WorldWideScience

Sample records for gene approaches gene

  1. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  2. Approaches for skeletal gene therapy.

    Science.gov (United States)

    Niyibizi, Christopher; Wallach, Corey J; Mi, Zhibao; Robbins, Paul D

    2002-01-01

    The role of gene therapy in the treatment of musculoskeletal disorders continues to be an active area of research. As the etiology of many musculoskeletal diseases becomes increasingly understood, advances in cellular and gene therapy maybe applied to their potential treatment This review focuses on current investigational strategies to treat osteogenesis imperfecta (OI). OI is a varied group of genetic disorders that result in the diminished integrity of connective tissues as a result of alterations in the genes that encode for either the pro alpha1 or pro alpha2 component of type I collagen. Because most forms of OI result from dominant negative mutations, isolated gene replacement therapy is not a logical treatment option. The combined use of genetic manipulation and cellular transplantation, however, may provide a means to overcome this obstacle. This article describes the recent laboratory and clinical advances in cell therapy, highlights potential techniques being investigated to suppress the expression of the mutant allele with antisense gene therapy, and attempts to deliver collagen genes to bone cells. The challenges that the investigators face in their quest for the skeletal gene therapy are also discussed.

  3. Gene therapy in peripheral nerve reconstruction approaches.

    Science.gov (United States)

    Haastert, Kirsten; Grothe, Claudia

    2007-06-01

    Gene transfer to a transected peripheral nerve or avulsed nerve root is discussed to be helpful where neurosurgical peripheral nerve reconstruction alone will not result in full recovery of function. Axonal regeneration is supposed to be facilitated by this new therapeutic approach via delivery of specific regeneration promoting molecules as well as survival proteins for the injured sensory and motor neurons. Therefore gene therapy aims in long-term and site-specific delivery of those neurotrophic factors. This paper reviews methods and perspectives for gene therapy to promote functional recovery of severely injured and thereafter reconstructed peripheral nerves. Experimental in vivo and ex vivo gene therapy approaches are reported by different groups. In vivo gene therapy generally uses direct injection of cDNA vectors to injured peripheral nerves. Ex vivo gene therapy is based on the isolation of autologous cells followed by genetic modification of these cells in vitro and re-transplantation of the modified cells to the patient as part of tissue engineered nerve transplants. Vectors of different origin are published to be suitable for peripheral nerve gene therapy and this review discusses the different strategies with regard to their efficiency in gene transfer, their risks and their potential relevance for clinical application.

  4. Nonviral gene therapy approaches to hemophilia.

    Science.gov (United States)

    Gómez-Vargas, Andrew; Hortelano, Gonzalo

    2004-04-01

    The goal of hemophilia gene therapy is to obtain long-term therapeutic levels of factor VIII (FVIII) or factor IX (FIX) without stimulating an immune response against the transgene product or the vector. The success of gene therapy is largely dependent on the development of appropriate gene delivery vectors. Both viral vectors and nonviral vectors have been considered for the development of hemophilia gene therapy. In general, viral vectors are far more efficient than nonviral gene delivery approaches and resulted in long-term therapeutic levels of FVIII or FIX in preclinical animal models. However, there are several reasons why a nonviral treatment would still be desirable, particularly because some viral vectors are associated with inflammatory reactions, that render transgene expression transient, or with an increased risk of insertional oncogenesis when random integrating vectors are used. Nonviral vectors may obviate some of these concerns. Since nonviral vectors are typically assembled in cell-free systems from well-defined components, they have significant manufacturing advantages over viral vectors. The continued development of improved nonviral gene delivery approaches offers new perspectives for gene therapy of chronic diseases including hemophilia.

  5. Translational approach for gene therapy in epilepsy

    DEFF Research Database (Denmark)

    Ledri, Litsa Nikitidou; Melin, Esbjörn; Christiansen, Søren H.

    2016-01-01

    Although novel treatment strategies based on the gene therapy approach for epilepsy has been encouraging, there is still a gap in demonstrating a proof-of-concept in a clinically relevant animal model and study design. In the present study, a conceptually novel framework reflecting a plausible...... clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor......-based gene therapy approach targeting only the seizure-generating focus unilaterally can decrease seizure frequency in this chronic model of epilepsy.Our data suggest that the intrahippocampal kainate model resembles the disease development of human chronic mesial temporal lobe epilepsy (mTLE): (i...

  6. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  7. Gene therapy in glaucoma-3: Therapeutic approaches.

    Science.gov (United States)

    Mahdy, Mohamed Abdel-Monem Soliman

    2010-09-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible.Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucoma and their underlying causes are potentially susceptible to modulation by gene transfer. As genetic defects responsible for glaucoma are identified and the biochemical mechanisms underlying the disease are recognized, new methods of therapy can be developed. Genetic tests are indicated for treatment, diagnosis, prognosis, counseling, and research purposes; however, there is significant overlap among them. One of the important genetic tests for glaucoma is OcuGene. Therefore, it is of utmost importance for the glaucoma specialists to be familiar with and understand the basic molecular mechanisms, genes responsible for glaucoma, and the ways of genetic treatment.Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. METHOD OF LITERATURE SEARCH: The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  8. Gene therapy in glaucoma-3: Therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. Method of Literature Search The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  9. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Su

    Full Text Available BACKGROUND: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 single-nucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1, the gene coding interleukin-4 receptor alpha chain (IL4Ra and the gene coding insulin induced gene 2 (INSIG2 on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83% with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2, signal transducer and activator of transcription 6 (STAT6. We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest that GSTP1, INSIG2 and IL4Ra may influence the lifetime asthma susceptibility through gene-gene interactions in schoolchildren. Home dampness combined with each one of the genes STAT6, IL13 and ADRB2 could raise the asthma risk.

  10. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete;

    approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...

  11. Globaltest and GOEAST: two different approaches for Gene Ontology analysis

    NARCIS (Netherlands)

    Hulsegge, B.; Kommadath, A.; Smits, M.A.

    2009-01-01

    Background Gene set analysis is a commonly used method for analysing microarray data by considering groups of functionally related genes instead of individual genes. Here we present the use of two gene set analysis approaches: Globaltest and GOEAST. Globaltest is a method for testing whether sets of

  12. Computing gene expression data with a knowledge-based gene clustering approach.

    Science.gov (United States)

    Rosa, Bruce A; Oh, Sookyung; Montgomery, Beronda L; Chen, Jin; Qin, Wensheng

    2010-01-01

    Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

  13. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  14. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete

    Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation...... at nucleotide level, thus potentially identify genetic variants. However, testing million of polymorphic nucleotide positions requires conservative correction for multiple testing which lowers the probability of finding genes with small to moderate effects. To alleviate this, we apply a gene based association...... approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...

  15. A DSRPCL-SVM Approach to Informative Gene Analysis

    Institute of Scientific and Technical Information of China (English)

    Wei Xiong; Zhibin Cai; Jinwen Ma

    2008-01-01

    Microarray data based tumor diagnosis is a very interesting topic in bioinformatics. One of the key problems is the discovery and analysis of informative genes of a tumor. Although there are many elaborate approaches to this problem, it is still difficult to select a reasonable set of informative genes for tumor diagnosis only with microarray data. In this paper, we classify the genes expressed through microarray data into a number of clusters via the distance sensitive rival penalized competitive learning (DSRPCL) algorithm and then detect the informative gene cluster or set with the help of support vector machine (SVM). Moreover, the critical or powerful informative genes can be found through further classifications and detections on the obtained informative gene clusters. It is well demonstrated by experiments on the colon, leukemia, and breast cancer datasets that our proposed DSRPCL-SVM approach leads to a reasonable selection of informative genes for tumor diagnosis.

  16. Gene transfer approaches in cancer immunotherapy.

    Science.gov (United States)

    Larin, S S; Georgiev, G P; Kiselev, S L

    2004-10-01

    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  17. A sequence-based approach to identify reference genes for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chari Raj

    2010-08-01

    Full Text Available Abstract Background An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer may not be suitable in another (e.g. breast cancer. Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate. Methods Serial analysis of gene expression (SAGE profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR, and their impact on differential expression analysis of microarray data was evaluated. Results We show that (i conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii reference genes identified for lung cancer do not perform well for other cancer types (breast and brain, (iii reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung

  18. A predictive approach to identify genes differentially expressed

    Science.gov (United States)

    Saraiva, Erlandson F.; Louzada, Francisco; Milan, Luís A.; Meira, Silvana; Cobre, Juliana

    2012-10-01

    The main objective of gene expression data analysis is to identify genes that present significant changes in expression levels between a treatment and a control biological condition. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating credibility intervals from predictive densities which are constructed using sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained indicate that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a publicly available data set on Escherichia coli bacteria.

  19. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  20. Gene therapy in glaucoma-3: Therapeutic approaches

    OpenAIRE

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible. Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucom...

  1. Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ertekin-Taner Nilüfer

    2011-05-01

    Full Text Available Abstract Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years, there has been an explosion of genome-wide association studies (GWAS resulting in the discovery of novel candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success, there still remains a substantial genetic component for many complex traits and conditions that is unexplained by the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS, making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene expression levels represent an important class of endophenotypes. Genetic linkage and association studies that utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This review summarizes the evidence in support of gene expression levels as promising endophenotypes in the discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel approach in the genetic studies of Alzheimer's and other neurodegenerative diseases.

  2. Multiobjective Optimization Methodology A Jumping Gene Approach

    CERN Document Server

    Tang, KS

    2012-01-01

    Complex design problems are often governed by a number of performance merits. These markers gauge how good the design is going to be, but can conflict with the performance requirements that must be met. The challenge is reconciling these two requirements. This book introduces a newly developed jumping gene algorithm, designed to address the multi-functional objectives problem and supplies a viably adequate solution in speed. The text presents various multi-objective optimization techniques and provides the technical know-how for obtaining trade-off solutions between solution spread and converg

  3. Metagenomic gene annotation by a homology-independent approach

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  4. Gene gun delivery systems for cancer vaccine approaches.

    Science.gov (United States)

    Aravindaram, Kandan; Yang, Ning Sun

    2009-01-01

    Gene-based immunization with transgenic DNA vectors expressing tumor-associated antigens (TAA), cytokines, or chemokines, alone or in combination, provides an attractive approach to increase the cytotoxic T cell immunity against various cancer diseases. With this consideration, particle-mediated or gene gun technology has been developed as a nonviral method for gene transfer into various mammalian tissues. It has been shown to induce both humoral and cell-mediated immune responses in both small and large experimental animals. A broad range of somatic cell types, including primary cultures and established cell lines, has been successfully transfected ex vivo or in vitro by gene gun technology, either as suspension or adherent cultures. Here, we show that protocols and techniques for use in gene gun-mediated transgene delivery system for skin vaccination against melanoma using tumor-associated antigen (TAA) human gpl00 and reporter gene assays as experimental systems.

  5. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  6. Gene Prioritization for Imaging Genetics Studies Using Gene Ontology and a Stratified False Discovery Rate Approach.

    Science.gov (United States)

    Patel, Sejal; Park, Min Tae M; Chakravarty, M Mallar; Knight, Jo

    2016-01-01

    Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA2) and the Alzheimer's Disease Neuroimaging Initiative datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between 10 and 20%. Our approach demonstrates a potential method to prioritize genes based on biological systems impaired in a disease.

  7. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    Science.gov (United States)

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  8. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  9. A Network Approach to Predict Pathogenic Genes for Fusarium graminearum

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-01-01

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  10. A task-based approach for Gene Ontology evaluation.

    Science.gov (United States)

    Clarke, Erik L; Loguercio, Salvatore; Good, Benjamin M; Su, Andrew I

    2013-04-15

    The Gene Ontology and its associated annotations are critical tools for interpreting lists of genes. Here, we introduce a method for evaluating the Gene Ontology annotations and structure based on the impact they have on gene set enrichment analysis, along with an example implementation. This task-based approach yields quantitative assessments grounded in experimental data and anchored tightly to the primary use of the annotations. Applied to specific areas of biological interest, our framework allowed us to understand the progress of annotation and structural ontology changes from 2004 to 2012. Our framework was also able to determine that the quality of annotations and structure in the area under test have been improving in their ability to recall underlying biological traits. Furthermore, we were able to distinguish between the impact of changes to the annotation sets and ontology structure. Our framework and implementation lay the groundwork for a powerful tool in evaluating the usefulness of the Gene Ontology. We demonstrate both the flexibility and the power of this approach in evaluating the current and past state of the Gene Ontology as well as its applicability in developing new methods for creating gene annotations.

  11. Contemporary Approaches for Identifying Rare Bone Disease Causing Genes

    Institute of Scientific and Technical Information of China (English)

    Charles R.Farber; Thomas L.Clemens

    2013-01-01

    Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisti-cated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.

  12. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-09-01

    Full Text Available Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results: Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion: Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno­medicines into clinical applications, it is essential 1 to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s; 2 to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3 to perform an initial clinical investigation; and 4 to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno­medicine development and clinical applications.

  13. Analysis of gene set using shrinkage covariance matrix approach

    Science.gov (United States)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  14. A preclinical approach for gene therapy of β-thalassemia

    Science.gov (United States)

    Breda, Laura; Kleinert, Dorothy A.; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J.; Gambari, Roberto; Rivella, Stefano

    2011-01-01

    Lentiviral-mediated β-globin gene transfer successfully treated β-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different β-globin mutations found in patients. Most mutations can be classified as β0 or β+, based on the amount of β-globin protein produced. Therefore, we propose that a screening in vitro is necessary to verify the efficacy of gene transfer prior to treatment of individual patients. We used a two-phase liquid culture system to expand and differentiate erythroid progenitor cells (ErPCs) transduced with lentiviral vectors. We propose the use of this system to test the efficiency of lentiviral vectors carrying the human β-globin gene, to correct the phenotype of ErPCs from patients preparing for gene therapy. This new approach might have profound implications for designing gene therapy and for understanding the genotype/phenotype variability observed in Cooley’s anemia patients. PMID:20712784

  15. A preclinical approach for gene therapy of beta-thalassemia.

    Science.gov (United States)

    Breda, Laura; Kleinert, Dorothy A; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J; Gambari, Roberto; Rivella, Stefano

    2010-08-01

    Lentiviral-mediated beta-globin gene transfer successfully treated beta-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different beta-globin mutations found in patients. Most mutations can be classified as beta(0) or beta(+), based on the amount of beta-globin protein produced. Therefore, we propose that a screening in vitro is necessary to verify the efficacy of gene transfer prior to treatment of individual patients. We used a two-phase liquid culture system to expand and differentiate erythroid progenitor cells (ErPCs) transduced with lentiviral vectors. We propose the use of this system to test the efficiency of lentiviral vectors carrying the human beta-globin gene, to correct the phenotype of ErPCs from patients preparing for gene therapy. This new approach might have profound implications for designing gene therapy and for understanding the genotype/phenotype variability observed in Cooley's anemia patients.

  16. Genome classification by gene distribution: An overlapping subspace clustering approach

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods. Results We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: Staphylococcus 71, phiPVL108, Listeria A118, 2389, Lactobacillus phi AT3, A2

  17. Cell- and gene-based approaches to tendon regeneration.

    Science.gov (United States)

    Nixon, Alan J; Watts, Ashlee E; Schnabel, Lauren V

    2012-02-01

    Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.

  18. Liver-targeted gene therapy: Approaches and challenges.

    Science.gov (United States)

    Aravalli, Rajagopal N; Belcher, John D; Steer, Clifford J

    2015-06-01

    The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.

  19. Gene Therapy Approaches For The Treatment Of Retinal Disorders

    Science.gov (United States)

    Petit, Lolita; Punzo, Claudio

    2016-01-01

    There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases. PMID:27875674

  20. Gene therapeutic approaches to inhibit hepatitis B virusreplication

    Institute of Scientific and Technical Information of China (English)

    Maren Gebbing; Thorsten Bergmann; Eric Schulz; Anja Ehrhardt

    2015-01-01

    Acute and chronic hepatitis B virus (HBV) infectionsremain to present a major global health problem. Theinfection can be associated with acute symptomaticor asymptomatic hepatitis which can cause chronicinflammation of the liver and over years this can leadto cirrhosis and the development of hepatocellularcarcinomas. Currently available therapeutics forchronically infected individuals aim at reducing viralreplication and to slow down or stop the progressionof the disease. Therefore, novel treatment options areneeded to efficiently combat and eradicate this disease.Here we provide a state of the art overview of genetherapeutic approaches to inhibit HBV replication. Wediscuss non-viral and viral approaches which wereexplored to deliver therapeutic nucleic acids aiming atreducing HBV replication. Types of delivered therapeuticnucleic acids which were studied since many yearsinclude antisense oligodeoxynucleotides and antisenseRNA, ribozymes and DNAzymes, RNA interference,and external guide sequences. More recently designernucleases gained increased attention and wereexploited to destroy the HBV genome. In addition wemention other strategies to reduce HBV replicationbased on delivery of DNA encoding dominant negativemutants and DNA vaccination. In combination withavailable cell culture and animal models for HBVinfection, in vitro and in vivo studies can be performedto test efficacy of gene therapeutic approaches. Recentprogress but also challenges will be specified andfuture perspectives will be discussed. This is an excitingtime to explore such approaches because recentsuccesses of gene therapeutic strategies in the clinicto treat genetic diseases raise hope to find alternativetreatment options for patients chronically infected withHBV.

  1. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Science.gov (United States)

    Vashisht, Shikha; Bagler, Ganesh

    2012-01-01

    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  2. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Directory of Open Access Journals (Sweden)

    Shikha Vashisht

    Full Text Available Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  3. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  4. Studying Genes

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Studying Genes Studying Genes Tagline (Optional) Middle/Main Content Area Other Fact Sheets What are genes? Genes are segments of DNA that contain instructions ...

  5. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... identifying all the components of a single biological system is within our means; however, assigning ... discovery of new candidate genes/QTLs and/or to assign ... identify putative genes involved in their genetic control .... for adaptation to different environments. ..... provides insights into fleshy fruit evolution.

  6. Changes in winter depression phenotype correlate with white blood cell gene expression profiles: a combined metagene and gene ontology approach.

    Science.gov (United States)

    Bosker, Fokko J; Terpstra, Peter; Gladkevich, Anatoliy V; Janneke Dijck-Brouwer, D A; te Meerman, Gerard; Nolen, Willem A; Schoevers, Robert A; Meesters, Ybe

    2015-04-03

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior and following bright light therapy and in summer. RNA was isolated, converted into cRNA, amplified and hybridized on Illumina® gene expression arrays. The raw optical array data were quantile normalized and thereafter analyzed using a metagene approach, based on previously published Affymetrix gene array data. The raw data were also subjected to a secondary analysis focusing on circadian genes and genes involved in serotonergic neurotransmission. Differences between the conditions were analyzed, using analysis of variance on the principal components of the metagene score matrix. After correction for multiple testing no statistically significant differences were found. Another approach uses the correlation between metagene factor weights and the actual expression values, averaged over conditions. When comparing the correlations of winter vs. summer and bright light therapy vs. summer significant changes for several metagenes were found. Subsequent gene ontology analyses (DAVID and GeneTrail) of 5 major metagenes suggest an interaction between brain and white blood cells. The hypothesis driven analysis with a smaller group of genes failed to demonstrate any significant effects. The results from the combined metagene and gene ontology analyses support the idea of communication between brain and white blood cells. Future studies will need a much larger sample size to obtain information at the level of single genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  8. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  9. A Novel Approach to Functional Analysis of the Ribulose Bisphosphate Carboxylase Small Subunit Gene by Agrobacterium-Mediated Gene Silencing

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fu Zhou; Peng-Da Ma; Ren-Hou Wang; Bo Liu; Xing-Zhi Wang

    2006-01-01

    A novel approach to virus-induced post-transcriptional gene silencing for studying the function of the ribulose bisphosphate carboxylase small subunlt (rbcS) gene was established and optimized using potato virus X vector and Nicotiana benthamiana as experimental material. The analysis of silencing phenomena,transcriptional level, protein expression, and pigment measurement showed that the expression of the rbcS endogenous gene was inactivated by the expression of a 500-bp homologous cDNA fragment carried in the virus vector.

  10. Data mining approach to predict BRCA1 gene mutation

    Directory of Open Access Journals (Sweden)

    Olegas Niakšu

    2013-09-01

    Full Text Available Breast cancer is the most frequent women cancer form and one of the leading mortality causes among women around the world. Patients with pathological mutation of a BRCA gene have 65% lifelong breast cancer probability. It is known that such patients have different cause of illness. In this study, we have proposed a new approach for the prediction of BRCA mutation carriers by methodically applying knowledge discovery steps and utilizing data mining methods. An alternative BRCA risk assessment model has been created utilizing decision tree classifier model. The biggest challenge was a very small size and imbalanced nature of the initial dataset, which have been collected by clinicians during 4 years of clinical trial. Iterative optimization of initial dataset, optimal algorithms selection and their parameterization have resulted in higher classifier model performance, with acceptable prediction accuracy for the clinical usage. In this study, three data mining problems have been analyzed using eleven data mining algorithms.

  11. A robust data-driven approach for gene ontology annotation

    OpenAIRE

    2014-01-01

    Gene ontology (GO) and GO annotation are important resources for biological information management and knowledge discovery, but the speed of manual annotation became a major bottleneck of database curation. BioCreative IV GO annotation task aims to evaluate the performance of system that automatically assigns GO terms to genes based on the narrative sentences in biomedical literature. This article presents our work in this task as well as the experimental results after the competition. For th...

  12. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes.

    Science.gov (United States)

    Adriaansen, J; Vervoordeldonk, M J B M; Tak, P P

    2006-06-01

    In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.

  13. Editing CCR5: a novel approach to HIV gene therapy.

    Science.gov (United States)

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni

    2015-01-01

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

  14. New approaches to gene and cell therapy for hemophilia.

    Science.gov (United States)

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques. © 2015 International Society on Thrombosis and Haemostasis.

  15. Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2016-01-01

    Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.

  16. A robust data-driven approach for gene ontology annotation.

    Science.gov (United States)

    Li, Yanpeng; Yu, Hong

    2014-01-01

    Gene ontology (GO) and GO annotation are important resources for biological information management and knowledge discovery, but the speed of manual annotation became a major bottleneck of database curation. BioCreative IV GO annotation task aims to evaluate the performance of system that automatically assigns GO terms to genes based on the narrative sentences in biomedical literature. This article presents our work in this task as well as the experimental results after the competition. For the evidence sentence extraction subtask, we built a binary classifier to identify evidence sentences using reference distance estimator (RDE), a recently proposed semi-supervised learning method that learns new features from around 10 million unlabeled sentences, achieving an F1 of 19.3% in exact match and 32.5% in relaxed match. In the post-submission experiment, we obtained 22.1% and 35.7% F1 performance by incorporating bigram features in RDE learning. In both development and test sets, RDE-based method achieved over 20% relative improvement on F1 and AUC performance against classical supervised learning methods, e.g. support vector machine and logistic regression. For the GO term prediction subtask, we developed an information retrieval-based method to retrieve the GO term most relevant to each evidence sentence using a ranking function that combined cosine similarity and the frequency of GO terms in documents, and a filtering method based on high-level GO classes. The best performance of our submitted runs was 7.8% F1 and 22.2% hierarchy F1. We found that the incorporation of frequency information and hierarchy filtering substantially improved the performance. In the post-submission evaluation, we obtained a 10.6% F1 using a simpler setting. Overall, the experimental analysis showed our approaches were robust in both the two tasks.

  17. Immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Honjo, T. (Kyoto Univ. (Japan)); Alt, F.W. (Columbia Univ., Dobbs Ferry, NY (USA). Hudson Labs.); Rabbitts, T.H. (Medical Research Council, Cambridge (UK))

    1989-01-01

    This book reports on the structure, function, and expression of the genes encoding antibodies in normal and neoplastic cells. Topics covered are: B Cells; Organization and rearrangement of immunoglobin genes; Immunoglobin genes in disease; Immunoglobin gene expression; and Immunoglobin-related genes.

  18. Navigating the complex path between the oxytocin receptor gene (OXTR) and cooperation: an endophenotype approach

    OpenAIRE

    Haas, Brian W.; Anderson, Ian W.; Smith, Jessica M.

    2013-01-01

    Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and coop...

  19. Identification of ovarian cancer associated genes using an integrated approach in a Boolean framework

    Science.gov (United States)

    2013-01-01

    Background Cancer is a complex disease where molecular mechanism remains elusive. A systems approach is needed to integrate diverse biological information for the prognosis and therapy risk assessment using mechanistic approach to understand gene interactions in pathways and networks and functional attributes to unravel the biological behaviour of tumors. Results We weighted the functional attributes based on various functional properties observed between cancerous and non-cancerous genes reported from literature. This weighing schema was then encoded in a Boolean logic framework to rank differentially expressed genes. We have identified 17 genes to be differentially expressed from a total of 11,173 genes, where ten genes are reported to be down-regulated via epigenetic inactivation and seven genes are up-regulated. Here, we report that the overexpressed genes IRAK1, CHEK1 and BUB1 may play an important role in ovarian cancer. We also show that these 17 genes can be used to form an ovarian cancer signature, to distinguish normal from ovarian cancer subjects and that the set of three genes, CHEK1, AR, and LYN, can be used to classify good and poor prognostic tumors. Conclusion We provided a workflow using a Boolean logic schema for the identification of differentially expressed genes by integrating diverse biological information. This integrated approach resulted in the identification of genes as potential biomarkers in ovarian cancer. PMID:23383610

  20. Longevity, genes and efforts: an optimal taxation approach to prevention.

    Science.gov (United States)

    Leroux, M-L; Pestieau, P; Ponthiere, G

    2011-01-01

    This paper applies the analytical tools of optimal taxation theory to the design of the optimal subsidy on preventive behaviours, in an economy where longevity varies across agents, and depends on preventive expenditures and on longevity genes. Public intervention can be here justified on three grounds: corrections for misperceptions of the survival process and for externalities related to individual preventive behaviour, and redistribution across both earnings and genetic dimensions. The optimal subsidy on preventive expenditures is shown to depend on the combined impacts of misperception, externalities and self-selection. It is generally optimal to subsidize preventive efforts to an extent depending on the degree of individual myopia, on how productivity and genes are correlated, and on the complementarity of genes and preventive efforts in the survival function.

  1. Identification of the causative gene for Simmental arachnomelia syndrome using a network-based disease gene prioritization approach.

    Directory of Open Access Journals (Sweden)

    Shihui Jiao

    Full Text Available Arachnomelia syndrome (AS, mainly found in Brown Swiss and Simmental cattle, is a congenital lethal genetic malformation of the skeletal system. In this study, a network-based disease gene prioritization approach was implemented to rank genes in the previously reported ∼7 Mb region on chromosome 23 associated with AS in Simmental cattle. The top 6 ranked candidate genes were sequenced in four German Simmental bulls, one known AS-carrier ROMEL and a pooled sample of three known non-carriers (BOSSAG, RIFURT and HIRMER. Two suspicious mutations located in coding regions, a mis-sense mutation c.1303G>A in the bystin-like (BYSL gene and a 2-bp deletion mutation c.1224_1225delCA in the molybdenum cofactor synthesis step 1 (MOCS1 gene were detected. Bioinformatic analysis revealed that the mutation in MOCS1 was more likely to be the causative mutation. Screening the c.1224_1225delCA site in 383 individuals from 12 cattle breeds/lines, we found that only the bull ROMEL and his 12 confirmed progeny carried the mutation. Thus, our results confirm the conclusion of Buitkamp et al. that the 2-bp deletion mutation c.1224_1225delCA in exon 11 of the MOCS1 gene is causative for AS in Simmental cattle. Furthermore, a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP was developed to detect the causative mutation.

  2. [Approach to depressogenic genes from genetic analyses of animal models].

    Science.gov (United States)

    Yoshikawa, Takeo

    2004-01-01

    Human depression or mood disorder is defined as a complex disease, making positional cloning of susceptibility genes a formidable task. We have undertaken genetic analyses of three different animal models for depression, comparing our results with advanced database resources. We first performed quantitative trait loci (QTL) analysis on two mouse models of "despair", namely, the forced swim test (FST) and tail suspension test (TST), and detected multiple chromosomal loci that control immobility time in these tests. Since one QTL detected on mouse chromosome 11 harbors the GABA A receptor subunit genes, we tested these genes for association in human mood disorder patients. We obtained significant associations of the alpha 1 and alpha 6 subunit genes with the disease, particularly in females. This result was striking, because we had previously detected an epistatic interaction between mouse chromosomes 11 and X that regulates immobility time in these animals. Next, we performed genome-wide expression analyses using a rat model of depression, learned helplessness (LH). We found that in the frontal cortex of LH rats, a disease implicated region, the LIM kinase 1 gene (Limk 1) showed greatest alteration, in this case down-regulation. By combining data from the QTL analysis of FST/TST and DNA microarray analysis of mouse frontal cortex, we identified adenylyl cyclase-associated CAP protein 1 (Cap 1) as another candidate gene for depression susceptibility. Both Limk 1 and Cap 1 are key players in the modulation of actin G-F conversion. In summary, our current study using animal models suggests disturbances of GABAergic neurotransmission and actin turnover as potential pathophysiologies for mood disorder.

  3. Approaches and methods in gene therapy for kidney disease

    NARCIS (Netherlands)

    van der Wouden, Els A; Sandovici, Maria; Henning, Robert H; de Zeeuw, Dick; Deelman, Leo E

    2004-01-01

    Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient vector for in vivo transfection appears to be adenovirus. Glomeruli, bloo

  4. Core set approach to reduce uncertainty of gene trees

    Directory of Open Access Journals (Sweden)

    Okuhara Yoshiyasu

    2006-05-01

    Full Text Available Abstract Background A genealogy based on gene sequences within a species plays an essential role in the estimation of the character, structure, and evolutionary history of that species. Because intraspecific sequences are more closely related than interspecific ones, detailed information on the evolutionary process may be available by determining all the node sequences of trees and provide insight into functional constraints and adaptations. However, strong evolutionary correlations on a few lineages make this determination difficult as a whole, and the maximum parsimony (MP method frequently allows a number of topologies with a same total branching length. Results Kitazoe et al. developed multidimensional vector-space representation of phylogeny. It converts additivity of evolutionary distances to orthogonality among the vectors expressing branches, and provides a unified index to measure deviations from the orthogoality. In this paper, this index is used to detect and exclude sequences with large deviations from orthogonality, and then selects a maximum subset ("core set" of sequences for which MP generates a single solution. Once the core set tree is formed whose all the node sequences are given, the excluded sequences are found to have basically two phylogenetic positions on this tree, respectively. Fortunately, since multiple substitutions are rare in intra-species sequences, the variance of nucleotide transitions is confined to a small range. By applying the core set approach to 38 partial env sequences of HIV-1 in a single patient and also 198 mitochondrial COI and COII DNA sequences of Anopheles dirus, we demonstrate how consistently this approach constructs the tree. Conclusion In the HIV dataset, we confirmed that the obtained core set tree is the unique maximum set for which MP proposes a single tree. In the mosquito data set, the fluctuation of nucleotide transitions caused by the sequences excluded from the core set was very small

  5. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    Science.gov (United States)

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  6. Candidate gene prioritization by network analysis of differential expression using machine learning approaches

    Directory of Open Access Journals (Sweden)

    Nitsch Daniela

    2010-09-01

    Full Text Available Abstract Background Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals. To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. Results We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking. Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. Conclusion In this study we

  7. Gene silencing: a therapeutic approach to combat influenza virus infections.

    Science.gov (United States)

    Khanna, Madhu; Saxena, Latika; Rajput, Roopali; Kumar, Binod; Prasad, Rajendra

    2015-01-01

    Selective gene silencing technologies such as RNA interference (RNAi) and nucleic acid enzymes have shown therapeutic potential for treating viral infections. Influenza virus is one of the major public health concerns around the world and its management is challenging due to a rapid increase in antiviral resistance. Influenza vaccine also has its limitations due to the emergence of new strains that may escape the immunity developed by the previous year's vaccine. Antiviral drugs are the primary mode of prevention and control against a pandemic and there is an urgency to develop novel antiviral strategies against influenza virus. In this review, we discuss the potential utility of several gene silencing mechanisms and their prophylactic and therapeutic potential against the influenza virus.

  8. A non-parametric approach for detecting gene-gene interactions associated with age-at-onset outcomes.

    Science.gov (United States)

    Li, Ming; Gardiner, Joseph C; Breslau, Naomi; Anthony, James C; Lu, Qing

    2014-07-01

    Cox-regression-based methods have been commonly used for the analyses of survival outcomes, such as age-at-disease-onset. These methods generally assume the hazard functions are proportional among various risk groups. However, such an assumption may not be valid in genetic association studies, especially when complex interactions are involved. In addition, genetic association studies commonly adopt case-control designs. Direct use of Cox regression to case-control data may yield biased estimators and incorrect statistical inference. We propose a non-parametric approach, the weighted Nelson-Aalen (WNA) approach, for detecting genetic variants that are associated with age-dependent outcomes. The proposed approach can be directly applied to prospective cohort studies, and can be easily extended for population-based case-control studies. Moreover, it does not rely on any assumptions of the disease inheritance models, and is able to capture high-order gene-gene interactions. Through simulations, we show the proposed approach outperforms Cox-regression-based methods in various scenarios. We also conduct an empirical study of progression of nicotine dependence by applying the WNA approach to three independent datasets from the Study of Addiction: Genetics and Environment. In the initial dataset, two SNPs, rs6570989 and rs2930357, located in genes GRIK2 and CSMD1, are found to be significantly associated with the progression of nicotine dependence (ND). The joint association is further replicated in two independent datasets. Further analysis suggests that these two genes may interact and be associated with the progression of ND. As demonstrated by the simulation studies and real data analysis, the proposed approach provides an efficient tool for detecting genetic interactions associated with age-at-onset outcomes.

  9. Analysis of diabetic retinopathy biomarker VEGF gene by computational approaches

    OpenAIRE

    Jayashree Sadasivam; Ramesh, N.; K. Vijayalakshmi; Vinni Viridi; Shiva prasad

    2012-01-01

    Diabetic retinopathy, the most common diabetic eye disease, is caused by changes in the blood vessels of the retina which remains the major cause. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. One of the biomarker for Diabetic retinopathy has been identified as Vascular Endothelial Growth Factor ( VEGF )gene by computational analysis. VEGF is a sub-family of growth factors, the platelet-derived growth factor family of cystine-knot growth factors...

