central Asians. This polymorphism was identified as responsible for susceptibility in the first large-scale genome-wide association study of ESCC and that's explained by its modulation of alcohol oxidization capability. To investigate the association of ADH1B Arg47His with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis. METHODS: A dataset composed of 4,220 cases and 8,946 controls from twelve studies of Asian populations was analyzed for ADH1B Arg47His association with ESCC and its interactions with alcohol drinking and ALDH2 Glu504Lys. Heterogeneity among studies and their publication bias were also tested. RESULTS: The ADH1B*47Arg allele was found to be associated to increased risk of ESCC, with the odds ratios (OR being 1.62 (95% CI: 1.49-1.76 and 3.86 (2.96-5.03 for the His/Arg and the Arg/Arg genotypes, respectively. When compared with the His/His genotype of non-drinkers, the Arg/Arg genotype can interact with alcohol drinking and greatly increase the risk of ESCC (OR = 20.69, 95%CI: 5.09-84.13. Statistical tests also showed gene-gene interaction of ADH1B Arg+ with ALDH2 Lys+ can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32-78.07. CONCLUSION: Revealed by this meta-analysis, ADH1B*47Arg as a common ancestral allele can significantly increase the risk of ESCC in Asians, especially when coupled

  8. ADH1B Arg47His polymorphism is associated with esophageal cancer risk in high-incidence Asian population: evidence from a meta-analysis.

    Science.gov (United States)

    Zhang, Guohong; Mai, Ruiqin; Huang, Bo

    2010-10-27

    Incidence of Esophageal squamous cell carcinoma (ESCC) is prevalent in Asian populations, especially in the ones from the "Asian esophageal cancer belt" along the Silk Road and the ones from East Asia (including Japan). Silk Road and Eastern Asia population genetics are relevant to the ancient population migration from central China. The Arg47His (rs1229984) polymorphism of ADH1B is the highest in East Asians, and ancient migrations along the Silk Road were thought to be contributive to a frequent ADH1B*47His allele in Central Asians. This polymorphism was identified as responsible for susceptibility in the first large-scale genome-wide association study of ESCC and that's explained by its modulation of alcohol oxidization capability. To investigate the association of ADH1B Arg47His with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis. A dataset composed of 4,220 cases and 8,946 controls from twelve studies of Asian populations was analyzed for ADH1B Arg47His association with ESCC and its interactions with alcohol drinking and ALDH2 Glu504Lys. Heterogeneity among studies and their publication bias were also tested. The ADH1B*47Arg allele was found to be associated to increased risk of ESCC, with the odds ratios (OR) being 1.62 (95% CI: 1.49-1.76) and 3.86 (2.96-5.03) for the His/Arg and the Arg/Arg genotypes, respectively. When compared with the His/His genotype of non-drinkers, the Arg/Arg genotype can interact with alcohol drinking and greatly increase the risk of ESCC (OR = 20.69, 95%CI: 5.09-84.13). Statistical tests also showed gene-gene interaction of ADH1B Arg+ with ALDH2 Lys+ can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32-78.07). Revealed by this meta-analysis, ADH1B*47Arg as a common ancestral allele can significantly increase the risk of ESCC in Asians, especially when coupled with alcohol drinking or the ALDH2*504Lys allele.

  9. Studies on the Nucleotide Sequence, Transcription and Deletion Analysis of the BmNPV Protein Kinase Gene.

    Science.gov (United States)

    Zhang, Chuan-Xi; Hu, Cui; Wu, Xiang-Fu

    1998-01-01

    The coding region of BmvPK-1 gene of Bombyx mori NPV (Strain ZJ8) is 828 nt long and encodes a 276 aa polypeptide with predicted molecular mass of 32 kD. Dot blot analysis showed its mRNA to be gene is first detectable at 18 h p.i. and reaching the highest transcriptional level at 48 h p.i. The result suggested that BmvPK-1 gene is a late or very late gene. The most conserved 365 bp of the BmvPK-1 gene was deleted in a transfer vector (pUCPK-lac), and a report gene (lacZ) was inserted in the deleted position. Cotransfection of BmN cells with pUCPK-lac DNA and BmNPV DNA resulted in the recombinant virus which expressed detectable product of lacZ gene. But the virus with the deleted BmvPK-1 gene could not be isolated from the wild BmNPV by plaque purification method. The result showed that the BmvPK-1 gene deleted virus can multiply only with the help of the product of this gene from the wild type virus, and the gene is necessary for the virus to finish its life cycle in the cultured cells.

  10. Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion.

    Science.gov (United States)

    Wallace, David B; Viljoen, Gerrit J

    2005-04-27

    The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.

  11. Hypertension-Related Gene Polymorphisms of G-Protein-Coupled Receptor Kinase 4 Are Associated with NT-proBNP Concentration in Normotensive Healthy Adults

    Directory of Open Access Journals (Sweden)

    Junichi Yatabe

    2012-01-01

    Full Text Available G protein-coupled receptor kinase 4 (GRK4 with activating polymorphisms desensitize the natriuric renal tubular D1 dopamine receptor, and these GRK4 polymorphisms are strongly associated with salt sensitivity and hypertension. Meanwhile, N-terminal pro-B-type natriuretic peptide (NT-proBNP may be useful in detecting slight volume expansion. However, relations between hypertension-related gene polymorphisms including GRK4 and cardiovascular indices such as NT-proBNP are not clear, especially in healthy subjects. Therefore, various hypertension-related polymorphisms and cardiovascular indices were analyzed in 97 normotensive, healthy Japanese adults. NT-proBNP levels were significantly higher in subjects with two or more GRK4 polymorphic alleles. Other hypertension-related gene polymorphisms, such as those of renin-angiotensin-aldosterone system genes, did not correlate with NT-proBNP. There was no significant association between any of the hypertension-related gene polymorphisms and central systolic blood pressure, cardioankle vascular index, augmentation index, plasma aldosterone concentration, or an oxidative stress marker, urinary 8-OHdG. Normotensive individuals with GRK4 polymorphisms show increased serum NT-proBNP concentration and may be at a greater risk of developing hypertension and cardiovascular disease.

  12. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir

    Directory of Open Access Journals (Sweden)

    Huicong Zhou

    2016-06-01

    Full Text Available The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF and HSV TK/GCV (BF-rTK/GCV. However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.

  13. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-01-01

    clusters with argH in an operon-like fashion. In this group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this short NAGS version for arginine biosynthesis. Conclusion The gene-enzyme relationship for the first committed step of arginine biosynthesis should now be considered in a new perspective. In addition to bifunctional OAT, nature appears to implement at least three alternatives for the acetylation of glutamate. It is possible to propose evolutionary relationships between them starting from the same ancestral N-acetyltransferase domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme, whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli or with argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current nomenclature since the same gene name argA has been used to designate structurally different entities. Clarifying the confusion would help to prevent erroneous genomic annotation.

  14. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  15. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Science.gov (United States)

    Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia

    2016-06-01

    Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  16. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Directory of Open Access Journals (Sweden)

    H. Yue

    2016-06-01

    Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  17. The -271 G>A polymorphism of kinase insert domain-containing receptor gene regulates its transcription level in patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    An, She-Juan; Chen, Zhi-Hong; Lin, Qiu-Xiong; Su, Jian; Chen, Hua-Jun; Lin, Jia-Ying; Wu, Yi-Long

    2009-01-01

    Kinase insert domain-containing receptor (KDR) plays a critical role in the metastasis of cancer and is used as a molecular target in cancer therapy. We investigated the characteristics of the -271 G>A polymorphism of the KDR gene to gain information that may benefit the development of individualized therapies for patients with non-small cell lung cancer (NSCLC). The -271 G>A polymorphism of the KDR gene in 106 lung cancer patients and 203 healthy control individuals was analyzed by polymerase chain reaction (PCR) and DNA sequencing methods. Real-time quantitative PCR and immunohistochemical methods were used to evaluate KDR mRNA and protein expression levels, respectively, in frozen tumor specimens. The -271 G>A polymorphism was associated with the mRNA expression level of the KDR gene in tumor tissues (t = 2.178, P = 0.032, independent samples t-test). Compared with the AG/GG genotype, the AA genotype was associated with higher KDR mRNA expression in tumor tissues. We found no relationship between the genotype and the KDR protein expression level and no significant difference in the distribution of the KDR gene polymorphism genotypes between lung cancer patients and the control group (χ 2 = 1.269, P = 0.264, Fisher's exact test). This study is the first to show that the -271 G>A polymorphism of the KDR gene may be a functional polymorphism related to the regulation of gene transcription. These findings may have important implications for therapies targeting KDR in patients with NSCLC

  18. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both

    Directory of Open Access Journals (Sweden)

    M.C.S. Brum

    2010-02-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE or thymidine kinase (TK gene or both (gE/TK from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99. A gE-deleted recombinant virus (BoHV-5 gE∆ was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆ was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE BoHV-5 recombinant (BoHV-5 gE/TK∆ was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK cells, the mutants lacking gE (BoHV-5 gE∆ and TK + gE (BoHV-5 gE/TK∆ produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆ were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆ produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.

  19. Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome

    Directory of Open Access Journals (Sweden)

    Anton S. Sulima

    2017-11-01

    Full Text Available During the initial step of the symbiosis between legumes (Fabaceae and nitrogen-fixing bacteria (rhizobia, the bacterial signal molecule known as the Nod factor (nodulation factor is recognized by plant LysM motif-containing receptor-like kinases (LysM-RLKs. The fifth chromosome of barrel medic (Medicago truncatula Gaertn. contains a cluster of paralogous LysM-RLK genes, one of which is known to participate in symbiosis. In the syntenic region of the pea (Pisum sativum L. genome, three genes have been identified: PsK1 and PsSym37, two symbiosis-related LysM-RLK genes with known sequences, and the unsequenced PsSym2 gene which presumably encodes a LysM-RLK and is associated with increased selectivity to certain Nod factors. In this work, we identified a new gene encoding a LysM-RLK, designated as PsLykX, within the Sym2 genomic region. We sequenced the first exons (corresponding to the protein receptor domain of PsSym37, PsK1, and PsLykX from a large set of pea genotypes of diverse origin. The nucleotide diversity of these fragments was estimated and groups of haplotypes for each gene were revealed. Footprints of selection pressure were detected via comparative analyses of SNP distribution across the first exons of these genes and their homologs MtLYK2, MtLYK3, and MtLYK4 from M. truncatula retrieved from the Medicago Hapmap project. Despite the remarkable similarity among all the studied genes, they exhibited contrasting selection signatures, possibly pointing to diversification of their functions. Signatures of balancing selection were found in LysM1-encoding parts of PsSym37 and PsK1, suggesting that the diversity of these parts may be important for pea LysM-RLKs. The first exons of PsSym37 and PsK1 displayed signatures of purifying selection, as well as MtLYK2 of M. truncatula. Evidence of positive selection affecting primarily LysM domains was found in all three investigated M. truncatula genes, as well as in the pea gene PsLykX. The data

  20. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians

    Science.gov (United States)

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  1. DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and -Regulated Kinase 1A: A Gene with Dosage Effect During Development and Neurogenesis

    Directory of Open Access Journals (Sweden)

    M. Dierssen

    2006-01-01

    Full Text Available DYRKs (dual-specificity tyrosine-regulated kinases are an emerging family of evolutionarily conserved dual-specificity kinases that play key roles in cell proliferation, survival, and development. The research in the last years suggests a relevant conserved function during neuronal development, related to proliferation and/or differentiation for DYRK1A. It is expressed in neural progenitor cells and has been proposed to participate in the signaling mechanisms that regulate dendrite differentiation. In Drosophila, disruption of the homolog minibrain gene results in flies with reduced neuroblast proliferation, decreased numbers of central brain neurons, and learning/memory deficits. Knockout DYRK1A mice are embryonic lethal, and heterozygotes show decreased viability and region-specific reductions in brain size. In humans, DYRK1A has been proposed to be involved in the neurodevelopmental alterations associated with Down syndrome. The large number of protein interaction and putative substrates described for DYRK1A suggest multiple pathways and functions to be involved in its developmental function. This review focuses on the functional role that DYRK1A plays in brain development.

  2. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  3. Down regulation by a low-zinc diet in gene expression of rat prostatic thymidylate synthase and thymidine kinase

    Directory of Open Access Journals (Sweden)

    Sassa Shuji

    2008-05-01

    Full Text Available Abstract Background Zinc has a wide spectrum of biological activities and its deficiency is related to various abnormalities of cell metabolism. Methods Wistar male rats, at age of 4 weeks, were fed a low-zinc diet for six weeks. The levels of bromodeoxyuridine incorporated into the prostatic DNA and the mRNA expression levels of prostate thymidylate synthase and thymidine kinase were examined. Result The low-zinc diet caused a marked reduction in the body growth and organ weights, resulted in a low hematopoiesis, hypo-albuminemia and hypocholesterolemia. Although there were few differences in plasma biochemical markers, plasma levels of luteinizing hormone and testosterone were reduced by the low-zinc diet. Bromodeoxyuridine-immunoreactive (S-phase cells and mRNA expression levels of thymidylate synthase and thymidine kinase in the prostate cells were markedly affected by the low-zinc diet. Conclusion A low-zinc diet appears to reduce the body growth and organ weights including prostate, causing low plasma levels of luteinizing hormone and testosterone and reduction in prostate DNA replication in growing-rats.

  4. Characterisation of adiponectin multimers and the IGF axis in humans with a heterozygote mutation in the tyrosine kinase domain of the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning; Flyvbjerg, Allan

    2012-01-01

    Objective: Low levels of adiponectin, IGF-binding protein (IGFBP)-1, and IGFBP-2, and high levels of leptin correlate with several indices of insulin resistance and risk of type 2 diabetes. However, in insulin receptoropathies plasma adiponectin is paradoxically increased despite severe insulin...... resistance, whereas the IGF-axis is sparsely described. Here, we aimed to characterize the multimeric distribution of adiponectin and the IGF-axis in humans with a heterozygous INSR mutation (Arg1174Gln).Methods: Blood samples obtained in six Arg1174Gln-carriers and 10 lean, healthy controls before and after...... an euglycemic-hyperinsulinemic clamp were examined for plasma adiponectin multimers, leptin, total IGF-I, IGF-II, free IGF-I, IGFBP-1 and IGFBP-2.Results: Despite 10-fold elevated fasting insulin and marked insulin resistance in Arg1174Gln-carriers, the levels of total adiponectin, leptin, IGFBP-1 and IGFBP-2...

  5. Synthesis and Biological Evaluation of a New Acyclic Pyrimidine Derivative as a Probe for Imaging Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression

    Directory of Open Access Journals (Sweden)

    Simon M. Ametamey

    2013-07-01

    Full Text Available With the idea of finding a more selective radiotracer for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk gene expression by means of positron emission tomography (PET, a novel [18F]fluorine radiolabeled pyrimidine with 4-hydroxy-3-(hydroxymethylbutyl side chain at N-1 (HHB-5-[18F]FEP was prepared and evaluated as a potential PET probe. Unlabeled reference compound, HHB-5-FEP, was synthesized via a five-step reaction sequence starting from 5-(2-acetoxyethyl-4-methoxypyrimidin-2-one. The radiosynthesis of HHB-[18F]-FEP was accomplished by nucleophilic radiofluorination of a tosylate precursor using [18F]fluoride-cryptate complex in 45% ± 4 (n = 4 radiochemical yields and high purity (>99%. The biological evaluation indicated the feasibility of using HHB-5-[18F]FEP as a PET radiotracer for monitoring HSV1-tk expression in vivo.

  6. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  7. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan

    2010-01-01

    OBJECTIVE: Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects...... infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact...

  8. Increased expression of protein kinase A inhibitor alpha (PKI-alpha) and decreased PKA-regulated genes in chronic intermittent alcohol exposure.

    Science.gov (United States)

    Repunte-Canonigo, Vez; Lutjens, Robert; van der Stap, Lena D; Sanna, Pietro Paolo

    2007-03-23

    Intermittent models of alcohol exposure that mimic human patterns of alcohol consumption produce profound physiological and biochemical changes and induce rapid increases in alcohol self-administration. We used high-density oligonucleotide microarrays to investigate gene expression changes during chronic intermittent alcohol exposure in three brain regions that receive mesocorticolimbic dopaminergic projections and that are believed to be involved in alcohol's reinforcing actions: the medial prefrontal cortex, the nucleus accumbens and the amygdala. An independent replication of the experiment was used for RT-PCR validation of the microarray results. The protein kinase A inhibitor alpha (PKI-alpha, Pkia), a member of the endogenous PKI family implicated in reducing nuclear PKA activity, was found to be increased in all three regions tested. Conversely, we observed a downregulation of the expression of several PKA-regulated transcripts in one or more of the brain regions studied, including the activity and neurotransmitter-regulated early gene (Ania) - 1, -3, -7, -8, the transcription factors Egr1 and NGFI-B (Nr4a1) and the neuropeptide NPY. Reduced expression of PKA-regulated genes in mesocorticolimbic projection areas may have motivational significance in the rapid increase in alcohol self-administration induced by intermittent alcohol exposure.

  9. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets

    Directory of Open Access Journals (Sweden)

    Lei Long

    2015-12-01

    Full Text Available The object of this study was to explore the regulatory mechanism of octacosanol to the body of animals and the effects of octacosanol on blood hormone levels and gene expressions of glucose transporter protein (GLUT-4 and adenosine monophosphate protein kinase (AMPK in liver and muscle tissue of weaning piglets. A total of 105 crossbred piglets ([Yorkshire × Landrace] × Duroc with an initial BW of 5.70 ± 1.41 kg (21 d of age were used in a 6-wk trial to evaluate the effects of octacosanol and tiamulin supplementation on contents of triiodothyronine (T3, thyroxine (T4, growth hormone (GH, glucagon (GU and adrenaline (AD in blood and gene expressions of GLUT-4 and AMPK in liver and muscle. Piglets were randomly distributed into 3 dietary treatments on the basis of BW and sex. Each treatment had 7 replicate pens with 5 piglets per pen. Treatments were as followed: control group, tiamulin group and octacosanol group. The results showed that compared with control group and tiamulin group, octacosanol greatly promoted the secretion of T3, GH, GU and AD (P  0.05. Results of the present study has confirmed that octacosanol affects energy metabolism of body by regulating secretion of blood hormones and related gene expression in tissue of weaning piglets, which can reduce stress response and has an impact on performance.

  10. Tanshinone IIA increases the bystander effect of herpes simplex virus thymidine kinase/ganciclovir gene therapy via enhanced gap junctional intercellular communication.

    Directory of Open Access Journals (Sweden)

    Jianyong Xiao

    Full Text Available The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV. This effect is reported to be mediated by gap junctional intercellular communication (GJIC, and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA, a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy.

  11. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    Science.gov (United States)

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  12. Characterization of CoPK02, a Ca2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea.

    Science.gov (United States)

    Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi

    2018-04-20

    We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.

  13. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    International Nuclear Information System (INIS)

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-01-01

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  14. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  15. Co-ordinate loss of protein kinase C and multidrug resistance gene expression in revertant MCF-7/Adr breast carcinoma cells.

    Science.gov (United States)

    Budworth, J; Gant, T W; Gescher, A

    1997-01-01

    The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.

  16. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A.

    2006-01-01

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension

  17. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Directory of Open Access Journals (Sweden)

    Xinhua Shu

    Full Text Available A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  18. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  19. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis.

    Science.gov (United States)

    van Doorn, Remco; Dijkman, Remco; Vermeer, Maarten H; Out-Luiting, Jacoba J; van der Raaij-Helmer, Elisabeth M H; Willemze, Rein; Tensen, Cornelis P

    2004-08-15

    Sézary syndrome (Sz) is a malignancy of CD4+ memory skin-homing T cells and presents with erythroderma, lymphadenopathy, and peripheral blood involvement. To gain more insight into the molecular features of Sz, oligonucleotide array analysis was performed comparing gene expression patterns of CD4+ T cells from peripheral blood of patients with Sz with those of patients with erythroderma secondary to dermatitis and healthy controls. Using unsupervised hierarchical clustering gene, expression patterns of T cells from patients with Sz were classified separately from those of benign T cells. One hundred twenty-three genes were identified as significantly differentially expressed and had an average fold change exceeding 2. T cells from patients with Sz demonstrated decreased expression of the following hematopoietic malignancy-linked tumor suppressor genes: TGF-beta receptor II, Mxi1, Riz1, CREB-binding protein, BCL11a, STAT4, and Forkhead Box O1A. Moreover, the tyrosine kinase receptor EphA4 and the potentially oncogenic transcription factor Twist were highly and selectively expressed in T cells of patients with Sz. High expression of EphA4 and Twist was also observed in lesional skin biopsy specimens of a subset of patients with cutaneous T cell lymphomas related to Sz, whereas their expression was nearly undetectable in benign T cells or in skin lesions of patients with inflammatory dermatoses. Detection of EphA4 and Twist may be used in the molecular diagnosis of Sz and related cutaneous T-cell lymphomas. Furthermore, the membrane-bound EphA4 receptor may serve as a target for directed therapeutic intervention.

  20. The Effect of Gene Alterations and Tyrosine Kinase Inhibition on Survival and Cause of Death in Patients With Adenocarcinoma of the Lung and Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Sperduto, Paul W., E-mail: psperduto@mropa.com [Minneapolis Radiation Oncology and University of Minnesota Gamma Knife Center, Minneapolis, Minnesota (United States); Yang, T. Jonathan; Beal, Kathryn [Sloan Kettering Cancer Center, New York, New York (United States); Pan, Hubert; Brown, Paul D. [MD Anderson Cancer Center, Houston, Texas (United States); Bangdiwala, Ananta; Shanley, Ryan [University of Minnesota, Masonic Cancer Center, Biostatistics, Minneapolis, Minnesota (United States); Yeh, Norman; Gaspar, Laurie E. [University of Colorado–Denver, Denver, Colorado (United States); Braunstein, Steve; Sneed, Penny [University of California–San Francisco, San Francisco, California (United States); Boyle, John; Kirkpatrick, John P. [Duke University, Durham, North Carolina (United States); Mak, Kimberley S.; Shih, Helen A. [Massachusetts General Hospital, Boston, Massachusetts (United States); Engelman, Alex [University of Maryland, Baltimore, Maryland (United States); Roberge, David [CHUM, University of Montreal, Montreal, Quebec (Canada); Arvold, Nils D.; Alexander, Brian; Awad, Mark M. [Dana Farber/Brigham and Women' s Cancer Center, Boston, Massachusetts (United States); and others

    2016-10-01

    Purpose: Lung cancer remains the most common cause of both cancer mortality and brain metastases (BM). The purpose of this study was to assess the effect of gene alterations and tyrosine kinase inhibition (TKI) on median survival (MS) and cause of death (CoD) in patients with BM from lung adenocarcinoma (L-adeno). Methods: A multi-institutional retrospective database of patients with L-adeno and newly diagnosed BM between 2006 and 2014 was created. Demographics, gene alterations, treatment, MS, and CoD were analyzed. The treatment patterns and outcomes were compared with those in prior trials. Results: Of 1521 L-adeno patients, 816 (54%) had known alteration status. The gene alteration rates were 29%, 10%, and 26% for EGFR, ALK, and KRAS, respectively. The time from primary diagnosis to BM for EGFR−/+ was 10/15 months (P=.02) and for ALK−/+ was 10/20 months (P<.01), respectively. The MS for the group overall (n=1521) was 15 months. The MS from first treatment for BM for EGFR and ALK−, EGFR+, ALK+ were 14, 23 (P<.01), and 45 (P<.0001) months, respectively. The MS after BM for EGFR+ patients who did/did not receive TKI before BM was 17/30 months (P<.01), respectively, but the risk of death was not statistically different between TKI-naïve patients who did/did not receive TKI after the diagnosis of BM (EGFR/ALK hazard ratios: 1.06 [P=.84]/1.60 [P=.45], respectively). The CoD was nonneurologic in 82% of patients with known CoD. Conclusion: EGFR and ALK gene alterations are associated with delayed onset of BM and longer MS relative to patients without these alterations. The CoD was overwhelmingly nonneurologic in patients with known CoD.

  1. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity.

    Science.gov (United States)

    Saito, Takayuki; Inagaki, Satoru; Sakurai, Kaoru; Okuda, Katsuji; Ishihara, Kazuyuki

    2011-03-01

    Periodontitis, an infectious disease caused by periodontopathic bacteria, including Porphyromonas gingivalis, is reported to be accelerated by stress, under which noradrenaline levels are increased in the bloodstream. The purpose of this study was to evaluate the effects of noradrenaline on P. gingivalis. P. gingivalis was incubated in the presence of 25μM, 50μM, or 100μM adrenaline or noradrenaline at 37°C for 12, 24 or 36h and growth was evaluated by OD(660). Auto-inducer-2 (AI-2) was measured by luminescence of Vibrio harveyi BB 170. Expression of P. gingivalis genes was evaluated using a microarray and RT-PCR. Rgp activity of arg-gingipainA and B (Rgp) was measured with a synthetic substrate. Growth of P. gingivalis FDC381 was inhibited by noradrenaline at 24 and 36h. Growth inhibition by noradrenaline increased dose-dependently. Inhibition of growth partially recovered with addition of propranolol. AI-2 production from P. gingivalis showed a marked decrease with addition of noradrenaline compared with peak production levels in the control group. Microarray analysis revealed an increase in expression in 18 genes and a decrease in expression in 2 genes. Amongst these genes, expression of the protease arg-gingipainB (RgpB) gene, a major virulence factor of P. gingivalis, was further analysed. Expression of rgpB showed a significant increase with addition of noradrenaline, which was partially reduced by addition of propranolol. Cell-associated Rgp activity also increased with addition of noradrenaline. These results suggest that stressors influence the expression of the virulence factors of P. gingivalis via noradrenaline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhao, Jun; Gao, Yulong; Zhang, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-06

    Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5' region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling

  3. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene.

    Science.gov (United States)

    Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.

  4. A novel mutation in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene associated with a severe Rett phenotype.

    Science.gov (United States)

    Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A

    2009-02-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.

  5. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages.

    Science.gov (United States)

    Thorne, James L; Ouboussad, Lylia; Lefevre, Pascal F

    2012-09-01

    IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.

  6. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation.

    Directory of Open Access Journals (Sweden)

    Claudio Scafoglio

    Full Text Available Checkpoint kinase 2 (Chk2 is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.

  7. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  8. Leptin receptor Gln223Arg polymorphism and breast cancer risk in Nigerian women: A case control study

    International Nuclear Information System (INIS)

    Okobia, Michael N; Taioli, Emanuela; Bunker, Clareann H; Garte, Seymour J; Zmuda, Joseph M; Ezeome, Emmanuel R; Anyanwu, Stanley N; Uche, Emmanuel E; Kuller, Lewis H; Ferrell, Robert E

    2008-01-01

    Leptin, a 16 kDa polypeptide hormone, implicated in various physiological processes, exerts its action through the leptin receptor, a member of the class I cytokine receptor family. Both leptin and leptin receptor have recently been implicated in processes leading to breast cancer initiation and progression in animal models and humans. An A to G transition mutation in codon 223 in exon 6 of the leptin receptor gene, resulting in glutamine to arginine substitution (Gln223Arg), lies within the first of two putative leptin-binding regions and may be associated with impaired signaling capacity of the leptin receptor. This study was designed to assess the role of this polymorphism in breast cancer susceptibility in Nigerian women. We utilized a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay to evaluate the association between the Gln223Arg polymorphism of the leptin receptor gene and breast risk in Nigeria in a case control study involving 209 women with breast cancer and 209 controls without the disease. Study participants were recruited from surgical outpatient clinics and surgical wards of four University Teaching Hospitals located in Midwestern and southeastern Nigeria between September 2002 and April 2004. Premenopausal women carrying at least one LEPR 223Arg allele were at a modestly increased risk of breast cancer after adjusting for confounders (OR = 1.8, 95% confidence interval [CI] 1.0–3.2, p = 0.07). There was no association with postmenopausal breast cancer risk (OR = 0.9, 95% CI 0.4–1.8, p = 0.68). Our results suggest that the LEPR Gln223Arg polymorphism in the extracellular domain of the LEPR receptor gene is associated with a modestly increased risk of premenopausal breast cancer in Nigerian women

  9. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients.

    Science.gov (United States)

    García-Cazorla, Angels; Oyarzabal, Alfonso; Fort, Joana; Robles, Concepción; Castejón, Esperanza; Ruiz-Sala, Pedro; Bodoy, Susanna; Merinero, Begoña; Lopez-Sala, Anna; Dopazo, Joaquín; Nunes, Virginia; Ugarte, Magdalena; Artuch, Rafael; Palacín, Manuel; Rodríguez-Pombo, Pilar; Alcaide, Patricia; Navarrete, Rosa; Sanz, Paloma; Font-Llitjós, Mariona; Vilaseca, Ma Antonia; Ormaizabal, Aida; Pristoupilova, Anna; Agulló, Sergi Beltran

    2014-04-01

    Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention. © 2014 WILEY PERIODICALS, INC.

  10. Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis Cultivars

    Directory of Open Access Journals (Sweden)

    Xiang Jin

    2017-10-01

    Full Text Available Rubber tree (Hevea brasiliensis is the only commercially cultivated plant for producing natural rubber, one of the most essential industrial raw materials. Knowledge of the evolutionary and functional characteristics of kinases in H. brasiliensis is limited because of the long growth period and lack of well annotated genome information. Here, we reported mitogen-activated protein kinases in H. brasiliensis (HbMPKs by manually checking and correcting the rubber tree genome. Of the 20 identified HbMPKs, four members were validated by proteomic data. Protein motif and phylogenetic analyses classified these members into four known groups comprising Thr-Glu-Tyr (TEY and Thr-Asp-Tyr (TDY domains, respectively. Evolutionary and syntenic analyses suggested four duplication events: HbMPK3/HbMPK6, HbMPK8/HbMPK9/HbMPK15, HbMPK10/HbMPK12 and HbMPK11/HbMPK16/HbMPK19. Expression profiling of the identified HbMPKs in roots, stems, leaves and latex obtained from three cultivars with different latex yield ability revealed tissue- and variety-expression specificity of HbMPK paralogues. Gene expression patterns under osmotic, oxidative, salt and cold stresses, combined with cis-element distribution analyses, indicated different regulation patterns of HbMPK paralogues. Further, Ka/Ks and Tajima analyses suggested an accelerated evolutionary rate in paralogues HbMPK10/12. These results revealed HbMPKs have diverse functions in natural rubber biosynthesis, and highlighted the potential possibility of using MPKs to improve stress tolerance in future rubber tree breeding.

  11. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  12. Imaging Expression of Cytosine Deaminase-Herpes Virus Thymidine Kinase Fusion Gene (CD/TK Expression with [124I]FIAU and PET

    Directory of Open Access Journals (Sweden)

    Trevor Hackman

    2002-01-01

    Full Text Available Double prodrug activation gene therapy using the Escherichia coli cytosine deaminase (CDherpes simplex virus type 1 thymidine kinase (HSV1-tk fusion gene (CD/TK with 5-fluorocytosine (5FC, ganciclovir (GCV, and radiotherapy is currently under evaluation for treatment of different tumors. We assessed the efficacy of noninvasive imaging with [124I]FIAU (2′-fluoro-2′-deoxy-1-β-d-arabinofuranosyl-5-iodo-uracil and positron emission tomography (PET for monitoring expression of the CD/TK fusion gene. Walker-256 tumor cells were transduced with a retroviral vector bearing the CD/TK gene (W256CD/TK cells. The activity of HSV1-TK and CD subunits of the CD/TK gene product was assessed in different single cell-derived clones of W256CD/TK cells using the FIAU radiotracer accumulation assay in cells and a CD enzyme assay in cell homogenates, respectively. A linear relationship was observed between the levels of CD and HSV1-tk subunit expression in corresponding clones in vitro over a wide range of CD/TK expression levels. Several clones of W256CD/TK cells with significantly different levels of CD/TK expression were selected and used to produce multiple subcutaneous tumors in rats. PET imaging of HSV1-TK subunit activity with [124I]FIAU was performed on these animals and demonstrated that different levels of CD/TK expression in subcutaneous W256CD/TK tumors can be imaged quantitatively. CD expression in subcutaneous tumor sample homogenates was measured using a CD enzyme assay. A comparison of CD and HSV1-TK subunit enzymatic activity of the CD/TK fusion protein in vivo showed a significant correlation. Knowing this relationship, the parametric images of CD subunit activity were generated. Imaging with [124I]FIAU and PET could provide pre- and posttreatment assessments of CD/TK-based double prodrug activation in clinical gene therapy trials.

  13. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Wu, Jun; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Shen, Fangyuan; Liu, Kuan; Hu, Feng; Li, Huixin; Jiang, Xin; Yang, Linzhang; Kengara, Fredrick Orori

    2015-01-01

    Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils. - Highlights: • Coexistence of OPs, antibiotics, and ARGs in dairy farm soils was ubiquitous. • Bioaccessible pollutants exhibited positive correlation with ARG abundance. • ARGs significantly correlated with intI1. • Bioaccessible pollutants demonstrated strong correlation with intI1. • The intI1 gene might serve as a potential proxy for mixed pollution. - Coexistence of mixed OPs and ARGs in dairy farm soils was ubiquitous; a positive correlation can be found between the bioaccessible OP fractions and ARG/intI1 abundance.

  15. Temporal Gradient in the Clock Gene and Cell-Cycle Checkpoint Kinase Wee1 Expression along the Gut

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Soták, Matúš; Sládek, Martin; Pácha, Jiří; Sumová, Alena

    2009-01-01

    Roč. 26, č. 4 (2009), s. 607-620 ISSN 0742-0528 R&D Projects: GA AV ČR(CZ) IAA500110605; GA ČR(CZ) GA305/09/0321; GA MŠk(CZ) LC554 EU Projects: European Commission(XE) 18741 - EUCLOCK Institutional research plan: CEZ:AV0Z50110509 Keywords : intestine epithelium * circadian clock gene * cell cycle Subject RIV: ED - Physiology Impact factor: 3.987, year: 2009

  16. Rearrangements and amplification of the ABL1 gene as an example of kinase activation in T-cell acute lymphoblastic

    OpenAIRE

    Graux, Carlos

    2008-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplastic disorder that develops from a single hematopoietic T-cell precursor that acquired oncogenic anomalies. T-ALL is a heterogeneous disease comprising several clinico-biological entities characterized by distinct underlying genetic defects. In the first part of this work, we attempted to correlate those numerous anomalies with the role of the corresponding non mutated genes or pathways in normal T-cell development. Mutations targeting se...