  10. A Gene Selection Approach based on Clustering for Classification Tasks in Colon Cancer

    Directory of Open Access Journals (Sweden)

    José Antonio CASTELLANOS GARZÓN

    2016-06-01

    Full Text Available Gene selection (GS is an important research area in the analysis of DNA-microarray data, since it involves gene discovery meaningful for a particular target annotation or able to discriminate expression profiles of samples coming from different populations. In this context, a wide number of filter methods have been proposed in the literature to identify subsets of relevant genes in accordance with prefixed targets. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem (GS remains a challenge. Hence, this paper proposes a novel approach for gene selection by using cluster techniques and filter methods on the found groupings to achieve informative gene subsets. As a result of applying our methodology to Colon cancer data, we have identified the best informative gene subset between several one subsets. According to the above, the reached results have proven the reliability of the approach given in this paper.

  11. Clinical development of gene therapy needs a tailored approach: a regulatory perspective from the European Union.

    Science.gov (United States)

    Narayanan, Gopalan; Cossu, Giulio; Galli, Maria Cristina; Flory, Egbert; Ovelgonne, Hans; Salmikangas, Paula; Schneider, Christian K; Trouvin, Jean-Hugues

    2014-03-01

    Gene therapy is a rapidly evolving field that needs an integrated approach, as acknowledged in the concept article on the revision of the guideline on gene transfer medicinal products. The first gene therapy application for marketing authorization was approved in the International Conference on Harmonisation (ICH) region in 2012, the product being Alipogene tiparvovec. The regulatory process for this product has been commented on extensively, highlighting the challenges posed by such a novel technology. Here, as current or previous members of the Committee for Advanced Therapies, we share our perspectives and views on gene therapy as a treatment modality based on current common understanding and regulatory experience of gene therapy products in the European Union to date. It is our view that a tailored approach is needed for a given gene therapy product in order to achieve successful marketing authorization.

  12. Identifying the genetic variation of gene expression using gene sets: application of novel gene Set eQTL approach to PharmGKB and KEGG.

    Directory of Open Access Journals (Sweden)

    Ryan Abo

    Full Text Available Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs and pathways, referred to as gene set - expression quantitative trait loci analysis (GS-eQTL. The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.

  13. Analysis of gene translation using a communications theory approach.

    Science.gov (United States)

    Al Bataineh, Mohammad; Huang, Lun; Alonso, Maria; Menhart, Nick; Atkin, Guillermo E

    2010-01-01

    Rapid advances in both genomic data acquisition and computational technology have encouraged the development and use of advanced engineering methods in the field of bioinformatics and computational genomics. Processes in molecular biology can be modeled through the use of these methods. Such processes include identification and annotation of all the functional elements in the genome, including genes and regulatory sequences, which are a fundamental challenge in genomics and computational biology. Since regulatory elements are often short and variable, their identification and discovery using computational algorithms is difficult. However, significant advances have been made in the computational methods for modeling and detection of DNA regulatory elements. This paper proposes a novel use of techniques and principles from communications engineering, coding, and information theory for modeling, identification, and analysis of genomic regulatory elements and biological sequences. The methods proposed are not only able to identify regulatory elements (REs) at their exact locations, but can also "interestingly" distinguish coding from non-coding regions. Therefore, the proposed methods can be utilized to identify genes in the mRNA sequence.

  14. Robust modeling of differential gene expression data using normal/independent distributions: a Bayesian approach.

    Directory of Open Access Journals (Sweden)

    Mojtaba Ganjali

    Full Text Available In this paper, the problem of identifying differentially expressed genes under different conditions using gene expression microarray data, in the presence of outliers, is discussed. For this purpose, the robust modeling of gene expression data using some powerful distributions known as normal/independent distributions is considered. These distributions include the Student's t and normal distributions which have been used previously, but also include extensions such as the slash, the contaminated normal and the Laplace distributions. The purpose of this paper is to identify differentially expressed genes by considering these distributional assumptions instead of the normal distribution. A Bayesian approach using the Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly available gene expression data sets are analyzed using the proposed approach. The use of the robust models for detecting differentially expressed genes is investigated. This investigation shows that the choice of model for differentiating gene expression data is very important. This is due to the small number of replicates for each gene and the existence of outlying data. Comparison of the performance of these models is made using different statistical criteria and the ROC curve. The method is illustrated using some simulation studies. We demonstrate the flexibility of these robust models in identifying differentially expressed genes.

  15. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0189 TITLE: Muscle -Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS PRINCIPAL...NUMBER W81XWH-14-1-0189 Muscle -Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS 5b. GRANT NUMBER 5c. PROGRAM...ALS) is characterized by the progressive degeneration of motor neurons leading to skeletal muscle atrophy, paralysis, and the death of patients

  16. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach

    Science.gov (United States)

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker’s pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors. PMID:27490820

  17. A network-based gene-weighting approach for pathway analysis

    Institute of Scientific and Technical Information of China (English)

    Zhaoyuan Fang; Weidong Tian; Hongbin Ji

    2012-01-01

    Classical algorithms aiming at identifying biological pathways significantly related to studying conditions frequently reduced pathways to gene sets,with an obvious ignorance of the constitutive non-equivalence of various genes within a defined pathway.We here designed a network-based method to determine such non-equivalence in terms of gene weights.The gene weights determined are biologically consistent and robust to network perturbations.By integrating the gene weights into the classical gene set analysis,with a subsequent correction for the “over-counting”bias associated with multi-subunit proteins,we have developed a novel gene-weighed pathway analysis approach,as implemented in an R package called “Gene Associaqtion Network-based Pathway Analysis”(GANPA).Through analysis of several microarray datasets,including the p53 dataset,asthma dataset and three breast cancer datasets,we demonstrated that our approach is biologically reliable and reproducible,and therefore helpful for microarray data interpretation and hypothesis generation.

  18. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus.

    Science.gov (United States)

    Liscombe, David K; O'Connor, Sarah E

    2011-11-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003-0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro.

  19. Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.

    Directory of Open Access Journals (Sweden)

    Hai-Ming Xu

    Full Text Available The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points. A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s. In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.

  20. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    Science.gov (United States)

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.

  1. Gene therapy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  2. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding.

    Science.gov (United States)

    Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung

    2014-01-01

    RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.

  3. To control false positives in gene-gene interaction analysis: two novel conditional entropy-based approaches.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zuo

    Full Text Available Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects.

  4. Nucleic acid modulation of gene expression: approaches for nucleic acid therapeutics against cancer.

    Science.gov (United States)

    Nakata, Yuji; Kim, Tae-Kon; Shetzline, Susan; Gewirtz, Alan M

    2005-01-01

    Most cancers are characterized by abnormal gene expression, which is thought to contribute to the pathogenesis and maintenance of the malignant phenotype; abnormal proliferation, maturation, and apoptosis. Silencing such genes would appear to be a rational approach to the therapy of cancer, and some preliminary clinical studies support this concept. Of the strategies available, the anti-mRNA gene silencing approach has attracted much attention and is the focus of this review. This strategy includes three types of agents: (1) single-stranded antisense oligonucleotides; (2) catalytically active oligonucleotides, such as ribozymes, and DNAzymes that possess inherent RNA cleaving activity; and (3) small interfering RNA (siRNA) molecules that induce RNA interference (RNAi). Among these agents, antisense oligonucleotides, especially phosphorothioate (PS) oligonucleotides, have been the most frequently used in clinical trials. In this article, we provide an overview of anti-mRNA gene silencing agents and their development for use as cancer therapeutics.

  5. An Analysis of Gene Expression Data using Penalized Fuzzy C-Means Approach

    OpenAIRE

    Banu, P. K. Nizar; Inbarani, H. Hannah

    2013-01-01

    With the rapid advances of microarray technologies, large amounts of high-dimensional gene expression data are being generated, which poses significant computational challenges. A first step towards addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. A robust gene expression clustering approach to minimize undesirable clustering is proposed. In this p...

  6. A new approach to quantify the adaptive potential of gene expression variation in gymnosperms.

    Science.gov (United States)

    Renaut, Sébastien

    2013-05-01

    Variation in patterns of gene expression contributes to phenotypic diversity and can ultimately predict adaptive responses. However, in many cases, the consequences of regulatory mutations on patterns of gene expression and ultimately phenotypic differences remain elusive. A standard way to study the genetic architecture of expression variation in model systems has been to map gene expression variation to genetic loci (Fig. 1a). At the same time, in many nonmodel species, especially for long-lived organisms, controlled crosses are not feasible. If we are to expand our understanding of the role of regulatory mutations on phenotypes, we need to develop new methodologies to study species under ecologically relevant conditions. In this issue of Molecular Ecology, Verta et al. (2013) present a new approach to analyse gene expression variation and regulatory networks in gymnosperms (Fig. 1b). They capitalized on the fact that gymnosperm seeds contain an energy storage tissue (the megagametophyte) that is directly derived from a single haploid cell (the megaspore). The authors identified over 800 genes for which expression segregated in this maternally inherited haploid tissue. Based on the observed segregation patterns, these genes (Mendelian Expression Traits) are most probably controlled by biallelic variants at a single locus. Most of these genes also belonged to different regulatory networks, except for one large group of 180 genes under the control of a putative trans-acting factor. In addition, the approach developed here may also help to uncover the effect of rare recessive mutations, which usually remain hidden in a heterozygous state in diploid individuals. The appeal of the work by Verta et al. (2013) to study gene expression variation is in its simplicity, which circumvents several of the hurdles behind traditional expression quantitative trait locus (eQTL) studies, and could potentially be applied to a large number of species.

  7. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  8. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  9. Gene editing in hematopoietic stem cells: a potential therapeutic approach for Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Diez Cabezas, B.

    2015-07-01

    Gene therapy nowadays constitutes a safe and efficient treatment for a number of monogenic diseases affecting the hematopoietic system. Risks of insertional mutagenesis derived from the use of integrative vectors cannot, however, be completely excluded. Therefore, gene targeting has been proposed as a safer alternative, since the insertion of the herapeutic gene is driven to a specific locus in the genome. Gene targeting approaches are based on the use of specific nucleases which generate double strand breaks (DSBs) in a specific site of the genome,markedly enhancing the efficacy of homologous recombination (HR) with donor constructs harboring the gene of interest flanked by the corresponding homology arms. In this study we have optimized the conditions to target human lymphoblastic cell lines (LCLs) and also hematopoietic stem cells (HSCs) from healthy donors, with the final aim of correcting by gene editing the hematopoietic progenitor cells from Fanconi anemia subtype A (FA-A) patients. In particular, we have established a robust method to target both LCLs and HSCs in a safe harbor site in the genome, the AAVS1 locus. Our approach is based on the transduction of these cells with integrase-defective lentiviral vectors carrying a donor with the gene of interest, followed by the nucleofection of these cells with zinc finger nucleases used as mRNA. Using a control donor vector carrying the GFP reporter gene we have obtained, on average, 9.43% gene targeting efficiency in cord blood CD34+ cells from healthy donors. Moreover, we confirmed that gene targeting was also efficient in HSCs with long term and multipotent repopulation capacity, as demonstrated by transplants into immunodeficient mice. To improve the gene targeting efficiency, we investigated the feasibility of using gold nanoparticles, which were shown to improve the transduction efficiency of integrase-defective and competent lentiviral vectors in HSCs. This increment, however, did not lead to a higher gene

  10. Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa

    Science.gov (United States)

    Basyuni, M.; Sumardi

    2017-01-01

    This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.

  11. Navigating the complex path between the oxytocin receptor gene (OXTR) and cooperation: an endophenotype approach.

    Science.gov (United States)

    Haas, Brian W; Anderson, Ian W; Smith, Jessica M

    2013-11-28

    Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.

  12. Navigating the complex path between the oxytocin receptor gene (OXTR and cooperation: an endophenotype approach

    Directory of Open Access Journals (Sweden)

    Brian W. Haas

    2013-11-01

    Full Text Available Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin system, the oxytocin reception gene (OXTR. In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene may influence the functional anatomy of the amygdala, visual cortex, anterior cingulate and superior temporal gyrus. However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus, superior temporal sulcus, ventromedial prefrontal cortex, temporoparietal junction and nucleus accumbens. We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.

  13. A Novel Approach to Revealing Positive and Negative Co-Regulated Genes

    Institute of Scientific and Technical Information of China (English)

    Yu-Hai Zhao; Guo-Ren Wang; Ying Yin; Guang-Yu Xu

    2007-01-01

    As explored by biologists, there is a real and emerging need to identify co-regulated gene clusters, which includeboth positive and negative regulated gene clusters. However, the existing pattern-based and tendency-based clusteringapproaches are only designed for finding positive regulated gene clusters. In this paper, a new subspace clustering modelcalled g-Cluster is proposed for gene expression data. The proposed model has the following advantages: 1) find both positiveand negative co-regulated genes in a shot, 2) get away from the restriction of magnitude transformation relationship amongco-regulated genes, and 3) guarantee quality of clusters and significance of regulations using a novel similarity measurementgCode and a user-specified regulation threshold 5, respectively. No previous work measures up to the task which has been set.Moreover, MDL technique is introduced to avoid insignificant g-Clusters generated. A tree structure, namely GS-tree, is alsodesigned, and two algorithms combined with efficient pruning and optimization strategies to identify all qualified g-Clusters.Extensive experiments are conducted on real and synthetic datasets. The experimental results show that 1) the algorithmis able to find an amount of co-regulated gene clusters missed by previous models, which are potentially of high biologicalsignificance, and 2) the algorithms are effective and efficient, and outperform the existing approaches.

  14. A Guide to Approaching Regulatory Considerations for Lentiviral-Mediated Gene Therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Gándara, Carolina; Stoll, Elizabeth A

    2017-08-01

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is nonpathogenic, and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations and how they are administered in the United Kingdom, although many of the principles will be similar for other regions, including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarizes the extant regulatory guidance for gene therapies, categorized as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  15. A novel parametric approach to mine gene regulatory relationship from microarray datasets

    Directory of Open Access Journals (Sweden)

    Zhu Yunping

    2010-12-01

    Full Text Available Abstract Background Microarray has been widely used to measure the gene expression level on the genome scale in the current decade. Many algorithms have been developed to reconstruct gene regulatory networks based on microarray data. Unfortunately, most of these models and algorithms focus on global properties of the expression of genes in regulatory networks. And few of them are able to offer intuitive parameters. We wonder whether some simple but basic characteristics of microarray datasets can be found to identify the potential gene regulatory relationship. Results Based on expression correlation, expression level variation and vectors derived from microarray expression levels, we first introduced several novel parameters to measure the characters of regulating gene pairs. Subsequently, we used the naïve Bayesian network to integrate these features as well as the functional co-annotation between transcription factors and their target genes. Then, based on the character of time-delay from the expression profile, we were able to predict the existence and direction of the regulatory relationship respectively. Conclusions Several novel parameters have been proposed and integrated to identify the regulatory relationship. This new model is proved to be of higher efficacy than that of individual features. It is believed that our parametric approach can serve as a fast approach for regulatory relationship mining.

  16. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    Science.gov (United States)

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-07

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  17. Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.

    Science.gov (United States)

    Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H

    2013-01-09

    Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    Science.gov (United States)

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  19. Gene Therapy.

    Science.gov (United States)

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  20. Target gene approaches: Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Courts Cornelius

    2009-11-01

    Full Text Available Abstract Background Two major biological stressors of freshwater zooplankton of the genus Daphnia are predation and fluctuations in food quality. Here we use kairomones released from a planktivorous fish (Leucaspius delineatus and from an invertebrate predator (larvae of Chaoborus flavicans to simulate predation pressure; a microcystin-producing culture of the cyanobacterium Microcystis aeruginosa and a microcystin-deficient mutant are used to investigate effects of low food quality. Real-time quantitative polymerase chain reaction (QPCR allows quantification of the impact of biotic stressors on differential gene activity. The draft genome sequence for Daphnia pulex facilitates the use of candidate genes by precisely identifying orthologs to functionally characterized genes in other model species. This information is obtained by constructing phylogenetic trees of candidate genes with the knowledge that the Daphnia genome is composed of many expanded gene families. Results We evaluated seven candidate reference genes for QPCR in Daphnia magna after exposure to kairomones. As a robust approach, a combination normalisation factor (NF was calculated based on the geometric mean of three of these seven reference genes: glyceraldehyde-3-phosphate dehydrogenase, TATA-box binding protein and succinate dehydrogenase. Using this NF, expression of the target genes actin and alpha-tubulin were revealed to be unchanged in the presence of the tested kairomones. The presence of fish kairomone up-regulated one gene (cyclophilin involved in the folding of proteins, whereas Chaoborus kairomone down-regulated the same gene. We evaluated the same set of candidate reference genes for QPCR in Daphnia magna after exposure to a microcystin-producing and a microcystin-free strain of the cyanobacterium Microcystis aeruginosa. The NF was calculated based on the reference genes 18S ribosomal RNA, alpha-tubulin and TATA-box binding protein. We found glyceraldehyde-3

  1. Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach

    Science.gov (United States)

    Anjum, Arfa; Jaggi, Seema; Lall, Shwetank; Bhowmik, Arpan; Rai, Anil

    2016-01-01

    Abstract Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product, which may be proteins. A gene is declared differentially expressed if an observed difference or change in read counts or expression levels between two experimental conditions is statistically significant. To identify differentially expressed genes between two conditions, it is important to find statistical distributional property of the data to approximate the nature of differential genes. In the present study, the focus is mainly to investigate the differential gene expression analysis for sequence data based on compound distribution model. This approach was applied in RNA-seq count data of Arabidopsis thaliana and it has been found that compound Poisson distribution is more appropriate to capture the variability as compared with Poisson distribution. Thus, fitting of appropriate distribution to gene expression data provides statistically sound cutoff values for identifying differentially expressed genes. PMID:26949988

  2. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data.

    Science.gov (United States)

    Radovic, Milos; Ghalwash, Mohamed; Filipovic, Nenad; Obradovic, Zoran

    2017-01-03

    Feature selection, aiming to identify a subset of features among a possibly large set of features that are relevant for predicting a response, is an important preprocessing step in machine learning. In gene expression studies this is not a trivial task for several reasons, including potential temporal character of data. However, most feature selection approaches developed for microarray data cannot handle multivariate temporal data without previous data flattening, which results in loss of temporal information. We propose a temporal minimum redundancy - maximum relevance (TMRMR) feature selection approach, which is able to handle multivariate temporal data without previous data flattening. In the proposed approach we compute relevance of a gene by averaging F-statistic values calculated across individual time steps, and we compute redundancy between genes by using a dynamical time warping approach. The proposed method is evaluated on three temporal gene expression datasets from human viral challenge studies. Obtained results show that the proposed method outperforms alternatives widely used in gene expression studies. In particular, the proposed method achieved improvement in accuracy in 34 out of 54 experiments, while the other methods outperformed it in no more than 4 experiments. We developed a filter-based feature selection method for temporal gene expression data based on maximum relevance and minimum redundancy criteria. The proposed method incorporates temporal information by combining relevance, which is calculated as an average F-statistic value across different time steps, with redundancy, which is calculated by employing dynamical time warping approach. As evident in our experiments, incorporating the temporal information into the feature selection process leads to selection of more discriminative features.

  3. Gene Therapy

    Science.gov (United States)

    ... or improve your body's ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Researchers are still studying how and ...

  4. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns

    OpenAIRE

    Mohammad Manir Hossain Mollah; Rahman Jamal; Norfilza Mohd Mokhtar; Roslan Harun; Md. Nurul Haque Mollah

    2015-01-01

    Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt ...

  5. Genes V.

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  6. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan

    2015-01-01

    BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about...... the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from...... a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. METHODS: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential...

  7. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach.

    Science.gov (United States)

    Shi, Ming; Shen, Weiming; Wang, Hong-Qiang; Chong, Yanwen

    2016-12-01

    Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l1-norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real-world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.

  8. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  9. Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Albert P. Kausch

    2012-10-01

    Full Text Available Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro from a maize pollen-specific gene (Zm13 for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops.

  10. A systematic approach to mapping recessive disease genes in individuals from outbred populations.

    Directory of Open Access Journals (Sweden)

    Friedhelm Hildebrandt

    2009-01-01

    Full Text Available The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.

  11. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Daniel S Himmelstein

    2015-07-01

    Full Text Available The first decade of Genome Wide Association Studies (GWAS has uncovered a wealth of disease-associated variants. Two important derivations will be the translation of this information into a multiscale understanding of pathogenic variants and leveraging existing data to increase the power of existing and future studies through prioritization. We explore edge prediction on heterogeneous networks--graphs with multiple node and edge types--for accomplishing both tasks. First we constructed a network with 18 node types--genes, diseases, tissues, pathophysiologies, and 14 MSigDB (molecular signatures database collections--and 19 edge types from high-throughput publicly-available resources. From this network composed of 40,343 nodes and 1,608,168 edges, we extracted features that describe the topology between specific genes and diseases. Next, we trained a model from GWAS associations and predicted the probability of association between each protein-coding gene and each of 29 well-studied complex diseases. The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any individual domain, highlighting the benefit of integrative approaches. We identified pleiotropy, transcriptional signatures of perturbations, pathways, and protein interactions as influential mechanisms explaining pathogenesis. Our method successfully predicted the results (with AUROC = 0.79 from a withheld multiple sclerosis (MS GWAS despite starting with only 13 previously associated genes. Finally, we combined our network predictions with statistical evidence of association to propose four novel MS genes, three of which (JAK2, REL, RUNX3 validated on the masked GWAS. Furthermore, our predictions provide biological support highlighting REL as the causal gene within its gene-rich locus. Users can browse all predictions online (http://het.io. Heterogeneous network edge prediction effectively prioritized genetic associations and provides a powerful new approach

  12. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    Science.gov (United States)

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and

  13. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome).

    Science.gov (United States)

    Tomanin, R; Friso, A; Alba, S; Piller Puicher, E; Mennuni, C; La Monica, N; Hortelano, G; Zacchello, F; Scarpa, M

    2002-01-01

    Hunter syndrome is a rare X-linked lysosomal storage disorder caused by the deficiency of the housekeeping enzyme iduronate-2-sulphatase (IDS). Deficiency of IDS causes accumulation of undegraded dermatan and heparan-sulphate in various tissues and organs. Approaches have been proposed for the symptomatic therapy of the disease, including bone marrow transplantation and, very recently, enzyme replacement. To date, gene therapy strategies have considered mainly retroviral and adenoviral transduction of the correct cDNA. In this paper, two non-viral somatic gene therapy approaches are proposed: encapsulated heterologous cells and muscle electro-gene transfer (EGT). Hunter primary fibroblasts were co-cultured with either cell clones over-expressing the lacking enzyme or with the same incorporated in alginate microcapsules. For EGT, plasmid vector was injected into mouse quadriceps muscle, which was then immediately electro-stimulated. Co-culturing Hunter primary fibroblasts with cells over-expressing IDS resulted in a three- to fourfold increase in fibroblast enzyme activity with respect to control cells. Fibroblast IDS activity was also increased after co-culture with encapsulated cells. EGT was able to transduce genes in mouse muscle, resulting in at least a tenfold increase in IDS activity 1-5 weeks after treatment. Although preliminary, results from encapsulated heterologous cell clones and muscle EGT encourage further evaluations for possible application to gene therapy for Hunter syndrome.

  14. In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda

    Science.gov (United States)

    YOSHINO, TIMOTHY P.; DINGUIRARD, NATHALIE; DE MORAES MOURÃO, MARINA

    2013-01-01

    SUMMARY With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches. PMID:19961646

  15. Determination of the Ultimate Limit States of Shallow Foundations using Gene Expression Programming (GEP) Approach

    DEFF Research Database (Denmark)

    Tahmasebi poor, A; Barari, Amin; Behnia, M;

    2015-01-01

    In this study, a gene expression programming (GEP) approach was employed to develop modified expressions for predicting the bearing capacity of shallow foundations founded on granular material. The model was validate against the results of load tests on full-scale and model footings obtained from...

  16. An event-driven approach for studying gene block evolution in bacteria.

    Science.gov (United States)

    Ream, David C; Bankapur, Asma R; Friedberg, Iddo

    2015-07-01

    Gene blocks are genes co-located on the chromosome. In many cases, gene blocks are conserved between bacterial species, sometimes as operons, when genes are co-transcribed. The conservation is rarely absolute: gene loss, gain, duplication, block splitting and block fusion are frequently observed. An open question in bacterial molecular evolution is that of the formation and breakup of gene blocks, for which several models have been proposed. These models, however, are not generally applicable to all types of gene blocks, and consequently cannot be used to broadly compare and study gene block evolution. To address this problem, we introduce an event-based method for tracking gene block evolution in bacteria. We show here that the evolution of gene blocks in proteobacteria can be described by a small set of events. Those include the insertion of genes into, or the splitting of genes out of a gene block, gene loss, and gene duplication. We show how the event-based method of gene block evolution allows us to determine the evolutionary rateand may be used to trace the ancestral states of their formation. We conclude that the event-based method can be used to help us understand the formation of these important bacterial genomic structures. The software is available under GPLv3 license on http://github.com/reamdc1/gene_block_evolution.git. Supplementary online material: http://iddo-friedberg.net/operon-evolution © The Author 2015. Published by Oxford University Press.

  17. Gene Technology in Winemaking: New Approaches to an Ancient Art

    Directory of Open Access Journals (Sweden)

    Isak S. Pretorius

    2001-03-01

    Full Text Available For the last century, the availability of pure culture yeast has improved reproducibility in wine fermentations and product quality. However, there is not a single wine yeast strain that possesses an ideal combination of oenological characteristics that are optimised for the task set by today´s leading winemakers. With new developments in modern winemaking there has arisen an urgent need to modify wine yeast strains in order to take full advantage of technology and to satisfy the demands of the sophisticated wine consumers. The combined use of mutagenesis, hybridisation and recombinant DNA methods have significantly increased the genetic diversity that can be introduced into Saccharomyces cerevisiae strains. The overall aim of the strain development programmes extends far beyond the primary role of wine yeast to catalyse the rapid and complete conversion of grape sugars into alcohol and carbon dioxide without distorting the flavour of the final product. Starter cultures of S. cerevisiae must now possess a range of other properties that differ with the type and style of wine to be made and the technical requirements of the winery. Our strain development programme focuses on a number of targets that are amenable to a genetic approach, including strain security and quality control, the increase of fermentation and processing efficiencies, and the enhancement of the sensorial quality and health properties of wine and other grape-based beverages. However, successful commercialisation of transgenic wine yeasts will depend on a multitude of scientific, technical, economic, marketing, safety, regulatory, legal and ethical issues. Therefore, it would be foolish to entertain unrealistic expectations over rapid commercialisation and short-term benefits. However, it will be equally unwise to deny the potential advantages of genetically improved wine yeasts to both the winemaker and consumer in the third millennium.

  18. Gene prediction in metagenomic fragments: A large scale machine learning approach

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2008-04-01

    Full Text Available Abstract Background Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. Results We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. Conclusion Large scale machine learning methods are well-suited for gene

  19. Identification of Lung-Cancer-Related Genes with the Shortest Path Approach in a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Bi-Qing Li

    2013-01-01

    Full Text Available Lung cancer is one of the leading causes of cancer mortality worldwide. The main types of lung cancer are small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. In this work, a computational method was proposed for identifying lung-cancer-related genes with a shortest path approach in a protein-protein interaction (PPI network. Based on the PPI data from STRING, a weighted PPI network was constructed. 54 NSCLC- and 84 SCLC-related genes were retrieved from associated KEGG pathways. Then the shortest paths between each pair of these 54 NSCLC genes and 84 SCLC genes were obtained with Dijkstra’s algorithm. Finally, all the genes on the shortest paths were extracted, and 25 and 38 shortest genes with a permutation P value less than 0.05 for NSCLC and SCLC were selected for further analysis. Some of the shortest path genes have been reported to be related to lung cancer. Intriguingly, the candidate genes we identified from the PPI network contained more cancer genes than those identified from the gene expression profiles. Furthermore, these genes possessed more functional similarity with the known cancer genes than those identified from the gene expression profiles. This study proved the efficiency of the proposed method and showed promising results.

  20. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    Science.gov (United States)

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for

  1. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  2. A recursive network approach can identify constitutive regulatory circuits in gene expression data

    Science.gov (United States)

    Blasi, Monica Francesca; Casorelli, Ida; Colosimo, Alfredo; Blasi, Francesco Simone; Bignami, Margherita; Giuliani, Alessandro

    2005-03-01

    The activity of the cell is often coordinated by the organisation of proteins into regulatory circuits that share a common function. Genome-wide expression profiles might contain important information on these circuits. Current approaches for the analysis of gene expression data include clustering the individual expression measurements and relating them to biological functions as well as modelling and simulation of gene regulation processes by additional computer tools. The identification of the regulative programmes from microarray experiments is limited, however, by the intrinsic difficulty of linear methods to detect low-variance signals and by the sensitivity of the different approaches. Here we face the problem of recognising invariant patterns of correlations among gene expression reminiscent of regulation circuits. We demonstrate that a recursive neural network approach can identify genetic regulation circuits from expression data for ribosomal and genome stability genes. The proposed method, by greatly enhancing the sensitivity of microarray studies, allows the identification of important aspects of genetic regulation networks and might be useful for the discrimination of the different players involved in regulation circuits. Our results suggest that the constitutive regulatory networks involved in the generic organisation of the cell display a high degree of clustering depending on a modular architecture.

  3. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sinha, Sunilima; Tandon, Ashish; Gupta, Rangan; Tovey, Jonathan C K; Sharma, Ajay

    2011-04-12

    Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12) vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and

  4. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  5. Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data

    Directory of Open Access Journals (Sweden)

    Simpson David

    2006-03-01

    Full Text Available Abstract Background Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data. Results Based on the analysis of publicly-available gene expression data from the developing mouse retina generated by serial analysis of gene expression (SAGE, this paper presents a predictive methodology comprising several in silico models for detecting key complex features and relationships encoded in the data, which may be useful to distinguish genes in terms of their functional roles. In order to understand temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based models in predicting functional associations from the SAGE data, three supervised classification models were compared. The results indicated that a relatively simple instance-based model (KStar model performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with the problem of functional class imbalance occurring in the dataset, two data re

  6. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  7. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... used. Premature infants and mothers of premature infants were defined as affected cases in independent analyses.Results:Analyses with the infant as the case identified two genes with evidence of linkage: CRHR1 (P = 0.0012) and CYP2E1 (P = 0.0011). Analyses with the mother as the case identified four...... through the infant and/or the mother in the etiology of PTB....

  8. A combined approach exploring gene function based on Worm-Human Orthology

    Directory of Open Access Journals (Sweden)

    Johnsen Robert

    2005-05-01

    Full Text Available Abstract Background Many aspects of the nematode Caenorhabditis elegans biology are conserved between invertebrates and vertebrates establishing this particular organism as an excellent genetic model. Because of its small size, large populations and self-fertilization of the hermaphrodite, functional predictions carried out by genetic modifications as well as RNAi screens, can be rapidly tested. Results In order to explore the function of a set of C. elegans genes of unknown function, as well as their potential functional roles in the human genome, we performed a phylogenetic analysis to select the most probable worm orthologs. A total of 13 C. elegans genes were subjected to down- regulation via RNAi and characterization of expression profiles using GFP strains. Previously unknown distinct expression patterns were observed for four of the analyzed genes, as well as four visible RNAi phenotypes. In addition, subcellular protein over-expression profiles of the human orthologs for seven out of the thirteen genes using human cells were also analyzed. Conclusion By combining a whole-organism approach using C. elegans with complementary experimental work done on human cell lines, this analysis extends currently available information on the selected set of genes.

  9. A combined approach exploring gene function based on Worm-Human Orthology

    Science.gov (United States)

    Tamas, Ivica; Hodges, Emily; Dessi, Patrick; Johnsen, Robert; Vaz Gomes, Ana

    2005-01-01

    Background Many aspects of the nematode Caenorhabditis elegans biology are conserved between invertebrates and vertebrates establishing this particular organism as an excellent genetic model. Because of its small size, large populations and self-fertilization of the hermaphrodite, functional predictions carried out by genetic modifications as well as RNAi screens, can be rapidly tested. Results In order to explore the function of a set of C. elegans genes of unknown function, as well as their potential functional roles in the human genome, we performed a phylogenetic analysis to select the most probable worm orthologs. A total of 13 C. elegans genes were subjected to down- regulation via RNAi and characterization of expression profiles using GFP strains. Previously unknown distinct expression patterns were observed for four of the analyzed genes, as well as four visible RNAi phenotypes. In addition, subcellular protein over-expression profiles of the human orthologs for seven out of the thirteen genes using human cells were also analyzed. Conclusion By combining a whole-organism approach using C. elegans with complementary experimental work done on human cell lines, this analysis extends currently available information on the selected set of genes. PMID:15877817

  10. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  11. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    Science.gov (United States)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  12. Gene networks associated with conditional fear in mice identified using a systems genetics approach

    Directory of Open Access Journals (Sweden)

    Eskin Eleazar

    2011-03-01

    Full Text Available Abstract Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior.

  13. Testing a 'genes-to-ecosystems' approach to understanding aquatic-terrestrial linkages.

    Science.gov (United States)

    Crutsinger, Gregory M; Rudman, Seth M; Rodriguez-Cabal, Mariano A; McKown, Athena D; Sato, Takuya; MacDonald, Andrew M; Heavyside, Julian; Geraldes, Armando; Hart, Edmund M; LeRoy, Carri J; El-Sabaawi, Rana W

    2014-12-01

    A 'genes-to-ecosystems' approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome-wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These 'after-life' effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic-terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes. © 2014 John Wiley & Sons Ltd.

  14. Journey from Jumping Genes to Gene Therapy.

    Science.gov (United States)

    Whartenby, Katharine A

    2015-01-01

    Gene therapy for cancer is a still evolving approach that resulted from a long history of studies into genetic modification of organisms. The fascination with manipulating gene products has spanned hundreds if not thousands of years, beginning with observations of the hereditary nature of traits in plants and culminating to date in the alteration of genetic makeup in humans via modern technology. From early discoveries noting the potential for natural mobility of genetic material to the culmination of clinical trials in a variety of disease, gene transfer has had an eventful and sometimes tumultuous course. Within the present review is a brief history of the biology of gene transfer, how it came to be applied to genetic diseases, and its early applications to cancer therapies. Some of the different types of methods used to modify cells, the theories behind the approaches, and some of the limitations encountered along the way are reviewed.