  17. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Agarwal, Manisha; Bakhshi, Sameer; Dwivedi, Sadanand N; Kabra, Madhulika; Shukla, Rashmi; Seth, Rachna

    2018-06-01

    Cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) genes are implicated in many malignancies including acute lymphoblastic leukemia (ALL). These tumor suppressor genes, with a key regulatory role in cell cycle are located on chromosome 9p21.3. Previous studies involving CDKN2A/B gene deletions have shown mixed associations with survival outcome in childhood ALL. Hundred and four newly diagnosed children with ALL (1-14 years) were enrolled in this study. Genomic DNA from pretreatment bone marrow/peripheral blood samples of these children was investigated for copy number alterations in CDKN2A/B genes using multiplex ligation dependent probe amplification assay. Immunophenotype subtyping and cytogenetic and molecular analysis of ALL was performed at start of induction chemotherapy in all children. Children were monitored for response to prednisolone (Day 8), complete morphological remission, and minimal residual disease at the end of induction. The minimum postinduction follow-up period was 6 months. CDKN2A/B deletions were seen in 19.8% (18/91) of B lineage acute lymphoblastic leukemia (B-ALL) and 38.5% (5/13) of T lineage acute lymphoblastic leukemia (T-ALL). Monoallelic CDKN2A/B deletions were found in 61.1% of total deletions in B-ALL while all the children with T-ALL harbored biallelic deletions. The prevalence of CDKN2A/B gene deletions was found to be significantly higher in older children (P = 0.002), in those with higher leukocyte count (P = 0.037), and in National Cancer Institute high risk group patients (P = 0.001) in the B-ALL subgroup. Hazard ratio was significantly high for children with CDKN2A/B deletions in total cohort (P = 0.004). Children with CDKN2A/B deletion had significantly lesser event free survival (P = 0.03). CDKN2A/B deletions were significantly more prevalent in T-ALL subgroup and were found to have higher hazard ratio and lesser event free survival in total cohort in our study. © 2018 Wiley Periodicals, Inc.

  18. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy.

    Science.gov (United States)

    Torres, Carolina Machado; Siebert, Marina; Bock, Hugo; Mota, Suelen Mandelli; Castan, Juliana Unis; Scornavacca, Francisco; de Castro, Luiza Amaral; Saraiva-Pereira, Maria Luiza; Bianchin, Marino Muxfeldt

    2017-06-01

    Psychiatric comorbidities are highly prevalent in epilepsy, adding an important burden to the disease and profoundly affecting the quality of life of these individuals. Patients with temporal lobe epilepsy (TLE) are especially at risk to develop depression and several lines of evidence suggest that the association of depression with epilepsy might be related to common biological substrates. In this study, we test whether NTRK2 allele variants are associated with mood disorders or depressive disorders in patients with TLE. An association study of 163 patients with TLE. The NTRK2 variants studied were rs1867283, rs10868235, rs1147198, rs11140800, rs1187286, rs2289656, rs1624327, rs1443445, rs3780645, and rs2378672. All patients were submitted to the Structured Clinical Interview for DSM-IV (SCID) and epilepsy patients with mood disorders or depressive disorders were compared to epilepsy patients without mood disorders or depressive disorders. In our TLE cohort, 76 patients (46.6%) showed mood disorders. After logistic regression, independent risk factors for mood disorders in TLE were female sex, presence of concomitant anxiety disorders, and genetic variations in rs1867283 and rs10868235 NTRK2 variants. Depressive disorders accounted for this results and independent variables associated with depressive disorders in TLE were female sex (OR=2.59; 95%CI=1.15-5.82; p=0.021), presence of concomitant anxiety disorders (OR=3.72; 95%CI=1.71-8.06; p=0.001) or psychotic disorders (OR=3.86; 95%CI=1.12-13.25; p=0.032), A/A genotype in the rs1867283 NTRK2 gene (OR=3.06; 95%CI=1.25-7.50; p=0.015) and C/C genotype in the rs10868235 NTRK2 gene (OR=3.54; 1.55-8.08; p=0.003). Similarly, these genotypes also remained independently and significantly associated with depressive disorders when patients with depressive disorders were compared to TLE patients without any psychiatric comorbidity. In the present study, female sex, presence of concomitant anxiety or psychotic disorders, and

  19. Sample summary report for ARG 1 pressure tube sample

    International Nuclear Information System (INIS)

    Belinco, C.

    2006-01-01

    The ARG 1 sample is made from an un-irradiated Zr-2.5% Nb pressure tube. The sample has 103.4 mm ID, 112 mm OD and approximately 500 mm length. A punch mark was made very close to one end of the sample. The punch mark indicates the 12 O'clock position and also identifies the face of the tube for making all the measurements. ARG 1 sample contains flaws on ID and OD surface. There was no intentional flaw within the wall of the pressure tube sample. Once the flaws are machined the pressure tube sample was covered from outside to hide the OD flaws. Approximately 50 mm length of pressure tube was left open at both the ends to facilitate the holding of sample in the fixtures for inspection. No flaw was machined in this zone of 50 mm on either end of the pressure tube sample. A total of 20 flaws were machined in ARG 1 sample. Out of these, 16 flaws were on the OD surface and the remaining 4 on the ID surface of the pressure tube. The flaws were characterized in to various groups like axial flaws, circumferential flaws, etc

  20. THE PRIVATISATION AND THE ECONOMICAL ENVIRONMENT OF ARGES COUNTY

    Directory of Open Access Journals (Sweden)

    Cristina, CHIRIAC

    2014-11-01

    Full Text Available The privatisation process has generated over time a lot of controversial opinions of the specialists. The lack of a complete analysis of the privatisation process, even now, after more than 20 years from its beginning, has raised questions regarding the accomplishment of the goals of the macro-economic policy. This paper aims to enclose the analysis and evaluation function of the privatisation process in Arges County. Based on the information gathered, we will analyse individually the privatised companies in Arges County, we will try to estimate the success rate of the privatisation process but also what were the effects of the privatisation process with regards to employment. The purpose of this paper is the improvement of the evaluation frame of the privatisation process by creating an inventory of problems and techniques, establishing the success rate and the percent of failed privatisations. This is a complex subject whose causes and effects are connected in the Romanian context, sometimes in the European and even geopolitical one, as we will try to prove by analysing the most important privatised companies from Arges County: Automobile Dacia SA and ARO SA.

  1. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.

    Science.gov (United States)

    Aldinger, Carolin A; Leisinger, Anne-Katrin; Gaston, Kirk W; Limbach, Patrick A; Igloi, Gabor L

    2012-10-01

    It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.

  2. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    Science.gov (United States)

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. [Stress-protective activity of the CH3CO-Lys-Lys-Arg-Arg-NH2 synthetic peptide (protektin)].

    Science.gov (United States)

    Kovalitskaia, Iu A; Sadovnikov, V B; Zolotarev, Iu A; Navolotskaia, E V

    2009-01-01

    The CH3CO-Lys-Lys-Arg-Arg-NH2 peptide (the author has named it protectin) was synthesized, and its activity was studied during different stress actions. Protectin was found to normalize the content of corticosterone and adrenalin in adrenal glands and blood after its intranasal administration to rats one day before a cold or heat shock, or hypobaric hypoxia at doses of 1-10 microg/animal and after its intravenous administration just after acute hemorrhage at doses of 0.5-2 microg/animal. The intranasal administration of protectin at doses of 1-10 microg/rat one day before the heat or cold shock was also shown to prevent a change in the content of free histamine and the activity of diamine oxidase in myocardium, which was induced by the dramatic change in the activity of the enzyme after the temperature actions.

  4. A bovine herpesvirus 5 recombinant defective in the thymidine kinase (TK gene and a double mutant lacking TK and the glycoprotein E gene are fully attenuated for rabbits

    Directory of Open Access Journals (Sweden)

    S.C. Silva

    2010-02-01

    Full Text Available Bovine herpesvirus 5 (BoHV-5, the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99. The recombinants are defective in glycoprotein E (BoHV-5gEΔ, thymidine kinase (BoHV-5TKΔ and both proteins (BoHV-5gEΔTKΔ. Rabbits inoculated with the parental virus (N = 8 developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi. Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEΔ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKΔ (N = 8 or BoHV-5gEΔTKΔ (N = 8 remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKΔ and BoHV-5gEΔTKΔ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.

  5. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  6. Protective Low-Frequency Variants for Preeclampsia in the Fms Related Tyrosine Kinase 1 Gene in the Finnish Population.

    Science.gov (United States)

    Lokki, A Inkeri; Daly, Emma; Triebwasser, Michael; Kurki, Mitja I; Roberson, Elisha D O; Häppölä, Paavo; Auro, Kirsi; Perola, Markus; Heinonen, Seppo; Kajantie, Eero; Kere, Juha; Kivinen, Katja; Pouta, Anneli; Salmon, Jane E; Meri, Seppo; Daly, Mark; Atkinson, John P; Laivuori, Hannele

    2017-08-01

    Preeclampsia is a common pregnancy-specific vascular disorder characterized by new-onset hypertension and proteinuria during the second half of pregnancy. Predisposition to preeclampsia is in part heritable. It is associated with an increased risk of cardiovascular disease later in life. We have sequenced 124 candidate genes implicated in preeclampsia to pinpoint genetic variants contributing to predisposition to or protection from preeclampsia. First, targeted exomic sequencing was performed in 500 preeclamptic women and 190 controls from the FINNPEC cohort (Finnish Genetics of Preeclampsia Consortium). Then 122 women with a history of preeclampsia and 1905 parous women with no such history from the National FINRISK Study (a large Finnish population survey on risk factors of chronic, noncommunicable diseases) were included in the analyses. We tested 146 rare and low-frequency variants and found an excess (observed 13 versus expected 7.3) nominally associated with preeclampsia ( P preeclampsia. © 2017 American Heart Association, Inc.

  7. Osabc1k8, an abc1-like kinase gene, mediates abscisic acid sensitivity and dehydration tolerance response in rice seedlings

    International Nuclear Information System (INIS)

    Liu, Y.; Li, T.; Yang, C.

    2015-01-01

    The activity of bc1 complex kinase (ABC1K) protein family, which widely exists in prokaryotes and eukaryotes, consists of 15 members in rice, and the role of this family in plants has not yet been studied in details. In this study, a novel function of OsABC1K8 (LOC-Os06g48770), a member of rice ABC1K family, was characterized. The transcript level of OsABC1K8 changes in response to salt, dehydration, cold, PEG, oxidative (H/sub 2/O/sub 2/) stresses, or abscisic acid (ABA) treatment. Overexpression of OsABC1K8 significantly increased sensitivity to dehydration and reduced sensitivity to ABA. In the contrast, RNAi transgenic lines displayed significantly reduced sensitivity to dehydration stress and increased sensitivity to ABA. Furthermore, the transcriptional levels of several ABA/stress-regulated responsive genes were suppressed in OsABC1K8 over-expressing plants under dehydration stress. In conclusion, our results suggested that OsABC1K8 is a negative regulator in response to dehydration stress through an ABA-dependent pathway. (author)

  8. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3beta is implicated in the treatment of cervical carcinoma.

    Science.gov (United States)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3beta (GSK-3beta) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3beta(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3beta after transfection with GSK-3beta by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3beta (s9). Furthermore, we demonstrated GSK-3beta transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3beta was important to improve chemosensitization, indicating the significance of GSK-3beta-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  9. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Ze

    2010-02-01

    Full Text Available Abstract Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9 expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA, co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9. Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  10. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shu, Yi Min [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Wang, Shu Fang [Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Da, Bang Hong; Wang, Ze Hua [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Hua Bin [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Department of Medicine, Feinberg Medical School, Northwestern University, Chicago, IL 60611 (United States)

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  11. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Science.gov (United States)

    2010-01-01

    Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy. PMID:20178594

  12. Expression of mismatch repair gene PMS2 in nasopharyngeal carcinoma and regulation by glycogen synthase kinase-3β in vivo and in vitro.

    Science.gov (United States)

    Fang, Jugao; Lei, Wenbin; Huang, Xiaoming; Li, Pingdong; Chen, Xiaohong; Zhu, Xiaolin; Wen, Weiping; Li, Huabin

    2012-02-01

    To evaluate the expression of mismatch repair gene PMS2 in human nasopharyngeal carcinoma (NPC) tissues and evaluate the effect of glycogen synthase kinase (GSK)-3β on PMS2 production in vivo and in vitro. The expression of PMS2 and inactivated phosphorylated GSK-3β(s9) was examined by immunohistochemical staining in 25 NPC tissues and the relation was determined by correlation analysis. The effect of GSK-3β transfection in CNE-2 cells on PMS2 production as well as cell apoptosis and chemosensitization were evaluated using small interference RNA (siRNA), immunoblotting and flow cytometric analysis in vitro. The expression of inactivated phosphorylated GSK-3β(s9) was found to negative correlated with PMS2 in vivo. And transfected GSK-3β was found to be able to enhance PMS2 production, and increase cell apoptosis in CNE-2 cells in combination with cisplatin administration in vitro. Inactivation of GSK-3β might be important for NPC tumorgenesis through negatively regulating PMS2 production, and enhanced PMS2 production by GSK-3β is beneficial for understanding the NPC tumorgenesis and developing potential strategy for future therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    International Nuclear Information System (INIS)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-01-01

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy

  14. IDC1, a pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina.

    Science.gov (United States)

    Jamet-Vierny, Corinne; Debuchy, Robert; Prigent, Magali; Silar, Philippe

    2007-12-01

    Components involved in the activation of the MAPK cascades in filamentous fungi are not well known. Here, we provide evidence that IDC1, a pezizomycotina-specific gene is involved along with the PaNox1 NADPH oxidase in the nuclear localization of the PaMpk1 MAP kinase, a prerequisite for MAPK activity. Mutants of IDC1 display the same phenotypes as mutants in PaNox1 and PaMpk1, i.e., lack of pigment and of aerial hyphae, female sterility, impairment in hyphal interference and inability to develop Crippled Growth cell degeneration. As observed for the PaNox1 mutant, IDC1 mutants are hypostatic to PaMpk1 mutants. IDC1 seems to play a key role in sexual reproduction. Indeed, fertility is diminished in strains with lower level of IDC1. In strains over-expressing IDC1, protoperithecia reach a later stage of development towards perithecia without fertilization; however, upon fertilization maturation of fertile perithecia is diminished and delayed. In addition, heterokaryon construction shows that IDC1 is necessary together with PaNox1 in the perithecial envelope but not in the dikaryon resulting from fertilization.

  15. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  16. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases.

    Science.gov (United States)

    Botta, A; Malena, A; Tibaldi, E; Rocchi, L; Loro, E; Pena, E; Cenci, L; Ambrosi, E; Bellocchi, M C; Pagano, M A; Novelli, G; Rossi, G; Monaco, H L; Gianazza, E; Pantic, B; Romeo, V; Marin, O; Brunati, A M; Vergani, L

    2013-08-15

    Myotonic dystrophy type-1 (DM1) is the most prevalent form of muscular dystrophy in adults. This disorder is an RNA-dominant disease, caused by expansion of a CTG repeat in the DMPK gene that leads to a misregulation in the alternative splicing of pre-mRNAs. The longer muscleblind-like-1 (MBNL1) transcripts containing exon 5 and the respective protein isoforms (MBNL142-43) were found to be overexpressed in DM1 muscle and localized exclusively in the nuclei. In vitro assays showed that MBNL142-43 bind the Src-homology 3 domain of Src family kinases (SFKs) via their proline-rich motifs, enhancing the SFK activity. Notably, this association was also confirmed in DM1 muscle and myotubes. The recovery, mediated by an siRNA target to Ex5-MBNL142-43, succeeded in reducing the nuclear localization of both Lyn and MBNL142-43 proteins and in decreasing the level of tyrosine phosphorylated proteins. Our results suggest an additional molecular mechanism in the DM1 pathogenesis, based on an altered phosphotyrosine signalling pathway.

  17. Development and Evaluation of Low Phytic Acid Soybean by siRNA Triggered Seed Specific Silencing of Inositol Polyphosphate 6-/3-/5-Kinase Gene

    Directory of Open Access Journals (Sweden)

    Mansi Punjabi

    2018-06-01

    Full Text Available Soybean is one of the leading oilseed crop in the world and is showing a remarkable surge in its utilization in formulating animal feeds and supplements. Its dietary consumption, however, is incongruent with its existing industrial demand due to the presence of anti-nutritional factors in sufficiently large amounts. Phytic acid in particular raises concern as it causes a concomitant loss of indigestible complexed minerals and charged proteins in the waste and results in reduced mineral bioavailability in both livestock and humans. Reducing the seed phytate level thus seems indispensable to overcome the nutritional menace associated with soy grain consumption. In order to conceive our objective we designed and expressed a inositol polyphosphate 6-/3-/5-kinase gene-specific RNAi construct in the seeds of Pusa-16 soybean cultivar. We subsequently conducted a genotypic, phenotypic and biochemical analysis of the developed putative transgenic populations and found very low phytic acid levels, moderate accumulation of inorganic phosphate and elevated mineral content in some lines. These low phytic acid lines did not show any reduction in seedling emergence and displayed an overall good agronomic performance.

  18. Enterococcus faecalis phosphomevalonate kinase

    Science.gov (United States)

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  19. Brief Report: Blockade of TANK-Binding Kinase 1/IKKɛ Inhibits Mutant Stimulator of Interferon Genes (STING)-Mediated Inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Frémond, Marie-Louise; Uggenti, Carolina; Van Eyck, Lien; Melki, Isabelle; Bondet, Vincent; Kitabayashi, Naoki; Hertel, Christina; Hayday, Adrian; Neven, Bénédicte; Rose, Yoann; Duffy, Darragh; Crow, Yanick J; Rodero, Mathieu P

    2017-07-01

    Gain-of-function mutations in TMEM173, encoding the stimulator of interferon (IFN) genes (STING) protein, underlie a novel type I interferonopathy that is minimally responsive to conventional immunosuppressive therapies and associated with high frequency of childhood morbidity and mortality. STING gain-of-function causes constitutive oversecretion of IFN. This study was undertaken to determine the effects of a TANK-binding kinase 1 (TBK-1)/IKKɛ inhibitor (BX795) on secretion and signaling of IFN in primary peripheral blood mononuclear cells (PBMCs) from patients with mutations in STING. PBMCs from 4 patients with STING-associated disease were treated with BX795. The effect of BX795 on IFN pathways was assessed by Western blotting and an IFNβ reporter assay, as well as by quantification of IFNα in cell lysates, staining for STAT-1 phosphorylation, and measurement of IFN-stimulated gene (ISG) messenger RNA (mRNA) expression. Treatment of PBMCs with BX795 inhibited the phosphorylation of IFN regulatory factor 3 and IFNβ promoter activity induced in HEK 293T cells by cyclic GMP-AMP or by genetic activation of STING. In vitro exposure to BX795 inhibited IFNα production in PBMCs of patients with STING-associated disease without affecting cell survival. In addition, BX795 decreased STAT-1 phosphorylation and ISG mRNA expression independent of IFNα blockade. These findings demonstrate the effect of BX795 on reducing type I IFN production and IFN signaling in cells from patients with gain-of-function mutations in STING. A combined inhibition of TBK-1 and IKKɛ therefore holds potential for the treatment of patients carrying STING mutations, and may also be relevant in other type I interferonopathies. © 2017, American College of Rheumatology.

  20. Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells.

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Honjoh, Chisato; Takeuchi, Kenji; Yamauchi, Shota; Yoshiki, Hatsumi; Fujieda, Shigeharu; Sada, Kiyonao

    2014-11-07

    Dectin-1 recognizes β-glucan and plays important roles for the antifungal immunity through the activation of spleen tyrosine kinase (Syk) in dendritic cells or macrophages. Recently, expression of Dectin-1 was also identified in human and mouse mast cells, although its physiological roles were largely unknown. In this report, rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells. Treatment of cells with Dectin-1-specific agonist curdlan induced tyrosine phosphorylation of cellular proteins and the interaction of Dectin-1 with the Src homology 2 domain of Syk. These responses depended on tyrosine phosphorylation of the hemi-immunoreceptor tyrosine-based activation motif in the cytoplasmic tail of Dectin-1, whereas they were independent of the γ-subunit of high-affinity IgE receptor. DNA microarray and real-time PCR analyses showed that Dectin-1-mediated signaling stimulated gene expression of transcription factor Nfkbiz and inflammatory cytokines, such as monocyte chemoattractant protein-1, IL-3, IL-4, IL-13, and tumor necrosis factor (TNF)-α. The response was abrogated by pretreatment with Syk inhibitor R406. These results suggest that Syk is critical for Dectin-1-mediated activation of mast cells, although the signaling differs from that triggered by FcϵRI activation. In addition, these gene expressions induced by curdlan stimulation were specifically observed in mast cells, suggesting that Dectin-1-mediated signaling of mast cells offers new insight into the antifungal immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome.

    Science.gov (United States)

    Plummer, J T; Evgrafov, O V; Bergman, M Y; Friez, M; Haiman, C A; Levitt, P; Aldinger, K A

    2013-10-22

    Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.

  2. Role of ASCA and the NOD2/CARD15 mutation Gly908Arg in predicting increased surgical costs in Crohn's disease patients: a project of the European Collaborative Study Group on Inflammatory Bowel Disease.

    Science.gov (United States)

    Odes, Shmuel; Friger, Michael; Vardi, Hillel; Claessens, Greet; Bossuyt, Xavier; Riis, Lene; Munkholm, Pia; Wolters, Frank; Yona, Hagit; Hoie, Ole; Beltrami, Marina; Tsianos, Epameinondas; Katsanos, Kostas; Mouzas, Ioannis; Clofent, Juan; Monteiro, Estela; Messori, Andrea; Politi, Patrizia; O'Morain, Colm; Limonard, Charles; Russel, Maurice; Vatn, Morten; Moum, Bjorn; Stockbrugger, Reinhold; Vermeire, Severine

    2007-07-01

    NOD2/CARD15, the first identified susceptibility gene in Crohn's disease (CD), is associated with ileal stenosis and increased frequency of surgery. Anti-Saccharomyces cerevisiae antibody (ASCA), a serological marker for CD, is associated with ileal location and a high likelihood for surgery. We hypothesized that the presence of ASCA and NOD2/CARD15 mutations could predict increased health care cost in CD. CD patients in a prospectively designed community-based multinational European and Israeli cohort (n = 228) followed for mean 8.3 (SD 2.6) years had blood drawn for measurement of ASCA (IgG, IgA), Arg702Trp, Gly908Arg, and Leu1007fsinsC. Days spent in the hospital and the costs of medical and surgical hospitalizations and medications were calculated. The median duration of surgical hospitalizations was longer in Gly908Arg-positive than -negative patients, 3.5 and 1.5 days/patient-year (P < 0.01), and in ASCA-positive than -negative patients, 1.1 and 0 days/patient-year (P < 0.001). Median surgical hospitalization cost was 1,580 euro/patient-year in Gly908Arg-positive versus 0 euro/patient-year in -negative patients (P < 0.01), and 663 euro/patient-year in ASCA-positive versus 0 euro/patient-year in -negative patients (P < 0.001). Differences in cost of medications between groups were not significant. The effect of Gly908Arg was expressed in countries with higher Gly908Arg carriage rates. ASCA raised surgical costs independently of the age at diagnosis of disease. Arg702Trp and Leu1007fsinsC did not affect the cost of health care. Since CD patients positive for Gly908Arg and ASCA demonstrated higher health care costs, it is possible that measurement of Gly908Arg and ASCA at disease diagnosis can forecast the expensive CD patients.

  3. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  4. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study.

    LENUS (Irish Health Repository)

    Abdul-Jalil, Khairun I

    2014-08-01

    Locally advanced rectal cancer (LARC: T3\\/4 and\\/or node-positive) is treated with preoperative\\/neoadjuvant chemoradiotherapy (CRT), but responses are not uniform. The phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and related pathways are implicated in rectal cancer tumorigenesis. Here, we investigated the association between genetic mutations in these pathways and LARC clinical outcomes.

  5. Comparison of [{sup 18}F]FHPG and [{sup 124/125}I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brust, P.; Friedrich, A.; Scheunemann, M.; Noll, S.; Noll, B.; Johannsen, B. [Inst. of Bioinorganic and Radiopharmaceutical Chemistry, Forschungszentrum, Rossendorf (Germany); Haubner, R.; Avril, N. [Dept. of Nuclear Medicine, Technische Univ., Muenchen (Germany); Anton, M. [Inst. of Experimental Oncology, Technische Univ., Muenchen (Germany); Koufaki, O.N.; Schackert, H.K. [Dept. of Surgical Research, Technische Univ., Dresden (Germany); Hauses, M.; Schackert, G. [Dept. of Neurosurgery, Technische Univ., Dresden (Germany); Haberkorn, U. [Dept. of Oncological Diagnostics and Therapy, Deutsches Krebsforschungszentrum, Heidelberg (Germany)

    2001-06-01

    Various radiotracers based on uracil nucleosides (e.g. [{sup 124}I]2'-fluoro-2'-deoxy-5-iodo-1-{beta}-D-arabinofuranosyluracil, [{sup 124}I]FIAU) and acycloguanosine derivatives (e.g. [{sup 18}F]9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine, [{sup 18}F]FHPG) have been proposed for the non-invasive imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression. However, these radiotracers have been evaluated in different in vitro and in vivo models, precluding a direct comparison. Therefore, we directly compared [{sup 18}F]FHPG and radioiodinated FIAU to assess their potential for PET imaging of transgene expression. The uptake of [{sup 125}I]FIAU, [{sup 18}F]FHPG and [{sup 3}H]acyclovir was determined in vitro using four different HSV1-tk expressing cell lines and their respective negative controls. The in vitro tracer uptake was generally low in non-transduced parental cell lines. In HSV1-tk expressing cells, [{sup 3}H]acyclovir showed approximately a twofold higher tracer accumulation, the [{sup 18}F]FHPG uptake increased by about sixfold and the [{sup 125}I]FIAU accumulation increased by about 28-fold after 120-min incubation of T1115 human glioblastoma cells. Similar results were found in the other cell lines. In addition, biodistribution and positron emission tomography (PET) studies with [{sup 18}F]FHPG and [{sup 124/125}I]FIAU were carried out in tumour-bearing BALB/c mice. Significantly higher specific accumulation of radioactivity was found for [{sup 125}I]FIAU compared with [{sup 18}F]FHPG. The ratio of specific tracer accumulation between [{sup 125}I]FIAU and [{sup 18}F]FHPG increased from 21 (30 min p.i.) to 119 (4 h p.i.). PET imaging, using [{sup 124}I]FIAU, clearly visualised and delineated HSV1-tk expressing tumours, whereas only a negligible uptake of [{sup 18}F]FHPG was observed. This study demonstrated that in vitro and in vivo, the radioiodinated uracil nucleoside FIAU has a significantly higher specific

  6. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  7. Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Win-Ping; Lai, Wen-Fu [Graduate Institute of Biomedical Materials, Taipei Medical University, Taipei (Taiwan); Yang, Wen K.; Yang, Den-Mei [Institute of Biological Science, Academic Sinica, Taipei (Taiwan); Liu, Ren-Shyan [Department of Nuclear Medicine and National PET Cyclotron Center, Veterans General Hospital, Taipei (Taiwan); Hwang, Jeng-Jong; Wang, Hsin-Ell [Institute of Radiological Science, National Yang-Ming University, 155, Sec. 2, Lih-Nong Street, 112, Pei-tou, Taipei (Taiwan); Fu, Ying-Kai [Institute of Nuclear Energy, Atomic Energy Council, Taoyuan (Taiwan)

    2004-01-01

    An experimental cancer gene therapy model was employed to develop a non-invasive imaging procedure using radiolabelled 2'-fluoro-2'-deoxy-5-iodo-1-{beta}-d-arabinofuranosyluracil (FIAU) as an enzyme substrate for monitoring retroviral vector-mediated herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) transgene expression. Iodine-131 labelled FIAU was prepared by a no-carrier-added (n.c.a.) synthesis process and lyophilised to give ''hot kits''. The labelling yield was over 95%, with a radiochemical purity of more than 98%. The stability of [{sup 131}I]FIAU in the form of lyophilised powder (the hot kit) was much better than that in the normal saline solution. The shelf life of the final [{sup 131}I]FIAU hot kit product is as long as 4 weeks. Cellular uptake of [{sup 131}I]FIAU after different periods of storage was investigated in vitro with HSV1-tk-retroviral vector transduced NG4TL4-STK and parental non-transduced NG4TL4 murine sarcoma cell lines over an 8-h incubation period. The NG4TL4-STK cells accumulated more radioactivity than NG4TL4 cells in all conditions, and accumulation increased with time up to 8 h. The kinetic profile of the cellular uptake of n.c.a. [{sup 131}I]FIAU formulated from the lyophilised hot kit or from the stock solution was qualitatively similar. For animal model cancer gene therapy studies, FVB/N mice were inoculated subcutaneously with the HSV1-tk(+) and tk(-) sarcoma cells into the flank to produce tumours. Biodistribution studies showed that tumour/blood ratios were 2, 3.5, 8.2 and 386.8 at 1, 4, 8 and 24 h post injection, respectively, for the HSV1-tk(+) tumours, and 0.5, 0.5, 0.7 and 5.4, respectively, for the HSV1-tk(-) tumours. Radiotracer clearance from blood was completed in 24 h and was bi-exponential. A significant difference in radioactivity accumulation was revealed among the HSV1-tk(+) tumours, the tk(-) tumours and other tissues. At 24 h p.i., higher activity retention was observed

  8. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

    Science.gov (United States)

    Di Dalmazi, Guido; Kisker, Caroline; Calebiro, Davide; Mannelli, Massimo; Canu, Letizia; Arnaldi, Giorgio; Quinkler, Marcus; Rayes, Nada; Tabarin, Antoine; Laure Jullié, Marie; Mantero, Franco; Rubin, Beatrice; Waldmann, Jens; Bartsch, Detlef K; Pasquali, Renato; Lohse, Martin; Allolio, Bruno; Fassnacht, Martin; Beuschlein, Felix; Reincke, Martin

    2014-10-01

    Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

  9. Frequency of polymorphisms and protein expression of cyclin-dependent kinase inhibitor 1A (CDKN1A in central nervous system tumors

    Directory of Open Access Journals (Sweden)

    Mev Dominguez Valentin

    Full Text Available CONTEXT AND OBJECTIVE: Genetic investigation of central nervous system (CNS tumors provides valuable information about the genes regulating proliferation, differentiation, angiogenesis, migration and apoptosis in the CNS. The aim of our study was to determine the prevalence of genetic polymorphisms (codon 31 and 3' untranslated region, 3'UTR and protein expression of the cyclin-dependent kinase inhibitor 1A (CDKN1A gene in patients with and without CNS tumors. DESIGN AND SETTING: Analytical cross-sectional study with a control group, at the Molecular Biology Laboratory, Pediatric Oncology Department, Hospital das Clínicas de Ribeirão Preto. METHODS: 41 patients with CNS tumors and a control group of 161 subjects without cancer and paires for sex, age and ethnicity were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. Protein analysis was performed on 36 patients with CNS tumors, using the Western Blotting technique. RESULTS: The frequencies of the heterozygote (Ser/Arg and polymorphic homozygote (Arg/Arg genotypes of codon 31 in the control subjects were 28.0% and 1.2%, respectively. However, the 3'UTR site presented frequencies of 24.2% (C/T and 0.6% (T/T. These frequencies were not statistically different (P > 0.05 from those seen in the patients with CNS tumors (19.4% and 0.0%, codon 31; 15.8% and 2.6%, 3'UTR site. Regarding the protein expression in ependymomas, 66.67% did not express the protein CDKN1A. The results for medulloblastomas and astrocytomas were similar: neither of them expressed the protein (57.14% and 61.54%, respectively. CONCLUSION: No significant differences in protein expression patterns or polymorphisms of CDKN1A in relation to the three types of CNS tumors were observed among Brazilian subjects.

  10. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

    Science.gov (United States)

    Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.

  11. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  12. Childhood asthma exacerbations and the Arg16 β2-receptor polymorphism: A meta-analysis stratified by treatment.

    Science.gov (United States)

    Turner, Steve; Francis, Ben; Vijverberg, Susanne; Pino-Yanes, Maria; Maitland-van der Zee, Anke H; Basu, Kaninika; Bignell, Lauren; Mukhopadhyay, Somnath; Tavendale, Roger; Palmer, Colin; Hawcutt, Daniel; Pirmohamed, Munir; Burchard, Esteban G; Lipworth, Brian

    2016-07-01

    The Gly-to-Arg substitution at the 16 position (rs1042713) in the β2-adrenoceptor gene (ADRB2) is associated with enhanced downregulation and uncoupling of β2-receptors. We sought to undertake a meta-analysis to test the hypothesis that there is an interaction between the A allele of rs1042713 (Arg16 amino acid) and long-acting β-agonist (LABA) exposure for asthma exacerbations in children. Children with diagnosed asthma were recruited in 5 populations (BREATHE, Genes-Environments and Admixture in Latino Americans II, PACMAN, the Paediatric Asthma Gene Environment Study, and the Pharmacogenetics of Adrenal Suppression with Inhaled Steroid Study). A history of recent exacerbation and asthma treatment was determined from questionnaire data. DNA was extracted, and the Gly16Arg genotype was determined. Data from 4226 children of white Northern European and Latino origin were analyzed, and the odds ratio for exacerbation increased by 1.52 (95% CI, 1.17-1.99; P = .0021) for each copy of the A allele among the 637 children treated with inhaled corticosteroids (ICSs) plus LABAs but not for treatment with ICSs alone (n = 1758) or ICSs plus leukotriene receptor antagonist (LTRAs; n = 354) or ICSs plus LABAs plus LTRAs (n = 569). The use of a LABA but not an LTRA as an "add-on controller" is associated with increased risk of asthma exacerbation in children carrying 1 or 2 A alleles at rs1042713. Prospective genotype-stratified clinical trials are now required to explore the potential role of rs1042713 genotyping for personalized asthma therapy in children. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. [The mRNA expression of mitogen-activated protein kinase signal pathway related genes in the blood of arseniasis patients caused by burning coal].