  15. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    Physics approaches focus on uncovering, modeling and quantitating the general principles governing the micro and macro universe. This has always been an important component of biological research, however recent advances in experimental techniques and the accumulation of unprecedented genome-scale experimental data produced by these novel technologies now allow for addressing fundamental questions on a large scale. These relate to molecular interactions, principles of bimolecular recognition, and mechanisms of signal propagation. The functioning of a cell requires a variety of intermolecular interactions including protein-protein, protein-DNA, protein-RNA, hormones, peptides, small molecules, lipids and more. Biomolecules work together to provide specific functions and perturbations in intermolecular communication channels often lead to cellular malfunction and disease. A full understanding of the interactome requires an in-depth grasp of the biophysical principles underlying individual interactions as well as their organization in cellular networks. Phenomena can be described at different levels of abstraction. Computational and systems biology strive to model cellular processes by integrating and analyzing complex data from multiple experimental sources using interdisciplinary tools. As a result, both the causal relationships between the variables and the general features of the system can be discovered, which even without knowing the details of the underlying mechanisms allow for putting forth hypotheses and predicting the behavior of the systems in response to perturbation. And here lies the strength of in silico models which provide control and predictive power. At the same time, the complexity of individual elements and molecules can be addressed by the fields of molecular biophysics, physical biology and structural biology, which focus on the underlying physico-chemical principles and may explain the molecular mechanisms of cellular function. In this issue

  16. Changes in winter depression phenotype correlate with white blood cell gene expression profiles : A combined metagene and gene ontology approach

    NARCIS (Netherlands)

    Bosker, Fokko J.; Terpstra, Peter; Gladkevich, Anatoliy V.; Dijck-Brouwer, D. A. Janneke; te Meerman, Gerard; Nolen, Willem A.; Schoevers, Robert A.; Meesters, Ybe

    2015-01-01

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior

  17. Changes in winter depression phenotype correlate with white blood cell gene expression profiles : A combined metagene and gene ontology approach

    NARCIS (Netherlands)

    Bosker, Fokko J.; Terpstra, Peter; Gladkevich, Anatoliy V.; Dijck-Brouwer, D. A. Janneke; te Meerman, Gerard; Nolen, Willem A.; Schoevers, Robert A.; Meesters, Ybe

    2015-01-01

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior an

  18. A general co-expression network-based approach to gene expression analysis: comparison and applications

    Directory of Open Access Journals (Sweden)

    Zhang Weixiong

    2010-02-01

    Full Text Available Abstract Background Co-expression network-based approaches have become popular in analyzing microarray data, such as for detecting functional gene modules. However, co-expression networks are often constructed by ad hoc methods, and network-based analyses have not been shown to outperform the conventional cluster analyses, partially due to the lack of an unbiased evaluation metric. Results Here, we develop a general co-expression network-based approach for analyzing both genes and samples in microarray data. Our approach consists of a simple but robust rank-based network construction method, a parameter-free module discovery algorithm and a novel reference network-based metric for module evaluation. We report some interesting topological properties of rank-based co-expression networks that are very different from that of value-based networks in the literature. Using a large set of synthetic and real microarray data, we demonstrate the superior performance of our approach over several popular existing algorithms. Applications of our approach to yeast, Arabidopsis and human cancer microarray data reveal many interesting modules, including a fatal subtype of lymphoma and a gene module regulating yeast telomere integrity, which were missed by the existing methods. Conclusions We demonstrated that our novel approach is very effective in discovering the modular structures in microarray data, both for genes and for samples. As the method is essentially parameter-free, it may be applied to large data sets where the number of clusters is difficult to estimate. The method is also very general and can be applied to other types of data. A MATLAB implementation of our algorithm can be downloaded from http://cs.utsa.edu/~jruan/Software.html.

  19. Gene therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anirban Chatterjee

    2013-01-01

    Full Text Available GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person′s genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is ′the use of genes as medicine′. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  20. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  1. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  2. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  3. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach.

    Science.gov (United States)

    Zhou, Bangjun; Zeng, Lirong

    2017-01-01

    Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana. Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae. Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and

  4. An Approach for Treating the Hepatobiliary Disease of Cystic Fibrosis by Somatic Gene Transfer

    Science.gov (United States)

    Yang, Yiping; Raper, Steven E.; Cohn, Jonathan A.; Engelhardt, John F.; Wilson, James M.

    1993-05-01

    Cystic fibrosis (CF) is an inherited disease of epithelial cell ion transport that is associated with pathology in multiple organ systems, including lung, pancreas, and liver. As treatment of the pulmonary manifestations of CF has improved, management of CF liver disease has become increasingly important in adult patients. This report describes an approach for treating CF liver disease by somatic gene transfer. In situ hybridization and immunocytochemistry analysis of rat liver sections indicated that the endogenous CFTR (cystic fibrosis transmembrane conductance regulator) gene is primarily expressed in the intrahepatic biliary epithelial cells. To specifically target recombinant genes to the biliary epithelium in vivo, recombinant adenoviruses expressing lacZ or human CFTR were infused retrograde into the biliary tract through the common bile duct. Conditions were established for achieving recombinant gene expression in virtually all cells of the intrahepatic bile ducts in vivo. Expression persisted in the smaller bile ducts for the duration of the experiment, which was 21 days. These studies suggest that it may be feasible to prevent CF liver disease by genetically reconstituting CFTR expression in the biliary tract, using an approach that is clinically feasible.

  5. DREB genes

    African Journals Online (AJOL)

    Unipar

    2015-03-12

    Mar 12, 2015 ... to AP2/ERF family, dehydration-responsive element-binding protein (DREB) genes, (CitsERF01 to ... Protein sequences of DREB subfamilies belonging to group I, .... position 37, and it was present in consensus in all protein.

  6. Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction.

    Directory of Open Access Journals (Sweden)

    David N Quan

    Full Text Available Bacterial cell-cell communication is mediated by small signaling molecules known as autoinducers. Importantly, autoinducer-2 (AI-2 is synthesized via the enzyme LuxS in over 80 species, some of which mediate their pathogenicity by recognizing and transducing this signal in a cell density dependent manner. AI-2 mediated phenotypes are not well understood however, as the means for signal transduction appears varied among species, while AI-2 synthesis processes appear conserved. Approaches to reveal the recognition pathways of AI-2 will shed light on pathogenicity as we believe recognition of the signal is likely as important, if not more, than the signal synthesis. LMNAST (Local Modular Network Alignment Similarity Tool uses a local similarity search heuristic to study gene order, generating homology hits for the genomic arrangement of a query gene sequence. We develop and apply this tool for the E. coli lac and LuxS regulated (Lsr systems. Lsr is of great interest as it mediates AI-2 uptake and processing. Both test searches generated results that were subsequently analyzed through a number of different lenses, each with its own level of granularity, from a binary phylogenetic representation down to trackback plots that preserve genomic organizational information. Through a survey of these results, we demonstrate the identification of orthologs, paralogs, hitchhiking genes, gene loss, gene rearrangement within an operon context, and also horizontal gene transfer (HGT. We found a variety of operon structures that are consistent with our hypothesis that the signal can be perceived and transduced by homologous protein complexes, while their regulation may be key to defining subsequent phenotypic behavior.

  7. Investigation of a common gene expression signature in gastrointestinal cancers using systems biology approaches.

    Science.gov (United States)

    Baghaei, Kaveh; Hosseinkhan, Nazanin; Asadzadeh Aghdaei, Hamid; Zali, M R

    2017-09-04

    According to GLOBOCAN 2012, the incidence and the mortality rate of colorectal, stomach and liver cancers are the highest among the total gastrointestinal (GI) cancers. Here we aimed to find the common genes and pathways that are simultaneously deregulated in these three malignancies using systems biology approaches. Here we conducted a differential expression analysis on high-quality gene expression datasets of gastric cancer (GC), colorectal cancer (CRC) and hepatocellular carcinoma (HCC). To address the inter gene correlations that were neglected in differential expression studies, we also applied differential co-expression analysis on the understudied datasets. The common significant differentially expressed genes (DEGs) among the three cancers were used for further regulatory and PPI network construction. In parallel the regulatory roles of miRNAs and lncRNAs in the common DEGs were investigated. 23 common DEGs were detected between GC, CRC and HCC. Two cases of potential feed forward loops were identified in the constructed TF-target regulatory network, indicating the probable cross-talk between biological pathways. The result of a vulnerability test on the common PPI network resulted in the finding of three candidates, the simultaneous targeting of which will disintegrate the main parts of the network. The results of the differential co-expression study led to the identification of respectively 7 and 1 common differentially co-expressed pairs of genes between GC and CRC and between CRC and HCC. The results of the differential expression study introduced new common players in CRC, GC and HCC and provided better insights into the molecular characteristics of these GI malignancies. Moreover, we concluded that differential co-expression studies are an essential complement for differential expression studies that just take single differentially expressed genes into account.

  8. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy?

    Science.gov (United States)

    Richard, Guy-Franck

    2015-04-01

    Trinucleotide repeat expansions are involved in more than two dozen neurological and developmental disorders. Conventional therapeutic approaches aimed at regulating the expression level of affected genes, which rely on drugs, oligonucleotides, and/or transgenes, have met with only limited success so far. An alternative approach is to shorten repeats to non-pathological lengths using highly specific nucleases. Here, I review early experiments using meganucleases, zinc-finger nucleases (ZFN), and transcription-activator like effector nucleases (TALENs) to contract trinucleotide repeats, and discuss the possibility of using CRISPR-Cas nucleases to the same end. Although this is a nascent field, I explore the possibility of designing nucleases and effectively delivering them in the context of gene therapy.

  9. Advanced targeted, cell and gene therapy approaches for pediatric hematological malignancies: results and future perspectives

    Directory of Open Access Journals (Sweden)

    Chiara Francesca Magnani

    2013-04-01

    Full Text Available Despite the survival of pediatric patients affected by hematological malignancies being improved in the last 20 years by chemotherapy and hematopoietic stem cell transplantation (HSCT, a significant amount of patients still relapses. Treatment intensification is limited by toxic side effects and is constrained by the plateau of efficacy, while the pipeline of new chemotherapeutic drugs is running short. Therefore, novel therapeutic strategies are essential and researchers around the world are testing in clinical trials immune and gene therapy approaches as second-line treatments. The aim of this review is to give a glance at these novel promising strategies of advanced medicine in the field of pediatric leukemias. Results from clinical protocols using new targeted smart drugs, immunotherapy and gene therapy are summarized, and important considerations regarding the combination of these novel approaches with standard treatments to promote safe and long-term cure are discussed.

  10. Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure.

    Science.gov (United States)

    Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C

    2016-01-01

    Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.

  11. Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems.

    Science.gov (United States)

    Boi, Luciano

    2008-01-01

    This paper is aimed at exploring the genome at the level beyond that of DNA sequence alone. We stress the fact that the level of genes is not the sole "reality" in the living world, for there are different epigenetic processes that profoundly affect change in living systems. Moreover, epigenetics very likely influences the course of evolution and the unfolding of life. We further attempt to investigate how the genome is dynamically organized into the nuclear space within the cell. We mainly focus on analyses of higher order nuclear architecture and the dynamic interactions of chromatin with other nuclear components. We especially want to know how epigenetic phenomena influences genes expression and chromosome functions. The proper understanding of these processes require new concepts and approaches be introduced and developed. In particular, we think that research in biology has to shift from only describing molecular and local features of living systems to studying the regulatory networks of interactions among gene pathways, the folding and dynamics of chromatin structure and how environmental factors affects the behavior of organisms. There are essential components of biological information on living organisms which cannot be portrayed in the DNA sequence alone. In a post-genomic era, the importance of chromatin/epigenetic interface has become increasingly apparent. One of the purposes of current research should be to highlight the enormous impact of chromatin organization and dynamics on epigenetic phenomena, and, conversely, to emphasize the important role that epigenetic phenomena play in gene expression and cell regulation.

  12. Experimental approaches for the study of oxytocin and vasopressin gene expression in the central nervous system

    Science.gov (United States)

    Scordalakes, Elka M.; Yue, Chunmei; Gainer, Harold

    2016-01-01

    Intron-specific probes measure heteronuclear RNA (hnRNA) levels and thus approximate the transcription rates of genes, in part because of the rapid turnover of this intermediate form of RNA in the cell nucleus. Previously, we used oxytocin (Oxt)- and vasopressin (Avp)- intron-specific riboprobes to measure changes in Oxt and Avp hnRNA levels in the supraoptic nucleus (SON) by quantitative in situ hybridization (ISH) after various classical physiological perturbations, including acute and chronic salt loading, and lactation. In the present experiments, we used a novel experimental model to study the neurotransmitter regulation of Oxt and Avp gene expression in the rat SON in vivo. Bilateral cannulae connected via tubing to Alzet osmotic mini-pumps were positioned over the SON. In every experiment, one SON was infused with PBS and served as the control SON in each animal, and the contralateral SON received infusions of various neurotransmitter agonists and antagonists. Using this approach, we found that Avp but not Oxt gene expression increased after acute (2–5 h) combined excitatory amino acid agonist and GABA antagonist treatment, similar to what we found after an acute hyperosmotic stimulus. Since both OXT and AVP are known to be comparably and robustly secreted in response to acute osmotic stimuli in vivo and glutamate agonists in vitro, our results indicate a dissociation between OXT secretion and Oxt gene transcription in vivo. PMID:18655870

  13. Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Nizzardo, Monica; Simone, Chiara; Falcone, Marianna; Riboldi, Giulietta; Rizzo, Federica; Magri, Francesca; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2012-05-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons that causes progressive muscle weakness, paralysis, and premature death. No effective therapy is available. Research in the motor neuron field continues to grow, and recent breakthroughs have demonstrated the possibility of completely achieving rescue in animal models of spinal muscular atrophy, a genetic motor neuron disease. With adeno-associated virus (AAV) vectors, gene transfer can be achieved with systemic non-invasive injection and minimal toxicity. In the context of this success, we review gene therapy approaches for ALS, considering what has been done and the possible future directions for effective application of the latest generation of vectors for clinical translation. We focus on recent developments in the areas of RNA/antisense-mediated silencing of specific ALS causative genes like superoxide dismutase-1 and other molecular pathogenetic targets, as well as the administration of neuroprotective factors with viral vectors. We argue that gene therapy offers new opportunities to open the path for clinical progress in treating ALS.

  14. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site.

    Science.gov (United States)

    Andes, D; Lepak, A; Pitula, A; Marchillo, K; Clark, J

    2005-09-01

    Gene expression analysis after the host-pathogen interaction is revolutionizing our understanding of the host response to infection. Numerous studies have utilized microarray analysis to follow host cell transcriptome alterations in response to interactions with infectious pathogens. However, similar analyses of pathogen transcriptional adaptation at the infection site have been limited. Understanding the nature of this interaction from the pathogen perspective at different sites and stages of infection is central to strategies for development of new anti-infective therapies. Toward this end, we developed a protocol to analyze changes in gene expression for a eukaryotic pathogen, Candida albicans, during systemic infection in mice. The experimental approach takes advantage of the resistance of the cell wall of many fungal pathogens to cell lysis, relative to mammalian cells. After lysis of mammalian cells, the tissue mixture containing fungal cells is depleted of mammalian RNA by centrifugation, followed by enzymatic digestion. RNA-digesting enzymes are then inhibited before eukaryotic cell lysis and RNA isolation. The protocol provides a reproducible quantity of RNA based on pathogen cell number. The quality of the RNA allowed reliable downstream transcriptional analysis using reverse-transcription polymerase chain reaction and microarrays. The in vivo gene expression data confirmed involvement of several putative pathogenesis genes. More importantly, the results provided a wealth of biologically interesting hypotheses to direct future investigation.

  15. Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome.

    Science.gov (United States)

    Culligan, Eamonn P; Marchesi, Julian R; Hill, Colin; Sleator, Roy D

    2014-01-01

    In the current study, a number of salt-tolerant clones previously isolated from a human gut metagenomic library were screened using Phenotype MicroArray (PM) technology to assess their functional capacity. PM's can be used to study gene function, pathogenicity, metabolic capacity and identify drug targets using a series of specialized microtitre plate assays, where each well of the microtitre plate contains a different set of conditions and tests a different phenotype. Cellular respiration is monitored colorimetrically by the reduction of a tetrazolium dye. One clone, SMG 9, was found to be positive for utilization/transport of L-carnitine (a well-characterized osmoprotectant) in the presence of 6% w/v sodium chloride (NaCl). Subsequent experiments revealed a significant growth advantage in minimal media containing NaCl and L-carnitine. Fosmid sequencing revealed putative candidate genes responsible for the phenotype. Subsequent cloning of two genes did not replicate the L-carnitine-associated phenotype, although one of the genes, a σ(54)-dependent transcriptional regulator, did confer salt tolerance to Escherichia coli when expressed in isolation. The original clone, SMG 9, was subsequently found to have lost the original observed phenotype upon further investigation. Nevertheless, this study demonstrates the usefulness of a phenomic approach to assign a functional role to metagenome-derived clones.

  16. Endothelial Genes

    Science.gov (United States)

    2005-06-01

    8217Department of Surgery, Division of Oncology , and 2Department of BRCA-l and BRCA-2 (breast cancer susceptibility genes), Pathology, University of...Suppression subtractive hybridization re- Cancer: principles and practice of oncology . Philadelphia: Lippincott- vealed an RNA sequence (GenBank accession...Lippman ME. Cancer of the breast: molecular biology angiogenesis in sarcomas and carcinomas. Clin Cancer Res 1999;5: of breast cancer. In: DeVita VT

  17. A Combinatory Approach for Selecting Prognostic Genes in Microarray Studies of Tumour Survivals

    Directory of Open Access Journals (Sweden)

    Qihua Tan

    2009-01-01

    Full Text Available Different from significant gene expression analysis which looks for genes that are differentially regulated, feature selection in the microarray-based prognostic gene expression analysis aims at finding a subset of marker genes that are not only differentially expressed but also informative for prediction. Unfortunately feature selection in literature of microarray study is predominated by the simple heuristic univariate gene filter paradigm that selects differentially expressed genes according to their statistical significances. We introduce a combinatory feature selection strategy that integrates differential gene expression analysis with the Gram-Schmidt process to identify prognostic genes that are both statistically significant and highly informative for predicting tumour survival outcomes. Empirical application to leukemia and ovarian cancer survival data through-within- and cross-study validations shows that the feature space can be largely reduced while achieving improved testing performances.

  18. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  19. Non-lexical approaches to identifying associative relations in the gene ontology.

    Science.gov (United States)

    Bodenreider, Olivier; Aubry, Marc; Burgun, Anita

    2005-01-01

    The Gene Ontology (GO) is a controlled vocabulary widely used for the annotation of gene products. GO is organized in three hierarchies for molecular functions, cellular components, and biological processes but no relations are provided among terms across hierarchies. The objective of this study is to investigate three non-lexical approaches to identifying such associative relations in GO and compare them among themselves and to lexical approaches. The three approaches are: computing similarity in a vector space model, statistical analysis of co-occurrence of GO terms in annotation databases, and association rule mining. Five annotation databases (FlyBase, the Human subset of GOA, MGI, SGD, and WormBase) are used in this study. A total of 7,665 associations were identified by at least one of the three non-lexical approaches. Of these, 12% were identified by more than one approach. While there are almost 6,000 lexical relations among GO terms, only 203 associations were identified by both non-lexical and lexical approaches. The associations identified in this study could serve as the starting point for adding associative relations across hierarchies to GO, but would require manual curation. The application to quality assurance of annotation databases is also discussed.

  20. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach.

    Science.gov (United States)

    Rodd, Z A; Bertsch, B A; Strother, W N; Le-Niculescu, H; Balaraman, Y; Hayden, E; Jerome, R E; Lumeng, L; Nurnberger, J I; Edenberg, H J; McBride, W J; Niculescu, A B

    2007-08-01

    We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.

  1. University Students' Conceptions about the Concept of Gene: Interest of Historical Approach

    Science.gov (United States)

    Boujemaa, Agorram; Pierre, Clement; Sabah, Selmaoui; Salaheddine, Khzami; Jamal, Chafik; Abdellatif, Chiadli

    2010-01-01

    Concepts of genetics are often difficult to teach, specifically the central concept of gene. Even the scientists disagree when defining this concept. This paper investigates university students' understanding about the gene and its functions. The results show the dominance of two conceptions of the gene: the Neoclassical model and the Mendelian…

  2. Update of the Gene Discovery Program in Schistosoma mansoni with the Expressed Sequence Tag Approach

    Directory of Open Access Journals (Sweden)

    Élida ML Rabelo

    1997-09-01

    Full Text Available Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of these genes (81% had not previously been described in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor

  3. Systematic Approach to Computational Design of Gene Regulatory Networks with Information Processing Capabilities.

    Science.gov (United States)

    Moskon, Miha; Mraz, Miha

    2014-01-01

    We present several measures that can be used in de novo computational design of biological systems with information processing capabilities. Their main purpose is to objectively evaluate the behavior and identify the biological information processing structures with the best dynamical properties. They can be used to define constraints that allow one to simplify the design of more complex biological systems. These measures can be applied to existent computational design approaches in synthetic biology, i.e., rational and automatic design approaches. We demonstrate their use on a) the computational models of several basic information processing structures implemented with gene regulatory networks and b) on a modular design of a synchronous toggle switch.

  4. Gene-splitting technology: a novel approach for the containment of transgene flow in Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Xu-Jing Wang

    Full Text Available The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integrated into N. tabacum, using Agrobacterium tumefaciens-mediated transformation. EPSPSn-In encodes the first 295 aa of the herbicide resistance gene 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS fused with the first 123 aa of the Ssp DnaE intein (In, whereas Ic-EPSPSc encodes the 36 C-terminal aa of the Ssp DnaE intein (Ic fused to the rest of EPSPS C terminus peptide sequences. Both EPSPSn-In and Ic-EPSPSc constructs were introduced into the same N. tabacum genome by genetic crossing. Hybrids displayed resistance to the herbicide N-(phosphonomethyl-glycine (glyphosate. Western blot analysis of protein extracts from hybrid plants identified full-length EPSPS. Furthermore, all hybrid seeds germinated and grew normally on glyphosate selective medium. The 6-8 leaf hybrid plants showed tolerance of 2000 ppm glyphosate in field spraying. These results indicated that functional EPSPS protein was reassembled in vivo by intein-mediated trans-splicing in 100% of plants. In order to evaluate the effect of the gene splitting technique for containment of transgene flow, backcrossing experiments were carried out between hybrids, in which the foreign genes EPSPSn-In and Ic-EPSPSc were inserted into different chromosomes, and non-transgenic plants NC89. Among the 2812 backcrossing progeny, about 25% (664 plantlets displayed glyphosate resistance. These data indicated that transgene flow could be reduced by 75%. Overall, our findings provide a new and highly effective approach for biological containment of transgene flow.

  5. Gene doping: gene delivery for olympic victory

    OpenAIRE

    2012-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted...

  6. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    Directory of Open Access Journals (Sweden)

    Gaurang Mahajan

    Full Text Available High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  7. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    Science.gov (United States)

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  8. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach.

    Directory of Open Access Journals (Sweden)

    Meng Qi

    Full Text Available BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus, with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6, GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.

  9. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    Directory of Open Access Journals (Sweden)

    Oscar Takeo Suzuki

    2014-08-01

    Full Text Available New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 hours using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways.

  10. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  11. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs are proposed as an efficient approach to modelling gene regulatory networks (GRNs. The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

  12. Identifying Liver Cancer and Its Relations with Diseases, Drugs, and Genes: A Literature-Based Approach

    Science.gov (United States)

    Song, Min

    2016-01-01

    In biomedicine, scientific literature is a valuable source for knowledge discovery. Mining knowledge from textual data has become an ever important task as the volume of scientific literature is growing unprecedentedly. In this paper, we propose a framework for examining a certain disease based on existing information provided by scientific literature. Disease-related entities that include diseases, drugs, and genes are systematically extracted and analyzed using a three-level network-based approach. A paper-entity network and an entity co-occurrence network (macro-level) are explored and used to construct six entity specific networks (meso-level). Important diseases, drugs, and genes as well as salient entity relations (micro-level) are identified from these networks. Results obtained from the literature-based literature mining can serve to assist clinical applications. PMID:27195695

  13. An approach towards bronchoscopic-based gene therapy using electrical field accelerated plasmid droplets.

    Science.gov (United States)

    Hradetzky, D; Boehringer, S; Geiser, Th; Gazdhar, A

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease affecting the distal lung, due to failure of the alveolar epithelium to heal after micro-injuries, leading to inefficient gas exchange and resulting in death. Therapeutic options are very limited. A new therapeutic approach based on gene therapy restores the self-healing process within the lung in the experimental setup. A basic requirement of this therapy is the successful transduction of genes into the alveolar epithelium in the distal part of the lung, for which a new therapeutic instrument is required. In this paper we present the concept and first experimental results of a device which uses an electrical field to accelerate the charged droplets of plasmid suspension toward the tissue and which overcomes cell membrane with its impact energy. The aim is to develop a therapeutic device capable of being integrated into minimally invasive procedures such as bronchoscopy.

  14. A non-surgical approach for male germ cell mediated gene transmission through transgenesis.

    Science.gov (United States)

    Usmani, Abul; Ganguli, Nirmalya; Sarkar, Hironmoy; Dhup, Suveera; Batta, Suryaprakash R; Vimal, Manoj; Ganguli, Nilanjana; Basu, Sayon; Nagarajan, P; Majumdar, Subeer S

    2013-01-01

    Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.

  15. The SAV1322 gene from Staphylococcus aureus: genomic and proteomic approaches to identification and characterization of gene function.

    Science.gov (United States)

    Kim, Jung Wook; Kim, Hyun-Kyung; Kang, Gi Su; Kim, Il-Hwan; Kim, Hwa Su; Lee, Yeong Seon; Yoo, Jae Il

    2016-09-06

    Bacterial two-component regulatory systems (TCRS) are associated with the expression of virulence factors and antibiotic susceptibility. In Staphylococcus aureus, 16 TCRS types have been identified. The histidine kinase/response regulator SAV1321/SAV1322 in the S. aureus shares considerable homology with the TCRS DesKR in Bacillus subtilis. However, a function for the SAV1322 locus has not yet been assigned. Deletion of the SAV1322 locus in S. aureus results in reduced growth when cultured under low (25 °C) and high (46 °C) temperature conditions. The sav1322 deletion mutant is more tolerant to oxidative stress in vitro and is less pathogenic in a murine infection model when compared with wild-type parent strain Mu50. Furthermore, the sav1322 mutant exhibits lower MICs for gentimicin, tetracyclines and glycopeptides, increased autolysis, and a thinner cell wall when compared with the wild-type strain. Microarray and proteomic analyses show that the expression of cell-wall-associated genes glmS and murZ are lower, and the expression of heat shock and stress-related genes (hrcA, ctsR, dnaK, dnaJ, grpE, clpB, and clpC) are higher in the sav1322 mutant when compared with the wild-type strain. In addition, the sav1322 mutant displays altered expression of proteins involved in carbohydrate/energy metabolism, cell wall metabolism, and stress or heat shock response, as well as other metabolic processes including lipid metabolism, amino acid biosynthesis, purine or pyrimidine metabolism, transcription, and protein biosynthesis. The S. aureus SAV1322 locus plays a pronounced role in temperature adaptation, antibiotic resistance, and virulence by regulating a wide range of genes and proteins involved in metabolism and stress tolerance.

  16. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  17. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  18. Deciphering ascorbic acid regulatory pathways in ripening tomato fruit using a weighted gene correlation network analysis approach.

    Science.gov (United States)

    Gao, Chao; Ju, Zheng; Li, Shan; Zuo, Jinhua; Fu, Daqi; Tian, Huiqin; Luo, Yunbo; Zhu, Benzhong

    2013-11-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  19. Deciphering Ascorbic Acid Regulatory Pathways in Ripening Tomato Fruit Using a Weighted Gene Correlation Network Analysis Approach

    Institute of Scientific and Technical Information of China (English)

    Chao Gao; Zheng Ju; Shan Li; Jinhua Zuo; Daqi Fu; Huiqin Tian; Yunbo Luo; Benzhong Zhu

    2013-01-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  20. Identification and Analysis of Jasmonate Pathway Genes in Coffea canephora (Robusta Coffee) by In Silico Approach.

    Science.gov (United States)

    Bharathi, Kosaraju; Sreenath, H L

    2017-07-01

    bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC and OPR were identified and analyzed in C. canephora (robusta coffee) by in silico approach. The study has confirmed the conserved nature of JA pathway in coffee; the findings are useful to further explore the defense mechanisms of coffee plants. Abbreviations used:C. canephora: Coffea canephora; C. arabica: Coffea arabica; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana: Arabidopsis thaliana; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.

  1. Screening currency notes for microbial pathogens and antibiotic resistance genes using a shotgun metagenomic approach.

    Directory of Open Access Journals (Sweden)

    Saakshi Jalali

    Full Text Available Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%, bacteria (9%, viruses and archae (~1%. We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents.

  2. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    Directory of Open Access Journals (Sweden)

    Bauer Florian F

    2008-11-01

    Full Text Available Abstract Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of

  3. Information content-based gene ontology semantic similarity approaches: toward a unified framework theory.

    Science.gov (United States)

    Mazandu, Gaston K; Mulder, Nicola J

    2013-01-01

    Several approaches have been proposed for computing term information content (IC) and semantic similarity scores within the gene ontology (GO) directed acyclic graph (DAG). These approaches contributed to improving protein analyses at the functional level. Considering the recent proliferation of these approaches, a unified theory in a well-defined mathematical framework is necessary in order to provide a theoretical basis for validating these approaches. We review the existing IC-based ontological similarity approaches developed in the context of biomedical and bioinformatics fields to propose a general framework and unified description of all these measures. We have conducted an experimental evaluation to assess the impact of IC approaches, different normalization models, and correction factors on the performance of a functional similarity metric. Results reveal that considering only parents or only children of terms when assessing information content or semantic similarity scores negatively impacts the approach under consideration. This study produces a unified framework for current and future GO semantic similarity measures and provides theoretical basics for comparing different approaches. The experimental evaluation of different approaches based on different term information content models paves the way towards a solution to the issue of scoring a term's specificity in the GO DAG.

  4. Information Content-Based Gene Ontology Semantic Similarity Approaches: Toward a Unified Framework Theory

    Science.gov (United States)

    Mazandu, Gaston K.; Mulder, Nicola J.

    2013-01-01

    Several approaches have been proposed for computing term information content (IC) and semantic similarity scores within the gene ontology (GO) directed acyclic graph (DAG). These approaches contributed to improving protein analyses at the functional level. Considering the recent proliferation of these approaches, a unified theory in a well-defined mathematical framework is necessary in order to provide a theoretical basis for validating these approaches. We review the existing IC-based ontological similarity approaches developed in the context of biomedical and bioinformatics fields to propose a general framework and unified description of all these measures. We have conducted an experimental evaluation to assess the impact of IC approaches, different normalization models, and correction factors on the performance of a functional similarity metric. Results reveal that considering only parents or only children of terms when assessing information content or semantic similarity scores negatively impacts the approach under consideration. This study produces a unified framework for current and future GO semantic similarity measures and provides theoretical basics for comparing different approaches. The experimental evaluation of different approaches based on different term information content models paves the way towards a solution to the issue of scoring a term's specificity in the GO DAG. PMID:24078912

  5. A top-down approach for construction of hybrid polymer-virus gene delivery vectors.

    Science.gov (United States)

    Ramsey, Joshua D; Vu, Halong N; Pack, Daniel W

    2010-05-21

    Safe and efficient delivery of therapeutic nucleic acids remains the primary hurdle for human gene therapy. While many researchers have attempted to re-engineer viruses to be suited for gene delivery, others have sought to develop non-viral alternatives. We have developed a complementary approach in which viral and synthetic components are combined to form hybrid nanoparticulate vectors. In particular, we complexed non-infectious retrovirus-like particles lacking a viral envelope protein, from Moloney murine leukemia virus (M-VLP) or human immunodeficiency virus (H-VLP), with poly-L-lysine (PLL) or polyethylenimine (PEI) over a range of polymer/VLP ratios. At appropriate stoichiometry (75-250 microg polymer/10(6) VLP), the polymers replace the function of the viral envelope protein and interact with the target cell membrane, initiate cellular uptake and facilitate escape from endocytic vesicles. The viral particle, once in the cytosol, efficiently completes its normal infection process including integration of viral genes with the host genome as demonstrated by long-term (at least 5 weeks) transgene expression. In addition, hybrid vectors comprising H-VLP were shown to be capable of infecting non-dividing cells.

  6. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach

    Science.gov (United States)

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M.; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-01-01

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds. PMID:27966592

  7. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence

    Directory of Open Access Journals (Sweden)

    Antoni N Malachowski

    2016-10-01

    Full Text Available Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, sho1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, sho1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116 of total studied VAFs are soluble proteins, and 22.7% (34 are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.

  8. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach.

    Science.gov (United States)

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-12-14

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.

  9. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-08-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system.

  10. Detection and isolation of selected genes of interest from metagenomic libraries by a DNA microarray approach.

    Science.gov (United States)

    Pathak, Gopal P; Gärtner, Wolfgang

    2010-01-01

    A DNA microarray-based approach is described for screening metagenomic libraries for the presence of selected genes. The protocol is exemplified for the identification of flavin-binding, blue-light-sensitive biological photoreceptors (BL), based on a homology search in already sequenced, annotated genomes. The microarray carried 149 different 54-mer oligonucleotides, derived from consensus sequences of BL photoreceptors. The array could readily identify targets carrying 4% sequence mismatch, and allowed unambiguous identification of a positive cosmid clone of as little as 10 ng against a background of 25 μg of cosmid DNA. The protocol allows screening up to 1,200 library clones in concentrations as low as ca. 20 ng, each with a ca. 40 kb insert size readily in a single batch. Calibration and control conditions are outlined. This protocol, when applied to the thermophilic fraction of a soil sample, yielded the identification and functional characterization of a novel, BL-encoding gene that showed a 58% similarity to a known, BL-encoding gene from Kineococcus radiotolerans SRS30216 (similarity values refer to the respective LOV domains).

  11. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    Science.gov (United States)

    Lu, Cairui; Zou, Changsong; Song, Guoli

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  12. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  13. GeneEd -- A Genetics Educational Resource

    Science.gov (United States)

    ... Javascript on. Feature: Genetics 101 GeneEd — A Genetics Educational Resource Past Issues / Summer 2013 Table of Contents Science ... The Hereditary Material of Life / GeneEd — A Genetics Educational Resource / Using The Genetics Home Reference Website / Understanding the ...