    Science.gov (United States)

    Luo, Peng; Zhang, Ai-hua; Xiao, Yun; Pan, Xue-li; Dong, Xue-xin; Huang, Xiao-xin

    2013-09-01

    To detect the mRNA expression of ERK1, ERK2, JNK1 and P38 gene in mitogen-activated protein kinase(MAPK) path way in the arseniasis patients caused by burning coal. 70 arseniasis patients caused by burning coal at Jiaole village XingRen county in December 2006 were selected as case group, and another 30 villagers with similar living habits, matched gender and age, healthy physical condition without history of burning high arsenic coal were selected as control group from 12 km nearby the same village.Silver diethyl dithiocarbamate method (Ag-DDC) was taken to detect the arsenic contents in the environmental media, food, and arsenic level in the urine and hair of arseniasis patients.On the principle of informed consent, the peripheral blood was collected from the patients. The total RNA was extracted with Trizol method and cDNA was reversed from it. The mRNA expression of ERK1, ERK2, JNK1 and P38 gene in MAPK path way were tested by real-time fluorescent quantitative PCR (QT-PCR). A total of 70 cases of arseniasis patients (31 cases of mild, 25 cases of moderate and 14 cases of severe) and 30 cases of control were chosen. The median (quartile) of arsenic contents in the indoor air, outdoor air, coal, chili and corn were 0.079 (0.053-0.117) mg/m(3) ,0.007 (0.002-0.015) mg/m(3) , 93.010 (39.460-211.740) mg/kg, 3.460(0.550-16.760) mg/kg and 1.500(0.300-4.140) mg/kg respectively. They were above the national health standards. The median (quartile) of arsenic contents in the soil, rice and drinking water were separately 12.130(4.230-24.820) mg/kg, 0.650(0.300-0.980) mg/kg and 0.043(0.012-0.089)mg/kg, which were within the national health standards. Compared with the control group ((26.97 ± 9.71)µg/g Cr), arsenic level in the patients' urine ((71.48 ± 22.74)µg/g Cr) increased significantly, the differences were significant (F = 90.38, P coal.

  14. Impact of miR-208 and its Target Gene Nemo-Like Kinase on the Protective Effect of Ginsenoside Rb1 in Hypoxia/Ischemia Injuried Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2016-09-01

    Full Text Available Background/Aims: Ginsenoside Rb1 (GS-Rb1 is one of the most important active pharmacological extracts of the Traditional Chinese Medicine ginseng, with extensive evidence of its cardioprotective properties. Mir-208 has been shown to act as a biomarker of acute myocardial infarction in vivo studies including man. However the impact of miR-208 on the protective effect of GS-Rb1 in hypoxia/ischemia injured cardiomyocytes remains unclear. The current study aims to investigate the target gene of miR-208 and the impact on the protective effect of GS-Rb1 in hypoxia/ischemia (H/I injuried cardiomyocytes. Materials and Methods: Primary cultures of neonatal rat cardiomyocytes (NRCMs was subjected to the H/I conditions with or without GS-Rb1. Cell viability was calculated by MTT assay and confirmed by flow cytometry analysis. Mir-208 was then detected by qRT-PCR. Luciferase reporter assay was carried out to detect the target gene of Mir-208. Then the NRCMs were transfected with miR-208 mimics and inhibitors to evaluate the impact on cardioprotective properties of Rb1. Results: The miR-208 expression level was clearly upregulated in the H/I treated NRCMs accompanied by the percentage of the apoptotic cells which could be reversed by GS-Rb1 pretreatment. The nemo-like kinase (NLK mRNA and protein expression levels were decreased in H/I group measured by RT-PCR and western blotting. Luciferase activity assay was then carried out to identify that NLK may be a direct target of mir-208. MTT assay showed that miR-208 inhibitor slightly decreased the protective effect of Rb1 on the H/I impaired NRCMs. However, results showed no statistical difference. Conclusions: These findings proved that NLK was a direct target of mir-208 and miR-208 act indirectly during Rb1 protecting H/I impaired NRCMs and further researches were needed to explore the relationship that microRNAs and other signal pathways in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in

  15. Preliminary study of MR diffusion weighted imaging in nude mice models of hepatic Bel7402 tumors after adenovirus-mediated cytosine diaminase-thymidine kinase gene therapy

    International Nuclear Information System (INIS)

    Jiang Xinqing; Chen Liang; Wu Hongzhen; Huang Jingjun; Wei Xinhua; Mo Lei; Yang Ruimeng; Xiao Xiangsheng

    2012-01-01

    Objective: To study the characteristics of DWI in nude mice models of hepatic Bel7402 tumors after treatment with adenovirus-mediated cytosine diaminase-thymidine kinase (Ad. CD-TK) double suicide gene therapy, and then to identify whether DWI can be used for assessing curative effect of postoperative tumors. Methods: Thirty nude mice models of hepatic Bel7402 tumors were successfully created using cell suspension method, after the tumor grew to more than 1 cm in diameter, 20 tumor models were treated by intratumoral administration of Ad. CD-TK for 3 days plus intraperitonea (i.p.) treatment with 5-Fc and GCV for the duration of the study.Then they were randomly divided into three groups during 5-Fc and GCV treatment. The remaining 10 tumor models were used as controls. MR scanning were performed in 10 th day before and after tumor implantation in all models by using EPI-SE series and SENSE technology for treatment group. Tumor volumes and ADC values were calculated pretreatment and posttreatment. Cell apoptosis were determined by using TUNEL method. Analyze the change of ADC and apoptosis index (AI) in different times, t test was used for comparison the difference of AI and ADC values respectively. Results: After 10 days,the tumor volumes of the treatment groups and controls were respectively (724.16 ±57.45) mm 3 , (754.57 ± 66.84) mm 3 , with no significant difference (t=0.488, P >0.05). The ADC values of the treatment groups were (0.98 ±0.11) × 10 -3 mm 2 /s,the ones of the control groups were (0.68 ±0.04) × 10 -3 mm 2 /s; AI of the treatment groups were (23.25 ±6.57)%, the ones of the control groups were (2.57 ± 0.58)%. There were difference in both groups (t=4.473, 5.874; P<0.01). Conclusion: DWI can be effectively to monitor the early pathological changes of hepatic Bel7402 tumors after Ad. CD-TK double suicide gene therapy, and provide experimental evidences for clinical application. (authors)

  16. 5-[{sup 18}F]Fluoroalkyl pyrimidine nucleosides: probes for positron emission tomography imaging of herpes simplex virus type 1 thymidine kinase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Ann-Marie [Institute for Environmental Medicine, Targeted Therapeutics Program, University of Pennsylvania, Philadelphia, PA 19104 (United States); Blankemeyer, Eric; Lieberman, Brian P.; Qu, Wenchao [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@gmail.com

    2009-01-15

    Introduction: The preliminary in vivo evaluation of novel 5-[{sup 18}F]fluoroalkyl-2'-deoxyuridines ([{sup 18}F]FPrDU, [{sup 18}F]FBuDU, [{sup 18}F]FPeDU; [{sup 18}F]1a-c, respectively) and 2'-fluoro-2'-deoxy-5-[{sup 18}F]fluoroalkyl-1-{beta}-D-arabinofuranosyl uracils ([{sup 18}F]FFPrAU, [{sup 18}F]FFBuAU, [{sup 18}F]FFPeAU; [{sup 18}F]1d-f, respectively) as probes for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression is described. Methods: [{sup 18}F]1a-f were successfully synthesized by a rapid and efficient two-step one-pot nucleophilic fluorination reaction using 5-O-mesylate precursors and [{sup 18}F]F{sup -}. For in vivo studies, tumor xenografts were grown in nude mice by implanting RG2 cells stably expressing HSV1-tk (RG2TK+) and wild-type cells (RG2). Results: Biodistribution studies at 2 h pi revealed that the uptake of [{sup 18}F]1a-b and [{sup 18}F]1d-e in RG2TK+ tumors was not significantly different from control tumors. However, [{sup 18}F]1c and [{sup 18}F]1f had an average 1.6- and 1.7-fold higher uptake in RG2TK+ tumors than control RG2 tumors. Blood activity curves for [{sup 18}F]1c and [{sup 18}F]1f highlight rapid clearance of radioactivity in the blood. Dynamic small animal PET (A-PET) imaging studies of tumor-bearing mice with [{sup 18}F]1c and [{sup 18}F]1f showed higher initial uptake (3.5- and 1.4-fold, respectively) in RG2TK+ tumors than in control tumors, with continued washout of activity from both tumors over time. Conclusions: Biological evaluations suggest that [{sup 18}F]1c and [{sup 18}F]1f may have limited potential for imaging HSV1-tk gene expression due to fast washout of activity from the blood, thus significantly decreasing sensitivity and specificity of tracer accumulation in HSV1-tk-expressing tumors.

  17. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sun Yuan

    2006-02-01

    Full Text Available Abstract Background Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. Results In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine, a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited, levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. Conclusion The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.

  18. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons

    DEFF Research Database (Denmark)

    Larsen, Rasmus; van Hijum, Sacha A. F. T.; Martinussen, Jan

    2008-01-01

    In previous studies, we have shown that direct protein-protein. interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global...... ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis....

  19. Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in Liver by Hydrodynamic-based Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho; Lee, Tae Sup; Kang, Joo Hyun; Lee, Yong Jin; Kim, Kwang Il; An, Gwang Il; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-10-15

    Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynamic injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.

  20. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  1. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  2. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  3. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  4. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    Science.gov (United States)

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  6. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats.

    Science.gov (United States)

    Pernia, M; Estevez, S; Poveda, C; Plaza, I; Carro, J; Juiz, J M; Merchan, M A

    2017-08-15

    Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  7. ARGE DFC - A European approach to MCFC commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, P.; Huppmann, G. [MTU Friedrichshafen GmbH, Muenchen (Germany); Heiming, A. [Ruhgras AG, Dorsten (Germany)] [and others

    1996-12-31

    The largest European program for the commercialization of the molten carbonate fuel cell technology is carried out by the European Direct Fuel Cell Consortium (ARGE DFC). The consortium consists of the following companies: (1) MTU Friedrichshafen GmbH (Germany), within the DaimlerBenz Group responsible for off-road propulsion and decentralized energy systems. (2) Haldor Topsoe A/S (Denmark), a plant engineering company and specialist for catalytic processes (3) Elkraft A.m.b.A. (Denmark), one of the countries two utility companies (4) Ruhrgas AG (Germany), the largest German gas company (5) RWE AG (Germany), the largest German electrical utility company MTU acts as a consortium leader. The company shares a license and technology exchange agreement with Energy Research Corporation of Danbury, Connecticut.

  8. Quantitative analysis of macro-ARG using IP system

    International Nuclear Information System (INIS)

    Nakajima, Eiichi; Kawai, Kenji; Furuta, Yoshitake

    1997-01-01

    Recent progress in imaging plate (IP) system allow us to analyze autoradiographic images quantitatively. In the 'whole-body autoradiography', a method clarify the distribution of radioisotope or labeled compounds in the tissues and organs in a freeze-dried whole-body section of small animals such as rats and mice, the sections are pressed against a IP for exposure and the IP is scanned by Bio-Imaging Analyzer (Fuji Photo Film Co., Ltd) and a digital autoradiographic image is given. Quantitative data concerning the activity in different tissues can be obtained using an isotope scale as a reference source. Fading effect, application of IP system for distribution of receptor binding ARG, analysis of radio-spots on TLC and radioactive concentration in liquid such as blood are also discussed. (author)

  9. Radioactivity level in the Raul Doamnei - Arges (Prundu Dam) ecosystem

    International Nuclear Information System (INIS)

    Toma, Al.; Pavelescu, M.; Margeanu, S.

    1997-01-01

    Hydrosphere is an important pathway of dispersion of the radionuclides released in the environment following nuclear activities. In this work the determination of the main pathway of radionuclide migration in the Raul Doamnei - Arges ecosystem (Prundu Dam) was carried out. The region is significant because it is a receptor of the radioactive liquid effluents resulting from Institute for Nuclear Research/Nuclear Fuel Plants compound activities. An evaluation of the source term (liquid effluents, deposition, soil erosion) and of natural and artificial radioactive isotope inventory in different zones of the ecosystem. Finally, the multi-compartmental radio-ecologic model applicable to this case is presented and an evaluation of the inter-compartment transfer parameters is given

  10. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  11. Change in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term

    Science.gov (United States)

    Wu, Dong; Chen, Guanzhou; Zhang, Xiaojun; Yang, Kai; Xie, Bing

    2017-01-01

    In this study, the addition of sulfamethazine (SMT) to landfill refuse decreased nitrogen intermediates (e.g. N2O and NO) and dinitrogen (N2) gas fluxes to resistome facilitated the denitrification (the nitrogen accumulated as NO gas at ~6 μg-N/kg-refuse·h-1) to a lesser extent than OTC-amended samples. Further, deep sequencing results show that long-term OTC exposure partially substituted Hyphomicrobium, Fulvivirga, and Caldilinea (>5%) for the dominant bacterial hosts (Rhodothermus, ~20%) harboring nosZ and norB genes that significantly correlated with nitrogen emission pattern, while sulfamethazine amendment completely reduced the relative abundance of the “original inhabitants” functioning to produce NOx gas reduction. The main ARG carriers (Pseudomonas) that were substantially enriched in the SMT group had lower levels of denitrifying functional genes, which could imply that denitrification is influenced more by bacterial dynamics than by abundance of ARGs under antibiotic pressures.

  12. Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars.

    Science.gov (United States)

    Wu, Tingquan; Wang, Rui; Xu, Xiaomei; He, Xiaoming; Sun, Baojuan; Zhong, Yujuan; Liang, Zhaojuan; Luo, Shaobo; Lin, Yu'e

    2014-10-10

    L-type lectin receptor kinase (LecRK) proteins are an important family involved in diverse biological processes such as pollen development, senescence, wounding, salinity and especially in innate immunity in model plants such as Arabidopsis and tobacco. Till date, LecRK proteins or genes of cucumber have not been reported. In this study, a total of 25 LecRK genes were identified in the cucumber genome, unequally distributed across its seven chromosomes. According to similarity comparison of their encoded proteins, the Cucumis sativus LecRK (CsLecRK) genes were classified into six major clades (from Clade I to CladeVI). Expression of CsLecRK genes were tested using QRT-PCR method and the results showed that 25 CsLecRK genes exhibited different responses to abiotic (water immersion) and biotic (Phytophthora melonis and Phytophthora capsici inoculation) stresses, as well as that between disease resistant cultivar (JSH) and disease susceptible cultivar (B80). Among the 25 CsLecRK genes, we found CsLecRK6.1 was especially induced by P. melonis and P. capsici in JSH plants. All these results suggested that CsLecRK genes may play important roles in biotic and abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.

    Science.gov (United States)

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min

    2017-03-01

    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3  d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...... the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal...

  15. Rancang Bangun Stand-Alone Automatic Rain Gauge (ARG Berbasis Panel Surya

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2017-11-01

    Full Text Available Automatic Rain Gauge (ARG digunakan untuk memonitor curah hujan di suatu wilayah. ARG bekerja dengan menggunakan mikrokontroller sebagai prosesing unit dan merupakan sebuah embedded sistem (sistem yang berdiri sendiri. ARG tidak hanya diletakan pada stasiun pemantauan Badan Meteorologi, Klimatologi dan Geofisika (BMKG, namun ARG juga diletakan di daerah terpencil yang jauh dari jaringan listrik. Hal tersebut menjadi masalah karena ARG membutuhkan sumber energi listrik untuk dapat bekerja. Berdasarkan spesifikasinya, ARG membutuhkan mikrokontroller yang rendah dalam penggunaan daya serta memiliki cukup memory sebagai tempat penyimpanan data sementara. Salah satu jenis mikrokrontroller yang memenuhi spesifikasi tersebut adalah MSP430FR5969. Dari penelitian yang telah dilakukan, didapatkan hasil konsumsi daya rata – rata yang dibutuhkan oleh ARG sebesar 0.23 watt. Dengan memanfaatkan panel surya sebesar 20 watt yang dilengkapi dengan maximum power point tracking (MPPT sebagai sumber energi listrik, dapat menghasilkan daya 5,5 watt hingga 7,2 watt. Dengan perbandingan data konsumsi energi dan data yang dihasilkan dari solar panel panel, maka ARG memiliki sumber listrik mandiri untuk memenuhi kebutuhannya.

  16. Contribution of Arg288 of Escherichia coli elongation factor Tu to translational functionality

    DEFF Research Database (Denmark)

    Rattenborg, Thomas; Nautrup-Pedersen, Gitte; Clark, Brian F. C.

    1997-01-01

    . This network is disrupted upon formation of the ternary complex. Arg288 was replaced by alanine, isoleucine, lysine or glutamic acid, and the resulting mutants have been subjected to an in vitro characterisation with the aim of clarifying the function of Arg288. Unexpectedly, the mutants behaved like the wild...

  17. Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Charles W Knapp

    2012-11-01

    Full Text Available Numerous studies have quantified antibiotic resistance genes (ARG in rivers and streams around the world, and significant relationships have been shown that relate different pollutant outputs and increased local ARG levels. However, most studies have not considered ambient flow conditions, which can vary dramatically especially in tropical countries. Here, ARG were quantified in water-column and sediment samples during the dry-and wet-seasons to assess how seasonal and other factors influence ARG transport down the Almendares River (Havana, Cuba. Eight locations were sampled and stream flow estimated during both seasons; qPCR was used to quantify four tetracycline, two erythromycin, and three beta-lactam resistance genes. ARG concentrations were higher in wet-season versus dry-season samples, which combined with higher flows, indicated greater ARG transport downstream during the wet season. Water-column ARG levels were more spatially variable in the dry-season than the wet-season, with the proximity of waste outfalls strongly influencing local ARG levels. Results confirm that dry-season sampling provides a useful picture of the impact of individual waste inputs on local stream ARG levels, whereas, the majority of ARGs in this tropical river were transported downstream during the wet season, possibly due to re-entrainment of ARG from sediments.

  18. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes.

    Science.gov (United States)

    Sergerie, Yan; Boivin, Guy

    2008-01-01

    Drug-resistant herpes simplex virus type 1 (HSV-1) recombinant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes were evaluated for their susceptibility to various antivirals in the presence of 25 microg/ml of hydroxyurea (HyU). The latter compound decreased the 50% inhibitory concentrations of acyclovir by 1.5-3.8-fold and that of cidofovir by 2.7-14.4-fold. However, HyU did not affect the susceptibilities of the various recombinant mutants to foscarnet. Hydroxyurea, a ribonucleotide reductase inhibitor, can increase the activity of nucleoside/nucleotide analogues against drug-resistant viruses.

  19. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    OpenAIRE

    Nishida, Yuichiro; Adati, Naoki; Ozawa, Ritsuko; Maeda, Aasami; Sakaki, Yoshiyuki; Takeda, Tadayuki

    2008-01-01

    Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells diffe...

  20. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    Directory of Open Access Journals (Sweden)

    Annabel Sophie Berthon

    2015-05-01

    Full Text Available Cyclic-AMP (cAMP-dependent protein kinase (PKA is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD. PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH. More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα, were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA’s role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway.

  1. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships.

    Science.gov (United States)

    Bahi-Buisson, Nadia; Villeneuve, Nathalie; Caietta, Emilie; Jacquette, Aurélia; Maurey, Helene; Matthijs, Gert; Van Esch, Hilde; Delahaye, Andrée; Moncla, Anne; Milh, Mathieu; Zufferey, Flore; Diebold, Bertrand; Bienvenu, Thierry

    2012-07-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been described in epileptic encephalopathies in females with infantile spasms with features that overlap with Rett syndrome. With more than 80 reported patients, the phenotype of CDKL5-related encephalopathy is well-defined. The main features consist of seizures starting before 6 months of age, severe intellectual disability with absent speech and hand stereotypies and deceleration of head growth, which resembles Rett syndrome. However, some clinical discrepancies suggested the influence of genetics and/or environmental factors. No genotype-phenotype correlation has been defined and thus there is a need to examine individual mutations. In this study, we analyzed eight recurrent CDKL5 mutations to test whether the clinical phenotype of patients with the same mutation is similar and whether patients with specific CDKL5 mutations have a milder phenotype than those with other CDKL5 mutations. Patients bearing missense mutations in the ATP binding site such as the p.Ala40Val mutation typically walked unaided, had normocephaly, better hand use ability, and less frequent refractory epilepsy when compared to girls with other CDKL5 mutations. In contrast, patients with mutations in the kinase domain (such as p.Arg59X, p.Arg134X, p.Arg178Trp/Pro/Gln, or c.145 + 2T > C) and frameshift mutations in the C-terminal region (such as c.2635_2636delCT) had a more severe phenotype with infantile spasms, refractory epileptic encephalopathy, absolute microcephaly, and inability to walk. It is important for clinicians to have this information when such patients are diagnosed. Copyright © 2012 Wiley Periodicals, Inc.

  2. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    Science.gov (United States)

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  3. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Turnip (Brassica rapa var. rapa

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2017-07-01

    Full Text Available The calcineurin B-like protein (CBL–CBL-interacting protein kinase (CIPK complex has been identified as a primary component in calcium sensors that perceives various stress signals. Turnip (Brassica rapa var. rapa has been widely cultivated in the Qinghai–Tibet Plateau for a century as a food crop of worldwide economic significance. These CBL–CIPK complexes have been demonstrated to play crucial roles in plant response to various environmental stresses. However, no report is available on the genome-wide characterization of these two gene families in turnip. In the present study, 19 and 51 members of the BrrCBL and BrrCIPK genes, respectively, are first identified in turnip and phylogenetically grouped into three and two distinct clusters, respectively. The expansion of these two gene families is mainly attributable to segmental duplication. Moreover, the differences in expression patterns in quantitative real-time PCR, as well as interaction profiles in the yeast two-hybrid assay, suggest the functional divergence of paralog genes during long-term evolution in turnip. Overexpressing and complement lines in Arabidopsis reveal that BrrCBL9.2 improves, but BrrCBL9.1 does not affect, salt tolerance in Arabidopsis. Thus, the expansion of the BrrCBL and BrrCIPK gene families enables the functional differentiation and evolution of some new gene functions of paralog genes. These paralog genes then play prominent roles in turnip's adaptation to the adverse environment of the Qinghai–Tibet Plateau. Overall, the study results contribute to our understanding of the functions of the CBL–CIPK complex and provide basis for selecting appropriate genes for the in-depth functional studies of BrrCBL–BrrCIPK in turnip.

  4. The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA.

    Science.gov (United States)

    Moritz, Rebecca L; Welch, Rodney A

    2006-11-01

    The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient.

  5. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  6. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  7. Mallotus philippinensis Muell. Arg (Euphorbiaceae: Ethnopharmacology and Phytochemistry Review

    Directory of Open Access Journals (Sweden)

    Mayank Gangwar

    2014-01-01

    Full Text Available Mallotus philippinensis Muell. Arg (Euphorbiaceae are widely distributed perennial shrub or small tree in tropical and subtropical region in outer Himalayas regions with an altitude below 1,000 m and are reported to have wide range of pharmacological activities. Mallotus philippinensis species are known to contain different natural compounds, mainly phenols, diterpenoids, steroids, flavonoids, cardenolides, triterpenoids, coumarins, isocoumarins, and many more especially phenols; that is, bergenin, mallotophilippinens, rottlerin, and isorottlerin have been isolated, identified, and reported interesting biological activities such as antimicrobial, antioxidant, antiviral, cytotoxicity, antioxidant, anti-inflammatory, immunoregulatory activity protein inhibition against cancer cell. We have selected all the pharmacological aspects and toxicological and all its biological related studies. The present review reveals that Mallotus philippinensis is a valuable source of medicinally important natural molecules and provides convincing support for its future use in modern medicine. However, the existing knowledge is very limited about Mallotus philippinensis and its different parts like steam, leaf, and fruit. Further, more detailed safety data pertaining to the acute and subacute toxicity and cardio- and immunotoxicity also needs to be generated for crude extracts or its pure isolated compounds. This review underlines the interest to continue the study of this genus of the Euphorbiaceae.

  8. Combined effects of NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism and smoking on bladder cancer risk: Two meta-analyses

    Directory of Open Access Journals (Sweden)

    Xiao-Chun Wang

    2017-10-01

    Full Text Available Objectives: Objectives: Cigarette smoking is the major risk factor of bladder cancer via exposure to chemical carcinogens. Nicotinamide adenine dinucleotide phosphate (NADP+: quinine oxidoreductase 1 (NQO1 and sulfotransferase 1A1 (SULT1A1 have been reported to involve in the metabolism of polycyclic aromatic hydrocarbons (PAHs and aromatic amines. Therefore, the risk of bladder cancer (BC may be influenced by polymorphisms in the genes that modulate metabolic detoxification in particular by interacting with cigarette smoking. Considering the limited power by the individual studies with a relatively small sample size, especially when analyzing the combined effect of polymorphisms in NQO1 and SULT1A1 genes and smoking, these 2 meta-analyses have aimed to clarify the combined effects of them on BC risk by integrating related studies. Material and Methods: Two meta-analyses included 1341 cases and 1346 controls concerning NQO1 Pro187Ser and smoking, and 1921 cases and 1882 controls on SULT1A1 Arg213His and smoking were performed. Odds ratios (OR and 95% confidence intervals (CI were used for assessing the strength of the association. Results: The result has demonstrated that smokers with NQO1 Pro/Ser or Ser/Ser genotypes have a prominent association with the risk of BC as compared with non-smokers with NQO1 Pro/Pro genotype, with OR equal to 3.71 (95% CI: 2.87–4.78, pheterogeneity = 0.376. Besides, smokers carrying SULT1A1 Arg/Arg genotypes were observed to confer 2.38 fold increased risk of BC (95% CI: 1.44–3.93, pheterogeneity = 0.001 when compared with non-smokers with SULT1A1 Arg/Arg or His/His genotypes. Conclusions: These findings have suggested that the NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism combination with smoking significantly confer susceptibility to BC. Int J Occup Med Environ Health 2017;30(5:791–802

  9. Combined effects of NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism and smoking on bladder cancer risk: Two meta-analyses.

    Science.gov (United States)

    Wang, Xiao-Chun; Wang, Jian; Tao, Hui-Hui; Zhang, Chao; Xu, Li-Fa

    2017-07-14

    Objectives: Cigarette smoking is the major risk factor of bladder cancer via exposure to chemical carcinogens. Nicotinamide adenine dinucleotide phosphate (NADP+): quinine oxidoreductase 1 (NQO1) and sulfotransferase 1A1 (SULT1A1) have been reported to involve in the metabolism of polycyclic aromatic hydrocarbons (PAHs) and aromatic amines. Therefore, the risk of bladder cancer (BC) may be influenced by polymorphisms in the genes that modulate metabolic detoxification in particular by interacting with cigarette smoking. Considering the limited power by the individual studies with a relatively small sample size, especially when analyzing the combined effect of polymorphisms in NQO1 and SULT1A1 genes and smoking, these 2 meta-analyses have aimed to clarify the combined effects of them on BC risk by integrating related studies. Two meta-analyses included 1341 cases and 1346 controls concerning NQO1 Pro187Ser and smoking, and 1921 cases and 1882 controls on SULT1A1 Arg213His and smoking were performed. Odds ratios (OR) and 95% confidence intervals (CI) were used for assessing the strength of the association. The result has demonstrated that smokers with NQO1 Pro/Ser or Ser/Ser genotypes have a prominent association with the risk of BC as compared with non-smokers with NQO1 Pro/Pro genotype, with OR equal to 3.71 (95% CI: 2.87-4.78, pheterogeneity = 0.376). Besides, smokers carrying SULT1A1 Arg/Arg genotypes were observed to confer 2.38 fold increased risk of BC (95% CI: 1.44-3.93, pheterogeneity = 0.001) when compared with non-smokers with SULT1A1 Arg/Arg or His/His genotypes. These findings have suggested that the NQO1 Pro187Ser or SULT1A1 Arg213His polymorphism combination with smoking significantly confer susceptibility to BC. Int J Occup Med Environ Health 2017;30(5):791-802. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 (GDF3 in a female with unilateral anophthalmia and skeletal anomalies

    Directory of Open Access Journals (Sweden)

    Tanya Bardakjian

    2017-09-01

    Conclusions and importance: Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.

  11. Molecular dynamics characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization

    Science.gov (United States)

    Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro

    2018-05-01

    Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

  12. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    Science.gov (United States)

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    Science.gov (United States)

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  14. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Jaouani Mouna

    2015-09-26

    Sep 26, 2015 ... to several mutations at the Pyruvate Kinase gene (PKLR) located on chromosome .... Tunisians (Fig. 2) [21]. The screening of whole PKLR gene revealed the presence of ..... newborns: the pitfalls of diagnosis. J Pediatr 2007 ...

  15. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...... to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle....

  16. CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic application

    Directory of Open Access Journals (Sweden)

    Brigitte Sophia Winkler

    2015-02-01

    Full Text Available The prognosis of lymphoid neoplasms has improved considerably during the last decades. However, treatment response for some lymphoid neoplasms is still poor, indicating the need for new therapeutic approaches. One promising new strategy is the inhibition of kinases regulating key signal transduction pathways, which are of central importance in tumorigenesis. Kinases of the CK1 family may represent an attractive drug target since CK1 expression and/or activity are associated with the pathogenesis of malignant diseases. Over the last years efforts were taken to develop highly potent and selective CK1-specific inhibitor compounds and their therapeutic potential has now to be proved in pre-clinical trials. Therefore, we analyzed expression and mutational status of CK1δ in several cell lines representing established lymphoma entities, and also measured the mRNA expression level in primary lymphoma tissue as well as non-neoplastic blood cells. For a selection of lymphoma cell lines we furthermore determined CK1δ kinase activity and demonstrated therapeutic potential of CK1-specific inhibitors as a putative therapeutic option in the treatment of lymphoid neoplasms.

  17. Studies of variations of the cyclin-dependent kinase inhibitor 1C and the cyclin-dependent kinase 4 genes in relation to type 2 diabetes mellitus and related quantitative traits

    DEFF Research Database (Denmark)

    Nielsen, Eva-Maria D; Hansen, Lars; Stissing, Trine

    2005-01-01

    diabetes or changes in related quantitative phenotypes among glucose-tolerant subjects. Mutation analyses of the two genes in 62 type 2 diabetic patients resulted in the discovery of seven variants of CDKN1C and two variants of CDK4. In a case-control study comprising 717 type 2 diabetic patients and 518...... glucose-tolerant subjects the most frequent variants did not show any difference in allele frequencies between the type 2 diabetic patients and the control subjects. However, in two genotype-quantitative trait correlation studies involving 206 glucose-tolerant offspring of type 2 diabetic patients and 359...... in the pathogenesis of the Beckwith-Wiedemann syndrome, a disorder characterized by neonatal hyperinsulinaemic hypoglycaemia and pre- and post-natal overgrowth. The aim of this study was to investigate if variations in the proximal promoter and the coding region of the CDKN1C and CDK4 genes are associated with type 2...

  18. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes.

    Science.gov (United States)

    Xu, Xuewen; Yu, Ting; Xu, Ruixue; Shi, Yang; Lin, Xiaojian; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2016-03-01

    A dominantly inherited major-effect QTL for powdery mildew resistance in cucumber was fine mapped. Two tandemly arrayed cysteine-rich receptor-like protein kinase genes were identified as the most possible candidates. Powdery mildew (PM) is one of the most severe fungal diseases of cucumber (Cucumis sativus L.) and other cucurbit crops, but the molecular genetic mechanisms of powdery mildew resistance in cucurbits are still poorly understood. In this study, through marker-assisted backcrossing with an elite cucumber inbred line, D8 (PM susceptible), we developed a single-segment substitution line, SSSL0.7, carrying 95 kb fragment from PM resistance donor, Jin5-508, that was defined by two microsatellite markers, SSR16472 and SSR16881. A segregating population with 3600 F2 plants was developed from the SSSL0.7 × D8 mating; segregation analysis confirmed a dominantly inherited major-effect QTL, Pm1.1 in cucumber chromosome 1 underlying PM resistance in SSSL0.7. New molecular markers were developed through exploring the next generation resequenced genomes of Jin5-508 and D8. Linkage analysis and QTL mapping in a subset of the F2 plants delimited the Pm1.1 locus into a 41.1 kb region, in which eight genes were predicted. Comparative gene expression analysis revealed that two concatenated genes, Csa1M064780 and Csa1M064790 encoding the same function of a cysteine-rich receptor-like protein kinase, were the most likely candidate genes. GFP fusion protein-aided subcellular localization indicated that both candidate genes were located in the plasma membrane, but Csa1M064780 was also found in the nucleus. This is the first report of dominantly inherited PM resistance in cucumber. Results of this study will provide new insights into understanding the phenotypic and genetic mechanisms of PM resistance in cucumber. This work should also facilitate marker-assisted selection in cucumber breeding for PM resistance.

  19. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Roles of Apicomplexan protein kinases at each life cycle stage.

    Science.gov (United States)

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs.

    Science.gov (United States)

    Zhang, Yan; Li, Aolin; Dai, Tianjiao; Li, Feifei; Xie, Hui; Chen, Lujun; Wen, Donghui

    2018-01-02

    Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, sulII, tetC, bla PSE-1 , and ermB, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04-1.59% to 2.00-1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments.

  2. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Yamanashi, Yuji; Mori, Shigeo; Inoue, Kazushi; Yamamoto, Tadashi; Toyoshima, Kumao; Yoshida, Mitsuaki; Kishimoto, Tadamitsu

    1989-01-01

    This paper reports the identification of the lyn gene product, a member of the src-related family of protein-tyrosine kinases, and its expression in hematopoietic cells. A lyn-specific sequence (Arg-25 to Ala-119 of the protein) was expressed in Escherichia coli as a fusion protein with β-galactosidase. Antiserum raised against the fusion protein immunoprecipitated a 56-kDa protein from human B lymphocytes. Incubation of the immunoprecipitate with [γ- 32 P]ATP resulted in the phosphorylation of this protein at tyrosine residues. Immunohistological and immunoblotting analyses showed that the lyn gene product was expressed in lymphatic tissues (spleen and tonsil) and in adult lung, which contains many macrophages. Furthermore, both the transcripts and the protein products of the lyn gene accumulated in macrophages/monocytes, platelets, and B lymphocytes but were not expressed appreciably in granulocytes, erythrocytes, or T lymphocytes, suggesting that lyn gene products function primarily in certain differentiated cells of lymphoid and myeloid lineages

  3. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells.

    Science.gov (United States)

    Chung, Eun Young; Shin, Soon Young; Lee, Young Han

    2007-07-05

    Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.