  14. Gene editing and genetic engineering approaches for advanced probiotics: A Review.

    Science.gov (United States)

    Yadav, Ruby; Kumar, Vishal; Baweja, Mehak; Shukla, Pratyoosh

    2017-01-10

    The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher's attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for defining their role in intestinal microbiota and exploring their beneficial properties. This review describes an overview of gene editing and system biology approaches, highlighting the advent of omics methods which allows the study of new routes for studying probiotic bacteria. We have also summarized gene editing tools like TALEN, ZFNs and CRISPR-Cas that edits or cleave the specific target DNA. Furthermore, in this review an overview of proposed design of advanced customized probiotic is also hypothesized to improvise the probiotics.

  15. Rational design of modular circuits for gene transcription: A test of the bottom-up approach

    Directory of Open Access Journals (Sweden)

    Giordano Emanuele

    2010-11-01

    Full Text Available Abstract Background Most of synthetic circuits developed so far have been designed by an ad hoc approach, using a small number of components (i.e. LacI, TetR and a trial and error strategy. We are at the point where an increasing number of modular, inter-changeable and well-characterized components is needed to expand the construction of synthetic devices and to allow a rational approach to the design. Results We used interchangeable modular biological parts to create a set of novel synthetic devices for controlling gene transcription, and we developed a mathematical model of the modular circuits. Model parameters were identified by experimental measurements from a subset of modular combinations. The model revealed an unexpected feature of the lactose repressor system, i.e. a residual binding affinity for the operator site by induced lactose repressor molecules. Once this residual affinity was taken into account, the model properly reproduced the experimental data from the training set. The parameters identified in the training set allowed the prediction of the behavior of networks not included in the identification procedure. Conclusions This study provides new quantitative evidences that the use of independent and well-characterized biological parts and mathematical modeling, what is called a bottom-up approach to the construction of gene networks, can allow the design of new and different devices re-using the same modular parts.

  16. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  17. A Novel Approach for Discovering Condition-Specific Correlations of Gene Expressions within Biological Pathways by Using Cloud Computing Technology

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    2014-01-01

    Full Text Available Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells, for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  18. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    Science.gov (United States)

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  19. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches.

    Science.gov (United States)

    Abdel-Rahman, Sherif Z; El-Zein, Randa A

    2011-08-01

    Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.

  20. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.

    Science.gov (United States)

    Bacchi, Niccolò; Casarosa, Simona; Denti, Michela A

    2014-05-27

    Splicing is an important and highly regulated step in gene expression. The ability to modulate it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing-correction approaches have recently been successfully exploited for some genetic diseases, and are currently demonstrating safety and efficacy in different clinical trials. Their application for the treatment of retinal dystrophies could potentially solve a vast panel of cases, as illustrated by the abundance of mutations that could be targeted and the versatility of the technique. In this review, we will give an insight of the different therapeutic strategies, focusing on the current status of their application for retinal dystrophies.

  1. Novel therapeutic approaches for various cancer types using a modified sleeping beauty-based gene delivery system.

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kim, Hyun-Pyo

    2014-01-01

    Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host's chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.

  2. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh;

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified...... gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion...... of genes potentially involved in T2D....

  3. From essential to persistent genes: a functional approach to constructing synthetic life.

    Science.gov (United States)

    Acevedo-Rocha, Carlos G; Fang, Gang; Schmidt, Markus; Ussery, David W; Danchin, Antoine

    2013-05-01

    A central undertaking in synthetic biology (SB) is the quest for the 'minimal genome'. However, 'minimal sets' of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack of consensus in the field as to what attributes make a gene truly essential adds another aspect of variation. Thus, a universal minimal genome remains elusive. Here, as an alternative to defining a minimal genome, we propose that the concept of gene persistence can be used to classify genes needed for robust long-term survival. Persistent genes, although not ubiquitous, are conserved in a majority of genomes, tend to be expressed at high levels, and are frequently located on the leading DNA strand. These criteria impose constraints on genome organization, and these are important considerations for engineering cells and for creating cellular life-like forms in SB.

  4. An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone.

    Science.gov (United States)

    Poelstra, J W; Ellegren, H; Wolf, J B W

    2013-12-01

    Colouration patterns have an important role in adaptation and speciation. The European crow system, in which all-black carrion crows and grey-coated hooded crows meet in a narrow hybrid zone, is a prominent example. The marked phenotypic difference is maintained by assortative mating in the absence of neutral genetic divergence, suggesting the presence of few pigmentation genes of major effect. We made use of the rich phenotypic and genetic resources in mammals and identified a comprehensive panel of 95 candidate pigmentation genes for birds. Based on functional annotation, we chose a subset of the most promising 37 candidates, for which we developed a marker system that demonstrably works across the avian phylogeny. In total, we sequenced 107 amplicons (∼3 loci per gene, totalling 60 kb) in population samples of crows (n=23 for each taxon). Tajima's D, Fu's FS, DHEW and HKA (Hudson-Kreitman-Aguade) statistics revealed several amplicons that deviated from neutrality; however, none of these showed significantly elevated differentiation between the two taxa. Hence, colour divergence in this system may be mediated by uncharacterized pigmentation genes or regulatory regions outside genes. Alternatively, the observed high population recombination rate (4Ner∼0.03), with overall linkage disequilibrium dropping rapidly within the order of few 100 bp, may compromise the power to detect causal loci with nearby markers. Our results add to the debate as to the utility of candidate gene approaches in relation to genomic features and the genetic architecture of the phenotypic trait in question.

  5. A feature selection approach for identification of signature genes from SAGE data

    Directory of Open Access Journals (Sweden)

    Silva Paulo JS

    2007-05-01

    Full Text Available Abstract Background One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements. Results A new framework to select specific genes that distinguish different biological states based on the analysis of SAGE data is proposed. The new framework applies the bolstered error for the identification of strong genes that separate the biological states in a feature space defined by the gene expression of a training set. Credibility intervals defined from a probabilistic model of SAGE measurements are used to identify the genes that distinguish the different states with more reliability among all gene groups selected by the strong genes method. A score taking into account the credibility and the bolstered error values in order to rank the groups of considered genes is proposed. Results obtained using SAGE data from gliomas are presented, thus corroborating the introduced methodology. Conclusion The model representing counting data, such as SAGE, provides additional statistical information that allows a more robust analysis. The additional statistical information provided by the probabilistic model is incorporated in the methodology described in the paper. The introduced method is suitable to identify signature genes that lead to a good separation of the biological states using SAGE and may be adapted for other counting methods such as Massive Parallel Signature Sequencing (MPSS or the recent Sequencing-By-Synthesis (SBS technique. Some of such genes identified by the proposed method may be useful to generate classifiers.

  6. Identifying overrepresented concepts in gene lists from literature: a statistical approach based on Poisson mixture model

    Directory of Open Access Journals (Sweden)

    Zhai Chengxiang

    2010-05-01

    Full Text Available Abstract Background Large-scale genomic studies often identify large gene lists, for example, the genes sharing the same expression patterns. The interpretation of these gene lists is generally achieved by extracting concepts overrepresented in the gene lists. This analysis often depends on manual annotation of genes based on controlled vocabularies, in particular, Gene Ontology (GO. However, the annotation of genes is a labor-intensive process; and the vocabularies are generally incomplete, leaving some important biological domains inadequately covered. Results We propose a statistical method that uses the primary literature, i.e. free-text, as the source to perform overrepresentation analysis. The method is based on a statistical framework of mixture model and addresses the methodological flaws in several existing programs. We implemented this method within a literature mining system, BeeSpace, taking advantage of its analysis environment and added features that facilitate the interactive analysis of gene sets. Through experimentation with several datasets, we showed that our program can effectively summarize the important conceptual themes of large gene sets, even when traditional GO-based analysis does not yield informative results. Conclusions We conclude that the current work will provide biologists with a tool that effectively complements the existing ones for overrepresentation analysis from genomic experiments. Our program, Genelist Analyzer, is freely available at: http://workerbee.igb.uiuc.edu:8080/BeeSpace/Search.jsp

  7. Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Shuhei Kaneko

    2015-01-01

    Full Text Available In the past decade, researchers in oncology have sought to develop survival prediction models using gene expression data. The least absolute shrinkage and selection operator (lasso has been widely used to select genes that truly correlated with a patient’s survival. The lasso selects genes for prediction by shrinking a large number of coefficients of the candidate genes towards zero based on a tuning parameter that is often determined by a cross-validation (CV. However, this method can pass over (or fail to identify true positive genes (i.e., it identifies false negatives in certain instances, because the lasso tends to favor the development of a simple prediction model. Here, we attempt to monitor the identification of false negatives by developing a method for estimating the number of true positive (TP genes for a series of values of a tuning parameter that assumes a mixture distribution for the lasso estimates. Using our developed method, we performed a simulation study to examine its precision in estimating the number of TP genes. Additionally, we applied our method to a real gene expression dataset and found that it was able to identify genes correlated with survival that a CV method was unable to detect.

  8. Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data

    Science.gov (United States)

    Aorigele; Zeng, Weiming; Hong, Xiaomin

    2016-01-01

    Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323

  9. Consilient research approaches in studying gene x environment interactions in alcohol research.

    Science.gov (United States)

    Sher, Kenneth J; Dick, Danielle M; Crabbe, John C; Hutchison, Kent E; O'Malley, Stephanie S; Heath, Andrew C

    2010-04-01

    This review article discusses the importance of identifying gene-environment interactions for understanding the etiology and course of alcohol use disorders and related conditions. A number of critical challenges are discussed, including the fact that there is no organizing typology for classifying different types of environmental exposures, many key human environmental risk factors for alcohol dependence have no clear equivalents in other species, much of the genetic variance of alcohol dependence in human is not 'alcohol specific', and the potential range of gene-environment interactions that could be considered is so vast that maintaining statistical control of Type 1 errors is a daunting task. Despite these and other challenges, there appears to be a number of promising approaches that could be taken in order to achieve consilience and ecologically valid translation between human alcohol dependence and animal models. Foremost among these is to distinguish environmental exposures that are thought to have enduring effects on alcohol use motivation (and self-regulation) from situational environmental exposures that facilitate the expression of such motivations but do not, by themselves, have enduring effects. In order to enhance consilience, various domains of human approach motivation should be considered so that relevant environmental exposures can be sampled, as well as the appropriate species to study them in (i.e. where such motivations are ecologically relevant). Foremost among these are social environments, which are central to the initiation and escalation of human alcohol consumption. The value of twin studies, human laboratory studies and pharmacogenetic studies is also highlighted.

  10. A bi-ordering approach to linking gene expression with clinical annotations in gastric cancer

    Directory of Open Access Journals (Sweden)

    Leckie Christopher

    2010-09-01

    Full Text Available Abstract Background In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in a single assay, provide abundant information for the investigation of interesting genes or biological pathways. However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes. Moreover, systematic tests are needed to validate the statistical and biological significance of those discoveries. Results In this paper, we develop a robust and efficient method for exploratory analysis of microarray data, which produces a number of different orderings (rankings of both genes and samples (reflecting correlation among those genes and samples. The core algorithm is closely related to biclustering, and so we first compare its performance with several existing biclustering algorithms on two real datasets - gastric cancer and lymphoma datasets. We then show on the gastric cancer data that the sample orderings generated by our method are highly statistically significant with respect to the histological classification of samples by using the Jonckheere trend test, while the gene modules are biologically significant with respect to biological processes (from the Gene Ontology. In particular, some of the gene modules associated with biclusters are closely linked to gastric cancer tumorigenesis reported in previous literature, while others are potentially novel discoveries. Conclusion In conclusion, we have developed an effective and efficient method, Bi-Ordering Analysis, to detect informative patterns in gene expression microarrays by ranking genes and samples. In addition, a number of evaluation metrics were applied to assess both the statistical and biological significance of the resulting bi-orderings. The methodology was validated on gastric cancer and lymphoma datasets.

  11. A bi-ordering approach to linking gene expression with clinical annotations in gastric cancer.

    Science.gov (United States)

    Shi, Fan; Leckie, Christopher; MacIntyre, Geoff; Haviv, Izhak; Boussioutas, Alex; Kowalczyk, Adam

    2010-09-23

    In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in a single assay, provide abundant information for the investigation of interesting genes or biological pathways. However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes. Moreover, systematic tests are needed to validate the statistical and biological significance of those discoveries. In this paper, we develop a robust and efficient method for exploratory analysis of microarray data, which produces a number of different orderings (rankings) of both genes and samples (reflecting correlation among those genes and samples). The core algorithm is closely related to biclustering, and so we first compare its performance with several existing biclustering algorithms on two real datasets - gastric cancer and lymphoma datasets. We then show on the gastric cancer data that the sample orderings generated by our method are highly statistically significant with respect to the histological classification of samples by using the Jonckheere trend test, while the gene modules are biologically significant with respect to biological processes (from the Gene Ontology). In particular, some of the gene modules associated with biclusters are closely linked to gastric cancer tumorigenesis reported in previous literature, while others are potentially novel discoveries. In conclusion, we have developed an effective and efficient method, Bi-Ordering Analysis, to detect informative patterns in gene expression microarrays by ranking genes and samples. In addition, a number of evaluation metrics were applied to assess both the statistical and biological significance of the resulting bi-orderings. The methodology was validated on gastric cancer and lymphoma datasets.

  12. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    Science.gov (United States)

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS.

  13. A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes.

    Science.gov (United States)

    Ruiu, Fabrizio; Picarella, Maurizio Enea; Imanishi, Shunsuke; Mazzucato, Andrea

    2015-10-01

    The tomato parthenocarpic fruit (pat) mutation associates a strong competence for parthenocarpy with homeotic transformation of anthers and aberrancy of ovules. To dissect this complex floral phenotype, genes involved in the pollination-independent fruit set of the pat mutant were investigated by microarray analysis using wild-type and mutant ovaries. Normalized expression data were subjected to one-way ANOVA and 2499 differentially expressed genes (DEGs) displaying a >1.5 log-fold change in at least one of the pairwise comparisons analyzed were detected. DEGs were categorized into 20 clusters and clusters classified into five groups representing transcripts with similar expression dynamics. The "regulatory function" group (685 DEGs) contained putative negative or positive fruit set regulators, "pollination-dependent" (411 DEGs) included genes activated by pollination, "fruit growth-related" (815 DEGs) genes activated at early fruit growth. The last groups listed genes with different or similar expression pattern at all stages in the two genotypes. qRT-PCR validation of 20 DEGs plus other four selected genes assessed the high reliability of microarray expression data; the average correlation coefficient for the 20 DEGs was 0.90. In all the groups were evidenced relevant transcription factors encoding proteins regulating meristem differentiation and floral organ development, genes involved in metabolism, transport and response of hormones, genes involved in cell division and in primary and secondary metabolism. Among pathways related to secondary metabolites emerged genes related to the synthesis of flavonoids, supporting the recent evidence that these compounds are important at the fruit set phase. Selected genes showing a de-regulated expression pattern in pat were studied in other four parthenocarpic genotypes either genetically anonymous or carrying lesions in known gene sequences. This comparative approach offered novel insights for improving the present

  14. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  15. Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.

    Science.gov (United States)

    Mariani, Louise-Laure; Tesson, Christelle; Charles, Perrine; Cazeneuve, Cécile; Hahn, Valérie; Youssov, Katia; Freeman, Leorah; Grabli, David; Roze, Emmanuel; Noël, Sandrine; Peuvion, Jean-Noel; Bachoud-Levi, Anne-Catherine; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra

    2016-09-01

    iron accumulation. We identified mutations in genes associated with neurodegeneration, including CACNA1A (n = 2), VPS13A (n = 1), UBQLN2 (n = 1), and VCP (n = 1). Huntington disease phenocopies without CAG repeat expansions in HTT are not rare, occurring in 12.4% (28 of 226) herein, and should be considered in genetic counseling. We used next-generation sequencing combined with clinical data and disease evolution to explore multiple etiologies simultaneously. Our combined clinical and genetic exploration of 28 HD phenocopies identified the underlying cause in 35.7% (10 of 28). In conclusion, the etiologies of HD phenocopies are heterogeneous, and clinical evolution should be taken into account when searching for a genetic cause. The panel of candidate genes to be examined is larger than expected but can be guided by specific imaging and clinical features. Other neurodegenerative diseases with late onset in which variant segregation cannot be verified could be productively explored with the combined approach illustrated herein.

  16. Gene-gene interaction between tuberculosis candidate genes in a South African population.

    Science.gov (United States)

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G

    2011-02-01

    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB.

  17. SVMRFE based approach for prediction of most discriminatory gene target for type II diabetes

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2017-06-01

    Full Text Available Type II diabetes is a chronic condition that affects the way our body metabolizes sugar. The body's important source of fuel is now becoming a chronic disease all over the world. It is now very necessary to identify the new potential targets for the drugs which not only control the disease but also can treat it. Support vector machines are the classifier which has a potential to make a classification of the discriminatory genes and non-discriminatory genes. SVMRFE a modification of SVM ranks the genes based on their discriminatory power and eliminate the genes which are not involved in causing the disease. A gene regulatory network has been formed with the top ranked coding genes to identify their role in causing diabetes. To further validate the results pathway study was performed to identify the involvement of the coding genes in type II diabetes. The genes obtained from this study showed a significant involvement in causing the disease, which may be used as a potential drug target.

  18. From essential to persistent genes: a functional approach to constructing synthetic life

    DEFF Research Database (Denmark)

    Acevedo-Rocha, Carlos G.; Fang, Gang; Schmidt, Markus

    2013-01-01

    A central undertaking in synthetic biology (SB) is the quest for the ‘minimal genome’. However, ‘minimal sets’ of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack...

  19. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma

    Directory of Open Access Journals (Sweden)

    Grotmol Tom

    2011-05-01

    Full Text Available Abstract Background Osteosarcoma (OS is a bone malignancy which occurs primarily in adolescents. Since it occurs during a period of rapid growth, genes important in bone formation and growth are plausible modifiers of risk. Genes involved in DNA repair and ribosomal function may contribute to OS pathogenesis, because they maintain the integrity of critical cellular processes. We evaluated these hypotheses in an OS association study of genes from growth/hormone, bone formation, DNA repair, and ribosomal pathways. Methods We evaluated 4836 tag-SNPs across 255 candidate genes in 96 OS cases and 1426 controls. Logistic regression models were used to estimate the odds ratios (OR and 95% confidence intervals (CI. Results Twelve SNPs in growth or DNA repair genes were significantly associated with OS after Bonferroni correction. Four SNPs in the DNA repair gene FANCM (ORs 1.9-2.0, P = 0.003-0.004 and 2 SNPs downstream of the growth hormone gene GH1 (OR 1.6, P = 0.002; OR 0.5, P = 0.0009 were significantly associated with OS. One SNP in the region of each of the following genes was significant: MDM2, MPG, FGF2, FGFR3, GNRH2, and IGF1. Conclusions Our results suggest that several SNPs in biologically plausible pathways are associated with OS. Larger studies are required to confirm our findings.

  20. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    Science.gov (United States)

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  1. Gene therapy for hemophilia.

    Science.gov (United States)

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia. © 2013 International Society on Thrombosis and Haemostasis.

  2. A novel reverse-genetic approach (SIMF) identifies Mutator insertions in new Myb genes.

    Science.gov (United States)

    Rabinowicz, P D; Grotewold, E

    2000-11-01

    We have developed a new strategy designated SIMF (Systematic Insertional Mutagenesis of Families), to identify DNA insertions in many members of a gene family simultaneously. This method requires only a short amino acid sequence conserved in all members of the family to make a degenerate oligonucleotide, and a sequence from the end of the DNA insertion. The SIMF strategy was successfully applied to the large maize R2R3 Myb family of regulatory genes, and Mutator insertions in several novel Myb genes were identified. Application of this technique to identify insertions in other large gene families could significantly decrease the effort involved in screening at the same time for insertions in all members of groups of genes that share a limited sequence identity.

  3. Correlating overrepresented upstream motifs to gene expression a computational approach to regulatory element discovery in eukaryotes

    CERN Document Server

    Caselle, M; Provero, P

    2002-01-01

    Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulat...

  4. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  5. Gene therapy for hemophilia.

    Science.gov (United States)

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  6. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.

    Science.gov (United States)

    Yang, Hai; Wei, Qiang; Zhong, Xue; Yang, Hushan; Li, Bingshan

    2017-02-15

    Comprehensive catalogue of genes that drive tumor initiation and progression in cancer is key to advancing diagnostics, therapeutics and treatment. Given the complexity of cancer, the catalogue is far from complete yet. Increasing evidence shows that driver genes exhibit consistent aberration patterns across multiple-omics in tumors. In this study, we aim to leverage complementary information encoded in each of the omics data to identify novel driver genes through an integrative framework. Specifically, we integrated mutations, gene expression, DNA copy numbers, DNA methylation and protein abundance, all available in The Cancer Genome Atlas (TCGA) and developed iDriver, a non-parametric Bayesian framework based on multivariate statistical modeling to identify driver genes in an unsupervised fashion. iDriver captures the inherent clusters of gene aberrations and constructs the background distribution that is used to assess and calibrate the confidence of driver genes identified through multi-dimensional genomic data. We applied the method to 4 cancer types in TCGA and identified candidate driver genes that are highly enriched with known drivers. (e.g.: P < 3.40 × 10 -36 for breast cancer). We are particularly interested in novel genes and observed multiple lines of supporting evidence. Using systematic evaluation from multiple independent aspects, we identified 45 candidate driver genes that were not previously known across these 4 cancer types. The finding has important implications that integrating additional genomic data with multivariate statistics can help identify cancer drivers and guide the next stage of cancer genomics research. The C ++ source code is freely available at https://medschool.vanderbilt.edu/cgg/ . hai.yang@vanderbilt.edu or bingshan.li@Vanderbilt.Edu. Supplementary data are available at Bioinformatics online.

  7. Comparison of two approaches for the classification of 16S rRNA gene sequences.

    Science.gov (United States)

    Chatellier, Sonia; Mugnier, Nathalie; Allard, Françoise; Bonnaud, Bertrand; Collin, Valérie; van Belkum, Alex; Veyrieras, Jean-Baptiste; Emler, Stefan

    2014-10-01

    The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods.

  8. Identifying human disease genes: advances in molecular genetics and computational approaches.

    Science.gov (United States)

    Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

    2014-07-04

    The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information.

  9. A hybrid dynamic Bayesian network approach for modelling temporal associations of gene expressions for hypertension diagnosis.

    Science.gov (United States)

    Akutekwe, Arinze; Seker, Huseyin

    2014-01-01

    Computational and machine learning techniques have been applied in identifying biomarkers and constructing predictive models for diagnosis of hypertension. Strategies such as improved classification rules based on decision trees have been proposed. Other techniques such as Fuzzy Expert Systems (FES) and Neuro-Fuzzy Systems (NFS) have recently been applied. However, these methods lack the ability to detect temporal relationships among biomarker genes that will aid better understanding of the mechanism of hypertension disease. In this paper we apply a proposed two-stage bio-network construction approach that combines the power and computational efficiency of classification methods with the well-established predictive ability of Dynamic Bayesian Network. We demonstrate our method using the analysis of male young-onset hypertension microarray dataset. Four key genes were identified by the Least Angle Shrinkage and Selection Operator (LASSO) and three Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. Results show that cell regulation FOXQ1 may inhibit the expression of focusyltransferase-6 (FUT6) and that ABCG1 ATP-binding cassette sub-family G may also play inhibitory role against NR2E3 nuclear receptor sub-family 2 and CGB2 Chromatin Gonadotrophin.

  10. Special Issue: Gene Conversion in Duplicated Genes

    Directory of Open Access Journals (Sweden)

    Hideki Innan

    2011-06-01

    Full Text Available Gene conversion is an outcome of recombination, causing non-reciprocal transfer of a DNA fragment. Several decades later than the discovery of crossing over, gene conversion was first recognized in fungi when non-Mendelian allelic distortion was observed. Gene conversion occurs when a double-strand break is repaired by using homologous sequences in the genome. In meiosis, there is a strong preference to use the orthologous region (allelic gene conversion, which causes non-Mendelian allelic distortion, but paralogous or duplicated regions can also be used for the repair (inter-locus gene conversion, also referred to as non-allelic and ectopic gene conversion. The focus of this special issue is the latter, interlocus gene conversion; the rate is lower than allelic gene conversion but it has more impact on phenotype because more drastic changes in DNA sequence are involved.

  11. Application of Multi-SOM clustering approach to macrophage gene expression analysis.

    Science.gov (United States)

    Ghouila, Amel; Yahia, Sadok Ben; Malouche, Dhafer; Jmel, Haifa; Laouini, Dhafer; Guerfali, Fatma Z; Abdelhak, Sonia

    2009-05-01

    The production of increasingly reliable and accessible gene expression data has stimulated the development of computational tools to interpret such data and to organize them efficiently. The clustering techniques are largely recognized as useful exploratory tools for gene expression data analysis. Genes that show similar expression patterns over a wide range of experimental conditions can be clustered together. This relies on the hypothesis that genes that belong to the same cluster are coregulated and involved in related functions. Nevertheless, clustering algorithms still show limits, particularly for the estimation of the number of clusters and the interpretation of hierarchical dendrogram, which may significantly influence the outputs of the analysis process. We propose here a multi level SOM based clustering algorithm named Multi-SOM. Through the use of clustering validity indices, Multi-SOM overcomes the problem of the estimation of clusters number. To test the validity of the proposed clustering algorithm, we first tested it on supervised training data sets. Results were evaluated by computing the number of misclassified samples. We have then used Multi-SOM for the analysis of macrophage gene expression data generated in vitro from the same individual blood infected with 5 different pathogens. This analysis led to the identification of sets of tightly coregulated genes across different pathogens. Gene Ontology tools were then used to estimate the biological significance of the clustering, which showed that the obtained clusters are coherent and biologically significant.

  12. Progress of gene targeting in mouse

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Gene targeting is a powerful approach of study- ing the genefunction in vivo. Specific genetic modifications, including simple gene disruption, point mutations, large chromosomal deletions and rearrangements, targeted incor- poration of foreign genes, could be introduced into the mouse genome by gene targeting. Recent studies make it possible to do the gene targeting with temporal and spatial control.

  13. Principles of gene therapy

    OpenAIRE

    Mammen Biju; Ramakrishnan T; Sudhakar Uma; Vijayalakshmi

    2007-01-01

    Genes are specific sequences of bases that encode instructions to make proteins. When genes are altered so that encoded proteins are unable to carry out their normal functions, genetic disorders can result. Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. This article reviews the fundamentals in gene therapy and its various modes of administration with an insight into the role of gene therapy in Periodontics an...

  14. Heritable and inducible gene knockdown in astrocytes or neurons in vivo by a combined lentiviral and RNAi approach.

    Directory of Open Access Journals (Sweden)

    Fabrice eHeitz

    2014-03-01

    Full Text Available Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformations or lethality. Conditional gene knockdown has emerged as a compelling alternative to gene knockout, an approach well established in vitro but that remains challenging in vivo, especially in the adult brain. Here, we report a method for conditional and cell-specific gene knockdown in the mouse brain in vivo that combines Cre-mediated RNA interference (RNAi with classical and lentivirus-mediated transgenesis. The method is based on the inducible expression of a silencing short hairpin RNA (shRNA introduced in mice by lentivirus-mediated transgenesis, and on its activation by excision of a floxed stop EGFP reporter with an inducible Cre recombinase expressed in astrocytes or in neurons. This dual system should be of broad utility for comparative studies of gene functions in these two cell types in vivo.

  15. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    Full Text Available BACKGROUND: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. CONCLUSION/SIGNIFICANCE: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  16. Organization of immunoglobulin genes.

    Science.gov (United States)

    Tonegawa, S; Brack, C; Hozumi, N; Pirrotta, V

    1978-01-01

    The nucleotide-sequence determination of a cloned, embryonic Vlambda gene directly demonstrated that V genes are separate from a corresponding C gene in embryonic cells. Analysis by restriction enzymes of total cellular DNA from various sources strongly suggested that the two separate immunoglobulin genes become continuous during differentiation of B lymphocytes. There seems to be a strict correlation between the joining event and activation of the joined genes. Cloning of more immunoglobulin genes from embryo and plasma cells will not only provide direct demonstration of such a gene-joining event but also help in the elucidation of a possible relationship of the event to gene activation mechanisms.

  17. In silico approach to identification of a novel gene responsive to ...

    African Journals Online (AJOL)

    win7

    2015-06-10

    Jun 10, 2015 ... widely used to identify candidate genes on many biological aspects. In the present .... The microarray data of leaves of 14-day old M202 and M202 (sub1A) seedlings ..... various environmental stress or disease challenges.

  18. A Hybrid SOM-SVM Approach for the Zebrafish Gene Expression Analysis

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Xin Liu; Min Xu; Jin-Rong Peng; Rudy Setiono

    2005-01-01

    Microarray technology can be employed to quantitatively measure the expression of thousands of genes in a single experiment. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible, and machine learning methods are expected to play a crucial role in the analysis process. In this paper,we present our results from integrating the self-organizing map (SOM) and the support vector machine (SVM) for the analysis of the various functions of zebrafish genes based on their expression. The most distinctive characteristic of our zebrafish gene expression is that the number of samples of different classes is imbalanced. We discuss how SOM can be used as a data-filtering tool to improve the classification performance of the SVM on this data set.

  19. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach

    Science.gov (United States)

    Yuan, Fei; Zhou, You; Wang, Meng; Yang, Jing; Wu, Kai; Lu, Changhong; Kong, Xiangyin; Cai, Yu-Dong

    2015-01-01

    Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486

  20. A computational approach to identify predictive gene signatures in Triple Negative Breast Cancer

    OpenAIRE

    Nuzzo, Simona

    2014-01-01

    Microarray technology has been extensively used to detect patterns in gene expression that stem from regulatory interactions. Seminal studies demonstrated that the synergistic use of microarray-based techniques and bioinformatics analysis of genomic data might not only further the understanding of pathological phenotypes, but also provide lists of genes to dissect a disease into distinct groups, with different diagnostic or prognostic characteristics. Nonetheless, optimism for microarray-base...

  1. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    OpenAIRE

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wid...

  2. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    OpenAIRE

    Chang eShen; Jing eGao; Yu Jun Sheng; Jinfa eDou; Fusheng eZhou; Xiaodong eZheng; Randy eKo; Xianfa eTang; Caihong Hong Zhu; Xianyong Yong Yin; Liangdan Dan Sun; Yong eCui; Xue Jun Zhang

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association stud...

  3. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts.

    Science.gov (United States)

    Zhai, Zhiyang; Sooksa-nguan, Thanwalee; Vatamaniuk, Olena K

    2009-02-01

    Double-stranded (ds)RNA interference (RNAi) is widely used for functional analysis of plant genes and is achieved via generating stable transformants expressing dsRNA in planta. This study demonstrated that RNAi can also be utilized to examine gene functions in protoplasts. Because protoplasts are nongrowing cells, effective RNAi-triggered gene silencing depends not only on a depletion of gene transcripts but also on turnover rates of corresponding polypeptides. Herein, we tested if transient RNAi in protoplasts would result in the depletion of a targeted polypeptide and, because protoplasts have a limited life span, if functional assays of RNAi knockout genes would be feasible in protoplasts. We showed that protoplasts transfection with an in vitro-synthesized dsRNA against Arabidopsis (Arabidopsis thaliana) beta-glutamylcysteine synthase (ECS1), a key enzyme in the synthesis of glutathione, resulted in a 95% depletion of ECS1 transcript, a 72% decrease of ECS1 polypeptide, and a 60% drop in glutathione content. These results were comparable with those obtained upon analysis of Arabidopsis seedlings bearing the cad2-1 mutant allele of ECS1. We also improved the procedure for RNAi inactivation of several genes simultaneously. Finally, because we isolated protoplasts from tissues of 14-d-old seedlings instead of 1-month-old mature plants, the described procedure is rapid (as it only takes 20 d from seed planting to functional studies), suitable for analyzing multiple genes in parallel, and independent of cloning dsRNAs into plant expression vectors. Therefore, RNAi in protoplasts complements existing genetic tools, as it allows rapid, cost- and space-efficient initial screening and selection of genes for subsequent in planta studies.

  4. A novel biclustering approach with iterative optimization to analyze gene expression data

    Directory of Open Access Journals (Sweden)

    Ohta H

    2012-09-01

    Full Text Available Sawannee Sutheeworapong,1,2 Motonori Ota,4 Hiroyuki Ohta,1 Kengo Kinoshita2,31Department of Biological Sciences, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan; 2Graduate School of Information Sciences, 3Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan; 4Graduate School of Information Sciences, Nagoya University, Nagoya, JapanObjective: With the dramatic increase in microarray data, biclustering has become a promising tool for gene expression analysis. Biclustering has been proven to be superior over clustering in identifying multifunctional genes and searching for co-expressed genes under a few specific conditions; that is, a subgroup of all conditions. Biclustering based on a genetic algorithm (GA has shown better performance than greedy algorithms, but the overlap state for biclusters must be treated more systematically.Results: We developed a new biclustering algorithm (binary-iterative genetic algorithm [BIGA], based on an iterative GA, by introducing a novel, ternary-digit chromosome encoding function. BIGA searches for a set of biclusters by iterative binary divisions that allow the overlap state to be explicitly considered. In addition, the average of the Pearson’s correlation coefficient was employed to measure the relationship of genes within a bicluster, instead of the mean square residual, the popular classical index. As compared to the six existing algorithms, BIGA found highly correlated biclusters, with large gene coverage and reasonable gene overlap. The gene ontology (GO enrichment showed that most of the biclusters are significant, with at least one GO term over represented.Conclusion: BIGA is a powerful tool to analyze large amounts of gene expression data, and will facilitate the elucidation of the underlying functional mechanisms in living organisms.Keywords: biclustering, microarray data, genetic algorithm, Pearson’s correlation coefficient

  5. A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    OpenAIRE

    2012-01-01

    Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM) crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of tr...