  4. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    Science.gov (United States)

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  5. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    Science.gov (United States)

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  6. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  7. The BRCA1 c. 5096G>A p.Arg1699Gln (R1699Q) intermediate risk variant

    DEFF Research Database (Denmark)

    Moghadasi, Setareh; Meeks, Huong D.; Vreeswijk, Maaike Pg

    2018-01-01

    studied families, to further define cancer risks and to propose adjusted clinical management of female BRCA1*R1699Q carriers. METHODS: Data were collected from 129 BRCA1*R1699Q families ascertained internationally by ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles......BACKGROUND: We previously showed that the BRCA1 variant c.5096G>A p.Arg1699Gln (R1699Q) was associated with an intermediate risk of breast cancer (BC) and ovarian cancer (OC). This study aimed to assess these cancer risks for R1699Q carriers in a larger cohort, including follow-up of previously......) consortium members. A modified segregation analysis was used to calculate BC and OC risks. Relative risks were calculated under both monogenic model and major gene plus polygenic model assumptions. RESULTS: In this cohort the cumulative risk of BC and OC by age 70 years was 20% and 6%, respectively...

  8. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    Energy Technology Data Exchange (ETDEWEB)

    Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr [Department of Pediatrics, Eulji General Hospital, College of Medicine, Eulji University, 68 Hangeulbiseok-ro, Nowon-gu, Seoul 139-711 (Korea, Republic of)

    2016-03-21

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and the little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)

  9. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    International Nuclear Information System (INIS)

    Cha Gon, Lee

    2016-01-01

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and the little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)

  10. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Science.gov (United States)

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  11. Associations between Dietary Patterns, ADRβ2 Gln27Glu and ADRβ3 Trp64Arg with Regard to Serum Triglyceride Levels: J-MICC Study

    Directory of Open Access Journals (Sweden)

    Hinako Nanri

    2016-09-01

    Full Text Available Interactions between dietary patterns and 2 β-adrenergic receptor (ADRβ gene polymorphisms (ADRβ2 Gln27Glu and ADRβ3 Trp64Arg were examined with regard to the effects on serum triglyceride levels. The cross-sectional study comprised 1720 men and women (aged 35–69 years enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC Study. Genotyping was conducted using a multiplex polymerase chain reaction-based invader assay. We used 46 items from a validated short food frequency questionnaire and examined major dietary patterns by factor analysis. We identified four dietary patterns: healthy, Western, seafood and bread patterns. There was no significant association between any dietary pattern and serum triglyceride levels. After a separate genotype-based analysis, significant interactions between ADRβ3 Trp64Arg genotype and the bread pattern (p for interaction = 0.01 were associated with serum triglyceride levels; specifically, after adjusting for confounding factors, Arg allele carriers with the bread pattern had lower serum triglycerides (p for trend = 0.01. However, the Trp/Trp homozygous subjects with the bread pattern showed no association with serum triglycerides (p for trend = 0.55. Interactions between other dietary patterns and ADRβ polymorphisms were not significant for serum triglyceride levels. Our findings suggest that ADRβ3 polymorphism modifies the effects of the bread pattern on triglyceride levels.

  12. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  13. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Johannes M I H Gho

    Full Text Available Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8 from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50% male. An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/. Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.

  14. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  15. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  16. Frequency of ABL gene mutations in chronic myeloid leukemia patients resistant to imatinib and results of treatment switch to second-generation tyrosine kinase inhibitors.

    Science.gov (United States)

    Marcé, Silvia; Zamora, Lurdes; Cabezón, Marta; Xicoy, Blanca; Boqué, Concha; Fernández, Cristalina; Grau, Javier; Navarro, José-Tomás; Fernández de Sevilla, Alberto; Ribera, Josep-Maria; Feliu, Evarist; Millá, Fuensanta

    2013-08-04

    Tyrosine kinase inhibitors (TKI) have improved the management of patients with chronic myeloid leukemia (CML). However, a significant proportion of patients do not achieve the optimal response or are resistant to TKI. ABL kinase domain mutations have been extensively implicated in the pathogenesis of TKI resistance. Treatment with second-generation TKI has produced high rates of hematologic and cytogenetic responses in mutated ABL patients. The aim of this study was to determine the type and frequency of ABL mutations in patients who were resistant to imatinib or had lost the response, and to analyze the effect of second-generation TKI on their outcome. The presence of ABL mutations in 45 CML patients resistant to imatinib was evaluated by direct sequencing and was correlated with the results of the cytogenetic study (performed in 39 cases). The outcome of these patients after therapy with nilotinib or dasatinib was analyzed. ABL mutations were detected in 14 out of 45 resistant patients. Patients with clonal cytogenetic evolution tended to develop mutations more frequently than those without clonal evolution. Nine out of the 15 patients with ABL mutation responded to a treatment switch to nilotinib (n=4), dasatinib (n=2), interferon (n=1) or hematopoietic stem cell transplantation (n=2). The frequency of ABL mutations in CML patients resistant to imatinib is high and is more frequent among those with clonal cytogenetic evolution. The change to second-generation TKI can overcome imatinib resistance in most of the mutated patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  17. Mediator kinase module and human tumorigenesis.

    Science.gov (United States)

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  18. ERCC1 Cys8092Ala and XRCC1 Arg399Gln polymorphisms predict progression-free survival after curative radiotherapy for nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Hekun Jin

    Full Text Available BACKGROUND: Single nucleotide polymorphisms (SNPs in DNA repair genes can alter gene expression and activity and affect response to cancer treatment and, correspondingly, survival. The present study was designed to evaluate the utility of the XRCC1 Arg399Gln and ERCC1 Cys8092Ala SNPs, measured in pretreatment biopsy samples, as predictors of response to radiotherapy in patients with non-metastatic nasopharyngeal carcinoma (NPC. MATERIALS AND METHODS: The study included 75 consecutive patients with stage II-IVA-B NPC. XRCC1 Arg399Glu and ERCC1 Cys8092Ala SNPs were identified from paraffin-embedded biopsy specimens via Sanger sequencing. Expression of p53 and pAkt protein was analyzed by immunohistochemical staining. Potential relationships between genetic polymorphisms and progression-free survival (PFS were analyzed by using a Cox proportional hazards model, the Kaplan-Meier method, and the log-rank test. RESULTS: Multivariate analysis showed that carriers of the ERCC1 8092 Ala/Ala genotype [hazard ratio (HR 1.882; 95% confidence interval (CI 1.031-3.438; P = 0.039] and heavy smokers (≥20 pack-years carrying the XRCC1 Arg/Arg genotype (HR 2.019; 95% CI 1.010-4.036; P = 0.047 had significantly lower PFS rates. Moreover, combined positive expression of p53 and pAkt led to significantly increased PFS in subgroups carrying the XRCC1 Gln allele (HR 7.057; 95% CI 2.073-24.021; P = 0.002 or the ERCC1 Cys allele (HR 2.568; 95% CI 1.056-6.248; P = 0.038. CONCLUSIONS: The ERCC1 Cys8092Ala polymorphism is an independent predictor of response to radiotherapy for NPC, and the XRCC1 Arg399Glu mutation combined with smoking status seems to predict PFS as well. Our results further suggest a possible correlation between these genetic polymorphisms and p53 protein status on survival.

  19. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    Science.gov (United States)

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  20. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.

    Science.gov (United States)

    Kim, Dennis H; Feinbaum, Rhonda; Alloing, Geneviève; Emerson, Fred E; Garsin, Danielle A; Inoue, Hideki; Tanaka-Hino, Miho; Hisamoto, Naoki; Matsumoto, Kunihiro; Tan, Man-Wah; Ausubel, Frederick M

    2002-07-26

    A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

  1. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  2. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2008-10-01

    Full Text Available Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA, but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E, each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. Conclusion We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  3. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y.

    Science.gov (United States)

    Nishida, Yuichiro; Adati, Naoki; Ozawa, Ritsuko; Maeda, Aasami; Sakaki, Yoshiyuki; Takeda, Tadayuki

    2008-10-28

    SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  4. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    DEFF Research Database (Denmark)

    Al-Saaidi, Rasha Abdelkadhem; Rasmussen, Torsten Bloch; Palmfeldt, Johan

    2013-01-01

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems...... however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR...

  5. Effects of Arginine Concentration on the In Vitro Expression of Casein and mTOR Pathway Related Genes in Mammary Epithelial Cells from Dairy Cattle

    Science.gov (United States)

    Wang, Mengzhi; Xu, Bolin; Wang, Hongrong; Bu, Dengpan; Wang, Jiaqi; Loor, Juan-Jose

    2014-01-01

    Arginine (Arg) is a conditionally-essential amino acid that is taken up by bovine mammary gland in excess of its output in milk. In this study we evaluated the effects of Arg concentration on the expression of casein and signaling pathway-related genes in mammary epithelial cells. The treatments (applied for 24 h) were designed to be devoid of Arg 0X (control; 0.00 mg/L), resemble the profile of Arg in casein (Arg 1X; 278.00 mg/L), be deficient [Arg 0.25X (69.50 mg/L) and Arg 0.5X (139.00 mg/L)], or be in excess of the amount in casein [Arg 2X (556.00 mg/L), Arg 4X (1,112 mg/L), and Arg 8X (2,224 mg/L)]. The expression of CSN1S, CSN3 and mTOR in the experimental groups was higher than those of the control group (P0.05), the expression of CSN1S2, CSN2 and JAK2 in other experimental groups was higher (P0.05), the expression of STAT5 in the other experimental groups was higher than those of the control (Pcasein genes and mTOR-related genes in bovine mammary epithelial cells. PMID:24788778

  6. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    Science.gov (United States)

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  7. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  8. Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1.

    Science.gov (United States)

    Whitham, Martin; Chan, M H Stanley; Pal, Martin; Matthews, Vance B; Prelovsek, Oja; Lunke, Sebastian; El-Osta, Assam; Broenneke, Hella; Alber, Jens; Brüning, Jens C; Wunderlich, F Thomas; Lancaster, Graeme I; Febbraio, Mark A

    2012-03-30

    Exercise increases the expression of the prototypical myokine IL-6, but the precise mechanism by which this occurs has yet to be identified. To mimic exercise conditions, C2C12 myotubes were mechanically stimulated via electrical pulse stimulation (EPS). We compared the responses of EPS with the pharmacological Ca(2+) carrier calcimycin (A23187) because contraction induces marked increases in cytosolic Ca(2+) levels or the classical IκB kinase/NFκB inflammatory response elicited by H(2)O(2). We demonstrate that, unlike H(2)O(2)-stimulated increases in IL-6 mRNA, neither calcimycin- nor EPS-induced IL-6 mRNA expression is under the transcriptional control of NFκB. Rather, we show that EPS increased the phosphorylation of JNK and the reporter activity of the downstream transcription factor AP-1. Furthermore, JNK inhibition abolished the EPS-induced increase in IL-6 mRNA and protein expression. Finally, we observed an exercise-induced increase in both JNK phosphorylation and IL-6 mRNA expression in the skeletal muscles of mice after 30 min of treadmill running. Importantly, exercise did not increase IL-6 mRNA expression in skeletal muscle-specific JNK-deficient mice. These data identify a novel contraction-mediated transcriptional regulatory pathway for IL-6 in skeletal muscle.

  9. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants.

    Science.gov (United States)

    Zhu, Yijing; Wang, Yayi; Zhou, Shuai; Jiang, Xuxin; Ma, Xiao; Liu, Chao

    2018-03-01

    Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and industrial wastewater treatment. To reveal the capacity of MBRs for removal of ARGs and the response of membrane fouling after antibiotic exposure, five typical ARG subtypes (sulI, sulII, tetC, tetX and ereA) and int1 were quantified affiliated by systematic membrane foulants analysis in a laboratory-scale anoxic/aerobic membrane bioreactor (A/O-MBR). Sulfamethoxazole and tetracycline hydrochloride additions increased ARG abundances by 0.5-1.4 orders of magnitude in the activated sludge, while the ARG removal performance of the membrane module remained stable (or even increased with ARG absolute abundance in several cases), with the abundance of removed ARGs ranging from 0.6 to 5.6 orders of magnitude. Specifically, the distribution of ARGs in membrane foulants accounted for 13%-25% of the total absolute abundance of all tested MBR samples. Indeed, substantial fouling occurred after the antibiotic additions, with the mean concentrations of soluble microbial product (SMP) and extracellular polymeric substance (EPS) increasing by 340% and 220%, respectively, in a membrane fouling cycle; moreover, the contents of EPS and SMP in the membrane foulants were significantly correlated with the ARG absolute abundance of membrane foulants (p removal of ARGs in MBR systems, and highlight the contribution of membrane fouling to ARG removals in terms of the potential of MBR as an effective strategy to reduce ARG levels in WWTP effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase

    NARCIS (Netherlands)

    Beisser, P.S.; Verzijl, D.; Gruijthuijsen, Y.K.; Beuken, E.V.; Smit, M.J.; Leurs, R.; Bruggeman, C.A.; Vink, C.

    2005-01-01

    Epstein-Barr vires (EBV) infection is associated with many lymphoproliferative diseases, such as infectious mononucleosis and Burkitt's lymphoma. Consequently, EBV is one of the most extensively studied herpesvirases. Surprisingly, a putative G protein-coupled receptor (GPCR) gene of EBV, BILF1, has

  12. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus

    2007-01-01

    IL-20 is a novel member of the IL-10 cytokine family with pleiotropic effects. Current knowledge of what triggers and regulates IL-20 gene expression is sparse. The aim of this study was to investigate the regulation of IL-20 expression in cultured normal human keratinocytes. The expression of IL...

  13. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  14. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection

    NARCIS (Netherlands)

    Rehman, Zia Ur; Hoekstra, Dick; Zuhorn, Inge S.

    2011-01-01

    Cellular entry of nanoparticles for drug- and gene delivery relies on various endocytic pathways, including clathrin-and caveolae-mediated endocytosis. To improve delivery, i.e., the therapeutic and/or cell biological impact, current efforts are aimed at avoiding processing of the carriers along the

  15. An ARGS-aggrecan assay for analysis in blood and synovial fluid

    DEFF Research Database (Denmark)

    Larsson, S; Lohmander, Stefan; Struglics, A

    2014-01-01

    OBJECTIVE: To validate a modified ligand-binding assay for the detection of aggrecanase generated aggrecan fragments with the ARGS neoepitope in synovial fluid (SF) and blood, and to verify the identity of aggrecan fragments found in blood. DESIGN: An enzyme-linked immunosorbent assay (ELISA....... Aggrecan was purified from serum and plasma pools and analysed by Western blot. RESULTS: The limits of quantification for the ARGS-aggrecan assay was between 0.2 and 0.025 pmol ARGS/ml, and the sensitivity of the assay was improved two-fold compared to when using a standard purified from human donors...... similar, and correlated (r(S) = 0.773, P assay is highly sensitive and suited for analysis...

  16. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation.

    Science.gov (United States)

    Salat-Canela, Clàudia; Paulo, Esther; Sánchez-Mir, Laura; Carmona, Mercè; Ayté, José; Oliva, Baldo; Hidalgo, Elena

    2017-08-18

    Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast ( Schizosaccharomyces pombe ), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism.

    Science.gov (United States)

    Ramos-Araque, Maria E; Rodriguez, Cristina; Vecino, Rebeca; Cortijo Garcia, Elisa; de Lera Alfonso, Mercedes; Sanchez Barba, Mercedes; Colàs-Campàs, Laura; Purroy, Francisco; Arenillas, Juan F; Almeida, Angeles; Delgado-Esteban, Maria

    2018-04-23

    Cerebral preconditioning (PC) confers endogenous brain protection after stroke. Ischemic stroke patients with a prior transient ischemic attack (TIA) may potentially be in a preconditioned state. Although PC has been associated with the activation of pro-survival signals, the mechanism by which preconditioning confers neuroprotection is not yet fully clarified. Recently, we have described that PC-mediated neuroprotection against ischemic insult is promoted by p53 destabilization, which is mediated by its main regulator MDM2. Moreover, we have previously described that the human Tp53 Arg72Pro single nucleotide polymorphism (SNP) controls susceptibility to ischemia-induced neuronal apoptosis and governs the functional outcome of patients after stroke. Here, we studied the contribution of the human Tp53 Arg72Pro SNP on PC-induced neuroprotection after ischemia. Our results showed that cortical neurons expressing the Pro72-p53 variant exhibited higher PC-mediated neuroprotection as compared with Arg72-p53 neurons. PC prevented ischemia-induced nuclear and cytosolic p53 stabilization in Pro72-p53 neurons. However, PC failed to prevent mitochondrial p53 stabilization, which occurs in Arg72-p53 neurons after ischemia. Furthermore, PC promoted neuroprotection against ischemia by controlling the p53/active caspase-3 pathway in Pro72-p53, but not in Arg72-p53 neurons. Finally, we found that good prognosis associated to TIA within 1 month prior to ischemic stroke was restricted to patients harboring the Pro72 allele. Our findings demonstrate that the Tp53 Arg72Pro SNP controls PC-promoted neuroprotection against a subsequent ischemic insult by modulating mitochondrial p53 stabilization and then modulates TIA-induced ischemic tolerance.

  18. Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015

    DEFF Research Database (Denmark)

    Lenman, Marit; Ali, Ashfaq; Mühlenbock, Per

    2016-01-01

    different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have...