  6. A Novel Approach of Low-frequency Ultrasonic Naked Plasmid Gene Delivery and Its Assessment

    Institute of Scientific and Technical Information of China (English)

    WEI WANG; ZHENG-ZHONG BIAN; YONG-JIE WU; YA-LIN MIAO

    2005-01-01

    Objective To deliver the naked genes into cells through the bioeffects of cell membrane porous produced by low-frequency ultrasound (US) and to investigate the safety by determining the threshold of cell damage and membrane permeability. Methods The suspension of red cells from chickens, rabbits, rats, and S180 cells was exposed to calibrated US field with different parameters in still and flowing state. Laser scanning confocal microscopy, fluorescent microscopy, scanning electron microscopy, flow cytometry and spectrophotometry were used to examine cell morphology, membrane permeability, enzymes, free radicals, naked gene expression efficiency, threshold of cell damage and cell viability. Results The plasmid of green fluorescent protein (GFP) as a reporter gene was delivered into S180 cells under optimal conditions without cell damage and cytotoxicity. The transfection rate was (35.83±2.53)% (n=6) in viable cells, and the cell viability was (90.17±1.47)% (n=6). Also, malondialdehyde, hydroxyl free radical, alkaline phosphatase, and acid phosphatase showed a S-shaped growth model (r=0.98±0.01) in response to the permeability change and alteration of cell morphology. The constant E of energy accumulation in US delivery at 90% cell viability was an optimal control factor, and at 80% cell viability was the damage threshold. Conclusion US under optimal conditions is a versatile gene therapy tool. The intensity of GFP expression in US group has a higher fluorescent peak than that in AVV-GFP group and control group (P<0.001). The optimal gene uptakes, expression of gene and safety depend on E, which can be applied to control gene delivery efficiency in combination with other parameters. The results are helpful for development of a novel clinical naked gene therapeutic system and non-hyperthermia cancer therapeutic system.

  7. Searching for “monogenic diabetes” in dogs using a candidate gene approach

    OpenAIRE

    Short, Andrea D.; Holder, Angela; Rothwell, Simon; Massey, Jonathan; Scholey, Rachel; Kennedy, Lorna J.; Catchpole, Brian; Ollier, William ER

    2014-01-01

    Background Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onse...

  8. Bridging the gap between genes and language deficits in schizophrenia: an oscillopathic approach

    Directory of Open Access Journals (Sweden)

    Elliot Murphy

    2016-08-01

    Full Text Available Schizophrenia is characterised by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the aetiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.

  9. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach.

    Science.gov (United States)

    Murphy, Elliot; Benítez-Burraco, Antonio

    2016-01-01

    Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.

  10. Optimal Control of Gene Regulatory Networks with Effectiveness of Multiple Drugs: A Boolean Network Approach

    Science.gov (United States)

    Kobayashi, Koichi; Hiraishi, Kunihiko

    2013-01-01

    Developing control theory of gene regulatory networks is one of the significant topics in the field of systems biology, and it is expected to apply the obtained results to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of gene regulatory networks, and gene expression is expressed by a binary value (0 or 1). In the control problem, we assume that the concentration level of a part of genes is arbitrarily determined as the control input. However, there are cases that no gene satisfying this assumption exists, and it is important to consider structural control via external stimuli. Furthermore, these controls are realized by multiple drugs, and it is also important to consider multiple effects such as duration of effect and side effects. In this paper, we propose a BN model with two types of the control inputs and an optimal control method with duration of drug effectiveness. First, a BN model and duration of drug effectiveness are discussed. Next, the optimal control problem is formulated and is reduced to an integer linear programming problem. Finally, numerical simulations are shown. PMID:24058904

  11. A large-scale functional approach to uncover human genes and pathways in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Rong Xu; Yuan Zhuang; Tian Xu; Kejing Deng; Yi Zhu; Yue Wu; Jing Ren; Min Wan; Shouyuan Zhao; Xiaohui Wu; Min Han

    2008-01-01

    We demonstrate the feasibility of performing a systematic screen for human gene functions in Drosophila by assay-ing for their ability to induce overexpression phenotypes. Over 1 500 transgenic fly lines corresponding to 236 human genes have been established. In all, 51 lines are capable of eliciting a phenotype suggesting that the human genes are functional. These heterologous genes are functionally relevant as we have found a similar mutant phenotype caused either by a dominant negative mutant form of the human ribosomal protein L8 gene or by RNAi downregulation of the Drosophila RPL8. Significantly, the Drosophila RPL8 mutant can be rescued by wild-type human RPL8. We also provide genetic evidence that Drosophila RPL8 is a new member of the insulin signaling pathway. In summary, the functions of many human genes appear to be highly conserved, and the ability to identify them in Drosophila repre-sents a powerful genetic tool for large-scale analysis of human transcripts in vivo.

  12. A method for increasing expressivity of Gene Ontology annotations using a compositional approach.

    Science.gov (United States)

    Huntley, Rachael P; Harris, Midori A; Alam-Faruque, Yasmin; Blake, Judith A; Carbon, Seth; Dietze, Heiko; Dimmer, Emily C; Foulger, Rebecca E; Hill, David P; Khodiyar, Varsha K; Lock, Antonia; Lomax, Jane; Lovering, Ruth C; Mutowo-Meullenet, Prudence; Sawford, Tony; Van Auken, Kimberly; Wood, Valerie; Mungall, Christopher J

    2014-05-21

    The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction.

  13. Gene doping: gene delivery for olympic victory.

    Science.gov (United States)

    Gould, David

    2013-08-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place.

  14. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  15. GeneDistiller--distilling candidate genes from linkage intervals.

    Directory of Open Access Journals (Sweden)

    Dominik Seelow

    Full Text Available BACKGROUND: Linkage studies often yield intervals containing several hundred positional candidate genes. Different manual or automatic approaches exist for the determination of the gene most likely to cause the disease. While the manual search is very flexible and takes advantage of the researchers' background knowledge and intuition, it may be very cumbersome to collect and study the relevant data. Automatic solutions on the other hand usually focus on certain models, remain "black boxes" and do not offer the same degree of flexibility. METHODOLOGY: We have developed a web-based application that combines the advantages of both approaches. Information from various data sources such as gene-phenotype associations, gene expression patterns and protein-protein interactions was integrated into a central database. Researchers can select which information for the genes within a candidate interval or for single genes shall be displayed. Genes can also interactively be filtered, sorted and prioritised according to criteria derived from the background knowledge and preconception of the disease under scrutiny. CONCLUSIONS: GeneDistiller provides knowledge-driven, fully interactive and intuitive access to multiple data sources. It displays maximum relevant information, while saving the user from drowning in the flood of data. A typical query takes less than two seconds, thus allowing an interactive and explorative approach to the hunt for the candidate gene. ACCESS: GeneDistiller can be freely accessed at http://www.genedistiller.org.

  16. Gene expression analysis approach to establish possible links between Parkinson's disease, cancer and cardiovascular diseases.

    Science.gov (United States)

    Karim, Sajjad; Mirza, Zeenat; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2014-01-01

    Non-communicable chronic diseases have been apparently established as threat to human health, and are currently the world's main killer. Cardiovascular diseases (CVD), cancer, diabetes and neurodegenerative diseases are collectively amounting to more than 60% of non-communicable disease burden across world. Tremendous advancements in healthcare enabled us to fight several health problems primarily infectious diseases. However, this increased longevity where in many cases an individual suffers from several such chronic diseases simultaneously, making treatment complex. Finding whether diseases can coexist in an individual by chance or there exists a possible association between them is vital. Our goal is to establish possible existing link among CVD, cancer and Parkinson's disease (PD) for better understanding of the associated molecular network. In this study, we integrated multiple dataset retrieved from the National Centre for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network associated with PD, cancer and CVD. We identified 230, 308 and 1619 differentially expressed genes for CVD, cancer and PD dataset respectively using cut off p value2. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following common pathways associated with all three diseases to be most affected; epithelial adherens junction signaling, remodelling of epithelial adherens junctions, role of BRCA1 in DNA damage response, sphingomyelin metabolism, 3- phosphoinositide biosynthesis, acute myeloid leukemia signaling, type I diabetes mellitus signaling, agrin interactions at neuromuscular junction, role of IL-17A in arthritis, and antigen presentation pathways. In conclusion, CVD, cancer and PD appear tightly associated at molecular level.

  17. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    Science.gov (United States)

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference.

  18. Investigation on the role of nsSNPs in HNPCC genes – a bioinformatics approach

    Directory of Open Access Journals (Sweden)

    Sethumadhavan Rao

    2009-04-01

    Full Text Available Abstract Background A central focus of cancer genetics is the study of mutations that are causally implicated in tumorigenesis. The identification of such causal mutations not only provides insight into cancer biology but also presents anticancer therapeutic targets and diagnostic markers. Missense mutations are nucleotide substitutions that change an amino acid in a protein, the deleterious effects of these mutations are commonly attributed to their impact on primary amino acid sequence and protein structure. Methods The method to identify functional SNPs from a pool, containing both functional and neutral SNPs is challenging by experimental protocols. To explore possible relationships between genetic mutation and phenotypic variation, we employed different bioinformatics algorithms like Sorting Intolerant from Tolerant (SIFT, Polymorphism Phenotyping (PolyPhen, and PupaSuite to predict the impact of these amino acid substitutions on protein activity of mismatch repair (MMR genes causing hereditary nonpolyposis colorectal cancer (HNPCC. Results SIFT classified 22 of 125 variants (18% as 'Intolerant." PolyPhen classified 40 of 125 amino acid substitutions (32% as "Probably or possibly damaging". The PupaSuite predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Based on the PolyPhen scores and availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by MSH2 and MSH6 genes. The amino acid residues in the native and mutant model protein were further analyzed for solvent accessibility and secondary structure to check the stability of the proteins. Conclusion Based on this approach, we have shown that four nsSNPs, which were predicted to have functional consequences (MSH2-Y43C, MSH6-Y538S, MSH6-S580L, and MSH6-K854M, were already found to be associated with cancer risk. Our study demonstrates the presence of other

  19. Genes and longevity: a genetic-demographic approach reveals sex- and age-specific gene effects not shown by the case-control approach (APOE and HSP70.1 loci).

    Science.gov (United States)

    Dato, S; Carotenuto, L; De Benedictis, G

    2007-02-01

    Association analyses between gene variability and human longevity carried out by comparing gene frequencies between population samples of different ages (case/control design) may provide information on genes and pathways playing a role in modulating survival at old ages. However, by dealing with cross-sectional data, the gene-frequency (GF) approach ignores cohort effects in population mortality changes. The genetic-demographic (GD) approach adds demographic information to genetic data and allows the estimation of hazard rates and survival functions for candidate alleles and genotypes. Thus mortality changes in the cohort to which the cross-sectional sample belongs are taken into account. In this work, we applied the GD method to a dataset relevant to two genes, APOE and HSP70.1, previously shown to be related to longevity by the GF method. We show that the GD method reveals sex- and age-specific allelic effects not shown by the GF analysis. In addition, we provide an algorithm for the implementation of a non-parametric GD analysis.

  20. Expression of nisin genes in cheese--a quantitative real-time polymerase chain reaction approach.

    Science.gov (United States)

    Trmčić, A; Monnet, C; Rogelj, I; Bogovič Matijašić, B

    2011-01-01

    The role of bacteriocins in different environments has not been thoroughly explained, mainly because of the difficulties related to the detection of their production. Nisin, an antimicrobial peptide produced by Lactococcus lactis has a long history of safe use in food products and has been studied from many aspects of genetics, biosynthesis, immunity, regulation, and mode of action. Still, some aspects concerning the dynamics of nisin gene expression remain unknown, especially in complex media like cheese. The main objective of the present study was to quantify in a cheese-like medium the expression of nisin genes in L. lactis M78, a well-characterized nisin A producer isolated from raw milk. The expression of all 11 genes involved in nisin biosynthesis was evaluated during cheese production by real-time reverse transcription-PCR. Total RNA was extracted from cheeses using a direct extraction method without prior separation of microbial cells. The M78 strain grew well in experimental cheeses, producing detectable amounts of nisin after 4 h of fermentation. The presence of nisin as an activator modified both the expression of nisin genes and the accumulation of active nisin. Four groups could be distinguished based on gene expression as a function of time: nisA, nisFEG, nisRK and nisBTCIP. Based on nisin-producing strain growth, nisin activity, function of nisin genes, and their location, correlations were established that contribute to the explanation of regulation of nisin biosynthesis and immunity. This study is the first in which the evolution of bacteriocin gene transcripts has been quantified rigorously in a cheese-like medium.

  1. Effect of Thyrotropin Releasing Hormone (TRH on Gene Expressions in Rat Pancreas: Approach by Microarray Hybridization

    Directory of Open Access Journals (Sweden)

    Luo LG

    2004-07-01

    Full Text Available CONTEXT: Thyrotropin releasing hormone (TRH, originally identified as a hypothalamic hormone, expresses in the pancreas. The effects of TRH such as, inhibiting amylase secretion in rats through a direct effect on acinar cells, enhancing basal glucagon secretion from isolated perfused rat pancreas, and potentiating glucose-stimulated insulin secretion in perfused rat islets and insulin-secreting clonal beta-cell lines, suggest that TRH may play a role in pancreas. TRH also enlarged pancreas and increased pancreatic DNA content but deletion of TRH gene expression caused hyperglycemia in mice, suggesting that TRH may play a critical role in pancreatic development; however, the biological mechanisms of TRH in the adult pancreas remains unclear. OBJECTIVES: This study explored the effect of TRH on rat pancreas. SUBJECTS: Four male-Sprague-Dawley-rats (200-250 g were given 10 microg/kg BW of TRH intraperitoneally on 1st and 3rd day and sacrificed on 7th day. Four same-strain rats without TRH injection served as controls. MAIN OUTCOME MEASURES: Wet pancreatic weights were measured. Pancreatic tissues were homogenized and extracted. The insulin levels of the extracts were measured by ELISA. Total RNA from the pancreases were fluorescently labeled and hybridized to microarray with 1,081 spot genes. RESULTS: TRH increased pancreatic wet weight and insulin contents. About 75% of the 1,081 genes were detected in the pancreas. TRH regulated up 99 genes and down 76 genes. The administration of TRH induced various types of gene expressions, such as G-protein coupled receptors (GPCR and signal transduction related genes (GPCR kinase 4, transducin beta subunit 5, arrestin beta1MAPK3, MAPK5, c-Src kinase, PKCs, PI3 kinase, growth factors (PDGF-B, IGF-2, IL-18, IGF-1, IL-2, IL-6, endothelin-1 and apoptotic factors (Bcl2, BAD, Bax. CONCLUSION: Reprogramming of transcriptome may be a way for TRH-regulation of pancreatic cellular functions.

  2. An evolutionary genomic approach to identify genes involved in human birth timing.

    Directory of Open Access Journals (Sweden)

    Jevon Plunkett

    2011-04-01

    Full Text Available Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.

  3. Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach.

    Science.gov (United States)

    Zamani-Ahmadmahmudi, Mohamad

    2016-08-01

    Canine breast cancer was considered as an ideal model of comparative oncology for the human breast cancer, as there is significant overlap between biological and clinical characteristics of the human and canine breast cancer. We attempt to clarify expression profile of the embryonic stem cell (ES) gene signatures in canine breast cancer. Using microarray datasets (GSE22516 and GSE20718), expression of the three major ES gene signatures (modules or gene-sets), including Myc, ESC-like, and PRC modules, was primarily analyzed through Gene-Set Enrichment Analysis (GSEA) method in tumor and healthy datasets. For confirmation of the primary results, an additional 13 ES gene-sets which were categorized into four groups including ES expressed (ES exp1 and ES exp2), NOS targets (Nanog targets, Oct4 targets, Sox2 targets, NOS targets, and NOS TFs), Polycomb targets (Suz12 targets, Eed targets, H3K27 bound, and PRC2 targets), and Myc targets (Myc targets1, and Myc targets2) were tested in the tumor and healthy datasets. Our results revealed that there is a valuable overlap between canine and human breast cancer ES gene-sets expression profile, where Myc and ESC-like modules were up-regulated and PRC module was down-regulated in metastatic canine mammary gland tumors. Further analysis of the secondary gene-sets indicated overexpression of the ES expressed, NOS targets (Nanog targets, Oct4 targets, Sox2 targets, and NOS targets), and Myc targets and underexpression of the Polycomb targets in metastatic canine breast cancer.

  4. A PiggyBac-mediated approach for muscle gene transfer or cell therapy

    Directory of Open Access Journals (Sweden)

    Déborah Ley

    2014-11-01

    Full Text Available An emerging therapeutic approach for Duchenne muscular dystrophy is the transplantation of autologous myogenic progenitor cells genetically modified to express dystrophin. The use of this approach is challenged by the difficulty in maintaining these cells ex vivo while keeping their myogenic potential, and ensuring sufficient transgene expression following their transplantation and myogenic differentiation in vivo. We investigated the use of the piggyBac transposon system to achieve stable gene expression when transferred to cultured mesoangioblasts and into murine muscles. Without selection, up to 8% of the mesoangioblasts expressed the transgene from 1 to 2 genomic copies of the piggyBac vector. Integration occurred mostly in intergenic genomic DNA and transgene expression was stable in vitro. Intramuscular transplantation of mouse Tibialis anterior muscles with mesoangioblasts containing the transposon led to sustained myofiber GFP expression in vivo. In contrast, the direct electroporation of the transposon-donor plasmids in the mouse Tibialis muscles in vivo did not lead to sustained transgene expression despite molecular evidence of piggyBac transposition in vivo. Together these findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.

  5. Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach

    Science.gov (United States)

    Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.

    2013-12-01

    Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.

  6. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes.

    Science.gov (United States)

    Pardinas, J R; Combates, N J; Prouty, S M; Stenn, K S; Parimoo, S

    1998-03-15

    We have developed a novel efficient approach, termed differential subtraction display, for the identification of differentially expressed genes. Several critical parameters for the reproducibility and enhanced sensitivity of display, as well as steps to reduce the number of false positive cDNA species, have been defined. These include- (a) use of standardized oligo(dT)-primed cDNA pools rather than total RNA as the starting material for differential display, (b) critical role of optimal cDNA input for each distinct class of primers, (c) phenomena of primer dominance and interference, and (d) design of a novel set of enhanced specificity anchor primers. Introduction of an efficient subtractive hybridization step prior to cloning of cDNA species enriches the bona fide cDNA species that are either exclusively present in one sample (+/-) or show altered expression (up-/down-regulation) in RNA samples from two different tissues or cell types. This approach, in comparison to differential display, has several advantages in terms of reproducibility and enhanced sensitivity of display coupled to the cloning of enriched bona fide cDNA species corresponding to differentially expressed RNAs.

  7. Gene Cluster Statistics with Gene Families

    Science.gov (United States)

    Durand, Dannie

    2009-01-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such “gene clusters” is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  8. A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes.

    Science.gov (United States)

    Kel, Alexander; Reymann, Susanne; Matys, Volker; Nettesheim, Paul; Wingender, Edgar; Borlak, Jürgen

    2004-12-01

    A novel computational method based on a genetic algorithm was developed to study composite structure of promoters of coexpressed genes. Our method enabled an identification of combinations of multiple transcription factor binding sites regulating the concerted expression of genes. In this article, we study genes whose expression is regulated by a ligand-activated transcription factor, aryl hydrocarbon receptor (AhR), that mediates responses to a variety of toxins. AhR-mediated change in expression of AhR target genes was measured by oligonucleotide microarrays and by reverse transcription-polymerase chain reaction in human and rat hepatocytes. Promoters and long-distance regulatory regions (>10 kb) of AhR-responsive genes were analyzed by the genetic algorithm and a variety of other computational methods. Rules were established on the local oligonucleotide context in the flanks of the AhR binding sites, on the occurrence of clusters of AhR recognition elements, and on the presence in the promoters of specific combinations of multiple binding sites for the transcription factors cooperating in the AhR regulatory network. Our rules were applied to search for yet unknown Ah-receptor target genes. Experimental evidence is presented to demonstrate high fidelity of this novel in silico approach.

  9. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  10. A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule"

    Directory of Open Access Journals (Sweden)

    Nero Damion

    2009-06-01

    Full Text Available Abstract Background Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO3- signaling. Results Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N-treatment backgrounds (i.e. nitrogen treatments under different growth conditions using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126 genes was selected for further analysis, as it was shown to be reproducibly responsive to NO3- as a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i genes controlled by NO3- only vs. ii genes controlled by both NO3- and hormones. The genes in the latter group showed a NO3- response that is significantly enhanced, compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE (E2F, HSE potentially involved the interplay between NO3- and hormonal signals. Conclusion This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.

  11. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.

    Science.gov (United States)

    Mehta, Rucha Harishbhai; Ponnuchamy, Manivel; Kumar, Jitendra; Reddy, Nagaraja Reddy Rama

    2017-01-01

    De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical

  12. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  13. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  14. Angiogenesis related gene expression profiles of EA.hy926 cells induced by irbesartan: a possible novel therapeutic approach

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LU Xue-chun; LUO Yun; CAO Jian; YANG Bo; GAO Yan; LIU Xian-feng; FAN Li

    2012-01-01

    Background Angiogenesis occurs commonly in various physiological and pathological processes.Improving blood supply through promoting angiogenesis is a novel approach for treating ischemic diseases.Angiotensin Ⅱ type 1 receptor blockers (ARBs) dominate the management of hypertension,but evidence of their role in angiogenesis is contradictory.Here we explored the angiogenic effects of ARBs through characterizing gene expression of the human umbilical vein endothelial cell line EA.hy926 exposed to irbesartan.Methods The human umbilical vein endothelial cell line EA.hy926 was grown for 72 hours after treatment with different concentrations of irbesartan.The cell proliferative capacity was assessed by CCK8 assay at 24,48 and 72 hours.Gene expression levels in EA.hy926 cells responding to irbesartan were measured under optimal proliferation conditions by microarray analysis using Affymetrix U133 plus 2.0.The differential expression of genes involved in angiogenesis was identified through cluster analysis of the resulting microarray data.Quantitative RT-PCR and Western blotting analyses were used to validate differential gene expression related to the angiogenesis process.Results In the 10-4,10-5,10-6 mol/L treatment groups,cell proliferation studies revealed significantly increased proliferation in EA.hy926 cells after 24 hours of irbesartan treatment.However,after 48 and 72 hours of treatment with different concentrations of irbesartan,there was no significant difference in cell proliferation observed in any treatment group.We selected the group stimulated with irbersartan at a concentration of 10-6 mol/L for microarray experiments.Statistical analysis of the microarray data resulted in the identification of 56 gene transcripts whose expression patterns were significantly correlated,negatively or positively,with irbesartan treatment.Cluster analysis showed that these genes were involved in angiogenesis,extracellular stimulus,binding reactions and skeletal system

  15. Multi-Parametric Profiling Network Based on Gene Expression and Phenotype Data: A Novel Approach to Developmental Neurotoxicity Testing

    Directory of Open Access Journals (Sweden)

    Hideko Sone

    2011-12-01

    Full Text Available The establishment of more efficient approaches for developmental neurotoxicity testing (DNT has been an emerging issue for children’s environmental health. Here we describe a systematic approach for DNT using the neuronal differentiation of mouse embryonic stem cells (mESCs as a model of fetal programming. During embryoid body (EB formation, mESCs were exposed to 12 chemicals for 24 h and then global gene expression profiling was performed using whole genome microarray analysis. Gene expression signatures for seven kinds of gene sets related to neuronal development and neuronal diseases were selected for further analysis. At the later stages of neuronal cell differentiation from EBs, neuronal phenotypic parameters were determined using a high-content image analyzer. Bayesian network analysis was then performed based on global gene expression and neuronal phenotypic data to generate comprehensive networks with a linkage between early events and later effects. Furthermore, the probability distribution values for the strength of the linkage between parameters in each network was calculated and then used in principal component analysis. The characterization of chemicals according to their neurotoxic potential reveals that the multi-parametric analysis based on phenotype and gene expression profiling during neuronal differentiation of mESCs can provide a useful tool to monitor fetal programming and to predict developmentally neurotoxic compounds.

  16. Multi-parametric profiling network based on gene expression and phenotype data: a novel approach to developmental neurotoxicity testing.

    Science.gov (United States)

    Nagano, Reiko; Akanuma, Hiromi; Qin, Xian-Yang; Imanishi, Satoshi; Toyoshiba, Hiroyoshi; Yoshinaga, Jun; Ohsako, Seiichiroh; Sone, Hideko

    2012-01-01

    The establishment of more efficient approaches for developmental neurotoxicity testing (DNT) has been an emerging issue for children's environmental health. Here we describe a systematic approach for DNT using the neuronal differentiation of mouse embryonic stem cells (mESCs) as a model of fetal programming. During embryoid body (EB) formation, mESCs were exposed to 12 chemicals for 24 h and then global gene expression profiling was performed using whole genome microarray analysis. Gene expression signatures for seven kinds of gene sets related to neuronal development and neuronal diseases were selected for further analysis. At the later stages of neuronal cell differentiation from EBs, neuronal phenotypic parameters were determined using a high-content image analyzer. Bayesian network analysis was then performed based on global gene expression and neuronal phenotypic data to generate comprehensive networks with a linkage between early events and later effects. Furthermore, the probability distribution values for the strength of the linkage between parameters in each network was calculated and then used in principal component analysis. The characterization of chemicals according to their neurotoxic potential reveals that the multi-parametric analysis based on phenotype and gene expression profiling during neuronal differentiation of mESCs can provide a useful tool to monitor fetal programming and to predict developmentally neurotoxic compounds.

  17. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  18. General approach for in vivo recovery of cell type-specific effector gene sets.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Davidson, Eric H

    2014-05-01

    Differentially expressed, cell type-specific effector gene sets hold the key to multiple important problems in biology, from theoretical aspects of developmental gene regulatory networks (GRNs) to various practical applications. Although individual cell types of interest have been recovered by various methods and analyzed, systematic recovery of multiple cell type-specific gene sets from whole developing organisms has remained problematic. Here we describe a general methodology using the sea urchin embryo, a material of choice because of the large-scale GRNs already solved for this model system. This method utilizes the regulatory states expressed by given cells of the embryo to define cell type and includes a fluorescence activated cell sorting (FACS) procedure that results in no perturbation of transcript representation. We have extensively validated the method by spatial and qualitative analyses of the transcriptome expressed in isolated embryonic skeletogenic cells and as a consequence, generated a prototypical cell type-specific transcriptome database.

  19. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan;

    2015-01-01

    expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected...... polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. CONCLUSIONS: To our knowledge......BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about...

  20. Variants of the HNF1α gene: a molecular approach concerning diabetic patients from southern Brazil

    Directory of Open Access Journals (Sweden)

    Naieli Bonatto

    2012-01-01

    Full Text Available Maturity Onset Diabetes of the Young (MODY presents monogenic inheritance and mutation factors which have already been identified in six different genes. Given the wide molecular variation present in the hepatocyte nuclear factor-1α gene (HNF1α MODY3, the aimof this study was to amplify and sequence the coding regions of this gene in seven patients from the Campos Gerais region, Paraná State, Brazil, presenting clinical MODY3 features. Besides the synonymous variations, A15A, L17L, Q141Q, G288G and T515T, two missense mutations, I27L and A98V, were also detected. Clinical and laboratory data obtained from patients were compared with the molecular findings, including the I27L polymorphism that was revealed in some overweight/obese diabetic patients of this study, this corroborating with the literature. We found certain DNA variations that could explain the hyperglycemic phenotype of the patients.

  1. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    Science.gov (United States)

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  2. An integrated approach of gene expression and DNA-methylation profiles of WNT signaling genes uncovers novel prognostic markers in Acute Myeloid Leukemia

    NARCIS (Netherlands)

    Taskesen, E.; Staal, F.J.T.; Reinders, M.J.T.

    2015-01-01

    Background The wingless-Int (WNT) pathway has an essential role in cell regulation of hematopoietic stem cells (HSC). For Acute Myeloid Leukemia (AML), the malignant counterpart of HSC, currently only a selective number of genes of the WNT pathway are analyzed by using either gene expression or DNA-

  3. Lateral gene transfer, rearrangement, reconciliation

    NARCIS (Netherlands)

    Patterson, M.D.; Szollosi, G.; Daubin, V.; Tannier, E.

    2013-01-01

    Background. Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer,

  4. iSLIM: a comprehensive approach to mapping and characterizing gene regulatory networks.

    Science.gov (United States)

    Rockel, Sylvie; Geertz, Marcel; Hens, Korneel; Deplancke, Bart; Maerkl, Sebastian J

    2013-02-01

    Mapping gene regulatory networks is a significant challenge in systems biology, yet only a few methods are currently capable of systems-level identification of transcription factors (TFs) that bind a specific regulatory element. We developed a microfluidic method for integrated systems-level interaction mapping of TF-DNA interactions, generating and interrogating an array of 423 full-length Drosophila TFs. With integrated systems-level interaction mapping, it is now possible to rapidly and quantitatively map gene regulatory networks of higher eukaryotes.

  5. Transformation of GbSGT1 gene into banana by an Agrobacterium-mediated approach

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    SGT1 is a homologue of the yeast ubiquitin ligase-associated protein. It controls some protein degradation and activates defense pathway in plants. Cotton GbSGT1 gene (Gossypium barbadense) has been isolated and characterized in previous work. In this study, the plant expression vector pBSGT1 with bar gene as a selection agent was constructed and transgenic banana was obtained via Agrobacterium-mediated transformation with the assistance of particle bombardment and screened with PCR and Basta spreading on banana plant leaves. Estimating of transgenic banana plants for resistance to Panama wilt is in progress.

  6. Pain genes.

    Directory of Open Access Journals (Sweden)

    Tom Foulkes

    2008-07-01

    Full Text Available Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors signal the existence of tissue damage to the central nervous system (CNS, where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.

  7. Gene doping in sports.

    Science.gov (United States)

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement.

  8. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining

    Directory of Open Access Journals (Sweden)

    Lan Chung-Yu

    2008-09-01

    Full Text Available Abstract Background Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. Results In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin. Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and "weak ties" structures of the gene network

  9. A Computational Protein Phenotype Prediction Approach to Analyze the Deleterious Mutations of Human MED12 Gene.

    Science.gov (United States)

    Banaganapalli, Babajan; Mohammed, Kaleemuddin; Khan, Imran Ali; Al-Aama, Jumana Y; Elango, Ramu; Shaik, Noor Ahmad

    2016-09-01

    Genetic mutations in MED12, a subunit of Mediator complex are seen in a broad spectrum of human diseases. However, the underlying basis of how these pathogenic mutations elicit protein phenotype changes in terms of 3D structure, stability and protein binding sites remains unknown. Therefore, we aimed to investigate the structural and functional impacts of MED12 mutations, using computational methods as an alternate to traditional in vivo and in vitro approaches. The MED12 gene mutations details and their corresponding clinical associations were collected from different databases and by text-mining. Initially, diverse computational approaches were applied to categorize the different classes of mutations based on their deleterious impact to MED12. Then, protein structures for wild and mutant types built by integrative modeling were analyzed for structural divergence, solvent accessibility, stability, and functional interaction deformities. Finally, this study was able to identify that genetic mutations mapped to exon-2 region, highly conserved LCEWAV and Catenin domains induce biochemically severe amino acid changes which alters the protein phenotype as well as the stability of MED12-CYCC interactions. To better understand the deleterious nature of FS-IDs and Indels, this study asserts the utility of computational screening based on their propensity towards non-sense mediated decay. Current study findings may help to narrow down the number of MED12 mutations to be screened for mediator complex dysfunction associated genetic diseases. This study supports computational methods as a primary filter to verify the plausible impact of pathogenic mutations based on the perspective of evolution, expression and phenotype of proteins. J. Cell. Biochem. 117: 2023-2035, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Swarm Intelligence Approach Based on Adaptive ELM Classifier with ICGA Selection for Microarray Gene Expression and Cancer Classification

    Directory of Open Access Journals (Sweden)

    T. Karthikeyan

    2014-05-01

    Full Text Available The aim of this research study is based on efficient gene selection and classification of microarray data analysis using hybrid machine learning algorithms. The beginning of microarray technology has enabled the researchers to quickly measure the position of thousands of genes expressed in an organic/biological tissue samples in a solitary experiment. One of the important applications of this microarray technology is to classify the tissue samples using their gene expression representation, identify numerous type of cancer. Cancer is a group of diseases in which a set of cells shows uncontrolled growth, instance that interrupts upon and destroys nearby tissues and spreading to other locations in the body via lymph or blood. Cancer has becomes a one of the major important disease in current scenario. DNA microarrays turn out to be an effectual tool utilized in molecular biology and cancer diagnosis. Microarrays can be measured to establish the relative quantity of mRNAs in two or additional organic/biological tissue samples for thousands/several thousands of genes at the same time. As the superiority of this technique become exactly analysis/identifying the suitable assessment of microarray data in various open issues. In the field of medical sciences multi-category cancer classification play a major important role to classify the cancer types according to the gene expression. The need of the cancer classification has been become indispensible, because the numbers of cancer victims are increasing steadily identified by recent years. To perform this proposed a combination of Integer-Coded Genetic Algorithm (ICGA and Artificial Bee Colony algorithm (ABC, coupled with an Adaptive Extreme Learning Machine (AELM, is used for gene selection and cancer classification. ICGA is used with ABC based AELM classifier to chose an optimal set of genes which results in an efficient hybrid algorithm that can handle sparse data and sample imbalance. The

  11. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains.

    Science.gov (United States)

    Brasileiro, A C; Leplé, J C; Muzzin, J; Ounnoughi, D; Michel, M F; Jouanin, L

    1991-09-01

    Micropropagated shoots of three forest tree species, poplar (Populus tremula x P. alba), wild cherry (Prunus avium L.) and walnut (Juglans nigra x J. regia), were inoculated each with six different wild-type Agrobacterium strains. Poplar and wild cherry developed tumors that grew hormone-independently, whereas on walnut, gall formation was weak. On poplar and wild cherry, tumors induced by nopaline strains developed spontaneously shoots that had a normal phenotype and did not carry oncogenic T-DNA. From these observations, we have established a co-inoculation method to transform plants, using poplar as an experimental model. The method is based on inoculation of stem internodes with an Agrobacterium suspension containing both an oncogenic strain that induces shoot differentiation and a disarmed strain that provides the suitable genes in a binary vector. We used the vector pBI121 carrying neo (kanamycin resistance) and uidA (beta-glucuronidase) genes to facilitate early selection and screening. Poplar plants derived from kanamycin-resistant shoots that did not carry oncogenic T-DNA, were shown to contain and to express neo and uidA genes. These results suggest that wild-type Agrobacterium strains that induce shoot formation directly from tumors can be used as a general tool for gene transfer, avoiding difficult regeneration procedures.

  12. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    NARCIS (Netherlands)

    Kogelman, Lisette J. A.; Zhernakova, Daria V.; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N.

    2015-01-01

    Background: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the

  13. Use of linkage disequilibrium approaches to map genes for bipolar disorder in the Costa Rican population

    NARCIS (Netherlands)

    Escamilla, MA; Spesny, M; Reus, [No Value; Gallegos, A; Meza, L; Molina, J; Sandkuijl, LA; Fournier, E; Leon, PE; Smith, LB; Freimer, NB

    1996-01-01

    Linkage disequilibrium (LD) analysis provides a powerful means for screening the genome to map the location of disease genes, such as those for bipolar disorder (BP), As described in this paper, the population of the Central Valley of Costa Rica, which is descended from a small number of founders, s

  14. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Science.gov (United States)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  15. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    NARCIS (Netherlands)

    Kogelman, Lisette J. A.; Zhernakova, Daria V.; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N.

    2015-01-01

    Background: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the tr

  16. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Directory of Open Access Journals (Sweden)

    Chang eShen

    2016-02-01

    Full Text Available Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association studies (GWASs. More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWASs. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo, such as immunoregulatory function, melanocyte regulation and so on. A number of susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in vitiligo development.

  17. Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach

    Science.gov (United States)

    Background: There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing ...

  18. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci.

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo.

  19. A NEW APPROACH TO GENE DIAGNOSIS OF DUCHENNE/BECKER MUSCULAR DYSTROPHY AMPLIFIED FRAGMENT LENGTH POLYMORPHISMS

    Institute of Scientific and Technical Information of China (English)

    许顺斌; 黄尚志; 罗会元

    1994-01-01

    Four (CA), repeats, located in introns,44,45,49 and 50 of the dystrophin gene,were evaluated in Chinese.These loci are highly polymorphic,with polymorphism information contents of 0.872,0.772,0.870 and 0.718,respectively.All four loci can be easily amplified and labelled using two duplex PCR reactions with α-32P-dCTP and can be detected by denaturing polyacrylamide gel electrophoresis.Using these four loci and the two polymorphic(CA)n repeats located at the 5′ and 3′ ends of the dystrophin gene,we have developed a new PCR-based procedure-Amp-FLP( amplified fragment length polymorphism)linkage analysis for the gene diagnosis of DMD/BMD.This method can detect intragenic recombination rapidly and efficiently and greatly improves the success rate of carrier deterction and prenatal diagnosis in non-deletion DMD/BMD families.All of the loci used in this procedure are intragenic.In addition ,the loci in introns 44,45,49 and 50 are located in the deletion-prone region of the dystrophin gene,making them valuable and usefui in the identification of deletion mutations.Here we report one case of deletion detection using these four loci.

  20. A complementary bioinformatics approach to identify potential plant cell wall glycosytransferase encoding genes

    DEFF Research Database (Denmark)

    Egelund, Jack; Skjøt, Michael; Geshi, Naomi;

    2004-01-01

    . Although much is known with regard to composition and fine structures of the plant CW, only a handful of CW biosynthetic GT genes-all classified in the CAZy system-have been characterized. In an effort to identify CW GTs that have not yet been classified in the CAZy database, a simple bioinformatics...

  1. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be leptopirosis.

  2. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes

    Directory of Open Access Journals (Sweden)

    Yiwei Chen

    2013-01-01

    Full Text Available We developed a single vector recombinant adeno-associated viral (rAAV expression system for spatial and reversible control of polycistronic gene expression. Our approach (i integrates the advantages of the tetracycline (Tet-controlled transcriptional silencer tTSKid and the self-cleaving 2A peptide bridge, (ii combines essential regulatory components as an autoregulatory loop, (iii simplifies the gene delivery scheme, and (iv regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE, both the ubiquitous chicken β-actin promoter (CAG and the neuron-specific synapsin-1 promoter (Syn could regulate expression of tTSKid together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox. Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI visualized reversible “ON/OFF” gene switches over repeated “Doxy-Cycling” in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.

  3. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes.

    Science.gov (United States)

    Chen, Yiwei; Cao, Liji; Luo, Chonglin; Ditzel, Désirée Aw; Peter, Jörg; Sprengel, Rolf

    2013-04-09

    We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTS(Kid) and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTS(Kid) together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible "ON/OFF" gene switches over repeated "Doxy-Cycling" in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e85; doi:10.1038/mtna.2013.15; published online 9 April 2013.

  4. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  5. Gene-Set Local Hierarchical Clustering (GSLHC--A Gene Set-Based Approach for Characterizing Bioactive Compounds in Terms of Biological Functional Groups.

    Directory of Open Access Journals (Sweden)

    Feng-Hsiang Chung

    Full Text Available Gene-set-based analysis (GSA, which uses the relative importance of functional gene-sets, or molecular signatures, as units for analysis of genome-wide gene expression data, has exhibited major advantages with respect to greater accuracy, robustness, and biological relevance, over individual gene analysis (IGA, which uses log-ratios of individual genes for analysis. Yet IGA remains the dominant mode of analysis of gene expression data. The Connectivity Map (CMap, an extensive database on genomic profiles of effects of drugs and small molecules and widely used for studies related to repurposed drug discovery, has been mostly employed in IGA mode. Here, we constructed a GSA-based version of CMap, Gene-Set Connectivity Map (GSCMap, in which all the genomic profiles in CMap are converted, using gene-sets from the Molecular Signatures Database, to functional profiles. We showed that GSCMap essentially eliminated cell-type dependence, a weakness of CMap in IGA mode, and yielded significantly better performance on sample clustering and drug-target association. As a first application of GSCMap we constructed the platform Gene-Set Local Hierarchical Clustering (GSLHC for discovering insights on coordinated actions of biological functions and facilitating classification of heterogeneous subtypes on drug-driven responses. GSLHC was shown to tightly clustered drugs of known similar properties. We used GSLHC to identify the therapeutic properties and putative targets of 18 compounds of previously unknown characteristics listed in CMap, eight of which suggest anti-cancer activities. The GSLHC website http://cloudr.ncu.edu.tw/gslhc/ contains 1,857 local hierarchical clusters accessible by querying 555 of the 1,309 drugs and small molecules listed in CMap. We expect GSCMap and GSLHC to be widely useful in providing new insights in the biological effect of bioactive compounds, in drug repurposing, and in function-based classification of complex diseases.

  6. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants.

    Science.gov (United States)

    Hofberger, Johannes A; Zhou, Beifei; Tang, Haibao; Jones, Jonathan D G; Schranz, M Eric

    2014-11-08

    Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity. To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR "gatekeeper" loci sharing syntenic orthologs across all analyzed genomes. By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

  7. Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach.

    Science.gov (United States)

    Chambers, Alan H; Pillet, Jeremy; Plotto, Anne; Bai, Jinhe; Whitaker, Vance M; Folta, Kevin M

    2014-04-17

    There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing durable molecular markers to follow these genes in breeding populations. In this report, fruit from two cultivars, varying for presence-absence of volatile compounds, along with segregating progeny, were analyzed using GC/MS and RNAseq. Expression data were bulked in silico according to presence/absence of a given volatile compound, in this case γ-decalactone, a compound conferring a peach flavor note to fruits. Computationally sorting reads in segregating progeny based on γ-decalactone presence eliminated transcripts not directly relevant to the volatile, revealing transcripts possibly imparting quantitative contributions. One candidate encodes an omega-6 fatty acid desaturase, an enzyme known to participate in lactone production in fungi, noted here as FaFAD1. This candidate was induced by ripening, was detected in certain harvests, and correlated with γ-decalactone presence. The FaFAD1 gene is present in every genotype where γ-decalactone has been detected, and it was invariably missing in non-producers. A functional, PCR-based molecular marker was developed that cosegregates with the phenotype in F1 and BC1 populations, as well as in many other cultivars and wild Fragaria accessions. Genetic, genomic and analytical chemistry techniques were combined to identify FaFAD1, a gene likely controlling a key flavor volatile in strawberry. The same data may now be re-sorted based on presence/absence of any other volatile to identify other flavor-affecting candidates, leading to rapid generation of gene-specific markers.

  8. Detection of antibiotic resistance genes in wastewater treatment plant – molecular and classical approach

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2015-12-01

    Full Text Available Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.

  9. Antibodies against Human Cytomegalovirus in the Pathogenesis of Systemic Sclerosis: A Gene Array Approach.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  10. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach.

    Directory of Open Access Journals (Sweden)

    Claudio Lunardi

    2006-01-01

    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  11. Identification and Cloning of Differentially Expressed SOUL and ELIP Genes in Saffron Stigmas Using a Subtractive Hybridization Approach

    Science.gov (United States)

    Ahrazem, Oussama; Argandoña, Javier; Castillo, Raquel; Rubio-Moraga, Ángela

    2016-01-01

    Using a subtractive hybridization approach, differentially expressed genes involved in the light response in saffron stigmas were identified. Twenty-two differentially expressed transcript-derived fragments were cloned and sequenced. Two of them were highly induced by light and had sequence similarity to early inducible proteins (ELIP) and SOUL heme-binding proteins. Using these sequences, we searched for other family members expressed in saffron stigma. ELIP and SOUL are represented by small gene families in saffron, with four and five members, respectively. The expression of these genes was analyzed during the development of the stigma and in light and dark conditions. ELIP transcripts were detected in all the developmental stages showing much higher expression levels in the developed stigmas of saffron and all were up-regulated by light but at different levels. By contrast, only one SOUL gene was up-regulated by light and was highly expressed in the stigma at anthesis. Both the ELIP and SOUL genes induced by light in saffron stigmas might be associated with the structural changes affecting the chromoplast of the stigma, as a result of light exposure, which promotes the development and increases the number of plastoglobules, specialized in the recruitment of specific proteins, which enables them to act in metabolite synthesis and disposal under changing environmental conditions and developmental stages. PMID:28030614

  12. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach.

    Science.gov (United States)

    Hu, Ke-Ming; Qiu, De-Yun; Shen, Xiang-Ling; Li, Xiang-Hua; Wang, Shi-Ping

    2008-09-01

    Bacterial blight caused by Xanthomonas oryzae pv. oryzae and fungal blast caused by Magnaporthe grisea result in heavy production losses in rice, a main staple food for approximately 50% of the world's population. Application of host resistance to these pathogens is the most economical and environment-friendly approach to solve this problem. Quantitative trait loci (QTLs) controlling quantitative resistance are valuable sources for broad-spectrum and durable disease resistance. Although large numbers of QTLs for bacterial blight and blast resistance have been identified, these sources have not been used effectively in rice improvement because of the complex genetic control of quantitative resistance and because the genes underlying resistance QTLs are unknown. To isolate disease resistance QTLs, we established a candidate gene strategy that integrates linkage map, expression profile, and functional complementation analyses. This strategy has proven to be applicable for identifying the genes underlying minor resistance QTLs in rice-Xoo and rice-M. grisea systems and it may also help to shed light on disease resistance QTLs of other cereals. Our results also suggest that a single minor QTL can be used in rice improvement by modulating the expression of the gene underlying the QTL. Pyramiding two or three minor QTL genes, whose expression can be managed and that function in different defense signal transduction pathways, may allow the breeding of rice cultivars that are highly resistant to bacterial blight and blast.

  13. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach.

    Directory of Open Access Journals (Sweden)

    Peggy Jungke

    Full Text Available Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.

  14. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach.

    Science.gov (United States)

    Jungke, Peggy; Hammer, Juliane; Hans, Stefan; Brand, Michael

    2015-01-01

    Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.

  15. Combined subtractive cDNA cloning and array CGH: an efficient approach for identification of overexpressed genes in DNA amplicons

    Directory of Open Access Journals (Sweden)

    De Paepe Anne

    2004-02-01

    Full Text Available Abstract Background Activation of proto-oncogenes by DNA amplification is an important mechanism in the development and maintenance of cancer cells. Until recently, identification of the targeted genes relied on labour intensive and time consuming positional cloning methods. In this study, we outline a straightforward and efficient strategy for fast and comprehensive cloning of amplified and overexpressed genes. Results As a proof of principle, we analyzed neuroblastoma cell line IMR-32, with at least two amplification sites along the short arm of chromosome 2. In a first step, overexpressed cDNA clones were isolated using a PCR based subtractive cloning method. Subsequent deposition of these clones on a custom microarray and hybridization with IMR-32 DNA, resulted in the identification of clones that were overexpressed due to gene amplification. Using this approach, amplification of all previously reported amplified genes in this cell line was detected. Furthermore, four additional clones were found to be amplified, including the TEM8 gene on 2p13.3, two anonymous transcripts, and a fusion transcript, resulting from 2p13.3 and 2p24.3 fused sequences. Conclusions The combinatorial strategy of subtractive cDNA cloning and array CGH analysis allows comprehensive amplicon dissection, which opens perspectives for improved identification of hitherto unknown targeted oncogenes in cancer cells.

  16. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  17. A new experimental approach for studying bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns

    Directory of Open Access Journals (Sweden)

    Nickerson Cheryl A

    2006-01-01

    Full Text Available Abstract Background Genomic islands are regions of bacterial genomes that have been acquired by horizontal transfer and often contain blocks of genes that function together for specific processes. Recently, it has become clear that the impact of genomic islands on the evolution of different bacterial species is significant and represents a major force in establishing bacterial genomic variation. However, the study of genomic island evolution has been mostly performed at the sequence level using computer software or hybridization analysis to compare different bacterial genomic sequences. We describe here a novel experimental approach to study the evolution of species-specific bacterial genomic islands that identifies island genes that have evolved in such a way that they are differentially-expressed depending on the bacterial host background into which they are transferred. Results We demonstrate this approach by using a "test" genomic island that we have cloned from the Salmonella typhimurium genome (island 4305 and transferred to a range of Gram negative bacterial hosts of differing evolutionary relationships to S. typhimurium. Systematic analysis of the expression of the island genes in the different hosts compared to proper controls allowed identification of genes with genera-specific expression patterns. The data from the analysis can be arranged in a matrix to give an expression "array" of the island genes in the different bacterial backgrounds. A conserved 19-bp DNA site was found upstream of at least two of the differentially-expressed island genes. To our knowledge, this is the first systematic analysis of horizontally-transferred genomic island gene expression in a broad range of Gram negative hosts. We also present evidence in this study that the IS200 element found in island 4305 in S. typhimurium strain LT2 was inserted after the island had already been acquired by the S. typhimurium lineage and that this element is likely not

  18. A supervised learning approach for taxonomic classification of core-photosystem-II genes and transcripts in the marine environment

    Directory of Open Access Journals (Sweden)

    Polz Martin F

    2009-05-01

    Full Text Available Abstract Background Cyanobacteria of the genera Synechococcus and Prochlorococcus play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Recently, genes encoding the photosystem II reaction center (psbA and psbD were found in cyanophage genomes. This phenomenon suggested that the horizontal transfer of these genes may be involved in increasing phage fitness. To date, a very small percentage of marine bacteria and phages has been cultured. Thus, mapping genomic data extracted directly from the environment to its taxonomic origin is necessary for a better understanding of phage-host relationships and dynamics. Results To achieve an accurate and rapid taxonomic classification, we employed a computational approach combining a multi-class Support Vector Machine (SVM with a codon usage position specific scoring matrix (cuPSSM. Our method has been applied successfully to classify core-photosystem-II gene fragments, including partial sequences coming directly from the ocean, to seven different taxonomic classes. Applying the method on a large set of DNA and RNA psbA clones from the Mediterranean Sea, we studied the distribution of cyanobacterial psbA genes and transcripts in their natural environment. Using our approach, we were able to simultaneously examine taxonomic and ecological distributions in the marine environment. Conclusion The ability to accurately classify the origin of individual genes and transcripts coming directly from the environment is of great importance in studying marine ecology. The classification method presented in this paper could be applied further to classify other genes amplified from the environment, for which training data is available.

  19. Alphaviruses in Gene Therapy

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2009-04-01

    Full Text Available Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV, Sindbis virus (SIN and Venezuelan Equine Encephalitis (VEE virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.

  20. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  1. The gene tree delusion.

    Science.gov (United States)

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  2. Improvements to cardiovascular gene ontology.

    Science.gov (United States)

    Lovering, Ruth C; Dimmer, Emily C; Talmud, Philippa J

    2009-07-01

    Gene Ontology (GO) provides a controlled vocabulary to describe the attributes of genes and gene products in any organism. Although one might initially wonder what relevance a 'controlled vocabulary' might have for cardiovascular science, such a resource is proving highly useful for researchers investigating complex cardiovascular disease phenotypes as well as those interpreting results from high-throughput methodologies. GO enables the current functional knowledge of individual genes to be used to annotate genomic or proteomic datasets. In this way, the GO data provides a very effective way of linking biological knowledge with the analysis of the large datasets of post-genomics research. Consequently, users of high-throughput methodologies such as expression arrays or proteomics will be the main beneficiaries of such annotation sets. However, as GO annotations increase in quality and quantity, groups using small-scale approaches will gradually begin to benefit too. For example, genome wide association scans for coronary heart disease are identifying novel genes, with previously unknown connections to cardiovascular processes, and the comprehensive annotation of these novel genes might provide clues to their cardiovascular link. At least 4000 genes, to date, have been implicated in cardiovascular processes and an initiative is underway to focus on annotating these genes for the benefit of the cardiovascular community. In this article we review the current uses of Gene Ontology annotation to highlight why Gene Ontology should be of interest to all those involved in cardiovascular research.

  3. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species.

    Science.gov (United States)

    Zheng, Yuchi; Wiens, John J

    2016-01-01

    Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies.

  4. Genes and Hearing Loss

    Science.gov (United States)

    ... Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient Health Information News media interested in covering ... One of the most common birth defects is hearing loss or deafness (congenital), which can affect as many ...

  5. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  6. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  7. Cochlear Gene Therapy

    OpenAIRE

    2012-01-01

    The purpose of this review is to highlight recent advances in cochlear gene therapy over the past several years. Cochlear gene therapy has undergone tremendous advances over the past decade. Beginning with some groundbreaking work in 2005 documenting hair cell regeneration using virallymediated delivery of the mouse atonal 1 gene, gene therapy is now being explored as a possible treatment for a variety of causes of hearing loss.

  8. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    Directory of Open Access Journals (Sweden)

    Silvia Pierandrei

    2016-01-01

    Full Text Available Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.

  9. Comparing partial least square approaches in a gene- or region-based association study for multiple quantitative phenotypes.

    Science.gov (United States)

    Yuan, Zhongshang; Zhang, Xiaoshuai; Li, Fangyu; Zhao, Jinghua; Xue, Fuzhong

    2014-01-01

    On thinking quantitatively of complex diseases, there are at least three statistical strategies for association studies: one single-nucleotide polymorphism (SNP) on a single trait, gene or region (with multiple SNPs) on a single trait, and gene or region on multiple traits. The third approach is the most general in dissecting genetic mechanisms underlying complex diseases underpinning multiple quantitative traits. Gene or region association methods based on partial least square (PLS) approaches have been shown to have apparent power advantage. However, few approaches have been developed for multiple quantitative phenotypes or traits underlying a condition or disease, and the performance of various PLS approaches used in association studies for multiple quantitative traits have not been assessed. Here we exploit association between multiple SNPs and multiple phenotypes or traits, from a regression perspective, through exhaustive scan statistics (sliding window) using PLS and sparse PLS regressions. Simulations were conducted to assess the performance of the proposed scan statistics and compare them with existing methods. The proposed methods were applied to 12 regions of genome-wide association study data from the European Prospective Investigation of Cancer-Norfolk study.

  10. Imaging reporter gene for monitoring gene therapy; Imagerie par gene rapporteur: un atout pour la therapie genique

    Energy Technology Data Exchange (ETDEWEB)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L. [Centre Hospitalier Universitaire Avicenne, Service Central de Medecine Nucleaire et Biophysique, UPRES 2360, 93 - Bobigny (France); Tamgac, G. [Univetsite d' Uludag, Service de Medecine Nucleaire, Bursa (Turkey)

    2002-06-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  11. Reading and Generalist Genes

    Science.gov (United States)

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert

    2007-01-01

    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  12. Chemoprevention gene therapy (CGT): novel combinatorial approach for preventing and treating pancreatic cancer.

    Science.gov (United States)

    Sarkar, S; Azab, B M; Das, S K; Quinn, B A; Shen, X; Dash, R; Emdad, L; Thomas, S; Dasgupta, S; Su, Z-Z; Wang, X-Y; Sarkar, D; Fisher, P B

    2013-08-01

    Pancreatic cancer remains one of the deadliest of all cancers despite aggressive surgical treatment combined with adjuvant radiotherapy and chemotherapy. Chemoresistance and radioresistance are the principal causes of failure of pancreatic cancer patients to respond to therapy. Conditionally replication competent adenovirus (CRCA)-based cancer gene therapy is an innovative strategy for treating cancers displaying inherent resistance to treatment. Limitations of current adenovirus (Ad)-based gene therapies for malignant tumors include lack of cancer-specificity, and effective and targeted delivery. To remedy this situation, CRCAs have been designed that express E1A, necessary for Ad replication, under the control of a cancer-specific progression elevated gene-3 promoter (PEG-Prom) with concomitant expression of an immunomodulatory cytokine, such as mda-7/IL-24 or interferon-γ (IFN-γ), under the control of a ubiquitous and strong cytomegalovirus promoter (CMV-Prom) from the E3 region. These bipartite CRCAs, when armed with a transgene, are called cancer terminator viruses (CTVs), i.e., Ad.PEG-E1A-CMV-mda-7 (CTV-M7) and Ad.PEG-E1A-CMV-IFN-γ (CTV-γ), because of their universal effectiveness in cancer treatment irrespective of p53/pRb/p16 or other genetic alterations in tumor cells. In addition to their selective oncolytic effects in tumor cells, the potent 'bystander antitumor' properties of MDA-7/IL-24 and IFN-γ embody the CTVs with expanded treatment properties for both primary and distant cancers. Pancreatic cancer cells display a "translational block" of mda-7/IL-24 mRNA, limiting production of MDA-7/IL-24 protein and cancer-specific apoptosis. Specific chemopreventive agents abrogate this "translational block" resulting in pancreatic cancer-specific killing. This novel chemoprevention gene therapy (CGT) strategy holds promise for both prevention and treatment of pancreatic cancers where all other strategies have proven ineffective.

  13. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    Science.gov (United States)

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  14. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    Science.gov (United States)

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  15. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    Science.gov (United States)

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.

  16. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A

    2017-02-06

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  17. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nicholas Brookhouser

    2017-02-01

    Full Text Available In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN, transcription activator-like effector nuclease (TALEN, and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  18. COMPUTATIONAL APPROACH FOR DESIGNING AND DEVELOPMENT OF POTENT DRUG INHIBITOR FOR APP GENE IN ALZHEIMER'S DISEASE

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Behera*, Ritesh Kumar Behera and Manas Ranjan Barik

    2013-03-01

    Full Text Available ABSTRACT: Alzheimer’s disease (AD is an irreversible, progressive brain disease that slowly destroys memory and thinking skills, reasoning, planning, language, and perception, and eventually even the ability to carry out the simplest tasks. Many scientists believe that Alzheimer's disease results from an increase in the production or accumulation of a specific protein (beta-amyloid protein in the brain that leads to nerve cell death. The brains of people with AD have an abundance of two abnormal structures amyloid plaques and neurofibrillary tangles that are made of misfolded proteins. This is especially true in certain regions of the brain that are important in memory. In people with Alzheimer's disease, deposits called amyloid plaques build up in the brain. These are composed, in part, of a protein called beta-amyloid, which is a fragment of the amyloid precursor protein (APP. A mutation in the gene that makes APP is believed to be responsible for 5 to 20 percent of all early onset familial Alzheimer's disease. People with a mutation in the APP gene tend to develop Alzheimer's disease at around age 50. The present work deals with the designing a suitable drug by molecular docking which acts on the APP gene to regulate the amyloid plagues formation in the brain.

  19. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David. A.

    2017-01-01

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods. PMID:28178187

  20. Approaching the axiomatic enrichment of the Gene Ontology from a lexical perspective.

    Science.gov (United States)

    Quesada-Martínez, Manuel; Mikroyannidi, Eleni; Fernández-Breis, Jesualdo Tomás; Stevens, Robert

    2015-09-01

    The main goal of this work is to measure how lexical regularities in biomedical ontology labels can be used for the automatic creation of formal relationships between classes, and to evaluate the results of applying our approach to the Gene Ontology (GO). In recent years, we have developed a method for the lexical analysis of regularities in biomedical ontology labels, and we showed that the labels can present a high degree of regularity. In this work, we extend our method with a cross-products extension (CPE) metric, which estimates the potential interest of a specific regularity for axiomatic enrichment in the lexical analysis, using information on exact matches in external ontologies. The GO consortium recently enriched the GO by using so-called cross-product extensions. Cross-products are generated by establishing axioms that relate a given GO class with classes from the GO or other biomedical ontologies. We apply our method to the GO and study how its lexical analysis can identify and reconstruct the cross-products that are defined by the GO consortium. The label of the classes of the GO are highly regular in lexical terms, and the exact matches with labels of external ontologies affect 80% of the GO classes. The CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments that are classes into two external ontologies that are selected for our experiment, namely, the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90% of them are fully decomposable into smaller parts. Our results show that the CPE metric permits our method to detect GO cross-product extensions with a mean recall of 62% and a mean precision of 28%. The study is completed with an analysis of false positives to explain this precision value. We think that our results support the claim that our lexical approach can contribute to the axiomatic enrichment of biomedical ontologies and that it can provide new insights into the engineering of

  1. Advancement and prospects of tumor gene therapy

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Qing-Tao Wang; He Liu; Zhen-Zhu Zhang; Wen-Lin Huang

    2011-01-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucieotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  2. Origin and evolution of new genes

    Institute of Scientific and Technical Information of China (English)

    LI Xin; YANG Shuang; PENG Lixin; CHEN Hong; WANG Wen

    2004-01-01

    Organisms have variable genome sizes andcontain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than half a century ago, it is not until the 1990s when the first young genejingwei was found that empirical investigation of the molecular mechanisms of origination of new genes became possible. In the recent years,several young genes were identified and the studies on these genes have greatly enriched the knowledge of this field. Yet more details in a general picture of new genes origination are to be clarified. We have developed a systematic approach to searching for young genes at the genomic level, in the hope to summarize a general pattern of the origination and evolution of new genes, such as the rate of new gene appearance, impact of new genes on their host genomes, etc.

  3. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    OpenAIRE

    Ana Sofia Ferreira; Pedro Costa; Teresa Rocha; Ana Amaro; Maria Luísa Vieira; Ahmed Ahmed; Gertrude Thompson; Hartskeerl, Rudy A.; João Inácio

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpet...

  4. Gene therapy for mucopolysaccharidosis

    Science.gov (United States)

    Ponder, Katherine P; Haskins, Mark E

    2012-01-01

    Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved. PMID:17727324

  5. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    Energy Technology Data Exchange (ETDEWEB)

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  6. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  7. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach

    Directory of Open Access Journals (Sweden)

    N NagaSundaram

    2011-01-01

    Full Text Available Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPA gene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT, Polymorphism Phenotyping (PolyPhen, I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPA gene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silico tools in understanding the functional variation from the perspective of structure, evolution, and phenotype.

  8. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  9. Gene therapy in the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  10. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    Science.gov (United States)

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  11. PATE, a gene expressed in prostate cancer, normal prostate, and testis, identified by a functional genomic approach

    Science.gov (United States)

    Bera, Tapan K.; Maitra, Rangan; Iavarone, Carlo; Salvatore, Giuliana; Kumar, Vasantha; Vincent, James J.; Sathyanarayana, B. K.; Duray, Paul; Lee, B. K.; Pastan, Ira

    2002-03-01

    To identify target antigens for prostate cancer therapy, we have combined computer-based screening of the human expressed sequence tag database and experimental expression analysis to identify genes that are expressed in normal prostate and prostate cancer but not in essential human tissues. Using this approach, we identified a gene that is expressed specifically in prostate cancer, normal prostate, and testis. The gene has a 1.5-kb transcript that encodes a protein of 14 kDa. We named this gene PATE (expressed in prostate and testis). In situ hybridization shows that PATE mRNA is expressed in the epithelial cells of prostate cancers and in normal prostate. Transfection of the PATE cDNA with a Myc epitope tag into NIH 3T3 cells and subsequent cell fractionation analysis shows that the PATE protein is localized in the membrane fraction of the cell. Analysis of the amino acid sequence of PATE shows that it has structural similarities to a group of proteins known as three-finger toxins, which includes the extracellular domain of the type transforming growth factor receptor. Restricted expression of PATE makes it a potential candidate for the immunotherapy of prostate cancer.

  12. Ecotoxicological diagnosis of striped dolphin (Stenella coeruleoalba) from the Mediterranean basin by skin biopsy and gene expression approach.

    Science.gov (United States)

    Panti, Cristina; Spinsanti, Giacomo; Marsili, Letizia; Casini, Silvia; Frati, Francesco; Fossi, Maria Cristina

    2011-11-01

    Mediterranean cetacean odontocetes are exposed to environmental stress, in particular to persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements. In the present study, the response of "gene-expression biomarkers" was evaluated in Mediterranean striped dolphin (Stenella coeruleoalba) skin biopsies collected in three sampling areas: Pelagos sanctuary (Ligurian sea), Ionian sea, and Strait of Gibraltar. The mRNA levels of five putative biomarker genes (aryl hydrocarbon receptor, E2F-1 transcription factor, cytochrome P450 1A, estrogen receptor 1, and heat shock protein 70) were measured for the first time by quantitative real-time PCR in cetacean skin biopsies. The different responses of most of the genes reflected contamination levels in the three sampling areas. Pelagos sanctuary dolphins appeared to be the most exposed to toxicological stress, having the highest up-regulation of CYP1A and AHR. Moreover, a cluster analysis distinguished the populations on the basis of the gene expression biomarker used in our study, showing different pattern between Mediterranean sea and Strait of Gibraltar. Our results suggest that this molecular approach applied to non-destructive biopsy material is a powerful diagnostic tool for evaluating ecotoxicological impact on cetacean populations.

  13. Cyanobacterial signature genes.

    Science.gov (United States)

    Martin, Kirt A; Siefert, Janet L; Yerrapragada, Sailaja; Lu, Yue; McNeill, Thomas Z; Moreno, Pedro A; Weinstock, George M; Widger, William R; Fox, George E

    2003-01-01

    A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest.

  14. From the Cover: A polymer library approach to suicide gene therapy for cancer

    Science.gov (United States)

    Anderson, Daniel G.; Peng, Weidan; Akinc, Akin; Hossain, Naushad; Kohn, Anat; Padera, Robert; Langer, Robert; Sawicki, Janet A.

    2004-11-01

    Optimal gene therapy for cancer must (i) deliver DNA to tumor cells with high efficiency, (ii) induce minimal toxicity, and (iii) avoid gene expression in healthy tissues. To this end, we generated a library of >500 degradable, poly(-amino esters) for potential use as nonviral DNA vectors. Using high-throughput methods, we screened this library in vitro for transfection efficiency and cytotoxicity. We tested the best performing polymer, C32, in mice for toxicity and DNA delivery after intratumor and i.m. injection. C32 delivered DNA intratumorally 4-fold better than one of the best commercially available reagents, jetPEI (polyethyleneimine), and 26-fold better than naked DNA. Conversely, the highest transfection levels after i.m. administration were achieved with naked DNA, followed by polyethyleneimine; transfection was rarely observed with C32. Additionally, polyethyleneimine induced significant local toxicity after i.m. injection, whereas C32 demonstrated no toxicity. Finally, we used C32 to deliver a DNA construct encoding the A chain of diphtheria toxin (DT-A) to xenografts derived from LNCaP human prostate cancer cells. This construct regulates toxin expression both at the transcriptional level by the use of a chimeric-modified enhancer/promoter sequence of the human prostate-specific antigen gene and by DNA recombination mediated by Flp recombinase. C32 delivery of the A chain of diphtheria toxin DNA to LNCaP xenografts suppressed tumor growth and even caused 40% of tumors to regress in size. Because C32 transfects tumors locally at high levels, transfects healthy muscle poorly, and displays no toxicity, it may provide a vehicle for the local treatment of cancer. prostate | cationic polymers

  15. Functional Associations by Response Overlap (FARO), a functional genomics approach matching gene expression phenotypes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Mundy, J.; Willenbrock, Hanni

    2007-01-01

    The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental factors...... including treatments, mutations and pathogen infections. Similarly, drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and by the target disease. The integration of such data enables systems biology to predict the interplay between...

  16. Integrating Molecular Imaging Approaches to Monitor Prostate Targeted Suicide and Anti-angiogenic Gene Therapy

    Science.gov (United States)

    2005-02-01

    clinical trials. The ad- vantages of using adenovirus are severalfold: (1) ease of ge- netic manipulation ( Chartier et al., 1996; Kanerva et al...located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530. CHARTIER , C., DEGRYSE, E., GANTZER, M., DIETERLE, A., PAVIRANI, A...Hemminki, A., Belousova, N., Zinn, K.R., Liu, B., Wang, M., Chaudhuri, T.R., Rogers , B.E., Buchsbaum, D.J., Siegal, G.P., Barnes, M.N., Go- mez-Navarro

  17. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine

    Science.gov (United States)

    Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...

  18. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  19. A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Most microorganisms in nature are uncultured with unknown functionality. Sequence-based metagenomics alone answers 'who/what are there?' but not 'what are they doing and who is doing it and how?'. Function-based metagenomics reveals gene function but is usually limited by the specificity and sensitivity of screening strategies, especially the identification of clones whose functional gene expression has no distinguishable activity or phenotypes. A 'biosensor-based genetic transducer' (BGT technique, which employs a whole-cell biosensor to quantitatively detect expression of inserted genes encoding designated functions, is able to screen for functionality of unknown genes from uncultured microorganisms. In this study, BGT was integrated with Stable isotope probing (SIP-enabled Metagenomics to form a culture-independent SMB toolbox. The utility of this approach was demonstrated in the discovery of a novel functional gene cluster in naphthalene contaminated groundwater. Specifically, metagenomic sequencing of the (13C-DNA fraction obtained by SIP indicated that an uncultured Acidovorax sp. was the dominant key naphthalene degrader in-situ, although three culturable Pseudomonas sp. degraders were also present in the same groundwater. BGT verified the functionality of a new nag2 operon which co-existed with two other nag and two nah operons for naphthalene biodegradation in the same microbial community. Pyrosequencing analysis showed that the nag2 operon was the key functional operon in naphthalene degradation in-situ, and shared homology with both nag operons in Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2. The SMB toolbox will be useful in providing deep insights into uncultured microorganisms and unravelling their ecological roles in natural environments.

  20. Isolation and Manipulation of Quantitative Tra it Loci for DIsease Resistance in Rice Using a Candid ate Gene Approach

    Institute of Scientific and Technical Information of China (English)

    Ke-Ming Hu; De-Yun Qiu; Xiang-Ling Shen; Xiang-Hua Li; Shi-Ping Wang

    2008-01-01

    Bacterial blight caused by Xanthomonas oryzae pv.oryzae and fungal blast caused by Magnaporthe grisea result in heavy production losses in rice,a main staple food for approximately 50%of the world's population.Application of host resistance to these pathogens iS the most economical and environment-friendly approach to solve this problem.Quantitative trait loci(QTLs)controlling quantitative resistance are valuable sources for broad.spectrum and durable disease resistance.Although large numbers of QTLs for bacteriaI blight and blast resistance have been identified.these sources have not been used effectively in rice improvement because of the complex genetic controI of quantitative resistance and because the genes underlying resistance QTLs are unknown.To isolate disease resistance QTLs,we established a candidate gene strategy that integrates linkage map,expression profile,and functionaI complementation analyses.This strategy has proven to be applicable for identifying the genes underlying minor resistance QTLs in rice-Xoo and rice-M grisea systems and it may also help to shed light on disease resistance QTLs of other cereals.Our results also suggest that a single minor QTL can be used in rice improvement by modulating the expression of the gene underlying the QTL.Pyramiding two or three minor QTL genes,whose expression can be managed and that function in different defense signaI transduction pathways,may allow the breeding of rice cultivars that are highly resistant to bacteriaI blight and blast.

  1. Genomics-based Approach and Prognostic Stratification Significance of Gene Mutations in Intermediate-risk Acute Myeloid Leukemia

    Institute of Scientific and Technical Information of China (English)

    Bian-Hong Wang; Yong-Hui Li; Li Yu

    2015-01-01

    Objective:Intermediate-risk acute myeloid leukemia (IR-AML),which accounts for a substantial number of AML cases,is highly heterogeneous.We systematically summarize the latest research progress on the significance ofgene mutations for prognostic stratification of IR-AML.Data Sources:We conducted a systemic search from the PubMed database up to October,2014 using various search terms and their combinations including IR-AML,gene mutations,mutational analysis,prognosis,risk stratification,next generation sequencing (NGS).Study Selection:Clinical or basic research articles on NGS and the prognosis of gene mutations in IR-AML were included.Results:The advent of the era of whole-genome sequencing has led to the discovery of an increasing number of molecular genetics aberrations that involved in leukemogenesis,and some of them have been used for prognostic risk stratification.Several studies have consistently identified that some gene mutations have prognostic relevance,however,there are still many controversies for some genes because of lacking sufficient evidence.In addition,tumor cells harbor hundreds of mutated genes and multiple mutations often coexist,therefore,single mutational analysis is not sufficient to make accurate prognostic predictions.The comprehensive analysis of multiple mutations based on sophisticated genomic technologies has raised increasing interest in recent years.Conclusions:NGS represents a pioneering and helpful approach to prognostic risk stratification of IR-AML patients.Further large-scale studies for comprehensive molecular analysis are needed to provide guidance and a theoretical basis for IR-AML prognostic stratification and clinical management.

  2. An overview of gene therapy in head and neck cancer

    OpenAIRE

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  3. Primetime for Learning Genes

    Science.gov (United States)

    Keifer, Joyce

    2017-01-01

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be “poised” for rapid response to activate or repress gene expression depending on environmental stimuli. PMID:28208656

  4. Primetime for Learning Genes.

    Science.gov (United States)

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  5. Nanoparticles for retinal gene therapy.

    Science.gov (United States)

    Conley, Shannon M; Naash, Muna I

    2010-09-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber's congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

    Directory of Open Access Journals (Sweden)

    Zaffalon Valerio

    2011-06-01

    Full Text Available Abstract Background Field observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR was used to study this process. Results A comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia throughout different developmental stages (S1, S2, S3 and S4 evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein, a PR (pathogenesis-related protein, a prunin and LEA (Late Embryogenesis Abundant protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively. The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on. Conclusions In this research, genes were identified marking different phases of

  7. An Integrated Genomic Approach for Rapid Delineation of Candidate Genes Regulating Agro-Morphological Traits in Chickpea

    Science.gov (United States)

    Saxena, Maneesha S.; Bajaj, Deepak; Das, Shouvik; Kujur, Alice; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    The identification and fine mapping of robust quantitative trait loci (QTLs)/genes governing important agro-morphological traits in chickpea still lacks systematic efforts at a genome-wide scale involving wild Cicer accessions. In this context, an 834 simple sequence repeat and single-nucleotide polymorphism marker-based high-density genetic linkage map between cultivated and wild parental accessions (Cicer arietinum desi cv. ICC 4958 and Cicer reticulatum wild cv. ICC 17160) was constructed. This inter-specific genetic map comprising eight linkage groups spanned a map length of 949.4 cM with an average inter-marker distance of 1.14 cM. Eleven novel major genomic regions harbouring 15 robust QTLs (15.6–39.8% R2 at 4.2–15.7 logarithm of odds) associated with four agro-morphological traits (100-seed weight, pod and branch number/plant and plant hairiness) were identified and mapped on chickpea chromosomes. Most of these QTLs showed positive additive gene effects with effective allelic contribution from ICC 4958, particularly for increasing seed weight (SW) and pod and branch number. One robust SW-influencing major QTL region (qSW4.2) has been narrowed down by combining QTL mapping with high-resolution QTL region-specific association analysis, differential expression profiling and gene haplotype-based association/LD mapping. This enabled to delineate a strong SW-regulating ABI3VP1 transcription factor (TF) gene at trait-specific QTL interval and consequently identified favourable natural allelic variants and superior high seed weight-specific haplotypes in the upstream regulatory region of this gene showing increased transcript expression during seed development. The genes (TFs) harbouring diverse trait-regulating QTLs, once validated and fine-mapped by our developed rapid integrated genomic approach and through gene/QTL map-based cloning, can be utilized as potential candidates for marker-assisted genetic enhancement of chickpea. PMID:25335477

  8. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.

    Science.gov (United States)

    Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina

    2013-01-01

    Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    Science.gov (United States)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  10. A multilocus candidate approach identifies ACE and HIF1A as susceptibility genes for cellulite.

    Science.gov (United States)

    Emanuele, E; Bertona, M; Geroldi, D

    2010-08-01

    Cellulite is a common complex cosmetic problem for many post-adolescent women characterised by relief alterations of the skin surface, which give the skin an orange-peel appearance. Although genetic factors have been suggested to play a role in the development of cellulite, the genetic background of this condition remains unclear. We therefore conducted a multi-locus genetic study examining the potential associations of candidate gene variants in oestrogen receptors, endothelial function/adipose tissue hypoxia, lipid metabolism, extracellular matrix homeostasis, inflammation and adipose tissue biology, with the risk of cellulite. Using a case-control study of 200 lean women with cellulite and 200 age- and BMI-matched controls (grade 0 according to Nurnberger-Muller scale), we examined the association of cellulite with 25 polymorphisms in 15 candidate genes. Two of the 25 polymorphisms were significantly associated with cellulite at the P cellulite were 1.19 (95% CI: 1.10-1.51; P cellulite, may provide novel information on the pathophysiology of this common cosmetic problem, and offer a topic for research for novel beautification interventions.

  11. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  12. A statistical approach towards the derivation of predictive gene sets for potency ranking of chemicals in the mouse embryonic stem cell test.

    Science.gov (United States)

    Schulpen, Sjors H W; Pennings, Jeroen L A; Tonk, Elisa C M; Piersma, Aldert H

    2014-03-21

    The embryonic stem cell test (EST) is applied as a model system for detection of embryotoxicants. The application of transcriptomics allows a more detailed effect assessment compared to the morphological endpoint. Genes involved in cell differentiation, modulated by chemical exposures, may be useful as biomarkers of developmental toxicity. We describe a statistical approach to obtain a predictive gene set for toxicity potency ranking of compounds within one class. This resulted in a gene set based on differential gene expression across concentration-response series of phthalatic monoesters. We determined the concentration at which gene expression was changed at least 1.5-fold. Genes responding with the same potency ranking in vitro and in vivo embryotoxicity were selected. A leave-one-out cross-validation showed that the relative potency of each phthalate was always predicted correctly. The classical morphological 50% effect level (ID50) in EST was similar to the predicted concentration using gene set expression responses. A general down-regulation of development-related genes and up-regulation of cell-cycle related genes was observed, reminiscent of the differentiation inhibition in EST. This study illustrates the feasibility of applying dedicated gene set selections as biomarkers for developmental toxicity potency ranking on the basis of in vitro testing in the EST.

  13. Micro-PET/CT Monitoring of Herpes Thymidine Kinase Suicide Gene Therapy in a Prostate Cancer Xenograft: The Advantage of a Cell-specific Transcriptional Targeting Approach

    Directory of Open Access Journals (Sweden)

    Mai Johnson

    2005-10-01

    Full Text Available Cancer gene therapy based on tissue-restricted expression of cytotoxic gene should achieve superior therapeutic index over an unrestricted method. This study compared the therapeutic effects of a highly augmented, prostate-specific gene expression method to a strong constitutive promoter-driven approach. Molecular imaging was coupled to gene therapy to ascertain real-time therapeutic activity. The imaging reporter gene (luciferase and the cytotoxic gene (herpes simplex thymidine kinase were delivered by adenoviral vectors injected directly into human prostate tumors grafted in SCID mice. Serial bioluminescence imaging, positron emission tomography, and computed tomography revealed restriction of gene expression to the tumors when prostate-specific vector was employed. In contrast, administration of constitutive active vector resulted in strong signals in the liver. Liver serology, tissue histology, and frail condition of animals confirmed liver toxicity suffered by the constitutive active cohorts, whereas the prostate-targeted group was unaffected. The extent of tumor killing was analyzed by apoptotic staining and human prostate marker (prostate-specific antigen. Overall, the augmented prostate-specific expression system was superior to the constitutive approach in safeguarding against systemic toxicity, while achieving effective tumor killing. Integrating noninvasive imaging into cytotoxic gene therapy will provide a useful strategy to monitor gene expression and therapeutic efficacy in future clinical protocols.

  14. Candidate gene prioritization with Endeavour.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-08

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/.

  15. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  16. Genomic Imbalances in Rhabdomyosarcoma Cell Lines Affect Expression of Genes Frequently Altered in Primary Tumors: An Approach to Identify Candidate Genes Involved in Tumor Development

    NARCIS (Netherlands)

    E. Missiaglia; J. Selfe; M. Hamdi; D. Williamson; G. Schaaf; C. Fang; J. Koster; B. Summersgill; B. Messahel; R Versteeg; K. Pritchard-Jones; M. Kool; J. Shipley

    2009-01-01

    Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3- and PAX7-FOXO1 fusion genes in alveolar case

  17. A novel approach for multi-domain and multi-gene famliy identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants

    NARCIS (Netherlands)

    Hofberger, J.A.; Zhou, B.; Tang, H.; Jones, J.; Schranz, M.E.

    2014-01-01

    Background Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks

  18. An Ontology of Gene

    OpenAIRE

    Masuya, Hiroshi; Mizoguchi, Riichiro

    2012-01-01

    The concept of a gene was established in the era of classical genetics and is now essential for life science for elucidating the molecular basis of the coding of genetic information necessary to realize the body of an organism and its biological functions. However, an ontology fully representing multiple aspects of a gene is still not available. In this study, we dissected the biological and ontological definitions of bearers of genetic information, including genes and alleles. Based on this ...

  19. Placental gene therapy

    OpenAIRE

    David, A. L.; Ashcroft, R

    2009-01-01

    Gene therapy uses genetic material as a drug delivery vehicle to express therapeutic proteins. Placental gene therapy may be useful for correction of two important obstetric conditions, foetal growth restriction and pre-eclampsia in which there is a failure of the physiological trophoblast remodelling of the uterine spiral arteries in early pregnancy. The patient in this scenario is the foetus. Placental gene therapy might be justifiable when: there is reasonable certainty that the foetus wil...

  20. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  1. Association between Stress Response Genes and Features of Diurnal Cortisol Curves in the Multi-Ethnic Study of Atherosclerosis: A New Multi-Phenotype Approach for Gene-Based Association Tests.

    Science.gov (United States)

    He, Zihuai; Payne, Erin K; Mukherjee, Bhramar; Lee, Seunggeun; Smith, Jennifer A; Ware, Erin B; Sánchez, Brisa N; Seeman, Teresa E; Kardia, Sharon L R; Diez Roux, Ana V

    2015-01-01

    The hormone cortisol is likely to be a key mediator of the stress response that influences multiple physiologic systems that are involved in common chronic disease, including the cardiovascular system, the immune system, and metabolism. In this paper, a candidate gene approach was used to investigate genetic contributions to variability in multiple correlated features of the daily cortisol profile in a sample of European Americans, African Americans, and Hispanic Americans from the Multi-Ethnic Study of Atherosclerosis (MESA). We proposed and applied a new gene-level multiple-phenotype analysis and carried out a meta-analysis to combine the ethnicity specific results. This new analysis, instead of a more routine single marker-single phenotype approach identified a significant association between one gene (ADRB2) and cortisol features (meta-analysis p-value=0.0025), which was not identified by three other commonly used existing analytic strategies: 1. Single marker association tests involving each single cortisol feature separately; 2. Single marker association tests jointly testing for multiple cortisol features; 3. Gene-level association tests separately carried out for each single cortisol feature. The analytic strategies presented consider different hypotheses regarding genotype-phenotype association and imply different costs of multiple testing. The proposed gene-level analysis integrating multiple cortisol features across multiple ethnic groups provides new insights into the gene-cortisol association.

  2. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  3. A Bayesian approach for decision making on the identification of genes with different expression levels: an application to Escherichia coli bacterium data.

    Science.gov (United States)

    Saraiva, Erlandson F; Louzada, Francisco; Milan, Luís A; Meira, Silvana; Cobre, Juliana

    2012-01-01

    A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a well-known publicly available data set on Escherichia coli bacterium.

  4. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammal......Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  5. Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach

    Directory of Open Access Journals (Sweden)

    Julia C Engelmann

    2008-10-01

    Full Text Available Julia C Engelmann3,* Rosalia Deeken1,* Tobias Müller3, Günter Nimtz2, M Rob G Roelfsema1, Rainer Hedrich11Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences; 2Institute of Physics II, University of Cologne, Cologne, Germany; 3Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany; *These authors contributed equally to this workAbstract: Mobile phone technology makes use of radio frequency (RF electromagnetic fields transmitted through a dense network of base stations in Europe. Possible harmful effects of RF fields on humans and animals are discussed, but their effect on plants has received little attention. In search for physiological processes of plant cells sensitive to RF fields, cell suspension cultures of Arabidopsis thaliana were exposed for 24 h to a RF field protocol representing typical microwave exposition in an urban environment. mRNA of exposed cultures and controls was used to hybridize Affymetrix-ATH1 whole genome microarrays. Differential expression analysis revealed significant changes in transcription of 10 genes, but they did not exceed a fold change of 2.5. Besides that 3 of them are dark-inducible, their functions do not point to any known responses of plants to environmental stimuli. The changes in transcription of these genes were compared with published microarray datasets and revealed a weak similarity of the microwave to light treatment experiments. Considering the large changes described in published experiments, it is questionable if the small alterations caused by a 24 h continuous microwave exposure would have any impact on the growth and reproduction of whole plants.Keywords: suspension cultured plant cells, radio frequency electromagnetic fields, microarrays, Arabidopsis thaliana

  6. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    Science.gov (United States)

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  7. A Driving Bioinformatics Approach to Explore Co-regulation of AOX Gene Family Members During Growth and Development.

    Science.gov (United States)

    Costa, José Hélio; Arnholdt-Schmitt, Birgit

    2017-01-01

    The alternative oxidase (AOX) gene family is a hot candidate for functional marker development that could help plant breeding on yield stability through more robust plants based on multi-stress tolerance. However, there is missing knowledge on the interplay between gene family members that might interfere with the efficiency of marker development. It is common view that AOX1 and AOX2 have different physiological roles. Nevertheless, both family member groups act in terms of molecular-biochemical function as "typical" alternative oxidases and co-regulation of AOX1 and AOX2 had been reported. Although conserved sequence differences had been identified, the basis for differential effects on physiology regulation is not sufficiently explored.This protocol gives instructions for a bioinformatics approach that supports discovering potential interaction of AOX family members in regulating growth and development. It further provides a strategy to elucidate the relevance of gene sequence diversity and copy number variation for final functionality in target tissues and finally the whole plant. Thus, overall this protocol provides the means for efficiently identifying plant AOX variants as functional marker candidates related to growth and development.

  8. PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach

    Directory of Open Access Journals (Sweden)

    Magnólia A. Campos

    2007-01-01

    Full Text Available In silico expression profiles, of the discovered 3,103 citrus ESTs putatively encoding for PR protein families (PR-1 to PR-17, were evaluated using the Brazil citrus genome EST CitEST/database. Hierarchical clustering was displayed to identify similarities in expression patterns among citrus PR-like gene families (PRlgf in 33 selected cDNA libraries. In this way, PRlgf preferentially expressed by organ and citrus species, and library conditions were highlighted. Changes in expression profiles of clusters for each of the 17 PRlgf expressed in organs infected by pathogens or drought-stressed citrus species were displayed for relative suppression or induction gene expression in relation to the counterpart control. Overall, few PRlgf showed expression 2-fold higher in pathogen-infected than in uninfected organs, even though the differential expression profiles displayed have been quite diverse among studied species and organs. Furthermore, an insight into some contigs from four PRlgf pointed out putative members of multigene families. They appear to be evolutionarily conserved within citrus species and/or organ- or stress-specifically expressed. Our results represent a starting point regarding the extent of expression pattern differences underlying PRlgf expression and reveal genes that may prove to be useful in studies regarding biotechnological approaches or citrus resistance markers.

  9. Lambda exonuclease-based subtractive hybridization approach to isolate differentially expressed genes from leaf cultures of Paulownia kawakamii.

    Science.gov (United States)

    Low, R K; Prakash, A P; Swarup, S; Goh, C J; Kumar, P P

    2001-08-15

    Genes that are preferentially expressed in a particular developmental pathway can be isolated by subtractive hybridization (SH). We developed a PCR-based approach coupled with lambda exonuclease digestion that allows for generating single-stranded tester and driver nucleic acids suitable for SH starting from cDNA libraries. An efficient subtraction strategy was developed to overcome some of the problems in the previously described SH protocols, such as the need for large amounts of experimental tissue, RNase contamination during solution hybridization, and postsubtraction recovery of nucleic acids. We used this method to obtain cDNA corresponding to genes expressed during adventitious shoot regeneration from excised leaf cultures of the fast-growing tree Paulownia kawakamii. Over 36 cDNA clones were isolated and 1 of the differentially expressed clones codes for a leucine zipper transcription factor. This clone showed about sixfold higher level of expression in the shoot-forming tissues (tester) compared to that in the callus-forming tissues (driver) of Paulownia, suggesting that differentially expressed genes can be efficiently isolated using this simple lambda exonuclease-based subtractive hybridization method.

  10. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation.

    Science.gov (United States)

    Wang, Wenhong; Zhao, Yina; Jin, Yan

    2013-11-27

    Sensitive and specific detection of disease-related gene and single nucleotide polymorphism (SNP) is of great importance in cancer diagnosis. Here, a colorimetric and fluorescent approach is described for detection of the p53 gene and SNP in homogeneous solution by using gold nanorods (GNRs) as both colorimetric probe and fluorescence quencher. Hairpin oligonucleotide was utilized as DNA probe to ensure highly sequence-specific detection of target DNA. In the presence of target DNA, the formation of DNA duplex greatly changed the electrostatic interaction between GNR and DNAs, leading to an obvious change in fluorescence and colorimetric response. The detection limit of fluorescent and colorimetric assay is 0.26 pM and 0.3 nM, respectively. Both fluorescence and colorimetric strategies were able to effectively discriminate complementary DNA from single-base mismatched DNA, which is meaningful for cancer diagnosis. More important, target DNA can be detected as low as 10 nM by the naked eye. Furthermore, transmission electron microscopy and fluorescence anisotropy measurements demonstrated that the color change as well as fluorescence quenching is ascribed to the DNA hybridization-induced aggregation of GNRs. Therefore, the assay provided a fast, sensitive, cost-effective, and specific sensing platform for detecting disease-related gene and SNP.

  11. Nonviral Vectors for Gene Delivery

    Science.gov (United States)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  12. Delivery Systems in Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Hu; Anas El-Aneed; Cui Guohui

    2005-01-01

    1 Gene therapy Gene therapy includes the treatment of both genetically based and infectious diseases by introducing genetic materials which have therapeutic effects[1~3]. In its simplest terms, a wild type gene (which is non-functional in the cell leading to disease development) is introduced into the somatic cell lacking this gene to restore the normal gene function in this cell. Many gene therapy strategies, however, utilize genes to destroy specific cells.

  13. Targeted SNP discovery in Atlantic salmon (Salmo salar genes using a 3'UTR-primed SNP detection approach

    Directory of Open Access Journals (Sweden)

    Høyheim Bjørn

    2010-12-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA variation in vertebrates and may be used as genetic markers for a range of applications. This has led to an increased interest in identification of SNP markers in non-model species and farmed animals. The in silico SNP mining method used for discovery of most known SNPs in Atlantic salmon (Salmo salar has applied a global (genome-wide approach. In this study we present a targeted 3'UTR-primed SNP discovery strategy that utilizes sequence data from Salmo salar full length sequenced cDNAs (FLIcs. We compare the efficiency of this new strategy to the in silico SNP mining method when using both methods for targeted SNP discovery. Results The SNP discovery efficiency of the two methods was tested in a set of FLIc target genes. The 3'UTR-primed SNP discovery method detected novel SNPs in 35% of the target genes while the in silico SNP mining method detected novel SNPs in 15% of the target genes. Furthermore, the 3'UTR-primed SNP discovery strategy was the less labor intensive one and revealed a higher success rate than the in silico SNP mining method in the initial amplification step. When testing the methods we discovered 112 novel bi-allelic polymorphisms (type I markers in 88 salmon genes [dbSNP: ss179319972-179320081, ss250608647-250608648], and three of the SNPs discovered were missense substitutions. Conclusions Full length insert cDNAs (FLIcs are important genomic resources that have been developed in many farmed animals. The 3'UTR-primed SNP discovery strategy successfully utilized FLIc data to detect novel SNPs in the partially tetraploid Atlantic salmon. This strategy may therefore be useful for targeted SNP discovery in several species, and particularly useful in species that, like salmonids, have duplicated genomes.

  14. A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients

    Directory of Open Access Journals (Sweden)

    Fardin Paolo

    2010-07-01

    Full Text Available Abstract Background Hypoxia is a condition of low oxygen tension occurring in the tumor microenvironment and it is related to poor prognosis in human cancer. To examine the relationship between hypoxia and neuroblastoma, we generated and tested an in vitro derived hypoxia gene signature for its ability to predict patients' outcome. Results We obtained the gene expression profile of 11 hypoxic neuroblastoma cell lines and we derived a robust 62 probesets signature (NB-hypo taking advantage of the strong discriminating power of the l1-l2 feature selection technique combined with the analysis of differential gene expression. We profiled gene expression of the tumors of 88 neuroblastoma patients and divided them according to the NB-hypo expression values by K-means clustering. The NB-hypo successfully stratifies the neuroblastoma patients into good and poor prognosis groups. Multivariate Cox analysis revealed that the NB-hypo is a significant independent predictor after controlling for commonly used risk factors including the amplification of MYCN oncogene. NB-hypo increases the resolution of the MYCN stratification by dividing patients with MYCN not amplified tumors in good and poor outcome suggesting that hypoxia is associated with the aggressiveness of neuroblastoma tumor independently from MYCN amplification. Conclusions Our results demonstrate that the NB-hypo is a novel and independent prognostic factor for neuroblastoma and support the view that hypoxia is negatively correlated with tumors' outcome. We show the power of the biology-driven approach in defining hypoxia as a critical molecular program in neuroblastoma and the potential for improvement in the current criteria for risk stratification.

  15. Gene promoters dictate histone occupancy within genes.

    Science.gov (United States)

    Perales, Roberto; Erickson, Benjamin; Zhang, Lian; Kim, Hyunmin; Valiquett, Elan; Bentley, David

    2013-10-01

    Spt6 is a transcriptional elongation factor and histone chaperone that reassembles transcribed chromatin. Genome-wide H3 mapping showed that Spt6 preferentially maintains nucleosomes within the first 500 bases of genes and helps define nucleosome-depleted regions in 5' and 3' flanking sequences. In Spt6-depleted cells, H3 loss at 5' ends correlates with reduced pol II density suggesting enhanced transcription elongation. Consistent with its 'Suppressor of Ty' (Spt) phenotype, Spt6 inactivation caused localized H3 eviction over 1-2 nucleosomes at 5' ends of Ty elements. H3 displacement differed between genes driven by promoters with 'open'/DPN and 'closed'/OPN chromatin conformations with similar pol II densities. More eviction occurred on genes with 'closed' promoters, associated with 'noisy' transcription. Moreover, swapping of 'open' and 'closed' promoters showed that they can specify distinct downstream patterns of histone eviction/deposition. These observations suggest a novel function for promoters in dictating histone dynamics within genes possibly through effects on transcriptional bursting or elongation rate.

  16. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    Science.gov (United States)

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients.

  17. Smart Genes, Stupid Science.

    Science.gov (United States)

    Randerson, Sherman; Mahadeva, Madhu N.

    1983-01-01

    Because many people still believe that specific, identifiable genes dictate the level of human intelligence and that the number/quality of these genes can be evaluated, presents evidence from human genetics (related to nervous system development) to counter this view. Also disputes erroneous assumptions made in "heritability studies" of human…

  18. XLMR genes: update 2000.

    NARCIS (Netherlands)

    Chiurazzi, P.; Hamel, B.C.J.; Neri, G.

    2001-01-01

    This is the sixth edition of the catalogue of XLMR genes, ie X-linked genes whose malfunctioning causes mental retardation. The cloning era is not yet concluded, actually much remains to be done to account for the 202 XLMR conditions listed in this update. Many of these may eventually prove to be du

  19. MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Yasser Abduallah

    2017-01-01

    Full Text Available Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs. Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.

  20. MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach.

    Science.gov (United States)

    Abduallah, Yasser; Turki, Turki; Byron, Kevin; Du, Zongxuan; Cervantes-Cervantes, Miguel; Wang, Jason T L

    2017-01-01

    Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.

  1. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    Science.gov (United States)

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P cells. However, HeLa cells showed a significant (P cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  2. Gene Prediction Using Multinomial Probit Regression with Bayesian Gene Selection

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2004-01-01

    Full Text Available A critical issue for the construction of genetic regulatory networks is the identification of network topology from data. In the context of deterministic and probabilistic Boolean networks, as well as their extension to multilevel quantization, this issue is related to the more general problem of expression prediction in which we want to find small subsets of genes to be used as predictors of target genes. Given some maximum number of predictors to be used, a full search of all possible predictor sets is combinatorially prohibitive except for small predictors sets, and even then, may require supercomputing. Hence, suboptimal approaches to finding predictor sets and network topologies are desirable. This paper considers Bayesian variable selection for prediction using a multinomial probit regression model with data augmentation to turn the multinomial problem into a sequence of smoothing problems. There are multiple regression equations and we want to select the same strongest genes for all regression equations to constitute a target predictor set or, in the context of a genetic network, the dependency set for the target. The probit regressor is approximated as a linear combination of the genes and a Gibbs sampler is employed to find the strongest genes. Numerical techniques to speed up the computation are discussed. After finding the strongest genes, we predict the target gene based on the strongest genes, with the coefficient of determination being used to measure predictor accuracy. Using malignant melanoma microarray data, we compare two predictor models, the estimated probit regressors themselves and the optimal full-logic predictor based on the selected strongest genes, and we compare these to optimal prediction without feature selection.

  3. Gene therapy for obesity: progress and prospects.

    Science.gov (United States)

    Gao, Mingming; Liu, Dexi

    2014-06-01

    Advances in understanding the molecular basis of obesity and obesity-associated diseases have made gene therapy a vital approach in coping with this world-wide epidemic. Gene therapy for obesity aims to increase or decrease gene product in favor of lipolysis and energy expenditure, leading toward fat reduction and loss of body weight. It involves successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain energy homeostasis. Here we summarize progress made in recent years in identifying genes responsible for obesity and present examples where the gene therapy approach has been applied to treating or preventing obesity. Discussion on advantages and limitations of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of obesity and obesity-associated diseases.

  4. Glaucoma Genes and Mechanisms.

    Science.gov (United States)

    Wiggs, Janey L

    2015-01-01

    Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.

  5. A New Approach in Gene Therapy of Glioblastoma Multiforme: Human Olfactory Ensheathing Cells as a Novel Carrier for Suicide Gene Delivery.

    Science.gov (United States)

    Hashemi, Mansoureh; Fallah, Ali; Aghayan, Hamid Reza; Arjmand, Babak; Yazdani, Nasrin; Verdi, Javad; Ghodsi, Seyed Mohammad; Miri, Seyed Mojtaba; Hadjighassem, Mahmoudreza

    2016-10-01

    Olfactory ensheathing cells (OECs) of human olfactory mucosa are a type of glial-like cells that possess good migratory and tropism properties. We believe that neuronal-derived vehicle may have better capability to receive to the site of injury. In addition to, obtaining of such vehicle from the patient reduces risk of unwanted complications. So, in this study, we investigate whether human olfactory ensheathing cells can be used as a cell source for the first time in gene delivery to assay the tumoricidal effect of herpes simplex virus thymidine kinase gene (HSV-tk) on glioblastoma multiforme (GBM). We obtained OECs from superior turbinate of human nasal cavity mucosa, and cell phenotype was confirmed by the expression of cell-specific antigens including low-affinity nerve growth factor receptor (p75 neurotrophin receptor), microtubule-associated protein-2 (MAP2), and S100 calcium binding protein B (S100-beta) using immunocytochemistry. Then, these cells were transduced by lentiviral vector for transient and stable expression of the herpes simplex virus thymidine kinase gene (OEC-tk). The migratory capacity of OEC-tk, their potency to convert prodrug ganciclovir to toxic form, and cytotoxic effect on astrocyte cells were assayed in vitro. The OECs showed fibroblast-like morphology and expressed specific antigens such as p75 neurotrophin receptor, S100-beta, and MAP2. Our results indicated that OECs-tk were able to migrate toward primary cultured human glioblastoma multiforme and affected survival rate of tumor cells according to exposure time and concentration of ganciclovir. Also, OECs-HSV-tk was capable of inducing apoptosis in tumor cells. Our findings suggest that human OECs could employ as a possible tool to transfer anticancer agent in gene therapy of brain tumor.

  6. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  7. Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer

    National Research Council Canada - National Science Library

    Ihsan, Rakhshan; Chauhan, Pradeep Singh; Mishra, Ashwani Kumar; Yadav, Dhirendra Singh; Kaushal, Mishi; Sharma, Jagannath Dev; Zomawia, Eric; Verma, Yogesh; Kapur, Sujala; Saxena, Sunita

    2011-01-01

    ...) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors...

  8. Multiple Analytical Approaches Reveal Distinct Gene-Environment Interactions in Smokers and Non Smokers in Lung Cancer: e29431

    National Research Council Canada - National Science Library

    Rakhshan Ihsan; Pradeep Singh Chauhan; Ashwani Kumar Mishra; Dhirendra Singh Yadav; Mishi Kaushal; Jagannath Dev Sharma; Eric Zomawia; Yogesh Verma; Sujala Kapur; Sunita Saxena

    2011-01-01

    ...) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors...

  9. Bayesian computational approaches for gene regulation studies of bioethanol and biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Charles E [Brown Univ., Providence, RI (United States); Newberg, Lee [Wadsworth Center; McCue, LeeAnn [Pacific Northwest Labs; Thomspon, Williams [Brown University

    2012-03-01

    It has recently become clear that regulatory RNAs play a major role in regulation of gene expression in bacteria. RNA secondary structures play a major role in the function of many regulatory RNAs, and structural features are often key to their interaction with other cellular components. Thus, there has been considerable interest in the prediction of the secondary structures for RNA families. A paper describing our new algorithm, RNAG, to predict consensus secondary structures for unaligned sequences using the blocked Gibbs sampler has been published[1]. This sampling algorithm iteratively samples from the conditional probability distributions: P(Structure | Alignment) and P(Alignment | Structure). Subsequent to publication of the RNAG paper we have employed the technology from RNAG in the development of an RNA motif finding algorithm. To develop and RNA motif finding algorithm, RGibbs, we capitalized on our long experience in DNA motif finding and RNA secondary structure prediction. We applied RGibbs to three data sets from the literature and compared it to existing methods: one for training and two others for tests sets. In both test sets we found RGibbs out performed existing procedures.

  10. Controlling HIV-1: Non-Coding RNA Gene Therapy Approaches to a Functional Cure.

    Science.gov (United States)

    Ahlenstiel, Chantelle L; Suzuki, Kazuo; Marks, Katherine; Symonds, Geoff P; Kelleher, Anthony D

    2015-01-01

    The current treatment strategy for HIV-1 involves prolonged and intensive combined antiretroviral therapy (cART), which successfully suppresses plasma viremia. It has transformed HIV-1 infection into a chronic disease. However, despite the success of cART, a latent form of HIV-1 infection persists as integrated provirus in resting memory CD4(+) T cells. Virus can reactivate from this reservoir upon cessation of treatment, and hence HIV requires lifelong therapy. The reservoir represents a major barrier to eradication. Understanding molecular mechanisms regulating HIV-1 transcription and latency are crucial to develop alternate treatment strategies, which impact upon the reservoir and provide a path toward a "functional cure" in which there is no detectable viremia in the absence of cART. Numerous reports have suggested ncRNAs are involved in regulating viral transcription and latency. This review will discuss the latest developments in ncRNAs, specifically short interfering (si)RNA and short hairpin (sh)RNA, targeting molecular mechanisms of HIV-1 transcription, which may represent potential future therapeutics. It will also briefly address animal models for testing potential therapeutics and current gene therapy clinical trials.

  11. Population size vs. social connectedness - A gene-culture coevolutionary approach to cumulative cultural evolution.

    Science.gov (United States)

    Kobayashi, Yutaka; Ohtsuki, Hisashi; Wakano, Joe Y

    2016-10-01

    It has long been debated if population size is a crucial determinant of the level of culture. While empirical results are mixed, recent theoretical studies suggest that social connectedness between people may be a more important factor than the size of the entire population. These models, however, do not take into account evolutionary responses of learning strategies determining the mode of transmission and innovation and are hence not suitable for predicting the long-term implications of parameters of interest. In the present paper, to address this issue, we provide a gene-culture coevolution model, in which the microscopic learning process of each individual is explicitly described as a continuous-time stochastic process and time allocation to social and individual learning is allowed to evolve. We have found that social connectedness has a larger impact on the equilibrium level of culture than population size especially when connectedness is weak and population size is large. This result, combined with those of previous culture-only models, points to the importance of studying separate effects of population size and internal social structure to better understand spatiotemporal variation in the level of culture. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Therapeutic Approach to Nasopharyngeal Carcinomas by DNAzymes Targeting EBV LMP-1 Gene

    Directory of Open Access Journals (Sweden)

    Lun-Quan Sun

    2010-09-01

    Full Text Available Epstein-Barr virus (EBV-encoded latent membrane protein 1 (LMP1 has been known to have oncogenic properties during latent infection in nasopharyngeal carcinoma (NPC. Genetic manipulation of LMP1 expression may provide a novel strategy for the treatment of NPC. DNAzymes are synthetic, single-stranded DNA catalysts that can be engineered to bind and cleave the target mRNA of a disease-causing gene. By targeting the LMP1 mRNA, we successfully obtained a phosphorothioate-modified ‘‘10–23’’ DNAzyme namely DZ1, through screening a series of DNAzymes. DZ1 could significantly down-regulate the expression of LMP1 in NPC cells, inhibit cell proliferation, metastasis, promote apoptosis and enhance radiosensitivity of NPC through interfering signal pathways which are abnormally activated by LMP1, including NF-κB, AP-1 and STAT3 signal pathways. Together, interfering LMP1 signaling pathway could be a promising strategy to target the malignant phenotypes of NPC.

  13. Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach.

    Science.gov (United States)

    Khadem, Heydar; Kebriaei, Hamed; Veisi, Zahra

    2017-03-06

    Inactivation of alleles in tumor suppressor genes (TSG) is one of the important issues resulting in evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into account the interaction rates of the cells as designing parameters of the system. Different combinations of the equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. In each case, the interaction rates' values are suggested in a way that the equilibrium points of the replicator dynamics are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved that the system doesn't have any undesirable interior equilibrium point as well. Therefore, the system will converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed conditions for interaction rates guarantee that, when a trajectory of the system reaches the boundaries, then it will stay there forever which is a desirable property since the equilibrium points have been already located on the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the elimination of the cancerous cells in different scenarios.

  14. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape

    Science.gov (United States)

    Lebbink, Robert Jan; de Jong, Dorien C. M.; Wolters, Femke; Kruse, Elisabeth M.; van Ham, Petra M.; Wiertz, Emmanuel J. H. J.; Nijhuis, Monique

    2017-01-01

    HIV presents one of the highest evolutionary rates ever detected and combination antiretroviral therapy is needed to overcome the plasticity of the virus population and control viral replication. Conventional treatments lack the ability to clear the latent reservoir, which remains the major obstacle towards a cure. Novel strategies, such as CRISPR/Cas9 gRNA-based genome-editing, can permanently disrupt the HIV genome. However, HIV genome-editing may accelerate viral escape, questioning the feasibility of the approach. Here, we demonstrate that CRISPR/Cas9 targeting of single HIV loci, only partially inhibits HIV replication and facilitates rapid viral escape at the target site. A combinatorial approach of two strong gRNAs targeting different regions of the HIV genome can completely abrogate viral replication and prevent viral escape. Our data shows that the accelerating effect of gene-editing on viral escape can be overcome and as such gene-editing may provide a future alternative for control of HIV-infection. PMID:28176813

  15. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  16. Unintended Changes in Genetically Modified Rice Expressing the Lysine-Rich Fusion Protein Gene Revealed by a Proteomics Approach

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-xiang; TANG Tang; LIU Fu-xia; LU Chang-li; HU Xiao-lan; JI Li-lian; LIU Qiao-quan

    2013-01-01

    Development of new technologies for evaluating genetically modiifed (GM) crops has revealed that there are unintended insertions and expression changes in GM crops. Proifling techniques are non-targeted approaches and are capable of detecting more unintended changes in GM crops. Here, we report the application of a comparative proteomic approach to investigate the protein proifle differences between a GM rice line, which has a lysine-rich protein gene, and its non-transgenic parental line. Proteome analysis by two-dimensional gel electrophoresis (2-DE) and mass spectrum analysis of the seeds identiifed 22 differentially expressed protein spots. Apart from a number of glutelins that were detected as targeted proteins in the GM line, the majority of the other changed proteins were involved in carbohydrate metabolism, protein synthesis and stress responses. These results indicated that the altered proteins were not associated with plant allergens or toxicity.

  17. Gene set analysis using variance component tests

    Science.gov (United States)

    2013-01-01

    Background Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. Results We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). Conclusion We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data. PMID:23806107

  18. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...... to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how...

  19. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks.

    Directory of Open Access Journals (Sweden)

    Dimitrios Iliopoulos

    Full Text Available BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103 and proteins (PPARA, BMP7, IL1B to be highly correlated with Body Mass Index (BMI. Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic

  20. Experimental estimation of mutation rates in a wheat population with a gene genealogy approach.

    Science.gov (United States)

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-08-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 x 10(-3) per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues.

  1. Recent progresses in gene delivery-based bone tissue engineering.

    Science.gov (United States)

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.

  2. Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection

    NARCIS (Netherlands)

    Kulkarni, A.D.; Caipang, C.M.A.; Kiron, V.; Rombout, J.H.W.M.; Fernandes, J.M.O.; Brinchmann, M.

    2014-01-01

    In the present study RNA interference was used to elucidate the connection between two endogenous genes [Penaeus monodon Rab7 (PmRab7) or P. monodon inhibitor of apoptosis (PmIAP)], and selected immune/apoptosis-related genes in orally ‘vaccinated’ shrimp after white spot syndrome virus (WSSV) infec

  3. Gene functional similarity search tool (GFSST

    Directory of Open Access Journals (Sweden)

    Russo James J

    2006-03-01

    Full Text Available Abstract Background With the completion of the genome sequences of human, mouse, and other species and the advent of high throughput functional genomic research technologies such as biomicroarray chips, more and more genes and their products have been discovered and their functions have begun to be understood. Increasing amounts of data about genes, gene products and their functions have been stored in databases. To facilitate selection of candidate genes for gene-disease research, genetic association studies, biomarker and drug target selection, and animal models of human diseases, it is essential to have search engines that can retrieve genes by their functions from proteome databases. In recent years, the development of Gene Ontology (GO has established structured, controlled vocabularies describing gene functions, which makes it possible to develop novel tools to search genes by functional similarity. Results By using a statistical model to measure the functional similarity of genes based on the Gene Ontology directed acyclic graph, we developed a novel Gene Functional Similarity Search Tool (GFSST to identify genes with related functions from annotated proteome databases. This search engine lets users design their search targets by gene functions. Conclusion An implementation of GFSST which works on the UniProt (Universal Protein Resource for the human and mouse proteomes is available at GFSST Web Server. GFSST provides functions not only for similar gene retrieval but also for gene search by one or more GO terms. This represents a powerful new approach for selecting similar genes and gene products from proteome databases according to their functions.

  4. Suppression subtractive hybridization (SSH) combined with bioinformatics method: an integrated functional annotation approach for analysis of differentially expressed immune-genes in insects.

    Science.gov (United States)

    Badapanda, Chandan

    2013-01-01

    The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms.

  5. Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: a cnidarian case study.

    Science.gov (United States)

    Rodriguez-Lanetty, Mauricio; Phillips, Wendy S; Dove, Sophie; Hoegh-Guldberg, Ove; Weis, Virginia M

    2008-04-24

    Research in gene function using Quantitative Reverse Transcription PCR (q-RT-PCR) and microarray approaches are emerging and just about to explode in the field of coral and cnidarian biology. These approaches are showing the great potential to significantly advance our understanding of how corals respond to abiotic and biotic stresses, and how host cnidarians/dinoflagellates symbioses are maintained and regulated. With these genomic advances, however, new analytical challenges are also emerging, such as the normalization of gene expression data derived from q-RT-PCR. In this study, an effective analytical method is introduced to identify candidate housekeeping genes (HKG) from a sea anemone (Anthopleura elegantissima) cDNA microarray platform that can be used as internal control genes to normalize q-RT-PCR gene expression data. It is shown that the identified HKGs were stable among the experimental conditions tested in this study. The three most stables genes identified, in term of gene expression, were beta-actin, ribosomal protein L12, and a Poly(a) binding protein. The applications of these HKGs in other cnidarian systems are further discussed.

  6. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  7. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Ferreira

    Full Text Available Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus. Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.

  8. A multi-resource data integration approach: Identification of candidate genes regulating cell proliferation during neocortical development

    Directory of Open Access Journals (Sweden)

    Cynthia M Vied

    2014-08-01

    Full Text Available Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2 with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5. We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ at 8-9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2 and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.

  9. Gene therapy for stroke: 2006 overview.

    Science.gov (United States)

    Chu, Yi; Miller, Jordan D; Heistad, Donald D

    2007-03-01

    Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.

  10. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  11. "Bad genes" & criminal responsibility.

    Science.gov (United States)

    González-Tapia, María Isabel; Obsuth, Ingrid

    2015-01-01

    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts.

  12. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  13. Gene therapy in ophthalmology.

    Science.gov (United States)

    Uthra, Satagopan; Kumaramanickavel, Govindasamy

    2009-09-01

    It has been more than a year since ophthalmologists and scientists under Dr. Robin Ali's team at the Moorsfield Eye Hospital and the Institute of Ophthalmology, University College London, successfully treated patients with a severely blinding disease, Leber's congenital amaurosis (LCA) using gene therapy. This success does not look to be transient, and this achievement in gene replacement therapy clinical trial for LCA has instilled hope in numerous families with patients suffering from this and similar retinal degenerative diseases, for whom restoration of lost vision has remained a distant dream so far. The encouragement that this success has given is expected to also lead to start of clinical trials for other blinding ocular diseases for which gene therapy experiments at the laboratory and animal levels have been successful. This article reviews the various studies that have led to the understanding of gene therapy outcomes in human ocular diseases and attempts to provide a brief sketch of successful clinical trials.

  14. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  15. Gene based therapies for kidney regeneration.

    Science.gov (United States)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  16. Thesaurus-based disambiguation of gene symbols

    Directory of Open Access Journals (Sweden)

    Wain Hester M

    2005-06-01

    Full Text Available Abstract Background Massive text mining of the biological literature holds great promise of relating disparate information and discovering new knowledge. However, disambiguation of gene symbols is a major bottleneck. Results We developed a simple thesaurus-based disambiguation algorithm that can operate with very little training data. The thesaurus comprises the information from five human genetic databases and MeSH. The extent of the homonym problem for human gene symbols is shown to be substantial (33% of the genes in our combined thesaurus had one or more ambiguous symbols, not only because one symbol can refer to multiple genes, but also because a gene symbol can have many non-gene meanings. A test set of 52,529 Medline abstracts, containing 690 ambiguous human gene symbols taken from OMIM, was automatically generated. Overall accuracy of the disambiguation algorithm was up to 92.7% on the test set. Conclusion The ambiguity of human gene symbols is substantial, not only because one symbol may denote multiple genes but particularly because many symbols have other, non-gene meanings. The proposed disambiguation approach resolves most ambiguities in our test set with high accuracy, including the important gene/not a gene decisions. The algorithm is fast and scalable, enabling gene-symbol disambiguation in massive text mining applications.

  17. Recent advances in gene therapy for thalassemia

    Directory of Open Access Journals (Sweden)

    J V Raja

    2012-01-01

    Full Text Available Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  18. Recent advances in gene therapy for thalassemia.

    Science.gov (United States)

    Raja, J V; Rachchh, M A; Gokani, R H

    2012-07-01

    Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  19. Evidence for homosexuality gene

    Energy Technology Data Exchange (ETDEWEB)

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  20. Gene-gene, gene-environment, gene-nutrient interactionsand single nucleotide polymorphisms of inflammatorycytokines

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Inflammation plays a significant role in the etiologyof type 2 diabetes mellitus (T2DM). The rise in thepro-inflammatory cytokines is the essential step inglucotoxicity and lipotoxicity induced mitochondrialinjury, oxidative stress and beta cell apoptosis inT2DM. Among the recognized markers are interleukin(IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha(TNF-α), C-reactive protein, resistin, adiponectin, tissueplasminogen activator, fibrinogen and heptoglobins.Diabetes mellitus has firm genetic and very strongenvironmental influence; exhibiting a polygenic modeof inheritance. Many single nucleotide polymorphisms(SNPs) in various genes including those of pro and antiinflammatorycytokines have been reported as a riskfor T2DM. Not all the SNPs have been confirmed byunifying results in different studies and wide variationshave been reported in various ethnic groups. Theinter-ethnic variations can be explained by the factthat gene expression may be regulated by gene-gene,gene-environment and gene-nutrient interactions. Thisreview highlights the impact of these interactions ondetermining the role of single nucleotide polymorphismof IL-6, TNF-α, resistin and adiponectin in pathogenesisof T2DM.

  1. Algorithmic approach for methyl-CpG binding protein 2 (MECP2) gene testing in patients with neurodevelopmental disabilities.

    Science.gov (United States)

    Sanmann, Jennifer N; Schaefer, G Bradley; Buehler, Bruce A; Sanger, Warren G

    2012-03-01

    Methyl-CpG binding protein 2 gene (MECP2) testing is indicated for patients with numerous clinical presentations, including Rett syndrome (classic and atypical), unexplained neonatal encephalopathy, Angelman syndrome, nonspecific mental retardation, autism (females), and an X-linked family history of developmental delay. Because of this complexity, a gender-specific approach for comprehensive MECP2 gene testing is described. Briefly, sequencing of exons 1 to 4 of MECP2 is recommended for patients with a Rett syndrome phenotype, unexplained neonatal encephalopathy, an Angelman syndrome phenotype (with negative 15q11-13 analysis), nonspecific mental retardation, or autism (females). Additional testing for large-scale MECP2 deletions is recommended for patients with Rett syndrome or Angelman syndrome phenotypes (with negative 15q11-13 analysis) following negative sequencing. Alternatively, testing for large-scale MECP2 duplications is recommended for males presenting with mental retardation, an X-linked family history of developmental delay, and a significant proportion of previously described clinical features (particularly a history of recurrent respiratory infections).

  2. Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach.

    Science.gov (United States)

    Ambardar, Sheetal; Sangwan, Naseer; Manjula, A; Rajendhran, J; Gunasekaran, P; Lal, Rup; Vakhlu, Jyoti

    2014-10-01

    Saffron (Crocus sativus L), an autumn-flowering perennial sterile plant, reproduces vegetatively by underground corms. Saffron has biannual corm-root cycle that makes it an interesting candidate to study microbial dynamics in its rhizosphere and cormosphere (area under influence of corm). Culture independent 16S rRNA gene metagenomic study of rhizosphere and cormosphere of Saffron during flowering stage revealed presence of 22 genera but none of the genus was common in all the three samples. Bulk soil bacterial community was represented by 13 genera with Acidobacteria being dominant. In rhizosphere, out of eight different genera identified, Pseudomonas was the most dominant genus. Cormosphere bacteria comprised of six different genera, dominated by the genus Pantoea. This study revealed that the bacterial composition of all the three samples is significantly different (P < 0.05) from each other. This is the first report on the identification of bacteria associated with rhizosphere, cormosphere and bulk soil of Saffron, using cultivation independent 16S rRNA gene targeted metagenomic approach.

  3. Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express exogenous genes in human cells.

    Science.gov (United States)

    Millán-Chiu, Blanca; Camacho, Giselle; Varela-Echavarría, Alfredo; Tamariz, Elisa; Fernández, Francisco; López-Marín, Luz M; Loske, Achim M

    2014-07-01

    Cationic lipid/DNA complexes (lipoplexes) represent a powerful tool for cell transfection; however, their use is still limited by important concerns, including toxicity and poor internalization into deep tissues. In this work, we investigated the use of shock wave-induced acoustic cavitation in vitro for the transfection of lipoplexes in human embryo kidney 293 cells. We selected shock waves with the ability to internalize 10-kDa fluorescein isothiocyanate-dextran into cells while maintaining survival rates above 50%. Cell transfection was tested using the green fluorescent protein-encoding plasmid pCX::GFPGPI2. Confocal microscopy and fluorescence-assisted cell sorting analyses revealed successful transfection after treatments ranging from 1 to 3 min using 60 to 180 shock waves at peak amplitudes of 12.3 ± 1.5 MPa. Interestingly, the combination of shock waves and lipoplexes induced a 3.1- and 3.8-fold increase in the expression of the reporter gene compared with the use of lipoplexes or shock waves alone, respectively. These results indicate that cationic DNA assembly and shock waves act in a synergistic manner to promote transfection of human cells, revealing a potential approach for non-invasive site-specific gene therapy. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. A gene to organism approach--assessing the impact of environmental pollution in eelpout (Zoarces viviparus) females and larvae.

    Science.gov (United States)

    Asker, Noomi; Carney Almroth, Bethanie; Albertsson, Eva; Coltellaro, Mariateresa; Bignell, John Paul; Hanson, Niklas; Scarcelli, Vittoria; Fagerholm, Björn; Parkkonen, Jari; Wijkmark, Emma; Frenzilli, Giada; Förlin, Lars; Sturve, Joachim

    2015-07-01

    A broad biomarker approach was applied to study the effects of marine pollution along the Swedish west coast using the teleost eelpout (Zoarces viviparus) as the sentinel species. Measurements were performed on different biological levels, from the molecular to the organismal, including measurements of messenger RNA (mRNA), proteins, cellular and tissue changes, and reproductive success. Results revealed that eelpout captured in Stenungsund had significantly higher hepatic ethoxyresorufin O-deethylase activity, high levels of both cytochrome P4501A and diablo homolog mRNA, and high prevalence of dead larvae and nuclear damage in erythrocytes. Eelpout collected in Göteborg harbor displayed extensive macrovesicular steatosis, whereby the majority of hepatocytes were affected throughout the liver, which could indicate an effect on lipid metabolism. Results also indicate that eelpouts collected at polluted sites might have an affected immune system, with lower mRNA expression of genes involved in the innate immune system and a higher number of lymphocytes. Biomarker assessment also was performed on livers dissected from unborn eelpout larvae collected from the ovary of the females. No significant differences were noted, which might indicate that the larvae to some extent are protected from effects of environmental pollutants. In conclusion, usage of the selected set of biological markers, covering responses from gene to organism, has demonstrated site-specific biomarker patterns that provided a broad and comprehensive picture of the impact of environmental stressors.

  5. The promoter competition assay (PCA): a new approach to identify motifs involved in the transcriptional activity of reporter genes.

    Science.gov (United States)

    Hube, Florent; Myal, Yvonne; Leygue, Etienne

    2006-05-01

    Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.

  6. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  7. Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-Valued Iterative Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Kwadwo S. Agyepong

    2013-01-01

    Full Text Available Time-course expression profiles and methods for spectrum analysis have been applied for detecting transcriptional periodicities, which are valuable patterns to unravel genes associated with cell cycle and circadian rhythm regulation. However, most of the proposed methods suffer from restrictions and large false positives to a certain extent. Additionally, in some experiments, arbitrarily irregular sampling times as well as the presence of high noise and small sample sizes make accurate detection a challenging task. A novel scheme for detecting periodicities in time-course expression data is proposed, in which a real-valued iterative adaptive approach (RIAA, originally proposed for signal processing, is applied for periodogram estimation. The inferred spectrum is then analyzed using Fisher’s hypothesis test. With a proper -value threshold, periodic genes can be detected. A periodic signal, two nonperiodic signals, and four sampling strategies were considered in the simulations, including both bursts and drops. In addition, two yeast real datasets were applied for validation. The simulations and real data analysis reveal that RIAA can perform competitively with the existing algorithms. The advantage of RIAA is manifested when the expression data are highly irregularly sampled, and when the number of cycles covered by the sampling time points is very reduced.

  8. A simplified approach to improve the efficiency and safety of ex vivo hematopoietic gene therapy in fanconi anemia patients.

    Science.gov (United States)

    Jacome, A; Navarro, S; Casado, J A; Rio, P; Madero, L; Estella, J; Sevilla, J; Badell, I; Ortega, J J; Olivé, T; Hanenberg, H; Segovia, J C; Bueren, J A

    2006-02-01

    Fanconi anemia (FA) is an inherited DNA repair disorder characterized by genetic instability of cells lacking a functional FA/BRCA pathway. Previous studies have shown that in vitro stimulation of bone marrow cells (BMCs) from FA mice promotes apoptosis, reduces the reconstitution ability of the stem cells, and induces myelodysplasia and myeloid leukemia upon reinfusion of the cells. This suggests the convenience of adapting standard protocols of gene therapy to FA. Here we show that the reserve of BM progenitors in FA patients is generally below 20% of normal values. Because this reduced reserve could activate the cycling of BM progenitors, we developed a simplified protocol to transduce BMCs from FA patients with gammaretroviral vectors. We demonstrate that a short in vitro manipulation (12-24 hr) of fresh mononuclear BMCs is sufficient to transduce 42% of hematopoietic progenitors from FA-A patients, in the absence of in vitro prestimulation. When FANCA-expressing vectors were used, this simple procedure reversed the phenotype of the BM progenitors from these patients. We propose that our approach will be more efficient and safer compared with standard gene therapy protocols for FA.

  9. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Fina A S Kurreeman

    2007-09-01

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA is a chronic autoimmune disorder affecting approximately 1% of the population. The disease results from the interplay between an individual's genetic background and unknown environmental triggers. Although human leukocyte antigens (HLAs account for approximately 30% of the heritable risk, the identities of non-HLA genes explaining the remainder of the genetic component are largely unknown. Based on functional data in mice, we hypothesized that the immune-related genes complement component 5 (C5 and/or TNF receptor-associated factor 1 (TRAF1, located on Chromosome 9q33-34, would represent relevant candidate genes for RA. We therefore aimed to investigate whether this locus would play a role in RA. METHODS AND FINDINGS: We performed a multitiered case-control study using 40 single-nucleotide polymorphisms (SNPs from the TRAF1 and C5 (TRAF1/C5 region in a set of 290 RA patients and 254 unaffected participants (controls of Dutch origin. Stepwise replication of significant SNPs was performed in three independent sample sets from the Netherlands (ncases/controls = 454/270, Sweden (ncases/controls = 1,500/1,000 and US (ncases/controls = 475/475. We observed a significant association (p < 0.05 of SNPs located in a haplotype block that encompasses a 65 kb region including the 3' end of C5 as well as TRAF1. A sliding window analysis revealed an association peak at an intergenic region located approximately 10 kb from both C5 and TRAF1. This peak, defined by SNP14/rs10818488, was confirmed in a total of 2,719 RA patients and 1,999 controls (odds ratiocommon = 1.28, 95% confidence interval 1.17-1.39, pcombined = 1.40 x 10(-8 with a population-attributable risk of 6.1%. The A (minor susceptibility allele of this SNP also significantly correlates with increased disease progression as determined by radiographic damage over time in RA patients (p = 0.008. CONCLUSIONS: Using a candidate-gene approach we have identified a

  10. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marc Jung

    Full Text Available It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs and human embryonal carcinoma cells (ECs if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven expression modules pertinent for self-renewal and differentiation of embryonic stem cells and induced pluripotent stem cells.We initially identified putative direct downstream targets of OCT4 by employing CHIP-on-chip analysis. A comparison of three peak analysis programs revealed a refined list of OCT4 targets in the human EC cell line NCCIT, this list was then compared to previously published OCT4 CHIP-on-chip datasets derived from both ES and EC cells. We have verified an enriched POU-motif, discovered by a de novo approach, thus enabling us to define six distinct modules of OCT4 binding and regulation of its target genes.A selection of these targets has been validated, like NANOG, which harbours the evolutionarily conserved OCT4-SOX2 binding motif within its proximal promoter. Other validated targets, which do not harbour the classical HMG motif are USP44 and GADD45G, a key regulator of the cell cycle. Over-expression of GADD45G in NCCIT cells resulted in an enrichment and up-regulation of genes associated with the cell cycle (CDKN1B, CDKN1C, CDK6 and MAPK4 and developmental processes (BMP4, HAND1, EOMES, ID2, GATA4, GATA5, ISL1 and MSX1. A comparison of positively regulated OCT4 targets common to EC and ES cells identified genes such as NANOG, PHC1, USP44, SOX2, PHF17 and OCT4, thus further confirming their universal role in maintaining self-renewal in both cell types. Finally we have created a user-friendly database (http://biit.cs.ut.ee/escd/, integrating all OCT4 and stem cell related datasets in both human and mouse ES and EC cells.In the current

  11. A comprehensive approach to identify reliable reference gene candidates to investigate the link between alcoholism and endocrinology in Sprague-Dawley rats.

    Science.gov (United States)

    Taki, Faten A; Abdel-Rahman, Abdel A; Zhang, Baohong

    2014-01-01

    Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO), ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays.

  12. A comprehensive approach to identify reliable reference gene candidates to investigate the link between alcoholism and endocrinology in Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Faten A Taki

    Full Text Available Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2 is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR. The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO, ovariectomized rats in the absence (OVX or presence of E2 (OVXE2. These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays.

  13. Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-02-01

    Full Text Available A gene of interest can be efficiently modified using transcription activator-like effector nucleases (TALENs (Christian et al., 2010;Li et al., 2011. However, if a target gene is essential for development, growth and fertility, use of TALENs with high mutagenic activity in F0 frogs could result in developmental disorders or sterility, which would reduce the number of F1 progeny and make F1 phenotypical analysis difficult. We used the 3′ untranslated region of DEADSouth gene (DS-3′ of Xenopus tropicalis to solve this problem, because the addition of the DS-3′ to mRNA is known to induce primordial germ cell (PGC-specific expression and reduce the stability in somatic cells of mRNA in Xenopus laevis. At first, we inserted the X. tropicalis DS-3′ downstream of the EGFP termination codon and confirmed that the EGFP expression was specifically detected in PGCs for three weeks. Therefore, we inserted the DS-3′ downstream of the termination codon of the TALEN coding sequence. The tyrosinase gene was selected as the target gene for TALEN because the bi-allelic mutation of this gene is easily discernible by the albino phenotype. When fertilized eggs were microinjected with TALEN mRNAs fused to the DS-3′, their sperm and oocytes had a high rate (84–100% of target-gene modification in contrast to the lower rate (0–45% of nucleotide alteration observed in somatic cells.

  14. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette

    2001-01-01

    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  15. Liposomes as a gene delivery system

    Directory of Open Access Journals (Sweden)

    C. Ropert

    1999-02-01

    Full Text Available Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.

  16. Novel susceptibility genes in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Colin Noble; Elaine Nimmo; Daniel Gaya; Richard K Russell; Jack Satsangi

    2006-01-01

    The inflammatory bowel disease, Crohn's disease and ulcerative colitis, are polygenic disorders with important environmental interactions. To date, the most widely adopted approach to identifying susceptibility genes in complex diseases has involved genome wide linkage studies followed by studies of positional candidate genes in loci of interest. This review encompasses data from studies into novel candidate genes implicated in the pathogenesis of inflammatory bowel disease. Novel techniques to identify candidate genes-genome wide association studies, yeast-two hybrid screening, microarray gene expression studies and proteomic profiling,are also reviewed and their potential role in unravelling the pathogenesis of inflammatory bowel disease are discussed.

  17. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  18. The Mycoplasma hominis vaa gene displays a mosaic gene structure

    DEFF Research Database (Denmark)

    Boesen, Thomas; Emmersen, Jeppe M. G.; Jensen, Lise T.;

    1998-01-01

    Mycoplasma hominis contains a variable adherence-associated (vaa) gene. To classify variants of the vaa genes, we examined 42 M. hominis isolated by PCR, DNA sequencing and immunoblotting. This uncovered the existence of five gene categories. Comparison of the gene types revealed a modular compos...

  19. An overview of gene therapy in head and neck cancer.

    Science.gov (United States)

    Bali, Amit; Bali, Deepika; Sharma, Ashutosh

    2013-07-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  20. Approaches to systems biology. Four methods to study single-cell gene expression, cell motility, antibody reactivity, and respiratory metabolism

    DEFF Research Database (Denmark)

    Hagedorn, Peter

    : Transcript profiling of one cell type extracted from a complex tissue containing several cell types; observation and recording of cell motility; measurement of antibody reactivities using microarrays; and invivo measurement of free and bound NADH in mitochondria. Detailed statistical analysis of the data......To understand how complex systems, such as cells, function, comprehensive Measurements of their constituent parts must be made. This can be achieved by combining methods that are each optimized to measure specific parts of the system. Four such methods,each covering a different area, are presented...... from such measurements allows models of the system to be developed and tested. For each of the methods, such analysis and modelling approaches have beenapplied and are presented: Differentially regulated genes are identified and classified according to function; cell-specfic motility models...

  1. MicroRNAs: association with radioresistant and potential uses of natural remedies as green gene therapeutic approaches.

    Science.gov (United States)

    Jothy, Subramanion L; Chen, Yeng; Vijayarathna, Soundararajan; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2015-01-01

    Radiotherapy plays an essential primary role in cancer patients. Regardless of its significant advances in treatment options, tumor recurrence and radio-resistance in cancer cells still occur in a high percentage of patients. Furthermore, the over expression of miRNAs accompanies the development of radio-resistant cancer cells. Consequently, miRNAs might serve as therapeutic targets for the treatment of radio-resistance in cancer cells. The findings of the current research also signify that the use of a natural anti-miRNA substance could inhibit specific miRNAs, and, concurrently, these natural remedies could exhibit radioprotective activity against the healthy cells during radiotherapy. Therefore, in this review, we have reported the association of miRNAs with radio-resistance and the potential uses of natural remedies as green gene therapeutic approaches, as well as radioprotectors against the adverse effects of irradiation on healthy cells during radiotherapy.

  2. Hox genes and study of Hox genes in crustacean

    Institute of Scientific and Technical Information of China (English)

    HOU Lin; CHEN Zhijuan; XU Mingyu; LIN Shengguo; WANG Lu

    2004-01-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla.The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  3. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  4. Cheminformatics Approach to Gene Silencing: Z Descriptors of Nucleotides and SVM Regression Afford Predictive Models for siRNA Potency.

    Science.gov (United States)

    Ebalunode, Jerry O; Zheng, Weifan

    2010-12-17

    Short interfering RNA mediated gene silencing technology has been through tremendous development over the past decade, and has found broad applications in both basic biomedical research and pharmaceutical development. Critical to the effective use of this technology is the development of reliable algorithms to predict the potency and selectivity of siRNAs under study. Existing algorithms are mostly built upon sequence information of siRNAs and then employ statistical pattern recognition or machine learning techniques to derive rules or models. However, sequence-based features have limited ability to characterize siRNAs, especially chemically modified ones. In this study, we proposed a cheminformatics approach to describe siRNAs. Principal component scores (z1, z2, z3, z4) have been derived for each of the 5 nucleotides (A, U, G, C, T) from the descriptor matrix computed by the MOE program. Descriptors of a given siRNA sequence are simply the concatenation of the z values of its composing nucleotides. Thus, for each of the 2431 siRNA sequences in the Huesken dataset, 76 descriptors were generated for the 19-NT representation, and 84 descriptors were generated for the 21-NT representation of siRNAs. Support Vector Machine regression (SVMR) was employed to develop predictive models. In all cases, the models achieved Pearson correlation coefficient r and R about 0.84 and 0.65 for the training sets and test sets, respectively. A minimum of 25 % of the whole dataset was needed to obtain predictive models that could accurately predict 75 % of the remaining siRNAs. Thus, for the first time, a cheminformatics approach has been developed to successfully model the structure-potency relationship in siRNA-based gene silencing data, which has laid a solid foundation for quantitative modeling of chemically modified siRNAs.

  5. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  6. Newer gene editing technologies toward HIV gene therapy.

    Science.gov (United States)

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  7. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  8. Entrez Gene: gene-centered information at NCBI

    OpenAIRE

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2006-01-01

    Entrez Gene () is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases wit...

  9. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  10. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2

    Science.gov (United States)

    2012-01-01

    Background Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. Results We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Conclusions Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B. PMID:23253381

  11. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2

    Directory of Open Access Journals (Sweden)

    Kim Jaemin

    2012-12-01

    Full Text Available Abstract Background Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa, may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. Results We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05 and type 2 diabetes (P = 0.00578. Through the estimation of variance of genetic component (heritability for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479 between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15 was most important in explaining the phenotypic variance for obesity. Conclusions Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.

  12. Gene finding in genetically isolated populations

    NARCIS (Netherlands)

    P. Heutink (Peter); B.A. Oostra (Ben)

    2002-01-01

    textabstractThe struggle to identify susceptibility genes for complex disorders has stimulated geneticists to develop new approaches. One approach that has gained considerable interest is to focus on genetically isolated populations rather than on the general population. There rema

  13. Leader genes in osteogenesis: a theoretical study.

    Science.gov (United States)

    Orlando, Bruno; Giacomelli, Luca; Ricci, Massimiliano; Barone, Antonio; Covani, Ugo

    2013-01-01

    Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis.

  14. Are Cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini.

    Science.gov (United States)

    Géant, Elodie; Mouchel-Vielh, Emmanuèle; Coutanceau, Jean-Pierre; Ozouf-Costaz, Catherine; Deutsch, Jean S

    2006-01-01

    The "hopeful monster" has haunted evolutionary thinking since Richard Goldschmidt coined the phrase in 1933. The phrase is directly related to genetic mechanisms in development and evolution. Cirripedes are peculiar crustaceans in that they all lack abdomens as adults. In a previous study aimed at describing the repertoire of Hox genes of the Cirripedia, we failed to isolate the abdominal-A gene in three species representative of all three cirripede orders. To address the question of whether the cirripede ancestor could have been a "hopeful monster" arising from