  19. Contribution of ARLTS1 Cys148Arg (T442C variant with prostate cancer risk and ARLTS1 function in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sanna Siltanen

    Full Text Available ARLTS1 is a recently characterized tumor suppressor gene at 13q14.3, a region frequently deleted in both sporadic and hereditary prostate cancer (PCa. ARLTS1 variants, especially Cys148Arg (T442C, increase susceptibility to different cancers, including PCa. In this study the role of Cys148Arg substitution was investigated as a risk factor for PCa using both genetic and functional analysis. Cys148Arg genotypes and expression of the ARLTS1 were explored in a large set of familial and unselected PCa cases, clinical tumor samples, xenografts, prostate cancer cell lines and benign prostatic hyperplasia (BPH samples. The frequency of the variant genotype CC was significantly higher in familial (OR = 1.67, 95% CI = 1.08-2.56, P = 0.019 and unselected patients (OR = 1.52, 95% CI = 1.18-1.97, P = 0.001 and the overall risk was increased (OR = 1.54, 95% CI = 1.20-1.98, P = 0.0007. Additional analysis with clinicopathological data revealed an association with an aggressive disease (OR = 1.28, 95% CI = 1.05-∞, P = 0.02. The CC genotype of the Cys148Arg variant was also contributing to the lowered ARLTS1 expression status in lymphoblastoid cells from familial patients. In addition significantly lowered ARLTS1 expression was observed in clinical tumor samples compared to BPH samples (P = 0.01. The ARLTS1 co-expression signature based on previously published microarray data was generated from 1587 cancer samples confirming the low expression of ARLTS1 in PCa and showed that ARLTS1 expression was strongly associated with immune processes. This study provides strong confirmation of the important role of ARLTS1 Cys148Arg variant as a contributor in PCa predisposition and a potential marker for aggressive disease outcome.

  20. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    NARCIS (Netherlands)

    Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C. M.; Serra, M.

    2013-01-01

    Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell

  1. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs.

  2. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  3. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3.

    Science.gov (United States)

    Grieco, Steven F; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-09-01

    We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.

  4. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  5. In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter

    Directory of Open Access Journals (Sweden)

    Gary D. Luker

    2002-04-01

    Full Text Available Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK as a reporter gene driven by the promoter for human elongation factor 1α (EF-1α-EGFP-TK. Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV. As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutylguanine ([18F]FHBG ≈ 8-[3H]penciclovir (8-[3H]PCV < 2′-fluoro-2′-deoxy-5-iodouracil-beta-d-arabinofuranoside (2-[14C]FIAU. Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  6. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  8. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: LXL730724@hotmail.com; Liu Ying; He Yong; Wu Tao; Zhang Binqing; Gao Zairong; An Rui [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: zhyx1229@163.com

    2010-04-15

    Aim: To demonstrate the feasibility and optimal conditions of imaging herpes simplex virus 1-thymidine kinase (HSV1-tk) gene transferred into hearts with {sup 131}I-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil ({sup 131}I-FIAU) using autoradiography (ARG) and single photon emission computed tomography (SPECT) in animal models. Methods: HSV1-tk inserted into adenovirus vector (Ad5-tk) and adenovirus (Ad5-null) was prepared. Rats or rabbits were divided into a study group receiving intramyocardial injection of Ad5-tk, and a control group receiving Ad-null injection. In the study group of rats, two sets of experiments, time-course study and dose-dependence study, were performed. In time-course experiments, rats were injected with {sup 131}I-FIAU on Days 1, 2, 3, 5 and 7, after transfection of 1x10{sup 8} pfu Ad5-tk, to study the feasibility and suitable time course for reporter gene imaging. In dose-dependence study, various titers of Ad5-tk (5x10{sup 8}, 1x10{sup 8}, 5x10{sup 7} and 1x10{sup 7} pfu) were used to determine the threshold and optimal viral titer needed for detection of gene expression. The gamma counts of hearts were measured. The rat myocardium was analyzed by ARG and reverse transcriptase-polymerase chain reaction (RT-PCR). SPECT whole-body planar imaging and cardiac tomographic imaging were performed in the rabbit models. Results: From the ARG images, rats injected with Ad5-tk showed significant {sup 131}I-FIAU activity in the anterolateral wall compared with background signals seen in the control Ad5-null rats. In time-course study, the highest radioactivity in the focal myocardium could be seen on Day 1, and then progressively declined with time. In dose-dependence study, the level of {sup 131}I-FIAU accumulation in the transfected myocardium declined with the decrease of Ad viral titers. From the ARG analysis and gamma counting, the threshold viral titer was 5x10{sup 7} pfu, and the optimal Ad titer was 1x10{sup 8} pfu

  9. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    Science.gov (United States)

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  10. Evaluation of new Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides for melanoma imaging.

    Science.gov (United States)

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-09-03

    The purpose of this study was to examine the melanoma targeting and imaging properties of two new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg(11))CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg(11))CCMSH peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg(11))CCMSH and RVD-Lys-(Arg(11))CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH displayed high melanoma uptake. (99m)Tc-RTD-Lys-(Arg(11))CCMSH exhibited the highest tumor uptake of 18.77 ± 5.13% ID/g at 2 h postinjection, whereas (99m)Tc-RVD-Lys-(Arg(11))CCMSH reached the highest tumor uptake of 19.63 ± 4.68% ID/g at 4 h postinjection. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h postinjection. The renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h postinjection, respectively. The melanoma lesions were clearly visualized by single-photon emission computed tomography (SPECT)/CT using either (99m)Tc-RTD-Lys-(Arg(11))CCMSH or (99m)Tc-RVD-Lys-(Arg(11))CCMSH as an imaging probe at 2 h postinjection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH. However, high renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH need to be reduced to facilitate their future applications.

  11. The experimental study of reporter probe 131I-FIAU in neonatal cardiac myocytes after transfer of herpes simplex virus type 1 thymidine kinase reporter gene by different vectors

    International Nuclear Information System (INIS)

    Yin Xiaohua; Lan Xiaoli; Wang Ruihua; Liu Ying; Zhang Yongxue

    2009-01-01

    Objective: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In the present study, the recombinant plasmid and adenoviral vector carrying reporter gene. herpes simplex virus type 1 thymidine kinase (HSV1-tk), were constructed and transferred into nee-natal cardiac myocytes, and a series of in vitro studies were carried out on the cells transferred to evaluate the uptake of radiolabeled reporter probe and to compare both vectors for cardiac reporter gene imaging. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSVI-tk. chosen as the reporter gene.was inserted into adenovirus vector (Ad5-tk) and plasmid (pDC316-tk), thus it could be transferred into neonatal cardiac myocytes. Recombinant adenovirus containing enhanced green fluorescent protein (Ad5-EGFP) was used as control. Recombinant plasmid was coated with lipofectamine TM 2000 (pDC316-tk/lipoplex). The specific reporter probe of HSV1-tk, 2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-uracil (FAU), was labeled with 131 I by solid phase oxidation with lodogen. Product wag purified on a reverse. phase Sep-Pak C18 column and the radiochemical purity wag then assessed. The accumulation of it in the transferred cardiac myocytes wag detected as uptake rate. Furthermore, mRNA expression of HSV1-tk was detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), while its protein expression wag located by immunocytochemistry. Results: FAU could be labeled with 131 I and the labeling efficiency was (53.82 ±2.05)%. The radiochemical purity was (94.85 ± 1.76)% after purification, and it kept stable in vitro for at least 24h. Time-dependent increase of the ac- cumulation of 131 I-FIAU was observed in both Ad5-tk group and pDC316-tk/lipoplex group. and the highest uptake rate occurred at 5h, with peak values of (12.55 ± 0.37)% and (2.09 ± 0.34)% respectively. However, it also indicated that greater

  12. AVATAR: AdVanced Aerodynamic Tools for lArge Rotors

    DEFF Research Database (Denmark)

    Schepers, J.C.; Ceyhan, O.; Savenije, F.J.

    2015-01-01

    An EERA (European Energy Research Alliance) consortium started an ambitious EU FP7 project AVATAR (AdVanced Aerodynamic Tools of lArge Rotors) in November 2013. The project lasts 4 years and is carried out in a consortium with 11 research institutes and two industry partners. The motivation...

  13. Installation and Testing Instructions for the Sandia Automatic Report Generator (ARG).

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.

    2018-04-01

    Robert L. CLAY Sandia National Laboratories P.O. Box 969 Livermore, CA 94551, U.S.A. rlclay@sandia.gov In this report, we provide detailed and reproducible installation instructions of the Automatic Report Generator (ARG), for both Linux and macOS target platforms.

  14. The PIM kinases in hematological cancers.

    Science.gov (United States)

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  15. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  16. Congenital insensitivity to pain with anhidrosis (CIPA): Novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency

    NARCIS (Netherlands)

    Y. Indo (Yasuhiro); S. Mardy (Sek); Y. Miura (Yuichi); A. Moosa (Allie); E.A.R. Ismail (Essam A.); E. Toscano (Ennio); G. Andria (Generoso); V. Pavone (Vito); D.L. Brown (Deborah); A.S. Brooks (Alice); F. Endo (Fumio); I. Matsuda (Ichiro)

    2001-01-01

    textabstractCongenital insensitivity to pain with anhidrosis is an autosomal recessive hereditary disorder characterized by recurrent episodic fever, anhidrosis (inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. The human TRKA gene

  17. ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.

    Science.gov (United States)

    Chen, Hao; Yang, Peng; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2015-01-01

    Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable. In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22 autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-regulatory elements of meiotic recombination hotspots of the human genome. Our results on both simulated and real data suggest that ARG-walker is a promising new method for estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of recombination regulation and human diseases related with recombination hotspots.

  18. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    Science.gov (United States)

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  19. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    Science.gov (United States)

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  20. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    Science.gov (United States)

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    Science.gov (United States)

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  2. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes.

    Science.gov (United States)

    Hitch, Thomas C A; Thomas, Ben J; Friedersdorff, Jessica C A; Ougham, Helen; Creevey, Christopher J

    2018-04-01

    Antibiotic resistance is an increasingly important environmental pollutant with direct consequences for human health. Identification of environmental sources of antibiotic resistance genes (ARGs) makes it possible to follow their evolution and prevent their entry into the clinical setting. ARGs have been found in environmental sources exogenous to the original source and previous studies have shown that these genes are capable of being transferred from livestock to humans. Due to the nature of farming and the slaughter of ruminants for food, humans interact with these animals in close proximity, and for this reason it is important to consider the risks to human health. In this study, we characterised the ARG populations in the ovine rumen, termed the resistome. This was done using the Comprehensive Antibiotic Resistance Database (CARD) to identify the presence of genes conferring resistance to antibiotics within the rumen. Genes were successfully mapped to those that confer resistance to a total of 30 different antibiotics. Daptomycin was identified as the most common antibiotic for which resistance is present, suggesting that ruminants may be a source of daptomycin ARGs. Colistin resistance, conferred by the gene pmrE, was also found to be present within all samples, with an average abundance of 800 counts. Due to the high abundance of some ARGs (against daptomycin) and the presence of rare ARGs (against colistin), we suggest further study and monitoring of the rumen resistome as a possible source of clinically relevant ARGs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia.

    Science.gov (United States)

    Wang, Xinfeng; Zhang, Lina; Zhao, Fan; Xu, Ruirong; Jiang, Jie; Zhang, Chenglu; Liu, Hong; Huang, Hongming

    2018-04-13

    This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.

  4. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China

    International Nuclear Information System (INIS)

    Wen, Qinxue; Yang, Lian; Duan, Ruan; Chen, Zhiqiang

    2016-01-01

    The development and proliferation of antibiotic resistance in pathogenic and environmental microorganisms is of great concern for public health. In this study, the distribution and removal efficiency of intI1 and eight subtypes of antibiotic resistance genes (ARGs) for tetracycline, sulfonamides, beta-lactams resistance in four municipal wastewater treatment plants (WWTPs) in Harbin, which locates in Songhua River basin in cold areas of China, were monitored by real-time fluorescent quantitative PCR. The results showed that intI1 and 6 ARGs except for bla_T_E_M and bla_S_H_V were detected in wastewater and sludge samples and 0.3–2.7 orders of magnitude of ARGs removal efficiency in the four WWTPs were observed. The investigation on the removal of ARGs of different treatment units in one WWTP showed that the biological treatment unit played the most important role in ARGs removal (1.2–1.8 orders of magnitude), followed by UV disinfection, while primary physical treatment units can hardly remove any ARGs. Although all the WWTPs can remove ARGs effectively, ARGs concentrations are still relatively high in the effluent, their further attenuation should be investigated. - Highlights: • The distribution of 8 ARGs and intI1 in WWTPs in Harbin in winter were monitored. • ARGs removal in 4 WWTPs with different processes were investigated. • Biological treatment process plays the most important role in ARGs removal. • A relatively high level of ARGs is still present in the effluent after wastewater treatment. • Regional uses of antibiotics other than season temperature affects the fate of ARGs in WWTPs.

  5. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf......A-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other...

  6. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers.

    Science.gov (United States)

    Xu, Lei; Zhang, Haijun; Yue, Hongyuan; Wu, Shugeng; Yang, Haiming; Wang, Zhiyue; Qi, Guanghai

    2018-01-01

    Meat color and lipid peroxidation are important traits related to meat quality. CO 2 concentration is a critical factor that can affect meat quality in the commercial use of gas stunning (GS). However, the effect and mechanism of CO 2 stunning on meat color and lipid peroxidation during long-term storage remain poorly studied. We aimed to study the effects of GS methods, especially CO 2 concentration, on meat color and meat lipid peroxidation in broilers during long-term storage at 4 °C and to explore the potential mechanism of meat color change via lipid peroxidation and the inner lipid peroxide scavenging system. Eighteen broilers were sacrificed after exposure to one of the following gas mixtures for 90 s: 40% CO 2  + 21% O 2  + 39% N 2 (G40%), 79% CO 2  + 21% O 2 (G79%), or no stunning (0% CO 2 , control). Meat color, serum variables, enzyme activities, and the gene expression of mitogen-activated protein kinase ( MAPK ), nuclear factor-erythroid 2-related factor 2 ( Nrf2 ), glutathione S-transferase ( GST ) and superoxide dismutase ( SOD ) were determined. The concentrations of serum triiodothyronine (T3, P  = 0.03) and the ratio of serum free triiodothyronine/free thyroxine (FT3/FT4, P  meat and the TBARS 3 d in thigh meat ( P  meat ( r  = - 0.63, P  meat and in the thigh meat ( r  = - 0.57, P  = 0.01; and r  = - 0.53, P  = 0.03 respectively). Compared with the control group, Lightness (L*) 1 d ( P =  0.03) and L* 9 d ( P meat of both the G40% and G79% groups. The values of yellowness (b*) 3 d ( P =  0.01), b* 6 d ( P meat were lower in both the G40% and G79% groups than in the control group. In the breast muscle, the mRNA levels of c-Jun N-terminal kinase 2 ( JNK2, P  = 0.03), GSTT1 ( P  = 0.04), and SOD1 ( P  = 0.05) were decreased, and the mRNA levels of JNK1 ( P  = 0.07), Nrf2 ( P  = 0.09), and GSTA3 ( P  = 0.06) were slightly lower in both the G40% and G79% groups

  7. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2: A Bivalent Advantage.

    Science.gov (United States)

    Lensing, Cody J; Adank, Danielle N; Wilber, Stacey L; Freeman, Katie T; Schnell, Sathya M; Speth, Robert C; Zarth, Adam T; Haskell-Luevano, Carrie

    2017-06-21

    Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2 , to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH 2 , on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T 1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease

  8. Lys and Arg in UBI: A specific site for a stable Tc-99m complex?

    International Nuclear Information System (INIS)

    Melendez-Alafort, Laura; Ramirez, Flor de Maria; Ferro-Flores, Guillermina; Murphy, Consuelo Arteaga de; Pedraza-Lopez, Martha; Hnatowich, Donald J.

    2003-01-01

    The aim of this study was to help establish if ubiquicidin peptide 29-41 fragment (UBI) contains a specific site for 99m Tc labeling by a new direct method under alkaline conditions. Since this peptide does not have cysteine residues, it is possible that neighboring arginine and lysine in the peptide amino acid sequence (Thr-Gly-Arg-Ala-Lys-Arg-Arg-Met-Gln-Tyr-Asn-Arg-Arg) could be a specific coordination site to form a stable 99m Tc-UBI complex. Following direct labeling, the in vitro stability of 99m Tc-UBI was compared to UBI radiolabeled by one indirect method using HYNIC/tricine and HYNIC/tricine/EDDA. Radiochemical purity of 99m Tc-UBI averaged 97% compared to 88% for 99m Tc-HYNIC-UBI/tricine and 98% for 99m Tc-HYNIC-UBI/tricine/EDDA. Both 99m Tc-HYNIC-UBI (tricine or EDDA) and 99m Tc-UBI showed stability in human serum and solutions of cysteine. 99m Tc-UBI radiochemical purity 24 h after dilution in 0.9% NaCl was greater than 90% at pH 9 and greater than 95% at pH 6.5. Under one set of experimental conditions, in vitro binding to bacteria of 99m Tc-UBI was 35% and identical to that of 99m Tc-HYNIC-UBI/tricine and 99m Tc-HYNIC-UBI/tricine/EDDA at 32% and 31% respectively. The biodistribution of 99m Tc-UBI in mice showed a rapid renal clearance. To help identify the site(s) of 99m Tc binding following direct labeling, molecular mechanics and quantum-mechanical calculations were performed which showed that the amine groups of Arg 7 and Lys are the most probable site. The calculations show that these groups can form a square pyramid with two water molecules for the Tc cation (dxysp 3 ). It will be necessary to isolate and characterize the 99 Tc(V)(O)-UBI . (H 2 O) n complex to confirm these results

  9. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton

    Science.gov (United States)

    Sedbrook, J. C.; Chen, R.; Masson, P. H.

    1999-01-01

    Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholo