WorldWideScience

Sample records for gender-specific proteomic profiling

  1. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    Full Text Available Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf, L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm genome. Not surprisingly, the majority (160/274 of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase, MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.

  2. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Filip Simunovic

    Full Text Available BACKGROUND: Epidemiological data suggest that the male gender is one of the risks factors for the development of Parkinson Disease (PD. Also, differences in the clinical manifestation and the course of PD have been observed between males and females. However, little is known about the molecular aspects underlying gender-specificity in PD. To address this issue, we determined the gene expression profiles of male and female dopamine (DA neurons in sporadic PD. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed Affymetrix-based microarrays on laser microdissected DA neurons from postmortem brains of sporadic PD patients and age-matched controls across genders. Pathway enrichment demonstrated that major cellular pathways involved in PD pathogenesis showed different patterns of deregulation between males and females with more prominent downregulation of genes related to oxidative phosphorylation, apoptosis, synaptic transmission and transmission of nerve impulse in the male population. In addition, we found upregulation of gene products for metabolic processes and mitochondrial energy consumption in the age-matched male control neurons. On the single cell level, selected data validation using quantitative Real-Time (qRT-PCR was consistent with microarray raw data and supported some of the observations from data analysis. CONCLUSIONS/SIGNIFICANCE: On the molecular level, our results provide evidence that the expression profiles of aged normal and PD midbrain DA neurons are gender-specific. The observed differences in the expression profiles suggest a disease bias of the male gender, which could be in concordance with clinical observations that the male gender represents a risk factor for sporadic PD. Validation of gene expression by qRT-PCR supported the microarray results, but also pointed to several caveats involved in data interpretation.

  3. An integrated proteomic and metabolomic study on the gender-specific responses of mussels Mytilus galloprovincialis to tetrabromobisphenol A (TBBPA).

    Science.gov (United States)

    Ji, Chenglong; Li, Fei; Wang, Qing; Zhao, Jianmin; Sun, Zuodeng; Wu, Huifeng

    2016-02-01

    Tetrabromobisphenol A (TBBPA), accounting for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China, is of great concern due to its diverse toxicities. In this study, we focused on the gender-specific responses of TBBPA in mussel Mytilus galloprovincialis using an integrated proteomic and metabolomic approach. After exposure of TBBPA (10 µg L(-1)) for one month, a total of 9 metabolites and 67 proteins were altered in mussel gills from exposed group. The significant changes of metabolites in female mussel gills from exposed group exhibited the disturbances in energy metabolism and osmotic regulation, while in male samples only be found the variation of metabolites related to osmotic regulation. iTRAQ-based proteomic analysis showed biological differences between male and female mussel gills from solvent control group. The higher levels of proteins related to primary and energy metabolism and defense mechanisms in male mussel gills meant a greater anti-stress capability of male mussels. Further analysis revealed that TBBPA exposure affected multiple biological processes consisting of production and development, material and energy metabolism, signal transduction, gene expression, defense mechanisms and apoptosis in both male and female mussels with different mechanisms. Specially, the responsive proteins of TBBPA in male mussels signified higher tolerance limits than those in female individuals, which was consistent with the biological differences between male and female mussel gills from solvent control group. This work suggested that the gender differences should be considered in ecotoxicology.

  4. iTRAQ-based quantitative proteomic analyses on the gender-specific responses in mussel Mytilus galloprovincialis to tetrabromobisphenol A.

    Science.gov (United States)

    Ji, Chenglong; Wu, Huifeng; Wei, Lei; Zhao, Jianmin

    2014-12-01

    Tetrabromobisphenol A (TBBPA) accounts for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China and is the most widely used BFR in industrial products. It can induce diverse toxicities including hepatotoxicity, nephrotoxicity, neurotoxicity and endocrine disrupting effects in mammalian and fish models. In this work, we applied iTRAQ-based proteomics to investigate the gender-specific responses in mussel Mytilus galloprovincialis to TBBPA. Thirty-one proteins were differentially expressed in hepatopancreas between male and female mussels, which clearly indicated the biological differences between male and female mussels at the protein level. After exposure of TBBPA (18.4 nmol/L) for one month, a total of 60 proteins were differentially expressed in response to the TBBPA treatment in mussel hepatopancreas, among which 33 and 29 proteins were significantly altered in TBBPA-treated male and female mussel samples, respectively. Only two of the 60 proteins were commonly altered in both male and female mussel samples exposed to TBBPA. Based on KEGG analysis, these differentially expressed proteins of TBBPA-induced effects were assigned to several groups, including cytoskeleton, reproduction and development, metabolism, signal transduction, gene expression, stress response and apoptosis. Overall, results indicated that TBBPA exposure could induce apoptosis, oxidative and immune stresses and disruption in energy, protein and lipid metabolisms in both male and female mussels with different mechanisms. This work suggested that the gender differences should be considered in ecotoxicoproteomics.

  5. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  6. Urine proteomic profiling of uranium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Gaillard, J.C.; Sage, N. [CEA, DSV, IBEB, SBTN, Laboratoire de Biochimie des Systemes Perturbes (LBSP), Bagnols-sur-Ceze, F-30207 (France); Berenguer, F. [CEA, DSV, IBEB, SBTN, Laboratoire d' Etude des Proteines Cibles (LEPC), Bagnols-sur-Ceze, F-30207 (France); Quemeneur, E. [CEA, DSV, IBEB, SBTN, Bagnols-sur-Ceze, F-30207 (France)

    2009-07-01

    Uranium is used in many chemical forms in civilian and military industries and is a known nephro-toxicant. A key issue in monitoring occupational exposure is to be able to evaluate the potential damage to the body, particularly the kidney. In this study we used innovative proteomic techniques to analyse urinary protein modulation associated with acute uranium exposure in rats. Given that the rat urinary proteome has rarely been studied, we first identified 102 different proteins in normal urine, expanding the current proteome data set for this central animal in toxicology. Rats were exposed intravenously to uranyl nitrate at 2.5 and 5 mg/kg and samples were collected 24 h later. Using two complementary proteomic methods, a classic 2-DE approach and semi-quantitative SDS-PAGE-LC-MS/MS, 14 modulated proteins (7 with increased levels and 7 with decreased levels) were identified in urine after uranium exposure. Modulation of three of them was confirmed by western blot. Some of the modulated proteins corresponded to proteins already described in case of nephrotoxicity, and indicated a loss of glomerular permeability (albumin, alpha-1-anti-proteinase, sero-transferrin). Others revealed tubular damage, such as EGF and vitamin D-binding protein. A third category included proteins never described in urine as being associated with metal stress, such as ceruloplasmin. Urinary proteomics is thus a valuable tool to profile uranium toxicity non-invasively and could be very useful in follow-up in case of accidental exposure to uranium. (authors)

  7. Global MS-Based Proteomics Drug Profiling.

    Science.gov (United States)

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  8. Proteomic profiling of the rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Pedroso Amanda P

    2012-04-01

    Full Text Available Abstract Background The hypothalamus plays a pivotal role in numerous mechanisms highly relevant to the maintenance of body homeostasis, such as the control of food intake and energy expenditure. Impairment of these mechanisms has been associated with the metabolic disturbances involved in the pathogenesis of obesity. Since rodent species constitute important models for metabolism studies and the rat hypothalamus is poorly characterized by proteomic strategies, we performed experiments aimed at constructing a two-dimensional gel electrophoresis (2-DE profile of rat hypothalamus proteins. Results As a first step, we established the best conditions for tissue collection and protein extraction, quantification and separation. The extraction buffer composition selected for proteome characterization of rat hypothalamus was urea 7 M, thiourea 2 M, CHAPS 4%, Triton X-100 0.5%, followed by a precipitation step with chloroform/methanol. Two-dimensional (2-D gels of hypothalamic extracts from four-month-old rats were analyzed; the protein spots were digested and identified by using tandem mass spectrometry and database query using the protein search engine MASCOT. Eighty-six hypothalamic proteins were identified, the majority of which were classified as participating in metabolic processes, consistent with the finding of a large number of proteins with catalytic activity. Genes encoding proteins identified in this study have been related to obesity development. Conclusion The present results indicate that the 2-DE technique will be useful for nutritional studies focusing on hypothalamic proteins. The data presented herein will serve as a reference database for studies testing the effects of dietary manipulations on hypothalamic proteome. We trust that these experiments will lead to important knowledge on protein targets of nutritional variables potentially able to affect the complex central nervous system control of energy homeostasis.

  9. Proteome profiling of keratinocytes transforming to malignancy.

    Science.gov (United States)

    Paulitschke, Verena; Gerner, Christopher; Hofstätter, Elisabeth; Mohr, Thomas; Mayer, Rupert Laurenz; Pehamberger, Hubert; Kunstfeld, Rainer

    2015-02-01

    To shed light on the multistep process of squamous cell carcinoma development and the underlying pathologic mechanisms, we performed comparative proteome analysis of keratinocytes, keratinocytes stimulated with Il-1beta, and A431 epidermoid carcinoma cells. Fractionation of the cells into supernatant, nucleus, and cytoplasm was followed by protein separation, proteolytic digest, and nano-LC separation, and fragmentation using an ion trap mass spectrometer. Specific bioinformatics tools were used to generate a list of keratinocyte-specific proteins. Ninety percent of these proteins were found to be upregulated in keratinocytes versus the A431 cells. Classification of the identified proteins by biologic function and gene set enrichment analysis revealed that keratinocytes produced more proteins involved in cell differentiation, cell adhesion, cell junction, calcium ion, calmodulin binding, cytoskeleton organization, and cytokinesis, whereas A431 produced more proteins involved in cell cycle checkpoint, cell cycle process, RNA processing and transport, DNA damage and repair, RNA and DNA binding, and chromatin remodeling. The protein signatures of A431 and normal keratinocytes treated with IL-1beta showed marked similarity, confirming that inflammation is an important step in malignant transformation in nonmelanoma skin cancer. Thus, proteome profiling and bioinformatic processing may support the understanding of the underlying mechanisms, with the potential to facilitate development of early biomarkers and patient-tailored therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteomic profiling of animal models mimicking skeletal muscle disorders

    OpenAIRE

    Doran, Philip; Gannon, Joan; O'Connell, Kathleen; Ohlendieck, Kay

    2007-01-01

    Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, fo...

  11. Measurements of transcripts, proteome and metabolite profiles

    NARCIS (Netherlands)

    Peters, Sander

    2017-01-01

    The work described for this deliverable was carried out by DLO-PRI, in collaboration with WU, and aim ed to understanding lipid production in Phaeodactylum tricornutum . By means of transcriptome, proteome and metabolome analyses we aimed to provide insight into the one step lipid production

  12. [Pharmacological gender-specific medicine].

    Science.gov (United States)

    Ueno, Koichi; Negishi, Etsuko

    2006-01-01

    In recent years, the concept of Gender-specific Medicine has become more widespread in Japan. We need to understand gender differences in the use patterns of prescription drugs for proper use of medicines. We therefore investigated gender differences in the use of prescription drugs using the data of 9 hospitals in Japan. The data on prescription drugs were extracted from the drug ordering system for a month from March 1 to 31, 2003. We analyzed the data according to sex and age. As a result, we found that the prescription frequency of central nervous system drugs and Kampo medications for females was higher than that for males. There was also the same trend for hormone medicines and vitamins. On the other hand, the prescription frequency of cardiovascular drugs for males was higher than that for females. Moreover, there was the same trend for unclassified metabolic drugs such as arthrifuge. As a result of detailed analysis by age, a correlation between age-specificity of prescription drugs and gender difference of diseases was suggested. Such information has not been investigated in Japan. Since these results are thought to be useful, we will perform a detailed examination and accumulate evidence for their future exploitation in drug therapy.

  13. The proteomic profile of hair damage.

    Science.gov (United States)

    Sinclair, R; Flagler, M J; Jones, L; Rufaut, N; Davis, M G

    2012-06-01

    Monilethrix is a congenital hair shaft disorder with associated fragility. Many of the changes seen in monilethrix hair on light microscopy and scanning electron microscopy are also seen in hair weathering and cosmetic damage to hair. We used monilethrix as a model to investigate the relationship between hair protein structure and hair strength and resistance to cosmetic insult. We applied proteomic techniques to identify novel peptide damage markers for chemical oxidative damage to hair. The findings suggest that specific sites in the protein structure of hair are targeted during oxidative damage from bleaching, a unique insight into how chemical damage compromises the structural integrity of the hair shaft at the molecular level. Applying proteomics to the study of congenital and acquired hair shaft disorders can deliver new insights into hair damage and novel strategies to strengthen hair. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  14. Click-based synthesis and proteomic profiling of lipstatin analogues

    OpenAIRE

    Ngai, Mun H.; Yang, Peng-Yu; Liu, Kai; Shen, Yuan; Wenk, Markus R; Yao, Shao Q.; Lear, Martin J.

    2010-01-01

    Using click chemistry to enable both structural diversity and proteome profiling within a natural product derived library, two out of nineteen lipstatin analogues showed similar activity to Orlistat against fatty acid synthase (FAS), but with an improved ability to induce tumour cell death.

  15. Leaf proteome profiling of transgenic mint infected with Alternaria alternata.

    Science.gov (United States)

    Sinha, Ragini; Bhattacharyya, Dipto; Majumdar, Aparupa Bose; Datta, Riddhi; Hazra, Saptarshi; Chattopadhyay, Sharmila

    2013-11-20

    The genus Mentha has been widely used in food, flavor, culinary, cosmetic and pharmaceutical industries. Substantial damage to this crop happened regularly due to environmental stresses like metal toxicity and pathogen attack. Here, an approach has been taken to raise transgenic mint over-expressing γ-glutamyl-cysteine synthetase (γ-ECS), the rate-limiting enzyme of GSH biosynthesis, resulted enhanced GSH content and its in planta expression confers significant tolerance towards abiotic/biotic stresses viz. metal toxicity - Cd, Zn as well as against infection of Alternaria alternata and Rhizoctonia solani. A differential proteomic analysis through 2-DE and MALDI TOF-TOF MSMS was performed to focus on the altered abundance of functionally important protein species in control and infected transgenic mint. Results showed a significant variation in the protein profile of the infected transgenic plant as compared to the wild/control transgenic counterpart. In addition to protein species related to stress and defense, redox regulation, transcription factors and energy & metabolism, protein species related to signaling and gene regulation as well as cell division also showed differential accumulation in infected transgenic. Hence, proteomics can be used as a tool to decipher the mechanism of action of GSH in providing tolerance against a necrotrophic fungus, A. alternata in transgenic mint. The reported work describes a comparative proteomics of non-model unsequenced plants like Mentha. There is a comparative protein profile between transgenic and its wild counterparts under control and infected condition. The work has an impact in crop proteomics and also tries to explain the application of proteomic approach to decipher the mechanism by which a foreign metabolite mediates stress tolerance in plant under control and infected condition. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Proteome Profiling of Human Cutaneous Leishmaniasis Lesion

    Science.gov (United States)

    da Silva Santos, Claire; Attarha, Sanaz; Saini, Ravi Kanth; Boaventura, Viviane; Costa, Jackson; Khouri, Ricardo; Barral-Netto, Manoel; Brodskyn, Cláudia Ida; Souchelnytskyi, Serhiy

    2015-01-01

    In this study, we used proteomics and biological network analysis to evaluate the potential biological processes and components present in the identified proteins of biopsies from cutaneous leishmaniasis (CL) patients infected by Leishmania braziliensis in comparison with normal skin. We identified 59 proteins differently expressed in samples from infected and normal skin. Biological network analysis employing identified proteins showed the presence of networks that may be involved in the cell death mediated by cytotoxic T lymphocytes. After immunohistochemical analyses, the expression of caspase-9, caspase-3, and granzyme B was validated in the tissue and positively correlated with the lesion size in CL patients. In conclusion, this work identified differentially expressed proteins in the inflammatory site of CL, revealed enhanced expression of caspase-9, and highlighted mechanisms associated with the progression of tissue damage observed in lesions. PMID:25207817

  17. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  18. Gender-Specific Health Challenges Facing Women

    Science.gov (United States)

    ... with twitter share with linkedin Gender-Specific Health Challenges Facing Women Global Research Global Research NIAID's Role ... Career Stage Postdocs' Guide to Gaining Independence Small Business Programs Compare NIAID’s Small Business Programs High-Priority ...

  19. Initial intracellular proteome profile of Aspergillus niger biofilms

    Directory of Open Access Journals (Sweden)

    Gretty K. Villena

    2011-07-01

    Full Text Available An initial profiling of the intracellular proteome of Aspergillus niger ATCC 10864 biofilm cultures developed on polyester cloth was carried out by using 2D-PAGE and MS-TOF analysis and it was compared to the proteome of conventionally grown free-living submerged cultures. A number of 2D-PAGE protein spots from both types of cultures were subjected to MS-TOF analysis and data interrogation of the NCBI nr database available for this species. Proteomic maps showed different expression patterns in both culture systems with differentially expressed proteins in each case. In biofilm cultures, 19% and 32% of the selected protein spots were over- expressed and differentially expressed, respectively. On the contrary, in free-living cultures, 44% and 7% of the selected protein spots were over-expressed and differentially expressed, respectively. Although preliminary, results presented in this paper show that there are significant differences between the proteomes of A. niger biofilm and free-living mycelia. It seems that cell adhesion is the most important stimulus responsible for biofilm development which is the basis of Surface Adhesion Fermentation.

  20. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction*

    Science.gov (United States)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. PMID

  1. Serum proteomic profiling of major depressive disorder.

    Science.gov (United States)

    Bot, M; Chan, M K; Jansen, R; Lamers, F; Vogelzangs, N; Steiner, J; Leweke, F M; Rothermundt, M; Cooper, J; Bahn, S; Penninx, B W J H

    2015-07-14

    Much has still to be learned about the molecular mechanisms of depression. This study aims to gain insight into contributing mechanisms by identifying serum proteins related to major depressive disorder (MDD) in a large psychiatric cohort study. Our sample consisted of 1589 participants of the Netherlands Study of Depression and Anxiety, comprising 687 individuals with current MDD (cMDD), 482 individuals with remitted MDD (rMDD) and 420 controls. We studied the relationship between MDD status and the levels of 171 serum proteins detected on a multi-analyte profiling platform using adjusted linear regression models. Pooled analyses of two independent validation cohorts (totaling 78 MDD cases and 156 controls) was carried out to validate our top markers. Twenty-eight analytes differed significantly between cMDD cases and controls (P depression. Changes were more prominent in cMDD, suggesting that molecular alterations in serum are associated with acute depression symptomatology. These findings may help to establish serum-based biomarkers of depression and could improve our understanding of its pathophysiology.

  2. Chemical proteomics: terra incognita for novel drug target profiling

    Institute of Scientific and Technical Information of China (English)

    Fuqiang Huang; Boya Zhang; Shengtao Zhou; Xia Zhao; Ce Bian; Yuquan Wei

    2012-01-01

    The growing demand for new therapeutic strategies in the medical and pharmaceutic fields has resulted in a pressing need for novel druggable targets.Paradoxically,however,the targets of certain drugs that are already widely used in clinical practice have largely not been annotated.Because the pharmacologic effects of a drug can only be appreciated when its interactions with cellular components are clearly delineated,an integrated deconvolution of drug-target interactions for each drug is necessary.The emerging field of chemical proteomics represents a powerful mass spectrometry (MS)-based affinity chromatography approach for identifying proteome-wide small molecule-protein interactions and mapping these interactions to signaling and metabolic pathways.This technique could comprehensively characterize drug targets,profile the toxicity of known drugs,and identify possible off-target activities.With the use of this technique,candidate drug molecules could be optimized,and predictable side effects might consequently be avoided.Herein,we provide a holistic overview of the major chemical proteomic approaches and highlight recent advances in this area as well as its potential applications in drug discovery.

  3. Diagnosis of Pancreatic Cancer Using Serum Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Sudeepa Bhattacharyya

    2004-09-01

    Full Text Available In the United States, mortality rates from pancreatic cancer (PCa have not changed significantly over the past 50 years. This is due, in part, to the lack of early detection methods for this particularly aggressive form of cancer. The objective of this study was to use highthroughput protein profiling technology to identify biomarkers in the serum proteome for the early detection of resectable PCa. Using surface-enhanced laser desorption/ionization mass spectrometry, protein profiles were generated from sera of 49 PCa patients and 54 unaffected individuals after fractionation on an anion exchange resin. The samples were randomly divided into a training set (69 samples and test set (34 samples, and two multivariate analysis procedures, classification and regression tree and logistic regression, were used to develop classification models from these spectral data that could distinguish PCa from control serum samples. In the test set, both models correctly classified all of the PCa patient serum samples (100% sensitivity. Using the decision tree algorithm, a specificity of 93.5% was obtained, whereas the logistic regression model produced a specificity of 100%. These results suggest that high-throughput proteomics profiling has the capacity to provide new biomarkers for the early detection and diagnosis of PCa.

  4. Comparative Proteomic Profiling of Mycobacterium bovis and BCG Vaccine Strains

    KAUST Repository

    Gao, Ge

    2013-09-01

    BCG is the only licensed human vaccine currently available against TB. Derived from a virulent strain of M. bovis, the vaccine was thought to have struck a balance between reduced virulence and preserved immunogenicity. Nowadays, BCG vaccine strains used in different countries and vaccination programs show clear variations in their genomes and immune protective properties. The aim of this study was to characterize the proteomic profile on Mycobacterium bovis and five BCG strains Pasteur, Tokyo, Danish, Phipps and Birkhaug by Tandem Mass Tag® (TMT®)-labeling quantitative proteomic approach. In total, 420 proteins were identified and 377 of them were quantitated for their relative abundance. We reported the number and relationship of differential expressed proteins in BCG strains compared to M. bovis and investigated their functions by bioinformatics analysis. Several interesting up-regulated and down-regulated protein targets were found. The identified proteins and their quantitative expression profiles provide a basis for further understanding of the cellular biology of M. bovis and BCG vaccine strains, and hopefully would assist in the design of better anti-TB vaccine and drugs.

  5. Proteomic profiling of urine for the detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Wakelam Michael JO

    2008-06-01

    Full Text Available Abstract Background Colorectal cancer is the second most common cause of cancer related death in the developed world. To date, no blood or stool biomarkers with both high sensitivity and specificity for potentially curable early stage disease have been validated for clinical use. SELDI and MALDI profiling are being used increasingly to search for biomarkers in both blood and urine. Both techniques provide information predominantly on the low molecular weight proteome ( Results We collected urine from 67 patients with colorectal cancer and 72 non-cancer control subjects, diluted to a constant protein concentration and generated MALDI and SELDI spectra. The intensities of 19 peaks differed significantly between cancer and non-cancer patients by both t-tests and after adjusting for confounders using multiple linear regressions. Logistic regression classifiers based on peak intensities identified colorectal cancer with up to 78% sensitivity at 87% specificity. We identified and independently quantified 3 of the discriminatory peaks using synthetic stable isotope peptides (an 1885 Da fragment of fibrinogen and hepcidin-20 or ELISA (β2-microglobulin. Conclusion Changes in the urine proteome may aid in the early detection of colorectal cancer.

  6. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    Directory of Open Access Journals (Sweden)

    Renata Silva Do Prado

    2015-06-01

    Full Text Available The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM, a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied.

  7. Proteomic profile of human monocytic cells infected with dengue virus

    Institute of Scientific and Technical Information of China (English)

    Viviana Martnez-Betancur; Marlen Martnez-Gutierrez

    2016-01-01

    Objective: To identify the changes in the proteome of U937 cells infected with dengue virus (DENV). Methods: In this study, differentiated U937 cultures were infected with two DENV-2 strains, one of which was associated with dengue (DENV-2/NG) and the other one with severe dengue (DENV-2/16681), with the aim of determining the cellular proteomic profiles under different infection conditions. Cellular proteins were extracted and sepa-rated by two-dimensional electrophoresis, and those proteins with differential expression profiles were identified by mass spectrometry. The obtained results were correlated with cellular viability, the number of infectious viral particles, and the viral DNA/protein quantity. Results: In comparison with non-infected cultures, in the cells infected with the DENV-2/NG strain, nine proteins were expressed differentially (five were upregulated and four were downregulated); in those cultures infected with the DENV-2/16681 strain, six proteins were differentially expressed (two were downregulated and four were upregu-lated). The downregulated proteins included fatty acid-binding protein, heterogeneous nuclear ribonucleoprotein 1, protein disulfide isomerase, enolase 1, heat shock 70 kDa protein 9, phosphotyrosyl phosphatase, and annexin IV. The upregulated proteins included heat shock 90 kDa protein AA1, tubulin beta, enolase 1, pyruvate kinase, transaldolase and phospholipase C-alpha. Conclusions: Because the monocyte/macrophage lineage is critical for disease patho-genicity, additional studies on these proteins could provide a better understanding of the cellular response to DENV infection and could help identify new therapeutic targets against infection.

  8. CSF metabolic and proteomic profiles in patients prodromal for psychosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey T-J Huang

    Full Text Available BACKGROUND: The initial prodromal state of psychosis (IPS is defined as an early disease stage prior to the onset of overt psychosis characterized by sub-threshold or more unspecific psychiatric symptoms. Little is known regarding the biochemical changes during this period. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the metabolic/proteomic profiles of cerebrospinal fluid (CSF of first-onset drug naïve paranoid schizophrenia patients (n = 54 and individuals presenting with initial prodromal symptoms (n = 24, alongside healthy volunteers (n = 70 using proton nuclear magnetic resonance ((1H-NMR spectroscopy and surface enhanced laser desorption ionization (SELDI mass spectrometry, respectively. Partial least square discriminant analysis (PLS-DA showed that 36%/29% of IPS patients displayed proteomic/metabolic profiles characteristic of first-onset, drug naïve schizophrenia, i.e., changes in levels of glucose and lactate as well as changes in a VGF-derived peptide (VGF23-62 and transthyretin protein concentrations. However, only 29% (n = 7 of the investigated IPS patients (who to date have been followed up for up to three years have so far received a diagnosis of schizophrenia. The presence of biochemical alterations in the IPS group did not correlate with the risk to develop schizophrenia. CONCLUSIONS/SIGNIFICANCE: Our results imply that schizophrenia-related biochemical disease processes can be traced in CSF of prodromal patients. However, the biochemical disturbances identified in IPS patients, at least when measured at a single time point, may not be sufficient to predict clinical outcome.

  9. Urinary proteomic profiling in severe obesity and obstructive sleep apnoea with CPAP treatment

    Directory of Open Access Journals (Sweden)

    Ian W Seetho

    2015-04-01

    Conclusions: The urinary proteome is compared in OSA with CPAP and without OSA in severe obesity. The effects of CPAP on OSA may lead to changes in the urinary peptides but further research work is needed to investigate the potential role for urinary proteomics in characterising urinary peptide profiles in OSA.

  10. Gender-specific information search behavior

    Directory of Open Access Journals (Sweden)

    Parinaz Maghferat

    2010-12-01

    Full Text Available This paper presents an empirical gender study in the context of information science. It discusses an exploratory investigation, which provides empirical data about differences of information seeking activities by female and male students. The research focus was on whether there are gender-specific differences when people perform searches with the aid of general search engines and specialized Deep Web information services. It has been observed how the participants behaved in getting information and how the gender groups differ from each other. Which search system (search engine or professional information supplier has been preferred by the gender groups at first? How did the gender groups search (applied operators, modifications of query formulations, targeted search? How far were the users satisfied with their results? For data collection paper-questionnaires have been used and the answers have been statistically analyzed with the help of SPSS. The questionnaire consisted of four different search tasks each with seven sub-questions. The research and the obtained result data indicate at least in the choice of search sources, the satisfaction with this source and the results obtained a gender-specific difference. Men tried to use professional information services as well as search engines for search, regardless of the difficulty of the search task and its formulation. In contrast, women behaved cautiously in choosing search sources. They decided either on sources, which they knew skillfully or where their use was assigned. Women were generally more satisfied with the obtained results as men. These data can represent an initial approach for further analysis of gender-specific Web search behavior.

  11. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2013-01-01

    Full Text Available Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions.

  12. Proteomic and peptidomic profiling of Brazilian artisanal 'Coalho' cheese.

    Science.gov (United States)

    Silva, Roberto A; Bezerra, Vilma S; Pimentel, Maria do Carmo B; Porto, Ana Lúcia F; Cavalcanti, Maria Taciana H; Filho, José Luiz L

    2016-10-01

    Artisanal 'Coalho' cheese is a product typically popular in the Brazilian north-eastern region. Production of this cheese represents about 9.2% of the internal crude product of Pernambuco State. Several peptides are generated from hydrolysis of αS1 -, αS2 -, β-, and κ-caseins during manufacture of this cheese. The commercial importance of Brazilian artisanal 'Coalho' cheese justifies the examination of both the protein and peptide profiles of cheeses from six cities of the semi-arid region of Pernambuco State, Brazil. SDS-PAGE of the aqueous extracts of 'Coalho' cheeses (WSP) showed bands of lactoferrin, β-lactoglobulin, β-lactoglobulin (dimer), α-lactoalbumin, bovine serum albumin, α-casein, β-casein, κ-casein and para-κ-casein. A total of 57 to 72 peptides were confirmed by mass spectra in the different samples of 'Coalho' cheese which 32 known peptides (11 from αS1 -casein, three from αS2 -casein, 15 from β-casein and three from κ-casein), comprising seven caseinphosphopeptides. Among the unidentified peptides, three showed high intensity peaks in all 'Coalho' cheeses studied (with molecular weights of 1597, 1725/1726, 2778/2779 Da). The proteomic studies revealed peptides that may represent molecular markers or fingerprints for investigating the quality control and regional characterisation of these 'Coalho' cheeses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Proteomic profile of Aspergillus flavus in response to water activity.

    Science.gov (United States)

    Zhang, Feng; Zhong, Hong; Han, Xiaoyun; Guo, Zhenni; Yang, Weiqiang; Liu, Yongfeng; Yang, Kunlong; Zhuang, Zhenhong; Wang, Shihua

    2015-03-01

    Aspergillus flavus, a common contaminant of crops and stored grains, can produce aflatoxins that are harmful to humans and other animals. Water activity (aw) is one of the key factors influencing both fungal growth and mycotoxin production. In this study, we used the isobaric tagging for relative and absolute quantitation (iTRAQ) technique to investigate the effect of aw on the proteomic profile of A. flavus. A total of 3566 proteins were identified, of which 837 were differentially expressed in response to variations in aw. Among these 837 proteins, 403 were over-expressed at 0.99 aw, whereas 434 proteins were over-expressed at 0.93 aw. According to Gene Ontology (GO) analysis, the secretion of extracellular hydrolases increased as aw was raised, suggesting that extracellular hydrolases may play a critical role in induction of aflatoxin biosynthesis. On the basis of Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categorizations, we identified an exportin protein, KapK, that may down-regulate aflatoxin biosynthesis by changing the location of NirA. Finally, we considered the role of two osmotic stress-related proteins (Sln1 and Glo1) in the Hog1 pathway and investigated the expression patterns of proteins related to aflatoxin biosynthesis. The data uncovered in this study are critical for understanding the effect of water stress on toxin production and for the development of strategies to control toxin contamination of agricultural products.

  14. Multimarker proteomic profiling for the prediction of cardiovascular mortality in patients with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Gilles Lemesle

    Full Text Available Risk stratification of patients with systolic chronic heart failure (HF is critical to better identify those who may benefit from invasive therapeutic strategies such as cardiac transplantation. Proteomics has been used to provide prognostic information in various diseases. Our aim was to investigate the potential value of plasma proteomic profiling for risk stratification in HF. A proteomic profiling using surface enhanced laser desorption ionization - time of flight - mass spectrometry was performed in a case/control discovery population of 198 patients with systolic HF (left ventricular ejection fraction <45%: 99 patients who died from cardiovascular cause within 3 years and 99 patients alive at 3 years. Proteomic scores predicting cardiovascular death were developed using 3 regression methods: support vector machine, sparse partial least square discriminant analysis, and lasso logistic regression. Forty two ion m/z peaks were differentially intense between cases and controls in the discovery population and were used to develop proteomic scores. In the validation population, score levels were higher in patients who subsequently died within 3 years. Similar areas under the curves (0.66 - 0.68 were observed for the 3 methods. After adjustment on confounders, proteomic scores remained significantly associated with cardiovascular mortality. Use of the proteomic scores allowed a significant improvement in discrimination of HF patients as determined by integrated discrimination improvement and net reclassification improvement indexes. In conclusion, proteomic analysis of plasma proteins may help to improve risk prediction in HF patients.

  15. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    Science.gov (United States)

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  16. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Ozge Cevik

    Full Text Available Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics. These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides

  17. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology.

    Science.gov (United States)

    Lacerda, Carla M R; Reardon, Kenneth F

    2009-01-01

    In this review, we present the use of proteomics to advance knowledge in the field of environmental biotechnology, including studies of bacterial physiology, metabolism and ecology. Bacteria are widely applied in environmental biotechnology for their ability to catalyze dehalogenation, methanogenesis, denitrification and sulfate reduction, among others. Their tolerance to radiation and toxic compounds is also of importance. Proteomics has an important role in helping uncover the pathways behind these cellular processes. Environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the lack of genome sequences for the vast majority of environmental bacteria, difficulties in isolating bacteria and proteins from certain environments, and the presence of complex microbial communities. Despite these challenges, proteomics offers a unique dynamic view into cellular function. We present examples of environmental proteomics of model organisms, and then discuss metaproteomics (microbial community proteomics), which has the potential to provide insights into the function of a community without isolating organisms. Finally, the environmental proteomics literature is summarized as it pertains to the specific application areas of wastewater treatment, metabolic engineering, microbial ecology and environmental stress responses.

  18. The Urine Proteome Profile Is Different in Neuromyelitis Optica Compared to Multiple Sclerosis: A Clinical Proteome Study.

    Directory of Open Access Journals (Sweden)

    Helle H Nielsen

    Full Text Available Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO, NMO spectrum disorders (NMO-SD and multiple sclerosis (MS. Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS.The proteins in urine samples from anti-aquaporin 4 (AQP4 seropositive NMO/NMO-SD patients (n = 32, patients with MS (n = 46 and healthy subjects (HS, n = 31 were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig in the urine were validated by nephelometry in an independent cohort (n = 9-10 pr. groups.The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002. Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD.The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS.

  19. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.

    Science.gov (United States)

    Dubois, Louise; Ronquist, Karl K Göran; Ek, Bo; Ronquist, Gunnar; Larsson, Anders

    2015-11-01

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  20. Proteomic profile of acute myeloid leukaemia: A review update

    African Journals Online (AJOL)

    Proteome analysis is a complex and dynamic process that encompasses several analytical platforms ... cellular processes, which in turn affect ..... chemical synthesis of new targeted ..... biomarkers: relevant issues on study design & technical.

  1. Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium

    OpenAIRE

    Carvalhais, V.; França, Ângela; Pier, Gerald B.; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-01-01

    Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), asso...

  2. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  3. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Science.gov (United States)

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  4. Proteomic profiling of high risk medulloblastoma reveals functional biology.

    Science.gov (United States)

    Staal, Jerome A; Lau, Ling San; Zhang, Huizhen; Ingram, Wendy J; Hallahan, Andrew R; Northcott, Paul A; Pfister, Stefan M; Wechsler-Reya, Robert J; Rusert, Jessica M; Taylor, Michael D; Cho, Yoon-Jae; Packer, Roger J; Brown, Kristy J; Rood, Brian R

    2015-06-10

    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.

  5. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    Science.gov (United States)

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-04-29

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, 8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.

  6. Proteomic profiling of the human T-cell nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology.

  7. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    proteomics data. Two characteristics of legumes are the high seed protein level and the nitrogen fixing symbiosis. Thus, the majority of the proteomics studies in Lotus have been performed on seed/pod and nodule/root tissues in order to create proteome reference maps and to enable comparative analyses within...... Lotus tissues or toward similar tissues from other legume species. More recently, N-glycan structures and compositions have been determined from mature Lotus seeds using glycomics and glycoproteomics, and finally, phosphoproteomics has been employed...... and annotated Lotus japonicus (Lotus) genome has been essential for obtaining high-quality protein identifications from proteomics studies. Furthermore, additional genomics and transcriptomics studies from several Lotus species/ecotypes support putative gene structures and these can be further supported using...

  8. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    OpenAIRE

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionat...

  9. Mass Spectrometry–based Proteomic Profiling of Lung Cancer

    Science.gov (United States)

    Ocak, Sebahat; Chaurand, Pierre; Massion, Pierre P.

    2009-01-01

    In an effort to further our understanding of lung cancer biology and to identify new candidate biomarkers to be used in the management of lung cancer, we need to probe these tissues and biological fluids with tools that address the biology of lung cancer directly at the protein level. Proteins are responsible of the function and phenotype of cells. Cancer cells express proteins that distinguish them from normal cells. Proteomics is defined as the study of the proteome, the complete set of proteins produced by a species, using the technologies of large-scale protein separation and identification. As a result, new technologies are being developed to allow the rapid and systematic analysis of thousands of proteins. The analytical advantages of mass spectrometry (MS), including sensitivity and high-throughput, promise to make it a mainstay of novel biomarker discovery to differentiate cancer from normal cells and to predict individuals likely to develop or recur with lung cancer. In this review, we summarize the progress made in clinical proteomics as it applies to the management of lung cancer. We will focus our discussion on how MS approaches may advance the areas of early detection, response to therapy, and prognostic evaluation. PMID:19349484

  10. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  11. Effects of tetracycline administration on the proteomic profile of pig muscle samples (L. dorsi)

    DEFF Research Database (Denmark)

    Gratacos-Cubarsi, M.; Castellari, M.; Hortos, M.

    2008-01-01

    Effect of tetracycline (TC) administration on the proteomic profile of pig muscle was evaluated by 2D electrophoresis and MALDI-TOF mass spectrometry. The TC content at slaughter was determined in L. dorsi samples by HPLC-DAD. Mean residual concentration of TC in the muscle of treated animals, ca...

  12. Proteome profiles of longissimus and biceps femoris porcine muscles related to exercise and resting

    DEFF Research Database (Denmark)

    F.W.Te Pas, Marinus; Keuning, Els; Van der Wiel, Dick J.M.

    2011-01-01

    by rest for 0, 1, or 3 h; control pigs without exercise. Proteome profiles and biochemical traits measuring energy metabolism and meat quality traits expected to be related to exercise were determined in the Longissimus and the Biceps femoris of the pigs. The results indicated associations between protein...

  13. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G

    2017-01-01

    . The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin...

  14. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    NARCIS (Netherlands)

    Swelm, R.P.L. van; Laarakkers, C.M.; Pertijs, J.C.L.M.; Verweij, V.G.M.; Masereeuw, R.; Russel, F.G.M.

    2013-01-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice

  15. Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium.

    Science.gov (United States)

    Carvalhais, Virginia; França, Angela; Pier, Gerald B; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-01-01

    Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), associated with two distinct detergent extraction buffers, namely SDS and CHAPS. Based on gel electrophoresis-LC-MS/MS, we identified a total of 453 proteins. While lysis with glass beads provided greater amounts of protein, CHAPS extraction buffer allowed identification of a higher number of proteins compared to SDS. Our data shows the impact of different protein isolation methods in the characterization of the S. epidermidis biofilm proteome. Furthermore, the correlation between proteomic and transcriptomic profiles was evaluated. The results confirmed that proteomic and transcriptomic data should be analyzed simultaneously in order to have a comprehensive understanding of a specific microbiological condition.

  16. Quantitative proteome profiling of normal human circulating microparticles

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer T; Iversen, Line V;

    2012-01-01

    proteome using nano-LC-MS/MS on an LTQ-Orbitrap with optimized sample collection, preparation, and analysis of 12 different normal samples. Analytical and procedural variation were estimated in triply processed samples analyzed in triplicate from two different donors. Label-free quantitation was validated...... by the correlation of cytoskeletal protein intensities with MP numbers obtained by flow cytometry. Finally, the validity of using pooled samples was evaluated using overlap protein identification numbers and multivariate data analysis. Using conservative parameters, 536 different unique proteins were quantitated...

  17. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Iozzo Renato V

    2008-02-01

    Full Text Available Abstract Background Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. Results Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60 were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test. Conclusion The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.

  18. Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga.

    Science.gov (United States)

    Caumo, Karin Silva; Monteiro, Karina Mariante; Ott, Thiely Rodrigues; Maschio, Vinicius José; Wagner, Glauber; Ferreira, Henrique Bunselmeyer; Rott, Marilise Brittes

    2014-12-01

    Acanthamoeba polyphaga is a free-living protozoan pathogen, whose infective trophozoite form is capable of causing a blinding keratitis and fatal granulomatous encephalitis in humans. The damage caused by A. polyphaga trophozoites in human corneal or brain infections is the result of several different pathogenic mechanisms that have not yet been elucidated at the molecular level. We performed a comprehensive analysis of the proteins expressed by A. polyphaga trophozoites, based on complementary 2-DE MS/MS and gel-free LC-MS/MS approaches. Overall, 202 non-redundant proteins were identified. An A. polyphaga proteomic map in the pH range 3-10 was produced, with protein identification for 184 of 370 resolved spots, corresponding to 142 proteins. Additionally, 94 proteins were identified by gel-free LC-MS/MS. Functional classification revealed several proteins with potential importance for pathogen survival and infection of mammalian hosts, including surface proteins and proteins related to defense mechanisms. Our study provided the first comprehensive proteomic survey of the trophozoite infective stage of an Acanthamoeba species, and established foundations for prospective, comparative and functional studies of proteins involved in mechanisms of survival, development, and pathogenicity in A. polyphaga and other pathogenic amoebae.

  19. Proteomic analysis of protein profiles in some pathological stages of the human organism

    Directory of Open Access Journals (Sweden)

    Barbara Kossowska

    2009-11-01

    Full Text Available Two-dimensional gel electrophoresis (2-DE is a widely used method for seperation of the proteins of a proteome and it enables their detection in a large concentration range. Sample preparation for isoelectric focusing and SDS-PAGE electrophoresis as well as spot visualization determines the quality of the obtained protein maps. Computer analysis of the proteome maps allows comparison and detection differences in protein profiles. In combination with mass spectrometry (MS it enables the identification of a single protein. Low-abundance proteins of physiological body fluids are considered as the potential source of diagnostic biomarkers. These are obtained by such techniques as affinity chromatography, immunoaffinity, and ultrafiltration. A combination of proteomic and metabonomic analysis provides a collection of new markers which are helpful in modern medical diagnostics.The combination of the 2-DE technique and 1H MRS enables monitoring mild cognitive impairment (MCI and the evolution of Alzheimer disease (AD. Proteome analysis of the liver and red blood cells of patients with diagnosed schizophrenia indicates the importance of analyzing external tissue, not only cerebrospinal fluid, in the diagnosis of this disease. Proteomic techniques enable the identification of new biomarkers in rheumatic disease by analyzing plasma, articular fluid and tissues. New protein biomarkers (in plasma, serum, pancreatic juice, urine enable earlier cancer diagnosis and disease monitoring. Proteome analysis of maternal serum and amniotic fluid creates the possibility detection of protein markers in prenatal tests diagnosing Down’s syndrome. Proteomic studies enable assessment of the influence of environmental contamination on the immunological system.

  20. Proteomic profiling of Bifidobacterium bifidum S17 cultivated under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Xiao eWei

    2016-02-01

    Full Text Available Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS, representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs. The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerhof pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host

  1. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    Directory of Open Access Journals (Sweden)

    Fiehn Oliver

    2006-11-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC. We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy.

  2. Unravelling the proteomic profile of rice meiocytes during early meiosis

    Science.gov (United States)

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  3. Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.

    Science.gov (United States)

    Groessl, Michael; Slany, Astrid; Bileck, Andrea; Gloessmann, Kerstin; Kreutz, Dominique; Jaeger, Walter; Pfeiler, Georg; Gerner, Christopher

    2014-11-07

    Breast cancer is still the most common type of cancer in women; an important role in carcinogenesis is actually attributed to cancer-associated fibroblasts. In this study, we investigated whether it is possible to assess the functional state of cancer-associated fibroblasts through tumor tissue proteome profiling. Tissue proteomics was performed on tumor-central, tumor-near, and tumor-distant biopsy sections from breast adenocarcinoma patients, which allowed us to identify 2074 proteins. Data were interpreted referring to reference proteome profiles generated from primary human mammary fibroblasts comprising 4095 proteins. These cells were analyzed in quiescent cell state as well as after in vitro treatment with TGFβ or IL-1β, stimulating wound healing or inflammatory processes, respectively. Representative for cancer cells, we investigated the mammary carcinoma cell line ZR-75-1, identifying 5212 proteins. All mass analysis data have been made fully accessible via ProteomeXchange, DOI PXD001311 and PXD001323-8. Comparison of tissue proteomics data with all of those reference profiles revealed predominance of cancer cell-derived proteins within the tumor and fibroblast-derived proteins in the tumor-distant tissue sections. Remarkably, proteins characteristic for acute inflammation were hardly identified in the tissue samples. In contrast, several proteins found by us to be induced by TGFβ in mammary fibroblasts, including fibulin-5, SLC2A1, and MUC18, were positively identified in all tissue samples, with relatively higher abundance in tumor neighboring tissue sections. These findings indicate a predominance of cancer-associated fibroblasts with wound healing activities localized around tumors.

  4. Alternative profiling platform based on MELDI and its applicability in clinical proteomics.

    Science.gov (United States)

    Najam-ul-Haq, Muhammad; Rainer, Matthias; Trojer, Lukas; Feuerstein, Isabel; Vallant, Rainer Markus; Huck, Christian W; Bakry, Rania; Bonn, Günther Karl

    2007-08-01

    The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.

  5. [Diet and exercise influence on the proteomic profile of an athlete population].

    Science.gov (United States)

    Toro, Rocio; Mangas, Alipio; Quezada, Maribel; Rodriguez-Rosety, Manuel; Fournielles, Gabriel; Rodriguez-Rosety, Ignacio; Rodriguez Rosety, Miguel Angel; Alonso, Jose Angel; Garcia-Cozar, Francisco Jose; Duran, Maria Del Carmen

    2014-11-01

    Nutrition has emerged as a fundamental tool included in the training program of athletes. Body composition seeks different objectives depending on type of sport, position, or time of the season. Furthermore, analysis proteomics allows us to know the structure and function of proteins. To study, using proteomics, the influence of two different diets on the anthropometric profile in a rugby players group. It is a prospective and interventionist study. Thirty-two rugby players were included. Two groups were defined, one followed proteic diet (PD) and, the other group subscribed the Mediterranean diet (MD). All participants were evaluated anthropometrically at the beginning and after six months. A blood sample was taken to twenty -two players, half of each group, used for the proteomic analysis. MD highlight more benefit for these athletes. Two groups were defined based on their anthropometric behavior, G1 and G2. The proteomic analysis related significantly some TGF-family mediators with these groups. MD improves the muscular mass without increasing the total body weight, so this data could be determinant to define profiles for athletes. Some TGF-members could be implicated in the adipose tissue and muscular mass balance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Constructing the 'gender-specific body': A critical discourse analysis of publications in the field of gender-specific medicine.

    Science.gov (United States)

    Annandale, Ellen; Hammarström, Anne

    2011-11-01

    Gender-specific medicine, a new and increasingly influential ethos within medical research and practice, has received little critical attention to date. The objective of this article is to critically examine the attributes of gender-specific medicine as imparted by its advocates. Through a critical discourse analysis of its two leading academic journals, we identify five interrelated discourses: of male/female difference; of hegemonic biology; of men's disadvantages; of biological and social reductionism; and of the fragmented body. Together these comprise a master discourse of the 'gender-specific body'. The discourse of the 'gender-specific body' is discussed in relation to the current neoliberal political agenda which frames healthcare as a market good and locates health and illness in individual bodies rather than in the wider social arrangements of society. We argue that the 'gender-specific body' threatens not only to turn back the clock to a vision of the biological body as fixed and determinate, but to extend this ever deeper into the social imagination. Lost in the process is any meaningful sense of the human body as a relatively open system which develops in interaction with its social world. We propose that, as it gains momentum, the 'gender-specific body' is likely progressively to circumscribe our thinking about the health of women and men in potentially problematic ways.

  7. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    Science.gov (United States)

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-01

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy.

  8. The proteomic profile of hereditary inclusion body myopathy.

    Directory of Open Access Journals (Sweden)

    Ilan Sela

    Full Text Available Hereditary inclusion body myopathy (HIBM is an adult onset, slowly progressive distal and proximal myopathy. Although the causing gene, GNE, encodes for a key enzyme in the biosynthesis of sialic acid, its primary function in HIBM remains unknown. The goal of this study was to unravel new clues on the biological pathways leading to HIBM by proteomic comparison. Muscle cultures and biopsies were analyzed by two dimensional gel electrophoresis (2-DE and the same biopsy extracts by isobaric tag for relative and absolute quantitation (iTRAQ. Proteins that were differentially expressed in all HIBM specimens versus all controls in each analysis were identified by mass spectrometry. The muscle cultures 2-DE analysis yielded 41 such proteins, while the biopsies 2-DE analysis showed 26 differentially expressed proteins. Out of the 400 proteins identified in biopsies by iTRAQ, 41 showed altered expression. In spite of the different nature of specimens (muscle primary cultures versus muscle biopsies and of the different methods applied (2D gels versus iTRAQ the differentially expressed proteins identified in each of the three analyses where related mainly to the same pathways, ubiquitination, stress response and mitochondrial processes, but the most robust cluster (30% was assigned to cytoskeleton and sarcomere organization. Taken together, these findings indicate a possible novel function of GNE in the muscle filamentous apparatus that could be involved in the pathogenesis of HIBM.

  9. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma

    Science.gov (United States)

    Cao, Xibing; Fan, Guoqiang; Dong, Yanpeng; Zhao, Zhenli; Deng, Minjie; Wang, Zhe; Liu, Wenshan

    2017-01-01

    Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L−1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways. PMID:28344590

  10. Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

    Science.gov (United States)

    Kim, Yikwon; Han, Dohyun; Min, Hophil; Jin, Jonghwa; Yi, Eugene C.; Kim, Youngsoo

    2014-01-01

    Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines. PMID:25518923

  11. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  12. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry.

    Science.gov (United States)

    Kim, Minseok S; Kwon, Seyong; Kim, Taemin; Lee, Eun Sook; Park, Je-Kyun

    2011-02-01

    This paper describes a multiplexed microfluidic immunohistochemistry (IHC)/immunocytochemistry (ICC) platform for quantitative proteomic profiling in breast cancer samples. Proteomic profiling via ICC was examined for four breast cancer cell lines (AU-565, HCC70, MCF-7, and SK-BR-3). The microfluidic device enabled 20 ICC assays on a biological specimen at the same time and a 16-fold decrease in time consumption, and could be used to quantitatively compare the expression level of each biomarker. The immunohistochemical staining from the microfluidic system showed an accurate localization of protein and comparable quality to that of the conventional IHC method. Although AU-565 and SK-BR-3 cell lines were classified by luminal subtype and adenocarcinomas and were derived from the same patient, weak p63 expression was seen only in SK-BR-3. The HCC70 cell line showed a triple-negative (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative) phenotype and showed only cytokeratin 5 expression, a representative basal/myoepithelial cell marker. To demonstrate the applicability of the system to clinical samples for proteomic profiling, we were also able to apply this platform to human breast cancer tissue. This result indicates that the microfluidic IHC/ICC platform is useful for accurate histopathological diagnoses using numerous specific biomarkers simultaneously, facilitating the individualization of cancer therapy.

  13. Proteomics

    DEFF Research Database (Denmark)

    Tølbøll, Trine Højgaard; Danscher, Anne Mette; Andersen, Pia Haubro;

    2012-01-01

    different proteins were identified, with 146 proteins available for identification in C, 279 proteins in D and 269 proteins in L. A functional annotation of the identified proteins was obtained using the on-line Blast2GO tool. Three hundred and sixteen of the identified proteins could be subsequently...... grouped manually to one or more of five major functional groups related to metabolism, cell structure, immunity, apoptosis and angiogenesis. These were chosen to represent basic cell functions and biological processes potentially involved in the pathogenesis of CHD. The LC–MS/MS-based proteomic analysis...

  14. Gender-specific selection on codon usage in plant genomes

    Directory of Open Access Journals (Sweden)

    Krochko Joan E

    2007-06-01

    Full Text Available Abstract Background Currently, there is little data available regarding the role of gender-specific gene expression on synonymous codon usage (translational selection in most organisms, and particularly plants. Using gender-specific EST libraries (with > 4000 ESTs from Zea mays and Triticum aestivum, we assessed whether gender-specific gene expression per se and gender-specific gene expression level are associated with selection on codon usage. Results We found clear evidence of a greater bias in codon usage for genes expressed in female than in male organs and gametes, based on the variation in GC content at third codon positions and the frequency of species-preferred codons. This finding holds true for both highly and for lowly expressed genes. In addition, we found that highly expressed genes have greater codon bias than lowly expressed genes for both female- and male-specific genes. Moreover, in both species, genes with female-specific expression show a greater usage of species-specific preferred codons for each of the 18 amino acids having synonymous codons. A supplemental analysis of Brassica napus suggests that bias in codon usage could also be higher in genes expressed in male gametophytic tissues than in heterogeneous (flower tissues. Conclusion This study reports gender-specific bias in codon usage in plants. The findings reported here, based on the analysis of 1 497 876 codons, are not caused either by differences in the biological functions of the genes or by differences in protein lengths, nor are they likely attributable to mutational bias. The data are best explained by gender-specific translational selection. Plausible explanations for these findings and the relevance to these and other organisms are discussed.

  15. Proteomic Profiling of Ex Vivo Expanded CD34-Positive Haematopoetic Cells Derived from Umbilical Cord Blood

    Directory of Open Access Journals (Sweden)

    Heiner Falkenberg

    2013-01-01

    Full Text Available Ex vivo expansion of haematopoetic cells by application of specific cytokines is one approach to overcome boundaries in cord blood transplantation due to limited numbers of haematopoetic stem cells. While many protocols describe an effective increase of total cell numbers and the amount of CD34-positive cells, it still remains unclear if and how the procedure actually affects the cells’ properties. In the presented publications, CD34-positive cells were isolated from cord blood and expanded for up to 7 days in media supplemented with stem cell factor (SCF, thrombopoietin (THPO, interleukin 6 (IL-6, and fms-related tyrosine kinase 3 ligand (FLT3lg. At days 3 and 7, expanded cells were harvested and analyzed by flow cytometry and quantitative proteomics. 2970 proteins were identified, whereof proteomic analysis showed 440 proteins significantly changed in abundance during ex vivo expansion. Despite the fact that haematopoetic cells still expressed CD34 on the surface after 3 days, major changes in regard to the protein profile were observed, while further expansion showed less effect on the proteome level. Enrichment analysis of biological processes clearly showed a proteomic change toward a protein biosynthesis phenotype already within the first three days of expression.

  16. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology

    Science.gov (United States)

    ARDITO, FATIMA; PERRONE, DONATELLA; COCCHI, ROBERTO; LO RUSSO, LUCIO; DE LILLO, ALFREDO; GIANNATEMPO, GIOVANNI; LO MUZIO, LORENZO

    2016-01-01

    There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis. PMID:26998108

  17. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition.

    Science.gov (United States)

    Chang, Jae Won; Cognetta, Armand B; Niphakis, Micah J; Cravatt, Benjamin F

    2013-07-19

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Inhibitors of serine hydrolases are used to treat many diseases, including obesity, diabetes, cognitive dementia, and bacterial and viral infections. Nonetheless, the majority of the 200+ serine hydrolases in mammals still lack selective inhibitors for their functional characterization. We and others have shown that activated carbamates, through covalent reaction with the conserved serine nucleophile of serine hydrolases, can serve as useful inhibitors for members of this enzyme family. The extent to which carbamates, however, cross-react with other protein classes remains mostly unexplored. Here, we address this problem by investigating the proteome-wide reactivity of a diverse set of activated carbamates in vitro and in vivo, using a combination of competitive and click chemistry (CC)-activity-based protein profiling (ABPP). We identify multiple classes of carbamates, including O-aryl, O-hexafluoroisopropyl (HFIP), and O-N-hydroxysuccinimidyl (NHS) carbamates that react selectively with serine hydrolases across entire mouse tissue proteomes in vivo. We exploit the proteome-wide specificity of HFIP carbamates to create in situ imaging probes for the endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and α-β hydrolase-6 (ABHD6). These findings, taken together, designate the carbamate as a privileged reactive group for serine hydrolases that can accommodate diverse structural modifications to produce inhibitors that display exceptional potency and selectivity across the mammalian proteome.

  18. Proteome profiling illustrated by a large-scale fed-batch fermentation of Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Michaela Helmel

    2014-09-01

    Full Text Available Filamentous fungi are employed for the large-scale production of value-added products, including organic acids, enzymes, and antibiotics and bioprocess characterization is essential for production optimization but relies on empiricism-based strategies. Protein expression profiles in an industrial scale, 180 h fed-batch fermentation of Penicillium chrysogenum are presented. The biomass of P. chrysogenum, as well as the specific penicillin V production rate and fungal morphology were monitored during fermentation to be compared with obtained protein profiles. Our results demonstrate a correlation between proteomics data and biomass concentration, morphological changes, and penicillin production.

  19. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  20. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Lim, Hui Jing; Yeow, Tee Cian; Movahed, Elaheh; Looi, Chung Yeng; Gupta, Rishein; Arulanandam, Bernard P; Abu Bakar, Sazaly; Sabet, Negar Shafiei; Chang, Li-Yen; Wong, Won Fen

    2016-05-01

    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.

  1. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  2. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen.

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F; Brandstetter, Hans; Overall, Christopher M

    2014-04-04

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified >100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1', proline at P2 and P2', and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of specific test substrates and

  3. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  4. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    Science.gov (United States)

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  5. Gender-specific predictors of posttraumatic stress disorder in adolescents

    DEFF Research Database (Denmark)

    Donbaek, Dagmar Feddern; Elklit, Ask

    2015-01-01

    that drug abuse and avoidant attachment to best friends were significant predictors of PTSD severity in male adolescents, whereas alcohol abuse and the absence of posttraumatic social support from parents remained significant predictors for female adolescents. The results support the influence of gender......-specific substance abuse patterns and dysfunctional interpersonal relationships on the PTSD severity of traumatized adolescents....

  6. Smoking among Dutch Elementary Schoolchildren: Gender-Specific Predictors

    Science.gov (United States)

    Ausems, M.; Mesters, I.; van Breukelen, G.; De Vries, H.

    2009-01-01

    Higher rates of smoking initiation and continuation by female compared with male adolescents, as found in many developed countries, may call for gender-specific prevention programs. Risk factors of smoking initiation and continuation were examined prospectively (1997-2002) among 3205 Dutch elementary schoolchildren (mean age 11.64) in an…

  7. Gender-specific HIV policies and programmes at South African ...

    African Journals Online (AJOL)

    Gender-specific HIV policies and programmes at South African workplaces. ... in the fight against HIV/AIDS, thereby helping to achieve equality and dignity. ... prime importance in the spread of HIV/Aids, changes in these accepted gender roles ...

  8. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Agner, Jeppe; Piersma, Sander R

    2013-01-01

    In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non......-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis......, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin-antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy...

  9. Proteomics profile of cellular response to chiral drugs: prospects for pharmaceutical applications.

    Science.gov (United States)

    Bun Ching, Chi; Zhang, Jianhua; Sui, Jianjun; Ning Chen, Wei

    2010-02-01

    Chiral drugs account for a large proportion of drugs available in the market. There is increasing awareness of the importance of drug chirality and the role it plays in explaining the oftentimes dramatic differences in biological activities in the current drug development portfolio. Using recently developed chiral drugs-cell interaction system, several examples of protein profiles induced by chiral drugs were illustrated in detail on the platform of 2-D LC interfaced with MS/MS system. In addition, the background of chiral drug investigation from which contemporary drug chirality research has emerged, the techniques involved in proteomics technology, the application of proteomics in this exciting area, and the perspectives in future applications are also discussed.

  10. Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles.

    Science.gov (United States)

    Hulme, Charlotte H; Wilson, Emma L; Peffers, Mandy J; Roberts, Sally; Simpson, Deborah M; Richardson, James B; Gallacher, Pete; Wright, Karina T

    2017-06-30

    Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17-54)) and 13 non-responders (mean Lysholm decrease of 14 (4-46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further

  11. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions.

    Science.gov (United States)

    Siragusa, Sonya; De Angelis, Maria; Calasso, Maria; Campanella, Daniela; Minervini, Fabio; Di Cagno, Raffaella; Gobbetti, Marco

    2014-01-16

    This study aimed at investigating the proteomic adaptation of Lactobacillus plantarum strains. Cultivation of L. plantarum strains under food-like conditions (wheat flour hydrolyzed, whey milk, tomato juice) affected some metabolic traits (e.g., consumption of carbohydrates and synthesis of organic acids) compared to de Man, Rogosa and Sharpe (MRS) broth. The analysis of the fermentation profile showed that the highest number of carbon sources metabolized by L. plantarum strains was found using cells cultivated in media containing low concentration of glucose or no glucose at all. The proteomic maps of the strains were comparatively determined after growth on MRS broth and under food-like conditions. The amount of proteins depended on strain and, especially, on culture conditions. Proteins showing decreased or increased amounts under food-like conditions were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Changes of the proteome concerned proteins that are involved in carbohydrate transport and metabolism, energy metabolism, Sec-dependent secretion system, stress response, nucleotide metabolism, regulation of nitrogen metabolism, and protein biosynthesis. A catabolic repression by glucose on carbohydrate transport and metabolism was also found. The characterization of the proteomes in response to changing environmental conditions could be useful to get L. plantarum strains adapted for specific applications. Microbial cell performance during food biotechnological processes has become one of the greatest concerns all over the world. L. plantarum is a lactic acid bacterium with a large industrial application for fermented foods or functional foods (e.g., probiotics). The present study compared the fermentation and proteomic profiling of L. plantarum strains during growth under food-like conditions and under optimal laboratory conditions (MRS broth). This study provides specific mechanisms of proteomic adaptation involved in the microbial performances

  12. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  13. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.

    Science.gov (United States)

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias

    2014-07-01

    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. © FASEB.

  14. Profiling the secretome and extracellular proteome of the potato late blight pathogen Phytophthora infestans.

    Science.gov (United States)

    Meijer, Harold J G; Mancuso, Francesco M; Espadas, Guadalupe; Seidl, Michael F; Chiva, Cristina; Govers, Francine; Sabidó, Eduard

    2014-08-01

    Oomycetes are filamentous organisms that cause notorious diseases, several of which have a high economic impact. Well known is Phytophthora infestans, the causal agent of potato late blight. Previously, in silico analyses of the genome and transcriptome of P. infestans resulted in the annotation of a large number of genes encoding proteins with an N-terminal signal peptide. This set is collectively referred to as the secretome and comprises proteins involved in, for example, cell wall growth and modification, proteolytic processes, and the promotion of successful invasion of plant cells. So far, proteomic profiling in oomycetes was primarily focused on subcellular, intracellular or cell wall fractions; the extracellular proteome has not been studied systematically. Here we present the first comprehensive characterization of the in vivo secretome and extracellular proteome of P. infestans. We have used mass spectrometry to analyze P. infestans proteins present in seven different growth media with mycelial cultures and this resulted in the consistent identification of over two hundred proteins. Gene ontology classification pinpointed proteins involved in cell wall modifications, pathogenesis, defense responses, and proteolytic processes. Moreover, we found members of the RXLR and CRN effector families as well as several proteins lacking an obvious signal peptide. The latter were confirmed to be bona fide extracellular proteins and this suggests that, similar to other organisms, oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment.

  15. Proteomic Profiling of Sugar Beet (Beta vulgaris) Leaves during Rhizomania Compatible Interactions.

    Science.gov (United States)

    Webb, Kimberly M; Broccardo, Carolyn J; Prenni, Jessica E; Wintermantel, William M

    2014-04-09

    Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.

  16. Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease.

    Science.gov (United States)

    Cao, Hongxin; Zhang, Aihua; Sun, Hui; Zhou, Xiaohang; Guan, Yu; Liu, Qi; Kong, Ling; Wang, Xijun

    2015-11-01

    Kidney fibrosis (KF) is a common process that leads to the progression of various types of kidney disease including kidney-yang deficiency syndrome, however, little is known regarding the underlying biology of this disorder. Fortunately, integrated omics approaches provide the molecule fingerprints related to the disease. In an attempt to address this issue, we integrated metabolomics-proteomics profiles analyzed pathogenic mechanisms of KF based on rat model. A total 37 serum differential metabolites were contributed to KF progress, involved several important metabolic pathways. Using iTRAQ-based quantitative proteomics analysis, 126 differential serum proteins were identified and provide valuable insight into the underlying mechanisms of KF. These proteins appear to be involved in complement and coagulation cascades, regulation of actin cytoskeleton, MAPK signaling pathway, RNA transport, etc. Interestingly, pathway/network analysis of integrated proteomics and metabolomics data firstly reveals that these signaling pathways were closely related with KF. It further indicated that most of these proteins play a pivotal role in the regulation of metabolism pathways.

  17. Different Proteome Profiles between Male and Female Populus cathayana Exposed to UV-B Radiation

    Science.gov (United States)

    Zhang, Yunxiang; Feng, Lihua; Jiang, Hao; Zhang, Yuanbin; Zhang, Sheng

    2017-01-01

    With increasing altitude, solar UV-B radiation is enhanced. Based on the phenomenon of male-biased sex ratio of Populus cathayana Rehder in high altitude alpine area, we hypothesized that males have a faster and more sophisticated responsive mechanism to high UV-B radiation than that of females. Our previous studies have shown sexually different responses to high UV-B radiation were existed in P. cathayana at the morphological, physiological, and transcriptomic levels. However, the responses at the proteomic level remain unclear. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteome analysis was performed in P. cathayana females and males. A total of 2,405 proteins were identified, with 331 proteins defined as differentially expressed proteins (DEPs). Among of these, 79 and 138 DEPs were decreased and 47 and 107 DEPs were increased under high solar UV-B radiation in females and males, respectively. A bioinformatics analysis categorized the common responsive proteins in the sexes as related to carbohydrate and energy metabolism, translation/transcription/post-transcriptional modification, photosynthesis, and redox reactions. The responsive proteins that showed differences in sex were mainly those involved in amino acid metabolism, stress response, and translation/transcription/post-transcriptional modification. This study provides proteomic profiles that poplars responding to solar UV-B radiation, and it also provides new insights into differentially sex-related responses to UV-B radiation.

  18. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans

    KAUST Repository

    Zhang, Yu

    2014-08-22

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  19. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans.

    Science.gov (United States)

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli H; Xu, Ying; He, Li-Sheng; Ravasi, Timothy; Qian, Pei-Yuan

    2014-09-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  20. Proteome profile and biological activity of caprine, bovine and human milk fat globules.

    Science.gov (United States)

    Spertino, Stefano; Cipriani, Valentina; De Angelis, Chiara; Giuffrida, Maria Gabriella; Marsano, Francesco; Cavaletto, Maria

    2012-04-01

    Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.

  1. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis.

    Directory of Open Access Journals (Sweden)

    Catalin S Buhimschi

    2007-01-01

    Full Text Available BACKGROUND: Proteomic analysis of amniotic fluid shows the presence of biomarkers characteristic of intrauterine inflammation. We sought to validate prospectively the clinical utility of one such proteomic profile, the Mass Restricted (MR score. METHODS AND FINDINGS: We enrolled 169 consecutive women with singleton pregnancies admitted with preterm labor or preterm premature rupture of membranes. All women had a clinically indicated amniocentesis to rule out intra-amniotic infection. A proteomic fingerprint (MR score was generated from fresh samples of amniotic fluid using surface-enhanced laser desorption ionization (SELDI mass spectrometry. Presence or absence of the biomarkers of the MR score was interpreted in relationship to the amniocentesis-to-delivery interval, placental inflammation, and early-onset neonatal sepsis for all neonates admitted to the Newborn Special Care Unit (n = 104. Women with "severe" amniotic fluid inflammation (MR score of 3 or 4 had shorter amniocentesis-to-delivery intervals than women with "no" (MR score of 0 inflammation or even "minimal" (MR score of 1 or 2 inflammation (median [range] MR 3-4: 0.4 d [0.0-49.6 d] versus MR 1-2: 3.8 d [0.0-151.2 d] versus MR 0: 17.0 d [0.1-94.3 d], p 100 cells/mm3, whereas the combination of Gram stain and MR score was best for rapid prediction of intra-amniotic infection (positive amniotic fluid culture. CONCLUSIONS: High MR scores are associated with preterm delivery, histological chorioamnionitis, and early-onset neonatal sepsis. In this study, proteomic analysis of amniotic fluid was shown to be the most accurate test for diagnosis of intra-amniotic inflammation, whereas addition of the MR score to the Gram stain provides the best combination of tests to rapidly predict infection.

  2. Metastatic Tissue Proteomic Profiling Predicts 5-Year Outcomes in Patients with Colorectal Liver Metastases

    Directory of Open Access Journals (Sweden)

    Santiago Marfà

    2016-10-01

    Full Text Available Colorectal cancer (CRC is one of the most common cancers in the developed countries, and nearly 70% of patients with CRC develop colorectal liver metastases (CRLMs. During the last decades, several scores have been proposed to predict recurrence after CRLM resection. However, these risk scoring systems do not accurately reflect the prognosis of these patients. Therefore, this investigation was designed to identify a proteomic profile in human hepatic tumor samples to classify patients with CRLM as “mild” or “severe” based on the 5-year survival. The study was performed on 85 CRLM tumor samples. Firstly, to evaluate any distinct tumor proteomic signatures between mild and severe CRLM patients, a training group of 57 CRLM tumor samples was characterized by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, and a classification and regression tree (CART analysis was subsequently performed. Finally, 28 CRLM tumor samples were used to confirm and validate the results obtained. Based on all the protein peaks detected in the training group, the CART analysis was generated, and four peaks were considered to be the most relevant to construct a diagnostic algorithm. Indeed, the multivariate model yielded a sensitivity of 85.7% and a specificity of 86.1%, respectively. In addition, the receiver operating characteristic (ROC curve showed an excellent diagnostic accuracy to discriminate mild from severe CRLM patients (area under the ROC: 0.903. Finally, the validation process yielded a sensitivity and specificity of 68.8% and 83.3%, respectively. We identified a proteomic profile potentially useful to determine the prognosis of CRLM patients based on the 5-year survival.

  3. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes.

    Science.gov (United States)

    Shi, Haibin; Zhang, Chong-Jing; Chen, Grace Y J; Yao, Shao Q

    2012-02-15

    Protein kinases (PKs) play an important role in the development and progression of cancer by regulating cell growth, survival, invasion, metastasis, and angiogenesis. Dasatinib (BMS-354825), a dual Src/Abl inhibitor, is a promising therapeutic agent with oral bioavailability. It has been used for the treatment of imatinib-resistant chronic myelogenous leukemia (CML). Most kinase inhibitors, including Dasatinib, inhibit multiple cellular targets and do not possess exquisite cellular specificity. Recent efforts in kinase research thus focus on the development of large-scale, proteome-wide chemical profiling methods capable of rapid identification of potential cellular (on- and off-) targets of kinase inhibitors. Most existing approaches, however, are still problematic and in many cases not compatible with live-cell studies. In this work, we have successfully developed a cell-permeable kinase probe (DA-2) capable of proteome-wide profiling of potential cellular targets of Dasatinib. In this way, highly regulated, compartmentalized kinase-drug interactions were maintained. By comparing results obtained from different proteomic setups (live cells, cell lysates, and immobilized affinity matrix), we found DA-2 was able to identify significantly more putative kinase targets. In addition to Abl and Src family tyrosine kinases, a number of previously unknown Dasatinib targets have been identified, including several serine/threonine kinases (PCTK3, STK25, eIF-2A, PIM-3, PKA C-α, and PKN2). They were further validated by pull-down/immunoblotting experiments as well as kinase inhibition assays. Further studies are needed to better understand the exact relevance of Dasatinib and its pharmacological effects in relation to these newly identified cellular targets. The approach developed herein should be amenable to the study of many of the existing reversible drugs/drug candidates.

  4. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    Directory of Open Access Journals (Sweden)

    Aryal Uma K

    2011-12-01

    Full Text Available Abstract Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated" metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C and nitrogen (N acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how

  5. Primary establishment of human uterine muscle proteomic profiling by two-dimensional electrophoresis and mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Lin Hai-yuan; Lang Jing-he; Liu Zhu-feng; Zhu Lan; Leng Jin-hua; Sun Da-wei; Wang Xiao-rong

    2008-01-01

    Objective:To establish the protein profiling of human uterine muscle by two-dimensional electrophoresis.Methods:Five patients who underwent trans-abdominal hysterectomy due to cervical carcinoma in situ were in-cluded in this study.Postoperative uterine muscles were normal histologically.The total protein extracts from uter-ine muscle were separated using two-dimensional electrophoresis(2DE).Protein spots were stained by silver and de-tected by image analysis software.Matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF-MS)and peptide mass fingerprint(PMF)were used to identify the selected protein spots.Results:Well-resolved,reproducible 2DE maps of human uterine muscle were obtained.Average protein spots were 468±52 and matching rate was 82.76%.Five protein spots were successfully identified by mass spectrome-try.Conclusions:2DE coupled with MALDI-TOF-MS and PMF is a useful approach for establishing human uterine muscle proteomic profiling.This data will be useful for establishing human uterine muscle proteome database.

  6. Advancing Clinicopathologic Diagnosis of High-risk Neuroblastoma Using Computerized Image Analysis and Proteomic Profiling.

    Science.gov (United States)

    Niazi, M Khalid Khan; Chung, Jonathan H; Heaton-Johnson, Katherine J; Martinez, Daniel; Castellanos, Raquel; Irwin, Meredith S; Master, Stephen R; Pawel, Bruce R; Gurcan, Metin N; Weiser, Daniel A

    2017-01-01

    A subset of patients with neuroblastoma are at extremely high risk for treatment failure, though they are not identifiable at diagnosis and therefore have the highest mortality with conventional treatment approaches. Despite tremendous understanding of clinical and biological features that correlate with prognosis, neuroblastoma at ultra-high risk for treatment failure remains a diagnostic challenge. As a first step towards improving prognostic risk stratification within the high-risk group of patients, we determined the feasibility of using computerized image analysis and proteomic profiling on single slides from diagnostic tissue specimens. After expert pathologist review of tumor sections to ensure quality and representative material input, we evaluated multiple regions of single slides as well as multiple sections from different patients' tumors using computational histologic analysis and semiquantitative proteomic profiling. We found that both approaches determined that intertumor heterogeneity was greater than intratumor heterogeneity. Unbiased clustering of samples was greatest within a tumor, suggesting a single section can be representative of the tumor as a whole. There is expected heterogeneity between tumor samples from different individuals with a high degree of similarity among specimens derived from the same patient. Both techniques are novel to supplement pathologist review of neuroblastoma for refined risk stratification, particularly since we demonstrate these results using only a single slide derived from what is usually a scarce tissue resource. Due to limitations of traditional approaches for upfront stratification, integration of new modalities with data derived from one section of tumor hold promise as tools to improve outcomes.

  7. In vivo Host-Pathogen Interaction as Revealed by Global Proteomic Profiling of Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Francisco Díaz-Pascual

    2017-07-01

    immersion. We demonstrated the suitability of zebrafish embryos as a model for in vivo host-pathogen based proteomic studies in P. aeruginosa. Our global proteomic profiling identifies novel molecular signatures that give systematic insight into zebrafish-Pseudomonas interaction.

  8. In vivo Host-Pathogen Interaction as Revealed by Global Proteomic Profiling of Zebrafish Larvae

    Science.gov (United States)

    Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Varas, Macarena A.; Allende, Miguel L.; Chávez, Francisco P.

    2017-01-01

    demonstrated the suitability of zebrafish embryos as a model for in vivo host-pathogen based proteomic studies in P. aeruginosa. Our global proteomic profiling identifies novel molecular signatures that give systematic insight into zebrafish-Pseudomonas interaction. PMID:28791256

  9. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.

    Science.gov (United States)

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2014-04-01

    Kinases are among the most intensively pursued enzyme superfamilies as targets for anti-cancer drugs. Large data sets on inhibitor potency and selectivity for more than 400 human kinases became available recently, offering the opportunity to design rationally novel kinase-based anti-cancer therapies. However, the expression levels and activities of kinases are highly heterogeneous among different types of cancer and even among different stages of the same cancer. The lack of effective strategy for profiling the global kinome hampers the development of kinase-targeted cancer chemotherapy. Here, we introduced a novel global kinome profiling method, based on our recently developed isotope-coded ATP-affinity probe and a targeted proteomic method using multiple-reaction monitoring (MRM), for assessing simultaneously the expression of more than 300 kinases in human cells and tissues. This MRM-based assay displayed much better sensitivity, reproducibility, and accuracy than the discovery-based shotgun proteomic method. Approximately 250 kinases could be routinely detected in the lysate of a single cell line. Additionally, the incorporation of iRT into MRM kinome library rendered our MRM kinome assay easily transferrable across different instrument platforms and laboratories. We further employed this approach for profiling kinase expression in two melanoma cell lines, which revealed substantial kinome reprogramming during cancer progression and demonstrated an excellent correlation between the anti-proliferative effects of kinase inhibitors and the expression levels of their target kinases. Therefore, this facile and accurate kinome profiling assay, together with the kinome-inhibitor interaction map, could provide invaluable knowledge to predict the effectiveness of kinase inhibitor drugs and offer the opportunity for individualized cancer chemotherapy.

  10. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Poulsen, Nina Aagaard; Andersen, Vibeke; Moller, Jens Christian

    2012-01-01

    Background: Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa...... annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon......, thioredoxins and selenium binding protein). Conclusions: A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC....

  11. Do we need a gender-specific total knee replacement?

    DEFF Research Database (Denmark)

    Thomsen, Morten Grove; Husted, H; Bencke, J

    2012-01-01

    of 24 female patients with bilateral osteoarthritis entered this prospective, blind randomised trial in which they received a high-flex PS TKR in one knee and a gender-specific high-flexion PS TKR in the other knee. At follow-up, patients were assessed clinically measuring ROM, and questioned about pain......, satisfaction and daily 'feel' of each knee. Patients underwent gait analysis pre-operatively and at one year, which yielded kinematic, kinetic and temporospatial parameters indicative of knee function during gait. At final follow-up we found no statistically significant differences in ROM (p = 0...

  12. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Swelm, Rachel P.L. van [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Laarakkers, Coby M.M. [Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Russel, Frans G.M., E-mail: F.Russel@pharmtox.umcn.nl [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  13. Human hair shaft proteomic profiling: individual differences, site specificity and cuticle analysis

    Directory of Open Access Journals (Sweden)

    Chelsea N. Laatsch

    2014-08-01

    Full Text Available Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African–American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3, accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals.

  14. Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Callister, Stephen J [Pacific Northwest National Laboratory (PNNL); Wilkins, Mike [University of California, Berkeley; Nicora, Carrie D. [Pacific Northwest National Laboratory (PNNL); Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Banfield, Jillian F. [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; N' Guessan, A. Lucie [University of Massachusetts, Amherst; Mouser, Paula J [University of Massachusetts, Amherst; Elifantz, Hila [University of Massachusetts, Amherst; Smith, Richard D. [Pacific Northwest National Laboratory (PNNL); Lovley, Derek [University of Massachusetts, Amherst; Lipton, Mary S [Pacific Northwest National Laboratory (PNNL); Long, Phil [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetateamended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or pseudo-metagenomes , for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally,ashift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  15. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles

    Energy Technology Data Exchange (ETDEWEB)

    Callister, S.J.; Wilkins, M.J.; Nicora, C.D.; Williams, K.H.; Banfield, J.F.; VerBerkmoes, N.C.; Hettich, R.L.; NGuessan, A.L.; Mouser, P.J.; Elifantz, H.; Smith, R.D.; Lovley, D.R.; Lipton, M.S.; Long, P.E.

    2010-07-15

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or “pseudo-metagenomes”, for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  16. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy.

    Science.gov (United States)

    Zandian, Arash; Forsström, Björn; Häggmark-Månberg, Anna; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter; Ayoglu, Burcu

    2017-02-09

    The underlying molecular mechanisms of autoimmune diseases are poorly understood. To unravel the autoimmune processes across diseases, comprehensive and unbiased analyses of proteins targets recognized by the adaptive immune system are needed. Here we present an approach starting from high-density peptide arrays to characterize autoantibody repertoires and to identify new autoantigens. A set of ten plasma and serum samples from subjects with multiple sclerosis, narcolepsy, and without any disease diagnosis were profiled on a peptide array representing the whole proteome, hosting 2.2 million 12-mer peptides with a six amino acid lateral shift. On the basis of the IgG reactivities found on these whole-proteome peptide microarrays, a set of 23 samples was then studied on a targeted array with 174 000 12-mer peptides of single amino acid lateral shift. Finally, verification of IgG reactivities was conducted with a larger sample set (n = 448) using the bead-based peptide microarrays. The presented workflow employed three different peptide microarray formats to discover and resolve the epitopes of human autoantibodies and revealed two potentially new autoantigens: MAP3K7 in multiple sclerosis and NRXN1 in narcolepsy. The presented strategy provides insights into antibody repertoire reactivity at a peptide level and may accelerate the discovery and validation of autoantigens in human diseases.

  17. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina

    KAUST Repository

    Wang, Hao

    2010-06-10

    Non-model organisms represent the majority of life forms in our planet. However, the lack of genetic information hinders us to understand the unique biological phenomena in non-model organisms at the molecular level. In this study, we applied a tandem transcriptome and proteome profiling on a non-model marine fouling organism, Bugula neritina. Using a 454 pyrosequencing platform with the updated titanium reagents, we generated a total of 48M bp transcriptome data consisting of 131 450 high-quality reads. Of these, 122 650 reads (93%) were assembled to produce 6392 contigs with an average length of 538 bases and the remaining 8800 reads were singletons. Of the total 15 192 unigenes, 13 863 ORFs were predicated, of which 6917 were functionally annotated based on gene ontology and eukaryotic orthologous groups. Subsequent proteome analysis identified and quantified 882 proteins from B. neritina. These results would provide fundamental and important information for the subsequent studies of molecular mechanism in larval biology, development, antifouling research. Furthermore, we demonstrated, for the first time, the combined use of two high-throughput technologies as a powerful approach for accelerating the studies of non-model but otherwise important species. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid

    Indian Academy of Sciences (India)

    Riddhi Datta; Ragini Sinha; Sharmila Chattopadhyay

    2013-06-01

    Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis. An initial study at transcript level has been performed on temporal landscape, which revealed that induction of most of the SA-responsive genes occurs within 3 to 6 h post treatment (HPT) and the expression peaked within 24 HPT. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF MS/MS analysis has been used to identify differentially expressed proteins and 63 spots have been identified successfully. This comparative proteomic profiling of SA treated leaves versus control leaves demonstrated the changes of many defence related proteins like pathogenesis related protein 10a (PR10a), disease-resistance-like protein, putative late blight-resistance protein, WRKY4, MYB4, etc. along with gross increase in the rate of energy production, while other general metabolism rate is slightly toned down, presumably signifying a transition from ‘normal mode’ to ‘defence mode’.

  19. Biomarker discovery for ovine paratuberculosis (Johne's disease) by proteomic serum profiling.

    Science.gov (United States)

    Zhong, L; Taylor, D; Begg, D J; Whittington, R J

    2011-07-01

    Paratuberculosis (Johne's disease) is a chronic granulomatous enteritis affecting ruminants and other species. It is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In this study, surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) was used as a platform to identify candidate biomarkers from sheep serum. Multivariate biomarker models which aimed to differentiate sheep with paratuberculosis and vaccinated-exposed sheep from unexposed animals were proposed based on classification and regression tree (CART) and linear discriminant analysis (LDA) algorithms from two array types. The accuracy of classification of sheep into unexposed or exposed groups ranged from 75 to 100% among models. SELDI was used to monitor protein profile changes over time during an experimental infection trial by examining sera collected at 4-, 8- and 13-months post infection. Although three different SELDI instruments were used, nine consistent proteomic features were observed associated with exposure to MAP. Two of the putative serum biomarkers were purified from serum using chromatographic methods and were identified as transthyretin and alpha haemoglobin by tandem mass spectrometry. They belong to highly abundant, acute phase reactants in the serum proteome and have also been discovered as serum biomarkers in human inflammatory conditions and cancer. Their relationship to the pathogenesis of Johne's disease remains to be elucidated.

  20. Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

    Science.gov (United States)

    Knezevic, Claire E; Wright, Gabriela; Rix, Lily L Remsing; Kim, Woosuk; Kuenzi, Brent M; Luo, Yunting; Watters, January M; Koomen, John M; Haura, Eric B; Monteiro, Alvaro N; Radu, Caius; Lawrence, Harshani R; Rix, Uwe

    2016-12-22

    Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we generated a comparative proteome-wide target map of the four clinical PARPi, olaparib, veliparib, niraparib, and rucaparib. PARPi as a class displayed high target selectivity. However, in addition to the canonical targets PARP1, PARP2, and several of their binding partners, we also identified hexose-6-phosphate dehydrogenase (H6PD) and deoxycytidine kinase (DCK) as previously unrecognized targets of rucaparib and niraparib, respectively. Subsequent functional validation suggested that inhibition of DCK by niraparib could have detrimental effects when combined with nucleoside analog pro-drugs. H6PD silencing can cause apoptosis and further sensitize cells to PARPi, suggesting that H6PD may be, in addition to its established role in metabolic disorders, a new anticancer target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  2. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens.

    Directory of Open Access Journals (Sweden)

    Bao-cun Zhang

    Full Text Available Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS, 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.

  3. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    NARCIS (Netherlands)

    H. Steeb (Hannah); J.M. Ramsey (Jordan); P.C. Guest (Paul); P. Stocki (Pawel); J.D. Cooper (Jason); H. Rahmoune (Hassan); E. Ingudomnukul (Erin); B. Auyeung (Bonnie); L. Ruta (Liliana); S. Baron-Cohen (Simon); S. Bahn (Sabine)

    2014-01-01

    textabstractBackground: The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods. He

  4. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  5. Postmortem proteome degradation profiles of longissimus muscle in Yorkshire and Duroc pigs and their relationship with pork quality traits

    NARCIS (Netherlands)

    te Pas, M.F.W.; Jansen, J; Broekman, K.C.J.A.; Reimert, H.; Heuven, H.C.M.

    2009-01-01

    doi:10.1016/j.meatsci.2009.08.030 Copyright © 2009 Elsevier Ltd All rights reserved. Postmortem proteome degradation profiles of longissimus muscle in Yorkshire and Duroc pigs and their relationship with pork quality traits Marinus F.W. te Pasa, , , Jaap Jansena, Konrad C.J.A. Broekmanb, Henny Reime

  6. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice

    NARCIS (Netherlands)

    Swelm, R.P.L. van; Laarakkers, J.M.M.; Kuur, E.C. van der; Morava, E.; Wevers, R.A.; Augustijn, K.D.; Touw, D.J.; Sandel, M.H.; Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  7. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  8. Age and gender specific biokinetic model for strontium in humans

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.

  9. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  10. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein.

    Science.gov (United States)

    Woellhaf, Michael W; Sommer, Frederik; Schroda, Michael; Herrmann, Johannes M

    2016-10-15

    Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker's yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries.

  11. Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs) represent an efficient way to dissect functional pathways for revealing novel protein functions. In this review, we illustrate the technological evolution for the large-scale and precise identification of PPIs toward higher physiologically relevant accuracy. These techniques aim at improving the efficiency of complex pull-down, the signal specificity and accuracy in distinguishing specific PPIs, and the accuracy of identifying physiological relevant PPIs. A newly developed streamline proteomic approach for mapping the binary relationship of PPIs in a protein complex is introduced.

  12. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy

    DEFF Research Database (Denmark)

    Molina, Henrik; Yang, Yi; Ruch, Travis;

    2009-01-01

    adipocyte differentiation has not been documented previously. For example, THO complex 4, a context-dependent transcriptional activator in the T-cell receptor alpha enhancer complex, showed highest expression at middle stage of adipogenesis, while SNF2 alpha, a chromatin remodeling protein......The adipose tissue has important secretory and endocrine functions in humans. The regulation of adipocyte differentiation has been actively pursued using transcriptomic methods over the last several years. Quantitative proteomics has emerged as a promising approach to obtain temporal profiles...... of biological processes such as differentiation. Stable isotope labeling with amino acids in cell culture (SILAC) is a simple and robust method for labeling proteins in vivo. Here, we describe the development and application of a five-plex SILAC experiment using four different heavy stable isotopic forms...

  13. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  14. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Emanuela eDattolo

    2013-06-01

    Full Text Available For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in the shallow (-5m and a deep (-25m portions of a single meadow, (i we generated two reciprocal EST (Expressed Sequences Tags libraries using a Suppressive Subtractive Hybridization (SSH approach, to obtain depth/specific transcriptional profiles, and (ii we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear o be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  15. Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation.

    Science.gov (United States)

    Tahir, Ammar; Bileck, Andrea; Muqaku, Besnik; Niederstaetter, Laura; Kreutz, Dominique; Mayer, Rupert L; Wolrab, Denise; Meier, Samuel M; Slany, Astrid; Gerner, Christopher

    2017-02-07

    During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.

  16. Unraveling the proteomic profile of mice testis during the initiation of meiosis.

    Science.gov (United States)

    Shao, Binbin; Guo, Yueshuai; Wang, Lei; Zhou, Quan; Gao, Tingting; Zheng, Bo; Zheng, Haoyu; Zhou, Tao; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan; Sha, Jiahao

    2015-04-29

    In mice, once primordial germ cells (PGCs) are generated, they continue to proliferate and migrate to eventually reach the future gonads. They initiate sexual differentiation after their colonization of the gonads. During this process, retinoic acid (RA) induces meiosis in the female germ cells, which proceeds to the diplotene stage of meiotic prophase I, whereas the male germ cells initiate growth arrest. After birth, meiosis is initiated in mice spermatogonia by their conversion to preleptotene spermatocytes. There are evidences showing the roles of RA in the regulation of spermatogonial differentiation and meiosis initiation. However, it is still not well known on what responds to RA and how RA signaling engages meiosis. Thus, we constructed a proteomic profile of proteins associated with meiosis onset during testis development in mouse and identified 104 differentially expressed proteins (≥1.5 folds). Bioinformatic analysis showed proteins functioning in specific cell processes. The expression patterns of five selected proteins were verified via Western blot, of which we found that Tfrc gene was RA responsive, with a RA responsive element, and could be up regulated by RA in spermatogonial stem cell (SSC) line. Taken together, the results provide an important reference profile for further functional study of meiosis initiation. Spermatogenesis involves mitosis of spermatogonia, meiosis of spermatocytes and spermiogenesis, in which meiosis is a unique event to germ cells, and not in the somatic cells. Till now, the detailed molecular mechanisms of the transition from mitosis to meiosis are still not elucidated. With high-throughput proteomic technology, it is now possible to systemically identify proteins possibly involved. With TMT-6plex based quantification, we identified 104 proteins differentially between testes without meiosis (day 8.5) and those that were meiosis initiated (day 10.5). And a well-known protein essential for meiosis initiation, stra8, was

  17. Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development.

    Science.gov (United States)

    Brown, Kristine E; Chagoya, Gustavo; Kwatra, Shawn G; Yen, Timothy; Keir, Stephen T; Cooter, Mary; Hoadley, Katherine A; Rasheed, Ahmed; Lipp, Eric S; Mclendon, Roger; Ali-Osman, Francis; Bigner, Darell D; Sampson, John H; Kwatra, Madan M

    2015-06-01

    The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre-clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR. The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. We validated proteomic profiles using patient-derived glioblastoma xenografts (PDGX), characterizing 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. Proteins found to be associated with high EGFR activity represent potential

  18. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.

    2016-02-12

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  19. Multidimensional protein fractionation using ProteomeLab PF 2D™ for profiling amyotrophic lateral sclerosis immunity: A preliminary report

    Directory of Open Access Journals (Sweden)

    Mosley R Lee

    2008-09-01

    Full Text Available Abstract Background The ProteomeLab™ PF 2D platform is a relatively new approach to global protein profiling. Herein, it was used for investigation of plasma proteome changes in amyotrophic lateral sclerosis (ALS patients before and during immunization with glatiramer acetate (GA in a clinical trial. Results The experimental design included immunoaffinity depletion of 12 most abundant proteins from plasma samples with the ProteomeLab™ IgY-12 LC10 column kit as first dimension separation, also referred to as immuno-partitioning. Second and third dimension separations of the enriched proteome were performed on the PF 2D platform utilizing 2D isoelectric focusing and RP-HPLC with the resulting fractions collected for analysis. 1D gel electrophoresis was added as a fourth dimension when sufficient protein was available. Protein identification from collected fractions was performed using nano-LC-MS/MS approach. Analysis of differences in the resulting two-dimensional maps of fractions obtained from the PF 2D and the ability to identify proteins from these fractions allowed sensitivity threshold measurements. Masked proteins in the PF 2D fractions are discussed. Conclusion We offer some insight into the strengths and limitations of this emerging proteomic platform.

  20. Proteomic profiling reveals dopaminergic regulation of progenitor cell functions of goldfish radial glial cells in vitro.

    Science.gov (United States)

    Xing, Lei; Martyniuk, Christopher J; Esau, Crystal; Da Fonte, Dillon F; Trudeau, Vance L

    2016-07-20

    proteome on a large scale in a vertebrate species. These data provide novel insight into glial protein networks that are associated with neuroendocrine function and neurogenesis in the teleost brain. While the role of radial glial cells in organizing brain structure and neurogenesis has been well studied, protein profiling experiments in this unique cell type has not been conducted. This study is the first to profile the proteome of goldfish radial glial cells in culture and to study the regulation of progenitor functions of radial glial cells by the neurotransmitter dopamine. This study provides the foundation for molecular network analysis in fish radial glial cells, and identifies cellular processes and signaling pathways in these cells with roles in neurogenesis and neuroendocrine function. Lastly, this study begins to characterize signatures and biomarkers for specific neuroendocrine and neurogenesis disruptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Proteomic profiling of the hemolymph at the fifth instar of the silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Jian-Ying Li; Ji-Sheng Li; Bo-Xiong Zhong

    2012-01-01

    Two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry (MS) analysis were used to charaterize the hemolymph proteomic profiles of the silkworm,Bombyx mori.At days 4 (V4) and 5 (V5) of the fifth (final) instar,when the larvae were at the fast-growing stage,we found dramatic changes in spots representing proteins having an approximate molecular weight (MW) of 30 kDa.Of these spots,four 30K proteins were highly upregulated,implying a close association with the growth and development of B.mori larvae.To understand the molecular basis and underlying mechanisms involved in development and metamorphosis,the proteome of whole hemolymph at V5 was analyzed using shotgun liquid chromatography tandem mass spectrometry with an LTQ-Orbitrap.A total of 108 proteins were identified without any false discovery hits.These proteins were involved in a variety of cellular functions,including metabolism,development,nutrient transport and reserve,and defense response.Gene ontology analysis showed that 3.4% of these proteins had nutrient reservoir activities and 5.7% were involved in the response to stimulus.Pathway analysis revealed that 22 proteins with common targets were involved in various cellular processes such as immunity,differentiation,proliferation and metamorphosis.These results suggested that some key factors such as the 30K proteins in hemolymph play important roles in B.mori growth and development.Moreover,the multiple functions of hemolymph may be operated by a complex biological network.

  2. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.

    2011-04-01

    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  3. Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

    Science.gov (United States)

    Pickering, Christina M; Grady, Cameron; Medvar, Barbara; Emamian, Milad; Sandoval, Pablo C; Zhao, Yue; Yang, Chin-Rang; Jung, Hyun Jun; Chou, Chung-Lin; Knepper, Mark A

    2016-02-01

    The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

  4. Stromal proteome expression profile and muscle-invasive bladder cancer research

    Directory of Open Access Journals (Sweden)

    Niu Haitao

    2012-08-01

    Full Text Available Abstract Background To globally characterize the cancer stroma expression profile of muscle-invasive transitional cell carcinoma and to discuss the cancer biology as well as biomarker discovery from stroma. Laser capture micro dissection was used to harvest purified muscle-invasive bladder cancer stromal cells and normal urothelial stromal cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results We identified 868/872 commonly expressed proteins and 978 differential proteins from 4 paired cancer and normal stromal samples using laser capture micro dissection coupled with two-dimensional liquid chromatography tandem mass spectrometry. 487/491 proteins uniquely expressed in cancer/normal stroma. Differential proteins were compared with the entire list of the international protein index (IPI, and there were 42/42 gene ontology (GO terms exhibited as enriched and 8/5 exhibited as depleted in cellular Component, respectively. Significantly altered pathways between cancer/normal stroma mainly include metabolic pathways, ribosome, focal adhesion, etc. Finally, descriptive statistics show that the stromal proteins with extremes of PI and MW have the same probability to be a biomarker. Conclusions Based on our results, stromal cells are essential component of the cancer, biomarker discovery and network based multi target therapy should consider neoplastic cells itself and corresponding stroma as whole one.

  5. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.

  6. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

    Science.gov (United States)

    Thorsen, Michael; Lagniel, Gilles; Kristiansson, Erik; Junot, Christophe; Nerman, Olle; Labarre, Jean; Tamás, Markus J

    2007-06-19

    Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance, and proteolytic activity. Importantly, we observed that nearly all components of the sulfate assimilation and glutathione biosynthesis pathways were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated cellular glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pinpointed transcription factors that mediate the core of the transcriptional response to arsenite. Taken together, our data reveal that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis, and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert.

  7. Alteration of protein profile in rat liver of animals exposed to subacute diazinon: a proteomic approach.

    Science.gov (United States)

    Lari, Parisa; Rashedinia, Marzieh; Abnous, Khalil; Hosseinzadeh, Hossein

    2014-05-01

    Diazinon, an organophosphorus insecticide, is employed to control pests in agriculture. Diazinon may contaminate the environment during the manufacturing process or agricultural application. Previous studies have revealed that diazinon may induce alteration in the protein profile of the liver. Here, a proteomics approach was used to investigate the effects on the protein profile in the liver of rats of subacute oral exposures at 15 mg/kg of diazinon. Liver proteins were separated using 2D-PAGE, and stained by MS-compatible silver staining and/or the fluorescent SYPRO® Ruby protein gel stain. Gels were scanned and analyzed using the Image Master software. Differentially displayed protein species were identified using MALDI-TOF/TOF and MASCOT software. Significantly altered protein species were identified to be involved in apoptosis, cell metabolism, transport, and antioxidant systems. Exposure to diazinon decreased levels of some species of catalase, peroxiredoxin-6, 3-ketoacyl-CoA thiolase, and glucose regulated protein78, whereas the level of protein disulfide-isomerase A3 increased. Our results suggested that diazinon may induce hepatotoxicity through oxidative stress, apoptosis, and metabolic disorders in rat liver.

  8. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome.

    Science.gov (United States)

    Benkhalifa, Moncef; Madkour, Aicha; Louanjli, Noureddine; Bouamoud, Nouzha; Saadani, Brahim; Kaarouch, Ismail; Chahine, Hikmat; Sefrioui, Omar; Merviel, Philippe; Copin, Henri

    2015-08-01

    The development of in vitro fertilization (IVF) techniques for infertility management has led to the investigation of the proteome of follicular fluid and oocyte. In addition, different markers contributing to oocyte maturation and embryo development potential have been reported in the literature. Different techniques were utilized to analyze whole proteome or single protein markers in follicular fluid and oocytes, particularly in animal models. Data from several studies have generated large amounts of information, however, an ideal profile to predict the best oocytes and embryos suitable for implantation are still to be uncovered. The identification of such profiles and markers from follicular fluid, oocytes and endometrium should help scientists and clinicians develop better strategies to improving clinical outcome of IVF cycles.

  9. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics

    OpenAIRE

    Diamond, Deborah L.; Syder, Andrew J; Jacobs, Jon M.; Sorensen, Christina M.; Kathie-Anne Walters; Sean C Proll; Jason E. McDermott; Gritsenko, Marina A.; Qibin Zhang; Rui Zhao; Metz, Thomas O.; David G Camp; Waters, Katrina M.; Smith, Richard D.; Rice, Charles M.

    2010-01-01

    Author Summary As parasites, viruses rely on the cells they infect to provide the energy and building blocks required for their survival and propagation. However, relatively little is known about the extent to which viruses modulate host cell metabolism and the consequences of these disruptions. Here we integrate proteomic and lipidomic profiling with computational modeling approaches to probe the impact of HCV infection on the global metabolism of cultured hepatoma cells, and to understand t...

  10. Qualitative and quantitative proteomic profiling of cripto(-/-) embryonic stem cells by means of accurate mass LC-MS analysis.

    Science.gov (United States)

    Chambery, Angela; Vissers, Johannes P C; Langridge, James I; Lonardo, Enza; Minchiotti, Gabriella; Ruvo, Menotti; Parente, Augusto

    2009-02-01

    Cripto is one of the key regulators of embryonic stem cells (ESCs) differentiation into cardiomyocites vs neuronal fate. Cripto(-/-) murine ESCs have been utilized to investigate the molecular mechanisms underlying early events of mammalian lineage differentiation. 2D/LC-MS/MS and a label-free LC-MS approaches were used to qualitatively and quantitatively profile the cripto(-/-) ESC proteome, providing an integral view of the alterations induced in stem cell functions by deleting the cripto gene.

  11. Proteome profile of peritoneal effluents in children on glucose- or icodextrin-based peritoneal dialysis.

    Science.gov (United States)

    Bruschi, Maurizio; Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Mangraviti, Salvatore; Canepa, Alberto; Perri, Katia; Ghiggeri, Gian Marco; Verrina, Enrico

    2011-01-01

    We compared the proteome profile of peritoneal effluents obtained with icodextrin (Ico) or glucose (Glu) in paediatric patients and defined the oxido-redox status of proteins. Sixteen patients underwent two 14-h daytime dwells performed on subsequent days with 7.5% Ico and 3.86% Glu solutions. Protein composition was analysed by two-dimensional electrophoresis and mass spectrometry; oxidized products were evaluated by cyanine labelling. Peritoneal transport kinetics of β2-microglobulin and cystatin C was linear for both solutions, but was significantly higher with Ico than with Glu, suggesting a better efficiency for these molecules. There was a linear correlation between total protein removal during Ico and Glu dialysis in the same patient, suggesting that it is a function of peritoneal membrane characteristics. The ratio between proteins removed by Ico and by Glu solutions was higher at low removal rate. Image gel analysis revealed 1064 and 774 spots, respectively, in Ico and Glu solutions; 524 were common, and 314 were higher in Ico than Glu effluents. Analysis of protein oxido-redox status showed a greater amount of oxidized albumin in Ico dialysate that was correlated with lower serum levels. Our results indicate a better efficiency of Ico in removing small proteins. Removal of big proteins and their oxidized isoforms reflects potentially opposite effects. The long-term clinical consequences of removing also potentially important molecules are to be defined.

  12. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells.

    Science.gov (United States)

    van Diepen, Angela; Brand, H Kim; Sama, Iziah; Lambooy, Lambert H J; van den Heuvel, Lambert P; van der Well, Leontine; Huynen, Martijn; Osterhaus, Albert D M E; Andeweg, Arno C; Hermans, Peter W M

    2010-08-05

    Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.

  13. [Changes in proteome profiles of rat liver microsomes induced by silicon dioxide nanoparticles].

    Science.gov (United States)

    Tananova, O N; Arianova, E A; Gmoshinskii, I V; Toropygin, I Yu; Khryapova, E V; Trusov, N V; Khotimchenko, S A; Tutel'yan, V A

    2015-01-01

    The effect of daily intragastric administration of an aqueous dispersion of silicon nanoparticles (NPs) (the dose range from 1.0 mg/kg to 100 mg/kg body weight for 28 days) to rats on the proteomic profile of liver microsomes has been investigated by 2D-electrophoresis followed by subsequent mass spectrometry identification. The liver microsomal fraction was isolated by differential centrifugation and its protein composition was analyzed by 2D-polyacrylamide gel electrophoresis. Identification of protein spots was carried out using MALDI-TOF mass spectrometric analysis. The mass spectrometry analysis revealed the protein GRP78 (78 kD glucose-regulated protein precursor), belonging to the family of heat shock proteins. This protein present in animals of the control group was not detected in NP-treated rats of group 2 (1 mg/kg body weight/day) and group 3 (10 mg/kg body weight/day). This protein predominantly localized in the liver cell endoplasmic reticulum and plasma membrane has the chaperone biological activity. Possible mechanisms of the effects of engineered nanoparticles on biosynthetic processes in the body are discussed.

  14. [Direct proteome profiling of human blood serum in the experiment with 5-day dry immersion].

    Science.gov (United States)

    Pastushkova, L Kh; Pakharukova, N A; Trifonova, O P; Dobrokhotov, I V; Valeeva, O A; Larina, I M

    2011-01-01

    Purpose of the investigation was to determine changes in blood plasma proteome in healthy human subjects (n = 14, 19 to 26 y.o.) in an experiment with dry immersion (DI). Plasma samples were drawn 7 and 2 days before the exposure, on DI days 2, 3 and 5, and on days 1, 3, 7 and 15 after the experiment. Previous to direct MALDI-TOF mass-spectrometric profiling, serum samples were pre-fractionated and enriched with magnetic particles MB WCX (WCX--a weak cation exchanger) on ClinProt (Bruker Daltonics). In each spectrum, 175 MS-peaks were detected on average within the mass range from 1000 to 17,000 Da with the signal/noise ratio = 5. Student's criterion (p experiment. Significant increases of the peak area of apolipoprotein CI (reduced form with segregated threonine and proline) and C4 enzymes of the complement system, and fibrinogen on the first day after the experiment can be related to changes in motor activities of the subjects.

  15. Proteomic Profiling and Neurodegeneration in West-Nile-Virus-Infected Neurons

    Directory of Open Access Journals (Sweden)

    V. Dhingra

    2005-01-01

    Full Text Available West Nile virus, a mosquito-borne flavivirus, is a human, equine, and avian pathogen. High-resolution two-dimensional differential-gel electrophoresis (2D-DIGE was used to characterize protein expression in primary rat neurons and to examine the proteomic profiling to understand the pathogenesis of West-Nile-associated meningoencephalitis. Three pH ranges, 3–10, 4–7, and 5–6, were used to analyze the protein spots. The proteins are labeled with fluorescent dyes Cy3 and Cy5 before being separated on the basis of charge and size respectively on a two-dimensional platform. About 55 proteins showed altered expression levels. These were then subsequently digested and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis using peptide mass fingerprinting and database searching. These cellular proteins could represent distinct roles during infection related to apoptosis. Our findings show that two-dimensional differential gel electrophoresis combined with mass spectrometry is a powerful approach that permits the identification of proteins whose expression was altered due to West Nile virus infection.

  16. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins.

    Science.gov (United States)

    Erler, Anja; Hawranek, Thomas; Krückemeier, Leif; Asam, Claudia; Egger, Matthias; Ferreira, Fátima; Briza, Peter

    2011-04-01

    Pollen of the European white birch is a major source of spring pollinosis in Europe. Pollen-allergy diagnosis and treatment by specific immunotherapy commonly rely on extracts of natural origin. To gain insight into the protein content and its variability, we evaluated the profile of allergenic and non-allergenic proteins in extracts of pollen from different origins by MS-based proteomics. Aqueous extracts prepared from commercially available Swedish birch pollen, pollen collected from Austrian trees and a commercial skin prick extract were analyzed by 1-DE, 2-DE, immunoblotting and mass spectrometry, resulting in a complete inventory of extractable, disease-relevant pollen proteins. A main focus of this study was on the isoform distribution of Bet v 1, the major allergen of birch pollen. Using a combination of intact mass determination and peptide sequencing, five isoforms (a, b, d, f and j) were unequivocally identified in Swedish and Austrian birch pollen extracts, while the skin prick extract contained only isoforms a, b and d. Using the same methods as for Bet v 1, divergencies in the sequence of birch profilin (Bet v 2), a plant panallergen, were solved. The molecular characterization of pollen extracts is relevant for standardization and development of new reagents for specific immunotherapy.

  17. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    Science.gov (United States)

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  18. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    Science.gov (United States)

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-05

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification.

  19. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    Science.gov (United States)

    Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435

  20. The human pancreas proteome defined by transcriptomics and antibody-based profiling.

    Science.gov (United States)

    Danielsson, Angelika; Pontén, Fredrik; Fagerberg, Linn; Hallström, Björn M; Schwenk, Jochen M; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.

  1. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  2. Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Li, Ran; Zhang, Meng-Yi; Liu, Yu-Wei; Zhang, Zheng; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets. PMID:28665301

  3. Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage.

    Directory of Open Access Journals (Sweden)

    Ralf A Linker

    Full Text Available The identification of new biomarkers is of high interest for the prediction of the disease course and also for the identification of pathomechanisms in multiple sclerosis (MS. To specify markers of the chronic disease phase, we performed proteome profiling during the later phase of myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, day 35 after immunization as a model disease mimicking many aspects of secondary progressive MS. In comparison to healthy controls, high resolution 2 dimensional gel electrophoresis revealed a number of regulated proteins, among them glial fibrilary acidic protein (GFAP. Phase specific up-regulation of GFAP in chronic EAE was confirmed by western blotting and immunohistochemistry. Protein levels of GFAP were also increased in the cerebrospinal fluid of MS patients with specificity for the secondary progressive disease phase. In a next step, proteome profiling of an EAE model with enhanced degenerative mechanisms revealed regulation of alpha-internexin, syntaxin binding protein 1, annexin V and glutamate decarboxylase in the ciliary neurotrophic factor (CNTF knockout mouse. The identification of these proteins implicate an increased apoptosis and enhanced axonal disintegration and correlate well the described pattern of tissue injury in CNTF -/- mice which involve oligodendrocyte (OL apoptosis and axonal injury.In summary, our findings underscore the value of proteome analyses as screening method for stage specific biomarkers and for the identification of new culprits for tissue damage in chronic autoimmune demyelination.

  4. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    Science.gov (United States)

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  5. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen☆☆☆

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F.; Brandstetter, Hans; Overall, Christopher M.

    2014-01-01

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified > 100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1′, proline at P2 and P2′, and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. Biological significance We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of

  6. Development of a Listeria monocytogenes EGDe partial proteome reference map and comparison with the protein profiles of food isolates.

    Science.gov (United States)

    Ramnath, Manilduth; Rechinger, K Björn; Jänsch, Lothar; Hastings, John W; Knøchel, Susanne; Gravesen, Anne

    2003-06-01

    A partially annotated proteome reference map of the food pathogen Listeria monocytogenes was developed for exponentially growing cells under standardized, optimal conditions by using the sequenced strain EGDe (serotype 1/2a) as a model organism. The map was developed by using a reproducible total protein extraction and two-dimensional (2-D) polyacrylamide gel electrophoresis analysis procedure, and it contained 33 identified proteins representing the four main protein functional classes. In order to facilitate analysis of membrane proteins, a protein compartmentalization procedure was assessed. The method used provided partial fractionation of membrane and cytosolic proteins. The total protein 2-D profiles of three serotype 1/2a strains and one serotype 1/2b strain isolated from food were compared to the L. monocytogenes EGDe proteome. An average of 13% of the major protein spots in the food strain proteomes were not matched in the strain EGDe proteome. The variation was greater for the less intense spots, and on average 28% of these spots were not matched. Two of the proteins identified in L. monocytogenes EGDe were missing in one or more of the food isolates. These two proteins were proteins involved in the main glycolytic pathway and in metabolism of coenzymes and prosthetic groups. The two corresponding genes were found by PCR amplification to be present in the four food isolates. Our results show that the L. monocytogenes EGDe reference map is a valuable starting point for analyses of strains having various origins and could be useful for analyzing the proteomes of different isolates of this pathogen.

  7. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets.

    Science.gov (United States)

    Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf

    2013-01-01

    Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs.

  8. Proteomic Profiles Reveal the Function of Different Vegetative Tissues of Moringa oleifera.

    Science.gov (United States)

    Wang, Lei; Zou, Qiong; Wang, Jinxing; Zhang, Junjie; Liu, Zeping; Chen, Xiaoyang

    2016-12-01

    Moringa oleifera is a rich source of bioactive compounds and is widely used in traditional medicine and food for its nutritional value; however, the protein and peptide components of different tissues are rarely discussed. Here, we describe the first investigation of M. oleifera proteomes using mass spectrometry and bioinformatics methods. We aimed to elucidate the protein profiles of M. oleifera leaves, stem, bark, and root. Totally 202 proteins were identified from four vegetative organs. We identified 101 proteins from leaves, 51 from stem, 94 from bark and 67 from root, finding that only five proteins existed in both four vegetative parts. The calculated pI of most of the proteins is distributed in 5-10 and the molecular weight distributed below 100 kDa. Functional classification analysis revealed that proteins which are involved in catalytic activities are the most abundant both in leaves, stem, bark and root. Identification of several heat shock proteins in four vegetative tissues might be adaptive for resistance to high temperature environmental stresses of tropical or subtropical areas. Some enzymes involved in antioxidant processes were also identified in M. oleifera leaves, stem, bark and root. Among the four tissues studies here, leaves protein content and molecular diversity were the highest. The identification of the flocculating protein MO2.1 and MO2.2 in the bark and root provides clue to clarify the antimicrobial molecular mechanisms of root and bark. This study provides information on the protein compositions of M. oleifera vegetative tissues that will be beneficial for potential drug and food supplement development and plant physiology research.

  9. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets.

    Directory of Open Access Journals (Sweden)

    Angelika Bondzio

    Full Text Available Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter. After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05 expressed between groups receiving control (150 mg/kg or pharmacological levels of zinc (2500 mg/kg with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70 and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs.

  10. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    Science.gov (United States)

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  11. The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies

    National Research Council Canada - National Science Library

    Silvana Duran-Ortiz; Alison L Brittain; John J Kopchick

    2017-01-01

    .... For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues...

  12. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole

    OpenAIRE

    Yunhe Zhao; Kaidi Cui; Chunmei Xu; Qiuhong Wang; Yao Wang; Zhengqun Zhang; Feng Liu; Wei Mu

    2016-01-01

    Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92...

  13. A study in pink: What determines the success of gender-specific advertising?

    NARCIS (Netherlands)

    Fenko, Anna; Drost, Willemijn

    2014-01-01

    Gender-specific marketing gains importance as women become more influential as consumers. The study investigated an efficiency of two approaches to gender-specific marketing: designing a stereotypically “feminine” product and priming an interdependent self-construal with an advertising scenario. Fem

  14. Gender-specific spatial interactions on Dutch regional labour markets and the gender employment gap

    NARCIS (Netherlands)

    Noback, Inge; Broersma, Lourens; Van Dijk, Jouke

    2013-01-01

    Gender-specific spatial interactions on Dutch regional labour markets and the gender employment gap, Regional Studies. This paper analyses gender-specific employment rates and the gender employment gap in Dutch municipalities for 2002. The novelty of this analysis is that it takes into account the e

  15. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots

    Science.gov (United States)

    Reis, Ricardo S.; Heringer, Angelo S.; Rangel, Patricia L.; Santa-Catarina, Claudete; Grativol, Clícia; Veiga, Carlos F. M.; Souza-Filho, Gonçalo A.

    2017-01-01

    Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress. PMID:28419154

  16. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    Science.gov (United States)

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  17. [Direct proteomic profiling of human urine and blood serum in an experiment with 5-day dry immersion].

    Science.gov (United States)

    2012-01-01

    Changes in proteome of urine and blood serum obtained from 14 healthy humans (age 21-29 yrs) medically certified for an experiment with dry immersion were analyzed. Urine and serum samples were pre-fractionated and enriched with magnetic particles MB-WCX and MB-HIC, respectively, on robot ClinProt (Bruker Daltonics) for direct mass-spectrometry profiling by MALDI-TOF. As a result, 143 protein peaks on the average were identified in urine samples. It was shown that a high variation coefficient in 23.7% of protein peaks, i.e. double technical, points to the most plastic fraction of the urine proteome. In blood serum, 175 peaks were identified in a sample on the average. Comparison of baseline and immersion mass-spectra of the blood proteome revealed significant differences. Increased peak areas of several protein fragments--C3 and C4 fragments of complement system, high-molecular kininogen and fibrinogen--can be ascribed to human body adaptation to the experimental conditions.

  18. Proteomic profiling of fibroblasts reveals a modulating effect of extracellular calumenin on the organization of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Hansen, Gry Aune; Vorum, Henrik

    2006-01-01

    cytoskeleton and is involved in cytokinesis. Labeling of S phase fibroblasts with bromo-2'deoxy-uridine indicates that calumenin added to the medium also modulates the cell cycle. Our study thus indicates that calumenin possesses a paracrine role on the cells in its vicinity and therefore may be involved...... in the pathophysiology of thrombosis or in wound healing....... but not in normal vasculature. In order to study the possible effects of calumenin extracellularly we used proteomic profiling of fibroblasts cultured in absence as well as in presence of calumenin. Using two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS) we show that normal fibroblasts...

  19. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    Science.gov (United States)

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  20. The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies.

    Science.gov (United States)

    Duran-Ortiz, Silvana; Brittain, Alison L; Kopchick, John J

    2017-01-01

    Growth hormone (GH) is a protein that is known to stimulate postnatal growth, counter regulate insulin's action and induce expression of insulin-like growth factor-1. GH exerts anabolic or catabolic effects depending upon on the targeted tissue. For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues. This review first discusses proteomic techniques that are commonly used for these types of studies. We then examine the proteomic differences found in mice with excess circulating GH (bGH mice) or mice with disruption of the GH receptor gene (GHR(-/-)). We also describe the effects of increased and decreased GH action on the proteome of adult patients with either acromegaly, GH deficiency or patients after short-term GH treatment. Finally, we explain how these proteomic studies resulted in the discovery of potential biomarkers for GH action, particularly those related with the effects of GH on aging, glucose metabolism and body composition.

  1. Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Callister, Stephen J.; McMahon, Benjamin H.; McCue, Lee Ann; Brown, Joseph N.; Stockel, Jana; Liberton, Michelle L.; Mishra, Sujata; Zhang, Xiaohui; Nicora, Carrie D.; Angel, Thomas E.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Sherman, Louis A.

    2014-07-03

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex (http://sequedex.lanl.gov), an annotationindependent method for ascribing gene functions, we confirmed significant speciesspecific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ~28-48% of the theoretical Cyanothece proteome depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their protein abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein and RNA metabolism, photosynthesis, respiration and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682),

  2. Proteomic Profiling of the Dystrophin-Deficient mdx Phenocopy of Dystrophinopathy-Associated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ashling Holland

    2014-01-01

    Full Text Available Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.

  3. Comparison of human glomerulus proteomic profiles obtained from low quantities of samples by different mass spectrometry with the comprehensive database

    Directory of Open Access Journals (Sweden)

    Liu Zan

    2011-08-01

    Full Text Available Abstract Background We have previously constructed an in-depth human glomerulus proteome database from a large amount of sample for understanding renal disease pathogenesis and aiding the biomarker exploration. However, it is usually a challenge for clinical research to get enough tissues for large-scale proteomic characterization. Therefore, in this study, we focused on high-confidence proteomics analysis on small amounts of human glomeruli comparable to those obtained from biopsies using different mass spectrometers and compared these results to the comprehensive database. Results One microgram of human glomerular protein digest was analyzed each on five LC- combined mass spectrometers (LIT-TOF, LTQ-Orbitrap, Q-TOF, LIT and MALDI-TOF/TOF yielding 139, 185, 94, 255 and 108 proteins respectively identified with strict criteria to ensure high confidence (> 99% and low false discovery rate (FDR ( Conclusion This study showed representative human glomerulus proteomic profiles obtained from biopsies through analysis of comparable amounts of samples by different mass spectrometry. Our results implicated that high abundant proteins are more likely to be reproducibly identified in multiple mass spectrometers runs and different mass spectrometers. Furthermore, many podocyte essential proteins such as nephrin, podocin, podocalyxin and synaptopodin were also identified from the small samples in this study. Bioinformatic enrichment analysis results extended our understanding of the major glomerular proteins about their subcellular distributions and functions. The present study indicated that the proteins localized in certain cellular compartments, such as actin cytoskeleton, mitochondrial matrix, cell surface, basolateral plasma membrane, contractile fiber, proteinaceous extracellular matrix and adherens junction, represent high abundant glomerular proteins and these subcellular structures are also highly significantly over-represented in the glomerulus

  4. Urine sample preparation and fractionation for global proteome profiling by LC-MS.

    Science.gov (United States)

    Court, Magali; Garin, Jérôme; Masselon, Christophe D

    2015-01-01

    Urine has garnered tremendous interest over the past decade as a potential source of protein biomarkers for various pathologies. However, due to its low protein concentration and the presence of interfering compounds, urine constitutes a challenging analyte in proteomics. In the context of a project aimed at the discovery and evaluation of new candidate biomarkers of bladder cancer in urine, our laboratory has implemented and evaluated an array of preparation techniques for urinary proteome analysis. We present here the protocol that, in our hands, yielded the best overall proteome coverage with the lowest analytical effort. It begins with protein precipitation using trichloroacetic acid, in solution digestion and RP-C18 cartridge desalting of the resulting peptides mixture, and is followed by peptide fractionation by gel-free isoelectric focusing, and nano-LC-MS/MS for database compilation.

  5. Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure

    Science.gov (United States)

    Wang, Yan; Xu, Liang; Tang, Mingjia; Jiang, Haiyan; Chen, Wei; Zhang, Wei; Wang, Ronghua; Liu, Liwang

    2016-01-01

    Lead (Pb) is one of the most abundant heavy metal (HM) pollutants, which can penetrate the plant through the root and then enter the food chain causing potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots respectively upon Pb(NO3)2 at 500 mg L−1(Pb500) and 1000 mg L−1(Pb1000), were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification). A total of 3898 protein species were successfully detected and 2141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes under both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS) scavenging, photosynthesis, and respiration and carbon metabolism were successfully identified. Gene Ontology (GO) and pathway enrichment analysis of the 135 differential abundance protein species (DAPS) revealed that the overrepresented GO terms included “cell wall,” “apoplast,” “response to metal ion,” “vacuole,” and “peroxidase activity,” and the critical enriched pathways were involved in “citric acid (TCA) cycle and respiratory electron transport,” “pyruvate metabolism,” “phenylalanine metabolism,” “phenylpropanoid biosynthesis,” and “carbon metabolism.” Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomics and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e., ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase) involved in the glycolysis and TCA cycle were severely affected, which ultimately cause alteration of some

  6. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2010-08-01

    Full Text Available Abstract Background Overexpression of recombinant proteins usually triggers the induction of heat shock proteins that regulate aggregation and solubility of the overexpressed protein. The two-dimensional gel electrophoresis (2-DE-mass spectrometry approach was used to profile the proteome of Escherichia coli overexpressing N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, both fused to glutathione S-transferase (GST and polyionic peptide (5D or 5R. Results Overexpression of fusion proteins by IPTG induction caused significant differential expression of numerous cellular proteins; most of these proteins were down-regulated, including enzymes connected to the pentose phosphate pathway and the enzyme LuxS that could lead to an inhibition of tRNA synthesis. Interestingly, when plasmid-harboring cells were cultured in LB medium, gluconeogenesis occurred mainly through MaeB, while in the host strain, gluconeogenesis occurred by a different pathway (by Mdh and PckA. Significant up-regulation of the chaperones ClpB, HslU and GroEL and high-level expression of two protective small heat shock proteins (IbpA and IbpB were found in cells overexpressing GST-GlcNAc 2-epimerase-5D but not in GST-Neu5Ac aldolase-5R-expressing E. coli. Although most of the recombinant protein was present in insoluble aggregates, the soluble fraction of GST-GlcNAc 2-epimerase-5D was higher than that of GST-Neu5Ac aldolase-5R. Also, in cells overexpressing recombinant GST-GlcNAc 2-epimerase-5D, the expression of σ32 was maintained at a higher level following induction. Conclusions Differential expression of metabolically functional proteins, especially those in the gluconeogenesis pathway, was found between host and recombinant cells. Also, the expression patterns of chaperones/heat shock proteins differed among the plasmid-harboring bacteria in response to overproduction of recombinant proteins. In conclusion, the

  7. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.

    Science.gov (United States)

    Vincent, A; Louveau, I; Gondret, F; Tréfeu, C; Gilbert, H; Lefaucheur, L

    2015-06-01

    Improving feed efficiency is a relevant strategy to reduce feed cost and environmental waste in livestock production. Selection experiments on residual feed intake (RFI), a measure of feed efficiency, previously indicated that low RFI was associated with lower feed intake, similar growth rate, and greater lean meat content compared with high RFI. To gain insights into the molecular mechanisms underlying these differences, 24 Large White females from 2 lines divergently selected for RFI were examined. Pigs from a low-RFI ("efficient") and high-RFI ("inefficient") line were individually fed ad libitum from 67 d of age (27 kg BW) to slaughter at 115 kg BW (n = 8 per group). Additional pigs of the high-RFI line were feed restricted to the daily feed intake of the ad libitum low-RFI pigs (n = 8) to investigate the impact of selection independently of feed intake. Global gene and protein expression profiles were assessed in the LM collected at slaughter. The analyses involved a porcine commercial microarray and 2-dimensional gel electrophoresis. About 1,000 probes were differentially expressed (P feed restriction. Gene functional classification indicated a greater expression of genes involved in protein synthesis and a lower expression of genes associated with mitochondrial energy metabolism in the low-RFI pigs compared with the high-RFI pigs. At the protein level, 11 unique identified proteins exhibited a differential abundance (P feed restriction. Mitochondrial oxidative proteins such as aconitase hydratase, ATP synthase subunit α, and creatine kinase S-type had a lower abundance in the low-RFI pigs, whereas fructose-biphosphate aldolase A and glyceraldehyde-3-phosphate dehydrogenase, 2 proteins involved in glycolysis, had a greater abundance in those pigs compared with high-RFI pigs. Antioxidant proteins such as superoxide dismutase and glutathione peroxidase 3 at the mRNA level and peroxiredoxin-6 at the protein level were also less expressed in LM of the most

  8. Functional and integrative analysis of the proteomic profile of radish root under Pb exposure

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-12-01

    Full Text Available Lead (Pb is one of the most abundant heavy metal pollutants, which can penetrate the plant through the root and then enter the food chain causing in potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification respectively upon Pb(NO32 at 500 mg L-1(Pb500 and Pb(NO32 at 1000 mg L-1(Pb1000 exposure. A total of 3, 898 protein species were successfully detected and 2,141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes during both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS scavenging, photosynthesis and respiration and carbon metabolism were successfully identified. Gene Ontology (GO and pathway enrichment analysis of the 135 differential abundance protein species revealed that the overrepresented GO terms were include in ‘cell wall’, ‘apoplast’, ‘response to metal ion’, ‘vacuole’ and ‘peroxidase activity’, and the critical enriched pathways were involved in ‘citric acid (TCA cycle and respiratory electron transport’, ‘pyruvate metabolism’, ‘phenylalanine metabolism’, ‘phenylpropanoid biosynthesis’ and ‘carbon metabolism’. Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomic and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e. ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase involved in the glycolysis and TCA cycle were severely affected, which ultimately cause

  9. Statistical issues in the design and planning of proteomic profiling experiments.

    Science.gov (United States)

    Cairns, David A

    2015-01-01

    The statistical design of a clinical proteomics experiment is a critical part of well-undertaken investigation. Standard concepts from experimental design such as randomization, replication and blocking should be applied in all experiments, and this is possible when the experimental conditions are well understood by the investigator. The large number of proteins simultaneously considered in proteomic discovery experiments means that determining the number of required replicates to perform a powerful experiment is more complicated than in simple experiments. However, by using information about the nature of an experiment and making simple assumptions this is achievable for a variety of experiments useful for biomarker discovery and initial validation.

  10. Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur

    Directory of Open Access Journals (Sweden)

    Degrave Wim M

    2011-04-01

    Full Text Available Abstract Background Bacille Calmette-Guerin (BCG is currently the only available vaccine against tuberculosis (TB and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection. Results The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa, Rv1926c (BCG1965c, Mpb63 and Rv1886c (BCG1923c, Ag85B in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2 and Rv0350 (BCG0389, DnaK, show the opposite pattern. Conclusions Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.

  11. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice.

    Directory of Open Access Journals (Sweden)

    Rachel P L van Swelm

    Full Text Available Drug-induced liver injury (DILI is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP. Mice were given a single intraperitoneal dose of APAP (0-350 mg/kg bw followed by 24 h urine collection. Doses of ≥275 mg/kg bw APAP resulted in hepatic centrilobular necrosis and significantly elevated plasma alanine aminotransferase (ALT values (p<0.0001. Proteomic profiling resulted in the identification of 12 differentially excreted proteins in urine of mice with acute liver injury (p<0.001, including superoxide dismutase 1 (SOD1, carbonic anhydrase 3 (CA3 and calmodulin (CaM, as novel biomarkers for APAP-induced liver injury. Urinary levels of SOD1 and CA3 increased with rising plasma ALT levels, but urinary CaM was already present in mice treated with high dose of APAP without elevated plasma ALT levels. Importantly, we showed in human urine after APAP intoxication the presence of SOD1 and CA3, whereas both proteins were absent in control urine samples. Urinary concentrations of CaM were significantly increased and correlated well with plasma APAP concentrations (r = 0.97; p<0.0001 in human APAP intoxicants, who did not present with elevated plasma ALT levels. In conclusion, using this urinary proteomics approach we demonstrate CA3, SOD1 and, most importantly, CaM as potential human biomarkers for APAP-induced liver injury.

  12. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  13. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-08-30

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  14. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis

    NARCIS (Netherlands)

    Lankisch, Tim O; Metzger, Jochen; Negm, Ahmed A; Vosskuhl, Katja; Schiffer, Eric; Siwy, Justyna; Weismüller, Tobias J; Schneider, Andrea S; Thedieck, Kathrin; Baumeister, Ralf; Zürbig, Petra; Weissinger, Eva M; Manns, Michael P; Mischak, Harald; Wedemeyer, Jochen

    2011-01-01

    UNLABELLED: Early detection of malignant biliary tract diseases, especially cholangiocarcinoma (CC) in patients with primary sclerosing cholangitis (PSC), is very difficult and often comes too late to give the patient a therapeutic benefit. We hypothesize that bile proteomic analysis distinguishes C

  15. Review:Proteomic technology for biomarker profiling in cancer: an update

    Institute of Scientific and Technical Information of China (English)

    ALAOUI-JAMALI Moulay A.; XU Ying-jie

    2006-01-01

    The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection.Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers.

  16. Transcript profile of barley aleurone differs between total and polysomal RNAs: Implications for proteome modeling

    Science.gov (United States)

    Microarray analysis of mRNA populations is routinely conducted with total RNA. However, such analyses would probably represent the translated genome (proteome) more accurately if conducted with polysomal RNA. In order to determine whether significant variation occurs between these two populations,...

  17. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity.

    Directory of Open Access Journals (Sweden)

    Edwin Lasonder

    2008-10-01

    Full Text Available Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.

  18. P17.47COMPREHENSIVE PROTEOMIC PROFILING OF BEVACIZUMAB-RESISTANT GLIOBLASTOMA MULTIFORME

    Science.gov (United States)

    Kaufman, K.L.; Ly, L.; McKay, M.; Mallawaaratchy, D.M.; Mactier, S.; Crossett, B.; Molloy, M.; Buckland, M.E.; McDonald, K.L.; Christopherson, R.I.

    2014-01-01

    Drugs that impair tumour angiogenesis, i.e. therapeutic antibody anti-vascular endothelial growth factor, bevacizumab (BEV), are becoming standard therapy for recurrent GBM, despite having no impact on overall survival times. Resistance to BEV is fatal, and mechanisms are largely unexplored. With access to exceedingly rare fresh-frozen serial GBM tumours, we performed comprehensive quantitative proteome analyses to identify important mechanisms of BEV escape and tumour recurrence. Tumour tissues from three patients [primary (n = 2), recurrent (n = 2) and post-BEV recurrent (n = 3)] were homogenised, clarified (1,000 x g, 4°C) and ultracentrifuged (100,000 x g, 4°C) to isolate the soluble (SOL) proteome supernatant from the microsomal (MEM) pellet. Digested SOL and MEM proteomes were analysed by two independent quantitative MS/MS approaches; Label-free quantitation performed on spectra obtained in triplicate using an Orbitrap Velos (Thermo Electron) and 4-plex iTRAQ-labelling coupled ERLIC-RP MS/MS analysis using a 5600 TripleTOF® (AB Sciex; single run for MEM; duplicate run for SOL). Spectra were processed using Mascot Distiller, Progenesis, Scaffold and ProteinPilot™ softwares. This multi-centre proteomics project has achieved a number of highly reproducible and comprehensive quantitative proteome datasets (average of 1760 MEM proteins and 2334 SOL proteins identified at 95% confidence levels) from precious serial GBM specimens. Significant differentially abundant proteins include those involved in Rho regulation of actin-based motility and cytoskeleton and endocytosis signalling. Bioinformatics analyses with captured whole exome sequencing data are underway to define novel mechanisms of evasive resistance to BEV in recurrent GBM.

  19. Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients.

    Science.gov (United States)

    Stelzhammer, Viktoria; Alsaif, Murtada; Chan, Man K; Rahmoune, Hassan; Steeb, Hannah; Guest, Paul C; Bahn, Sabine

    2015-01-01

    Disturbances of the hypothalamic-pituitary-adrenal axis have been implicated in the pathophysiology of bipolar disorder (BD) and major depressive disorder (MDD). To examine this further, we carried out proteomic profiling of post-mortem pituitaries from 13 BD and 14 MDD patients, in comparison to 15 controls. Liquid chromatography-mass spectrometry (LC-MS(E)) analysis showed that BD patients had significantly increased levels of the major pituitary hormones pro-opiomelanocortin (POMC) and galanin. BD patients also showed changes in proteins associated with gene transcription, stress response, lipid metabolism and growth signalling. In contrast, LC-MS(E) profiling revealed that MDD patients had significantly decreased levels of the prohormone-converting enzyme carboxypeptidease E and follow-up enzymatic analysis showed decreased activity of prolyl-oligopeptidase convertase. This suggested that altered prohormone processing may occur in pituitaries of MDD patients. In addition, MDD patients had significant changes in proteins involved in intracellular transport and cytoskeletal signalling. Finally, we carried out selective reaction monitoring (SRM) mass spectrometry profiling for validation of protein changes in key biological pathways. This confirmed increased POMC levels in BD patients with no change in the levels of this prohormone in MDD. This study demonstrates that proteomic profiling analysis of the pituitary can lead to new insights into the pathophysiology of BD and MDD. Also, given that the pituitary directly releases a variety of bioactive molecules into the bloodstream, many of the proteins identified here could serve as focal points in the search for peripheral biomarkers in clinical or drug treatment studies of BD and MDD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT

    Science.gov (United States)

    GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULTSally D. Perreault, U. S. Environmental Toxicology Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC 27711

  1. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues*

    Science.gov (United States)

    Bruderer, Roland; Bernhardt, Oliver M.; Gandhi, Tejas; Miladinović, Saša M.; Cheng, Lin-Yang; Messner, Simon; Ehrenberger, Tobias; Zanotelli, Vito; Butscheid, Yulia; Escher, Claudia; Vitek, Olga; Rinner, Oliver; Reiter, Lukas

    2015-01-01

    The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)1-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling. PMID:25724911

  2. MALDI-MS-Based Profiling of Serum Proteome: Detection of Changes Related to Progression of Cancer and Response to Anticancer Treatment

    Directory of Open Access Journals (Sweden)

    Monika Pietrowska

    2012-01-01

    Full Text Available Mass spectrometry-based analyses of the low-molecular-weight fraction of serum proteome allow identifying proteome profiles (signatures that are potentially useful in detection and classification of cancer. Several published studies have shown that multipeptide signatures selected in numerical tests have potential values for diagnostics of different types of cancer. However due to apparent problems with standardization of methodological details, both experimental and computational, none of the proposed peptide signatures analyzed directly by MALDI/SELDI-ToF spectrometry has been approved for routine diagnostics. Noteworthy, several components of proposed cancer signatures, especially those characteristic for advanced cancer, were identified as fragments of blood proteins involved in the acute phase and inflammatory response. This indicated that among cancer biomarker candidates to be possibly identified by serum proteome profiling were rather those reflecting overall influence of a disease (and the therapy upon the human organism, than products of cancer-specific genes. Current paper focuses on changes in serum proteome that are related to response of patient’s organism to progressing malignancy and toxicity of anticancer treatment. In addition, several methodological issues that affect robustness and interlaboratory reproducibility of MS-based serum proteome profiling are discussed.

  3. Trait anxiety affects decision-making differently in healthy men and women: towards gender-specific endophenotypes of anxiety.

    Science.gov (United States)

    de Visser, L; van der Knaap, L J; van de Loo, A J A E; van der Weerd, C M M; Ohl, F; van den Bos, R

    2010-05-01

    Excessive levels of trait anxiety are a risk factor for psychiatric conditions, including anxiety disorders and substance abuse. High trait anxiety has been associated with altered cognitive functioning, in particular with an attentional bias towards aversive stimuli. Decision-making is a crucial aspect of cognitive functioning that relies on the correct processing and control of emotional stimuli. Interestingly, anxiety and decision-making share underlying neural substrates, involving cortico-limbic pathways, including the amygdala, striatum and medial and dorsolateral prefrontal cortices. In the present study, we investigated the relationship between trait anxiety, measured by the State-Trait Anxiety Inventory, and complex decision-making, measured by the Iowa Gambling Task, in healthy male and female volunteers. The main focus of this study was the inclusion of gender as a discriminative factor. Indeed, we found distinct gender-specific effects of trait anxiety: in men, both low and high anxiety groups showed impaired decision-making compared to medium anxiety individuals, whereas in women only high anxiety individuals performed poorly. Furthermore, anxiety affected decision-making in men early in the task, i.e. the exploration phase, as opposed to an effect on performance in women during the second part of the test, i.e. the exploitation phase. These findings were related to different profiles of trait anxiety in men and women, and were independent of performance in the Wisconsin Card Sorting Test and cortisol levels. Our data show gender-specific effects of trait anxiety on emotional decision-making. We suggest gender-specific endophenotypes of anxiety to exist, that differentially affect cognitive functioning.

  4. Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes

    DEFF Research Database (Denmark)

    Poulsen, Jon W; Madsen, Christian Toft; Young, Clifford;

    2012-01-01

    Deubiquitylating enzymes (DUBs) are a large group of proteases that regulate ubiquitin-dependent metabolic pathways by cleaving ubiquitin-protein bonds. Here we present a global study aimed at elucidating the effects DUBs have on protein abundance changes in eukaryotic cells. To this end we compare...... wild-type Saccharomyces cerevisiae to 20 DUB knock-out strains using quantitative proteomics to measure proteome-wide expression of isotope labeled proteins, and analyze the data in the context of known transcription-factor regulatory networks. Overall we find that protein abundances differ widely...... demonstrate that Sec28p is a novel Ubp3p substrate. In addition we find strong associations for several uncharacterized DUBs providing clues for their possible cellular roles. Hierarchical clustering of all deletion strains reveals pronounced similarities between various DUBs, which corroborate current DUB...

  5. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic...... to replication inhibition (including nuclear pore proteins) coprecipitated with the Mcm2-7 licensing complex on chromatin, suggesting that Mcm2-7 play a central role in coordinating nuclear structure with DNA replication....

  6. Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers

    OpenAIRE

    2014-01-01

    Although gain of oncogene functions and loss of tumor suppressor functions are driving forces in tumor development, the tumor microenvironment, comprising the extracellular matrix, surrounding stroma, signaling molecules and infiltrating immune and other cell populations, is now also recognized as crucial to tumor development and metastasis. Many interactions at the tumor cell-environment interface occur at the protein level. Proteomic approaches are contributing to the definition of the prot...

  7. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  8. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus.

    Directory of Open Access Journals (Sweden)

    Chaojun Hu

    Full Text Available Autoantibodies in cerebrospinal fluid (CSF from patients with neuropsychiatric systemic lupus erythematosus (NPSLE may be potential biomarkers for prediction, diagnosis, or prognosis of NPSLE. We used a human proteome microarray with~17,000 unique full-length human proteins to investigate autoantibodies associated with NPSLE. Twenty-nine CSF specimens from 12 NPSLE, 7 non-NPSLE, and 10 control (non-systemic lupus erythematosuspatients were screened for NPSLE-associated autoantibodies with proteome microarrays. A focused autoantigen microarray of candidate NPSLE autoantigens was applied to profile a larger cohort of CSF with patient-matched sera. We identified 137 autoantigens associated with NPSLE. Ingenuity Pathway Analysis revealed that these autoantigens were enriched for functions involved in neurological diseases (score = 43.Anti-proliferating cell nuclear antigen (PCNA was found in the CSF of NPSLE and non-NPSLE patients. The positive rates of 4 autoantibodies in CSF specimens were significantly different between the SLE (i.e., NPSLE and non-NPSLE and control groups: anti-ribosomal protein RPLP0, anti-RPLP1, anti-RPLP2, and anti-TROVE2 (also known as anti-Ro/SS-A. The positive rate for anti-SS-A associated with NPSLE was higher than that for non-NPSLE (31.11% cf. 10.71%; P = 0.045.Further analysis showed that anti-SS-A in CSF specimens was related to neuropsychiatric syndromes of the central nervous system in SLE (P = 0.009. Analysis with Spearman's rank correlation coefficient indicated that the titers of anti-RPLP2 and anti-SS-A in paired CSF and serum specimens significantly correlated. Human proteome microarrays offer a powerful platform to discover novel autoantibodies in CSF samples. Anti-SS-A autoantibodies may be potential CSF markers for NPSLE.

  9. Proteomic Comparison of Two—Dimensional Gel Electrophoresis Profiles from Human Lung Squamous Carcinoma and Normal Bronchial Epithelial Tissues

    Institute of Scientific and Technical Information of China (English)

    CuiLi; XianquanZhan; MaoyuLi; XiaoyingWu; FengLi; JianlingLi; ZhiqiangXiao; ZhuchuChen; XuepingFeng; PingChen; JingyunXie; SongpingLiang

    2003-01-01

    Differential proteome profiles of human lung squamous carcinoma tissue compared to paired tumor-adjacent normal bronchial epithelial tissue were established and analyzed by means of immobilized pH gradient-based two-dimensional polyacrylamide gel electrophoresis(2-D PAGE)and matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF-MS).The results showed that well-resolved,reproducible 2-DE patterns of human lung squamous carcinoma and adjacent normal bronchial epithelial tissues were obtained under the condition of 0.75-mg protein-load.The average deviation of spot position was 0.733±0.101 mm in IEF direction,and 0.925±0.207mm in SDS-PAGE direction.For tumor tissue,a total of 1241±88 spots were detected,987±65 spots were matched with an average matching rate of 79.5%.For control,a total of 1190±72 spots were detected,and 875±48 spots were matched with an average matching rate of 73.5%.A total of 864±34 spots were matched between tumors and controls.Forth-three differential proteins were characterized:some proteins were related to oncogenes,and others involved in the regulation of cell cycle and signal transduction.It is suggested that the differential proteomic approach is valuable for mass identification of differentially expressed proteins involved in lung carcinogenesis.These data will be used to establish human lung cancer proteome database to further study human lung squamous carcinoma.

  10. Comprehensive Proteomic Profiling of Wheat Gluten Using a Combination of Data-Independent and Data-Dependent Acquisition

    Science.gov (United States)

    Bromilow, Sophie N. L.; Gethings, Lee A.; Langridge, James I.; Shewry, Peter R.; Buckley, Michael; Bromley, Michael J.; Mills, E. N. Clare

    2017-01-01

    Wheat is the most important food crop in the world, the unique physiochemical properties of wheat gluten enabling a diverse range of food products to be manufactured. However, genetic and environmental factors affect the technological properties of gluten in unpredictable ways. Although newer proteomic methods have the potential to offer much greater levels of information, it is the older gel-based methods that remain most commonly used to identify compositional differences responsible for the variation in gluten functionality, in part due to the nature of their primary sequences. A combination of platforms were investigated for comprehensive gluten profiling: a QTOF with a data independent schema, which incorporated ion mobility (DIA-IM-MS) and a data dependent acquisition (DDA) workflow using a linear ion trap quadrupole (LTQ) instrument. In conjunction with a manually curated gluten sequence database a total of 2736 gluten peptides were identified with only 157 peptides identified by both platforms. These data showed 127 and 63 gluten protein accessions to be inferred with a minimum of one and three unique peptides respectively. Of the 63 rigorously identified proteins, 26 were gliadin species (4 ω-, 14 α-, and 8 γ-gliadins) and 37 glutenins (including 29 LMW glutenin and 8 HMW glutenins). Of the HMW glutenins, three were 1Dx type and five were 1Bx type illustrating the challenge of unambiguous identification of highly polymorphic proteins without cultivar specific gene sequences. The capacity of the platforms to sequence longer peptides was crucial to achieving the number of identifications, the combination of QTOF-LTQ technology being more important than extraction method to obtain a comprehensive profile. Widespread glutamine deamidation, a post-translational modification, was observed adding complexity to an already highly polymorphic mixture of proteins, with numerous insertions, deletions and substitutions. The data shown is the most comprehensive and

  11. Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers

    Science.gov (United States)

    2014-01-01

    Although gain of oncogene functions and loss of tumor suppressor functions are driving forces in tumor development, the tumor microenvironment, comprising the extracellular matrix, surrounding stroma, signaling molecules and infiltrating immune and other cell populations, is now also recognized as crucial to tumor development and metastasis. Many interactions at the tumor cell-environment interface occur at the protein level. Proteomic approaches are contributing to the definition of the protein constituents of the microenvironment and their sources, modifications, interactions and turnover, as well as providing information on how these features relate to tumor development and progression. Recently, proteomic studies have revealed how cancer cells modulate the microenvironment through their secreted proteins and how they can alter their protein constituents to adapt to the microenvironment. Moreover, the release of proteins from the microenvironment into the circulatory system has relevance for the development of blood-based cancer diagnostics. Here, we review how proteomic approaches are being applied to studies of the tumor microenvironment to decipher tumor-stroma interactions and to elucidate the role of host cells in the tumor microenvironment. PMID:24713112

  12. Protein expression profiling during chick retinal maturation: a proteomics-based approach

    Directory of Open Access Journals (Sweden)

    Stitt Alan W

    2008-12-01

    Full Text Available Abstract Background The underlying pathways that drive retinal neurogenesis and synaptogenesis are still relatively poorly understood. Protein expression analysis can provide direct insight into these complex developmental processes. The aim of this study was therefore to employ proteomic analysis to study the developing chick retina throughout embryonic (E development commencing at day 12 through 13, 17, 19 and post-hatch (P 1 and 33 days. Results 2D proteomic and mass spectrometric analysis detected an average of 1514 spots per gel with 15 spots demonstrating either modulation or constitutive expression identified via MS. Proteins identified included alpha and beta-tubulin, alpha enolase, B-creatine kinase, gamma-actin, platelet-activating factor (PAF, PREDICTED: similar to TGF-beta interacting protein 1, capping protein (actin filament muscle Z line, nucleophosmin 1 (NPM1, dimethylarginine dimethylaminohydrolase, triosphoaphate isomerase, DJ1, stathmin, fatty acid binding protein 7 (FABP7/B-FABP, beta-synuclein and enhancer of rudimentary homologue. Conclusion This study builds upon previous proteomic investigations of retinal development and represents the addition of a unique data set to those previously reported. Based on reported bioactivity some of the identified proteins are most likely to be important to normal retinal development in the chick. Continued analysis of the dynamic protein populations present at the early stages and throughout retinal development will increase our understanding of the molecular events underpinning retinogenesis.

  13. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Directory of Open Access Journals (Sweden)

    Ashraf S A El-Sayed

    Full Text Available Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  14. Quantitative Proteomic Profiling of Tachyplesin I Targets in U251 Gliomaspheres

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2017-01-01

    Full Text Available Tachyplesin I is a cationic peptide isolated from hemocytes of the horseshoe crab and its anti-tumor activity has been demonstrated in several tumor cells. However, there is limited information providing the global effects and mechanisms of tachyplesin I on glioblastoma multiforme (GBM. Here, by using two complementary proteomic strategies (2D-DIGE and dimethyl isotope labeling-based shotgun proteomics, we explored the effect of tachyplesin I on the proteome of gliomaspheres, a three-dimensional growth model formed by a GBM cell line U251. In total, the expression levels of 192 proteins were found to be significantly altered by tachyplesin I treatment. Gene ontology (GO analysis revealed that many of them were cytoskeleton proteins and lysosomal acid hydrolases, and the mostly altered biological process was related to cellular metabolism, especially glycolysis. Moreover, we built protein–protein interaction network of these proteins and suggested the important role of DNA topoisomerase 2-alpha (TOP2A in the signal-transduction cascade of tachyplesin I. In conclusion, we propose that tachyplesin I might down-regulate cathepsins in lysosomes and up-regulate TOP2A to inhibit migration and promote apoptosis in glioma, thus contribute to its anti-tumor function. Our results suggest tachyplesin I is a potential candidate for treatment of glioma.

  15. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana.

    Science.gov (United States)

    Ma, Qian; Wang, Jiangxin; Lu, Shuhuan; Lv, Yajin; Yuan, Yingjin

    2013-03-01

    High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved. Copyright © 2012 Wiley Periodicals, Inc.

  16. Proteomic profiling of mature leaves from oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Tan, Hooi Sin; Jacoby, Richard P; Ong-Abdullah, Meilina; Taylor, Nicolas L; Liddell, Susan; Chee, Wong Wei; Chin, Chiew Foan

    2017-04-01

    Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS

    Directory of Open Access Journals (Sweden)

    Church George M

    2005-06-01

    Full Text Available Abstract Background The observed molecular weight of a protein on a 1D polyacrylamide gel can provide meaningful insight into its biological function. Differences between a protein's observed molecular weight and that predicted by its full length amino acid sequence can be the result of different types of post-translational events, such as alternative splicing (AS, endoproteolytic processing (EPP, and post-translational modifications (PTMs. The characterization of these events is one of the important goals of total proteome profiling (TPP. LC/MS/MS has emerged as one of the primary tools for TPP, but since this method identifies tryptic fragments of proteins, it has not generally been used for large-scale determination of the molecular weight of intact proteins in complex mixtures. Results We have developed a set of computational tools for extracting molecular weight information of intact proteins from total proteome profiles in a high throughput manner using 1D-PAGE and LC/MS/MS. We have applied this technology to the proteome profile of a human lymphoblastoid cell line under standard culture conditions. From a total of 1 × 107 cells, we identified 821 proteins by at least two tryptic peptides. Additionally, these 821 proteins are well-localized on the 1D-SDS gel. 656 proteins (80% occur in gel slices in which the observed molecular weight of the protein is consistent with its predicted full-length sequence. A total of 165 proteins (20% are observed to have molecular weights that differ from their predicted full-length sequence. We explore these molecular-weight differences based on existing protein annotation. Conclusion We demonstrate that the determination of intact protein molecular weight can be achieved in a high-throughput manner using 1D-PAGE and LC/MS/MS. The ability to determine the molecular weight of intact proteins represents a further step in our ability to characterize gene expression at the protein level. The identification of

  18. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics.

    Science.gov (United States)

    Diamond, Deborah L; Syder, Andrew J; Jacobs, Jon M; Sorensen, Christina M; Walters, Kathie-Anne; Proll, Sean C; McDermott, Jason E; Gritsenko, Marina A; Zhang, Qibin; Zhao, Rui; Metz, Thomas O; Camp, David G; Waters, Katrina M; Smith, Richard D; Rice, Charles M; Katze, Michael G

    2010-01-01

    Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.

  19. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit.

    Science.gov (United States)

    Simmons, Denina B D; Sherry, James P

    2016-09-01

    There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease.

  20. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics

    Science.gov (United States)

    Jacobs, Jon M.; Sorensen, Christina M.; Walters, Kathie-Anne; Proll, Sean C.; McDermott, Jason E.; Gritsenko, Marina A.; Zhang, Qibin; Zhao, Rui; Metz, Thomas O.; Camp, David G.; Waters, Katrina M.; Smith, Richard D.; Rice, Charles M.; Katze, Michael G.

    2010-01-01

    Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis. PMID:20062526

  1. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae.

    Science.gov (United States)

    Bonnett, Tiffany R; Robert, Jeanne A; Pitt, Caitlin; Fraser, Jordie D; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2012-12-01

    Mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives. We have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples. These first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Deborah L Diamond

    2010-01-01

    Full Text Available Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.

  3. Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile

    Directory of Open Access Journals (Sweden)

    Ferro Jesus A

    2010-11-01

    Full Text Available Abstract Background Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac, and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC and tandem mass spectrometry (MS/MS. Results In order to gain insight into the metabolism of Xac, cells were grown on two different media (NB - Nutrient Broth and TSE - Tryptone Sucrose broth enriched with glutamic acid, and proteins were proteolyzed with trypsin and examined by 2D LC-MS/MS. Approximately 39% of all predicted proteins by annotation of Xac were identified with their component peptides unambiguously assigned to tandem mass spectra. The proteins, about 1,100, were distributed in all annotated functional categories. Conclusions This is the first proteomic reference map for the most aggressive strain of Xanthomonas pathogen of all orange varieties. The compilation of metabolic pathways involved with bacterial growth showed that Xac expresses a complete central and intermediary metabolism, replication, transcription and translation machineries and regulation factors, distinct membrane transporters (ABC, MFS and pumps and receptors (MCP, TonB dependent and metabolites acquisition, two-component systems (sensor and regulatory components and response regulators. These data corroborate the growth curve in vitro and are the first reports indicating that many of these genome annotated genes are translated into operative in Xac. This proteomic analysis also provided information regarding the influence of culture medium on growth and protein expression of Xac.

  4. Proteome profiling reveals regional protein alteration in cerebrum of common marmoset (Callithrix jacchus) exposed to methylmercury.

    Science.gov (United States)

    Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man

    2016-03-10

    Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Serum Proteome Profiles in Stricturing Crohn’s Disease: A pilot study.

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Peter; Zhang, Qibin; Shapiro, Jason; Webb-Robertson, Bobbie-Jo M.; Bramer, Lisa M.; Schepmoes, Athena A.; Weitz, Karl K.; Mallette, Meaghan; Moniz, Heather; Bright, Renee; Merrick, Marjorie; Shah, Samir A.; Sands, Bruce E.; Leleiko, Neal

    2015-08-01

    Background: Crohn’s disease (CD) is a form of inflammatory bowel disease (IBD) with different described behaviors, including stricture. At present, there are no laboratory studies that can differentiate stricturing CD from other phenotypes of IBD. We performed a pilot study to examine differences in the proteome among patients with stricturing Crohn’s disease, non-stricturing Crohn’s disease, and ulcerative colitis (UC). Methods: Serum samples were selected from the Ocean State Crohn’s and Colitis Area Registry (OSCCAR), an established cohort of patients with IBD. Crohn’s disease patients with surgically-resected stricture were matched with similar patients with Crohn’s disease without known stricture, and with UC. Serum samples from each patient were digested and analyzed using liquid chromatography-mass spectrometry to characterize the proteome. Statistical analyses were performed to identify peptides and proteins that can differentiate CD with stricture. Results: Samples from 9 patients in each group (27 total patients) were analyzed. Baseline demographic characteristics were similar among the three groups. We quantified 7668 peptides and 897 proteins for analysis. ROC analysis identified a subset of peptides with an area under the curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant analysis was able to distinguish among the three groups with up to 70% accuracy by peptides, and up to 80% accuracy by proteins. We identified the significantly different proteins and peptides, and determined their function based on previously published literature. Conclusions: The serum of patients with stricturing CD, non-stricturing CD, and UC are distinguishable via proteomic analysis. Some of the proteins that differentiate the stricturing phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte adhesion.

  6. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.

    Science.gov (United States)

    Pang, Zhili; Chen, Lei; Miao, Jianqiang; Wang, Zhiwen; Bulone, Vincent; Liu, Xili

    2015-09-01

    Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorph-resistant mutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using d-[U-(14) C]glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides.

  7. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis).

    Science.gov (United States)

    Aird, Steven D; Watanabe, Yutaka; Villar-Briones, Alejandro; Roy, Michael C; Terada, Kouki; Mikheyev, Alexander S

    2013-11-14

    Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species.

  8. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans.

    Science.gov (United States)

    Bodnar, Andrea

    2013-05-01

    Sea urchins have a different life history from humans and traditional model organisms used to study the process of aging. Sea urchins grow indeterminately, reproduce throughout their life span and some species have been shown to exhibit negligible senescence with no increase in mortality rate at advanced ages. Despite these properties, different species of sea urchins are reported to have very different natural life spans providing a unique model to investigate cellular mechanisms underlying life span determination and negligible senescence. To gain insight into the biological changes that accompany aging in these animals, proteomic profiles were examined in coelomic fluid from young and old sea urchins of three species with different life spans: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate life span. The proteomic profiles of cell-free coelomic fluid were complex with many proteins exhibiting different forms and extensive post-translational modifications. Approximately 20% of the protein spots on 2-D gels showed more than two-fold change with age in each of the species. Changes that are consistent with age in all three species may prove to be useful biomarkers for age-determination for these commercially fished marine invertebrates and also may provide clues to mechanisms of negligible senescence. Among the proteins that change with age, the ectodomain of low-density lipoprotein receptor-related protein 4 (LRP4) was significantly increased in the coelomic fluid of all three sea urchin species suggesting that the Wnt signaling pathway should be further investigated for its role in negligible senescence.

  9. "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    Full Text Available BACKGROUND: The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of "topological significance". This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a "second phase" response, not directly dependent on the initial androgen stimulus. CONCLUSIONS/SIGNIFICANCE: We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an

  10. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    Science.gov (United States)

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  11. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D.; Qian, Wei-Jun

    2016-05-01

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of potential biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge to detect promising low-abundance protein biomarkers. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high and moderate-abundance proteins, thus enabling more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomics applications of different human biofluids. The limitations and future perspective of immunoaffinity separation methods are also discussed.

  12. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  13. Principal component analysis reveals gender-specific predictors of cardiometabolic risk in 6th graders

    Directory of Open Access Journals (Sweden)

    Peterson Mark D

    2012-11-01

    Full Text Available Abstract Background The purpose of this study was to determine the sex-specific pattern of pediatric cardiometabolic risk with principal component analysis, using several biological, behavioral and parental variables in a large cohort (n = 2866 of 6th grade students. Methods Cardiometabolic risk components included waist circumference, fasting glucose, blood pressure, plasma triglycerides levels and HDL-cholesterol. Principal components analysis was used to determine the pattern of risk clustering and to derive a continuous aggregate score (MetScore. Stratified risk components and MetScore were analyzed for association with age, body mass index (BMI, cardiorespiratory fitness (CRF, physical activity (PA, and parental factors. Results In both boys and girls, BMI and CRF were associated with multiple risk components, and overall MetScore. Maternal smoking was associated with multiple risk components in girls and boys, as well as MetScore in boys, even after controlling for children’s BMI. Paternal family history of early cardiovascular disease (CVD and parental age were associated with increased blood pressure and MetScore for girls. Children’s PA levels, maternal history of early CVD, and paternal BMI were also indicative for various risk components, but not MetScore. Conclusions Several biological and behavioral factors were independently associated with children’s cardiometabolic disease risk, and thus represent a unique gender-specific risk profile. These data serve to bolster the independent contribution of CRF, PA, and family-oriented healthy lifestyles for improving children’s health.

  14. The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling.

    Directory of Open Access Journals (Sweden)

    Masato Habuka

    Full Text Available To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11, proximal tubules (n = 120, distal tubules (n = 9 or collecting ducts (n = 8. Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.

  15. Proteomic profile of reversible protein oxidation using PROP, purification of reversibly oxidized proteins.

    Directory of Open Access Journals (Sweden)

    Ken G Victor

    Full Text Available Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO, KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3, the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells.

  16. Proteomic profile determination of autosomal aneuploidies by mass spectrometry on amniotic fluids

    Directory of Open Access Journals (Sweden)

    Desmetz Caroline

    2008-01-01

    Full Text Available Abstract Background Prenatal diagnosis of chromosomal abnormalities by cytogenetic analysis is time-consuming, expensive, and requires highly qualified technicians. Rapid diagnosis of aneuploidies followed by reassurance of women with normal results can be performed by molecular analysis of uncultured foetal cells. In the present study, we developed a proteomic fingerprinting approach coupled with a statistical classification method to improve diagnosis of aneuploidies, including trisomies 13, 18, and 21, in amniotic fluid samples. Results The proteomic spectra obtained from 52 pregnant women were compiled, normalized, and mass peaks with mass-to-charge ratios between 2.5 and 50 kDa identified. Peak information was combined together and analysed using univariate statistics. Among the 208 expressed protein peaks, 40 differed significantly between aneuploid and non aneuploid samples, with AUC diagnostic values ranging from 0.71 to 0.91. Hierarchical clustering, principal component analysis and support vector machine (SVM analysis were performed. Two class predictor models were defined from the training set, which resulted in a prediction accuracy of 92.3% and 96.43%, respectively. Using an external and independent validation set, diagnostic accuracies were maintained at 87.5% and 91.67%, respectively. Conclusion This pilot study demonstrates the potential interest of protein expression signature in the identification of new potential biological markers that might be helpful for the rapid clinical management of high-risk pregnancies.

  17. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster.

    Science.gov (United States)

    Subramanian, Perumal; Jayapalan, Jaime J; Abdul-Rahman, Puteri S; Arumugam, Manjula; Hashim, Onn H

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.

  18. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Lopez, Oswaldo; Batek Rios, Josef M.; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  19. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Oswaldo eValdes-Lopez

    2016-04-01

    Full Text Available Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1,849 and 3,091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified ten key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  20. Melatonin reprogrammes proteomic profile in light-exposed retina in vivo

    Science.gov (United States)

    Zhang, Ruonan; Hrushesky, William J.M.; Wood, Patricia A.; Lee, Sung Haeng; Hunt, Richard C.; Jahng, Wan Jin

    2017-01-01

    Melatonin, a small organic molecule synthesized by the pineal gland and the retina, has a variety of physiologic functions such as circadian clock pacemaker and antioxidant. Retinal melatonin is down-regulated by light and is barely detectable during the day. The absence of melatonin in the retina during prolonged light exposure may contribute to light-induced retinal degeneration. We sought to investigate the impact of melatonin in the light-exposed retina using proteomic approaches. We exposed mice to either light (250–300 lux) for 12 h followed by 12 h of darkness or the same intensity of continuous light for 7 days. In half of the animals exposed to continuous light, melatonin was injected each night. Proteomic analysis of the retina from these three groups of animals showed that five proteins prominently up-regulated by constant light were down-regulated by melatonin treatment. These five proteins were identified as vimentin, serine/threonine-protein phosphatase 2A, Rab GDP dissociation inhibitor alpha, guanine nucleotide-binding protein Go alpha, and retinaldehyde-binding protein. These five proteins are known to be involved in several cellular processes that may contribute to light-induced retinal degeneration. Identification of melatonin target proteins in our study provides a basis for future studies on melatonin’s potential in preventing or treating light-induced retinal degeneration. PMID:20434483

  1. Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen.

    Science.gov (United States)

    Carranza, Paula; Hartmann, Isabel; Lehner, Angelika; Stephan, Roger; Gehrig, Peter; Grossmann, Jonas; Barkow-Oesterreicher, Simon; Roschitzki, Bernd; Eberl, Leo; Riedel, Kathrin

    2009-07-01

    Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface-associated and whole-cell proteins by two complementary proteomics approaches, 1D-SDS-PAGE combined with LC-ESI-MS/MS and 2D-LC-MALDI-TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin-receptor protein for the uptake of siderophore-bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.

  2. Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-03-01

    Full Text Available Sporotrichosis is a chronic infection of the skin and subcutaneous tissues of human and other mammals caused by a complex of cryptic dimorphic fungi in the plant-associated order Ophiostomatales. With major differences between routes of transmission, Sporothrix infections are emerging as new threat in tropical and subtropical areas, particularly in form of outbreaks. The mechanisms underlying the pathogenesis and invasion of Sporothrix spp. are still poorly understood and many virulence factors remain unidentified. In this scenario, a global analysis of proteins expressed by clinical Sporothrix species combined with the identification of seroreactive proteins is overdue. Optimization of sample preparation and electrophoresis conditions are key steps toward reproducibility of gel-based proteomics assays. We provide the data generated using an efficient protocol of protein extraction for rapid and large-scale proteome analysis using two-dimensional gel electrophoresis. The protocol was established and optimized for pathogenic and non-pathogenic Sporothrix spp. including Sporothrix brasiliensis (CBS 132990, Sporothrix schenckii sensu stricto (CBS 132974, Sporothrix globosa (CBS 132922, and Sporothrix mexicana (CBS 120341. The data, supplied in this article, are related to the research article entitled “Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex” (Rodrigues et al., 2014 [1].

  3. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse

    Institute of Scientific and Technical Information of China (English)

    Yubo Ding; Yibo Wu; Rong Zeng; Kan Liao

    2012-01-01

    Lipid droplets in adipocytes serve as the principal longterm energy storage depot of animals.There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site,but in fact dynamic and multifunctional organelles.Structurally,lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer.Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics.To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet,lipid droplets of white adipose tissue from C57BL/6 mice were isolated.And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry.A total of 193 proteins including 73 previously unreported proteins were identified.Furthermore,the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice.Of 23proteins quantified by ICAT analysis,3 proteins were upregulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice.Importantly,two structural proteins of lipid droplets,perilipin A and vimentin,were greatly reduced in the lipid droplets of the adipose tissue from the obese mice,implicating reduced protein machinery for lipid droplet stability.

  4. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole.

    Science.gov (United States)

    Zhao, Yunhe; Cui, Kaidi; Xu, Chunmei; Wang, Qiuhong; Wang, Yao; Zhang, Zhengqun; Liu, Feng; Mu, Wei

    2016-11-24

    Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca(+)-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.

  5. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes.

    Science.gov (United States)

    Santi, Lucélia; Beys-da-Silva, Walter O; Berger, Markus; Calzolari, Diego; Guimarães, Jorge A; Moresco, James J; Yates, John R

    2014-03-07

    Cryptococcus neoformans, a pathogenic yeast, causes meningoencephalitis, especially in immunocompromised patients, leading in some cases to death. Microbes in biofilms can cause persistent infections, which are harder to treat. Cryptococcal biofilms are becoming common due to the growing use of brain valves and other medical devices. Using shotgun proteomics we determine the differences in protein abundance between biofilm and planktonic cells. Applying bioinformatic tools, we also evaluated the metabolic pathways involved in biofilm maintenance and protein interactions. Our proteomic data suggest general changes in metabolism, protein turnover, and global stress responses. Biofilm cells show an increase in proteins related to oxidation-reduction, proteolysis, and response to stress and a reduction in proteins related to metabolic process, transport, and translation. An increase in pyruvate-utilizing enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived energy acquisition. Additionally, we assign putative roles to 33 proteins previously categorized as hypothetical. Many changes in metabolic enzymes were identified in studies of bacterial biofilm, potentially revealing a conserved strategy in biofilm lifestyle.

  6. Proteomics profile changes in cisplatin-treated human ovarian cancer cell strain

    Institute of Scientific and Technical Information of China (English)

    LI Zhengyu; ZHAO Xia; YANG Jinliang; WEI Yuquan

    2005-01-01

    To compare the alterations in proteomes between cisplatin-treated and -untreated human ovarian cancer SKOV3 cells, and to explore the feasibility of proteomics in research about antitumor mechanisms of agents, SKOV3 cells were exposed to cisplatin (6 μg/mL) for 6 h. Then, the cells were collected and solubilized and global proteins were extracted by lysis buffer; two-dimensional electrophoresis was conducted with the IPG readystrips as carriers; the gels were stained with Coomassie blue and alterations between gels were compared by PDQuest. Eventually, 11 spots with significant differences were selected and excised and the proteins were identified by PMF and MS/MS analysis. The results revealed that exposure to cisplatin could notably increase expressions of some proteins, such as tropomyosin family, actin family, triosephosphate isomerase family, and HSP60, etc.; while expressions of some other proteins decreased, such as enolase family, etc. Those proteins were involved in cellular energy metabolism, transformation, apoptosis and morphologic maintenance, which suggested that alterations of those physiological processes might be involved in anti-tumor mechanism of cisplatin.

  7. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    Science.gov (United States)

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.

  8. Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling

    Institute of Scientific and Technical Information of China (English)

    Yong Mao; Xiao-Bo Zhou; Dao-Ying Pi; You-Xian Sun

    2005-01-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  9. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    Science.gov (United States)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  10. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS

    Science.gov (United States)

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented

  11. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors.

    Directory of Open Access Journals (Sweden)

    Maneesh Bhargava

    Full Text Available Acute Respiratory Distress Syndrome (ARDS continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days and late-phase (8 to 35 days groups based on time after initiation of mechanical ventilation for ARDS (Day 1. Isobaric tags for absolute and relative quantitation (iTRAQ with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7, early-phase non-survivors (n = 8, and late-phase survivors (n = 7. Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS.

  12. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Perumal Subramanian

    2016-05-01

    Full Text Available Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.

  13. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  14. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diederick Duijvesz

    Full Text Available BACKGROUND: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery. MATERIALS AND METHODS: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1 and 2 PCa cell lines (PC346C and VCaP by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS mode. Accurate Mass and Time (AMT tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry. RESULTS: Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX in PCa exosomes. CONCLUSIONS: Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.

  15. Proteomic and metabolic profiles of Cakile maritima Scop. Sea Rocket grown in the presence of cadmium.

    Science.gov (United States)

    Taamalli, Manel; D'Alessandro, Angelo; Marrocco, Cristina; Gevi, Federica; Timperio, Anna Maria; Zolla, Lello

    2015-04-01

    Recent physiological reports have documented how Cakile maritima Scop. Sea Rocket could accumulate high doses of Cd without altering its physiological parameters. In the present study, we performed an integrated proteomics (2DE) and metabolomics (HPLC-MS) investigation to determine the molecular mechanisms underlying cadmium (Cd) tolerance of this halophyte. Peculiar features were observed: (i) up-regulation of thiol compound anabolism, including glutathione and phytochelatin homeostasis, which allows an intracellular chelation of Cd and its compartmentalization into vacuole by a significant up-regulation of vacuolar transporters; (ii) up-regulation of the PPP and Calvin cycle (both at the enzyme and metabolite level), which utterly promoted the maintenance of NADPH/NADP(+) homeostasis, other than the accumulation of triose-phosphates (serving as anabolic intermediates for triacylglycerol biosynthesis) and the glyoxylate precursor phosphoglycolate, to promote photorespiration and consequently CO2 release. An up-regulation of carbonic anhydrase was also observed. This halophyte is also correlated with a highly efficient antioxidant system, especially a high up-regulation of SOD1, resulting more efficient in coping with heavy metals stress than common plants. Interestingly, exposure to high Cd concentrations partly affected photosystem integrity and metabolic activity, through the up-regulation of enzymes from the Calvin cycle and glutathione-ascorbate homeostasis and PAP3 which stabilizes thylakoid membrane structures. In addition, up-regulation of Peptidyl-prolyl isomerase CYP38 increases stability and biogenesis of PSII. Finally, metabolomics results confirmed proteomics and previous physiological evidence, also suggesting that osmoprotectants, betaine and proline, together with plant hormones, methyl jasmonate and salicylic acid, might be involved in mediating responses to Cd-induced stress. Taken together, these peculiar features confirm that Cakile maritima

  16. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants.

    Directory of Open Access Journals (Sweden)

    Reshu Saxena

    Full Text Available Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1 through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01 in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1, VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61 and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein

  17. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  18. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  19. The Ds1 Transposon Provides Messages That Yield Unique Profiles of Protein Isoforms and Acts Synergistically With Ds to Enrich Proteome Complexity via Exonization.

    Science.gov (United States)

    Charng, Yuh-Chyang; Hsu, Lung-Hsin; Liu, Li-Yu Daisy

    2017-01-01

    In exonization events, Ds1 may provide donor and/or acceptor sites for splicing after inserting into genes and be incorporated into new transcripts with new exon(s). In this study, the protein variants of Ds1 exonization yielding additional functional profile(s) were studied. Unlike Ds exonization, which creates new profiles mostly by incorporating flanking intron sequences with the Ds message, Ds1 exonization additionally creates new profiles through the presence or absence of Ds1 messages. The number of unique functional profiles harboring Ds1 messages is 1.3-fold more than that of functional profiles without Ds1 messages. The highly similar 11 protein isoforms at a single insertion site also contribute to proteome complexity enrichment by exclusively creating new profiles. Particularly, Ds1 exonization produces 459 unique profiles, of which 129 cannot be built by Ds. We thus conclude that Ds and Ds1 are independent but synergistic in their capacity to enrich proteome complexity through exonization.

  20. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin

    KAUST Repository

    Han, Zhuang

    2013-05-03

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite. Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism. © 2013 American Chemical Society.

  1. Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae).

    Science.gov (United States)

    Rocha, Iara Fernanda; Maller, Alexandre; de Cássia Garcia Simão, Rita; Kadowaki, Marina Kimiko; Angeli Alves, Luis Francisco; Huergo, Luciano Fernandes; da Conceição Silva, José Luis

    2016-04-29

    Insects are organisms extremely well adapted to diverse habitats, primarily due to their innate immune system, which provides them with a range of cellular and humoral responses against microorganisms. Lepidoptera hemolymph proteins involved in humoral responses are well known; however, there is a lack of knowledge about the sugarcane borer Diatraea saccharalis. In this present work, the hemolymph proteins of this pest insect were studied by applying proteomic methodologies. Two-dimensional electrophoresis (2-DE) gels of proteins extracted from naive larvae and larvae challenged with Escherichia coli (ATCC 11224) and Bacillus subtilis (ATCC 6623) showed an average of 300 spots, and 92 of these spots corresponded in all three 2-DE gels. Forty-one spots were excised and digested with trypsin and analyzed using mass spectrometry. After analysis, 10 proteins were identified, including some proteins of the immune system: β-defensin-like protein, Turandot A-like protein, attacin-like protein, peptidoglycan recognition protein and cyclophilin-like protein. Nine proteins were present in both experimental conditions; however, β-defensin-like protein was present only in hemolymph challenged by B. subtilis. Notably, attacin-like protein was strongly induced by challenge with E. coli, suggesting an immune response against the infection. However, antimicrobial activity was observed in the test zone of microbial growth inhibition of B. subtilis solely with the hemolymph extract of the larvae challenged with B. subtilis. We made for the first time a proteomic profile of the hemolymph of D. saccharalis in which it was possible to identify the presence of important proteins involved in the immune response.

  2. Proteomic profiling of gill GSTs in Mytilus galloprovincialis from the North of Portugal and Galicia evidences variations at protein isoform level with a possible relation with water quality.

    Science.gov (United States)

    Azevedo, Catarina C; Guzmán-Guillén, Remédios; Martins, José C; Osório, Hugo; Vasconcelos, Vitor; da Fonseca, Rute R; Campos, Alexandre

    2015-09-01

    Glutathione transferases (GSTs) are key for xenobiotic detoxification at the molecular level across phyla. These enzymes are therefore likely to be part of the defence mechanisms used by marine organisms, such as mussels, that thrive in highly polluted environments. Taking this hypothesis into account, we used proteomics to characterize the profile of GSTs from the gills of marine mussel Mytilus galloprovincialis in order to discriminate natural mussel populations exposed to different levels of pollution. Samples were collected between Cabo Home (Spain) and Matosinhos (Portugal) covering a north-south transect of approximately 122 Km of the Atlantic Ocean along the Western Coast of the Iberian Peninsula. GSTs from mussel gills were extracted and purified by affinity chromatography with glutathione as the binding substrate to the solid medium. We studied the abundance of GST isoforms by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight mass spectrometry and assessed total activity. Eleven putative individual GSTs from classes Mu, Pi and Sigma were identified by proteomics. Few variations were observed in total GST activity of post-mitochondrial samples between sampling sites, with animals from Matosinhos (polluted site) showing highest GST activity and Cabo Home (clean site) showing lowest. This contrasts with the increased number of differences in the individual GST isoforms. Each mussel population showed unique GST proteomic profiles. Based on the results we conclude that proteomics surpasses the conventional GST enzymatic activity method to discriminate natural mussel populations and has potential application in environmental monitoring. It is reasonable to suggest that the GST proteomic profiles observed may reflect differences in contamination levels.

  3. Correlation between Phylogroups and Intracellular Proteomes of Propionibacterium acnes and Differences in the Protein Expression Profiles between Anaerobically and Aerobically Grown Cells

    Directory of Open Access Journals (Sweden)

    Itaru Dekio

    2013-01-01

    Full Text Available Propionibacterium acnes is one of the dominant commensals on the human skin and also an opportunistic pathogen in relation to acne, sarcoidosis, prostate cancer, and various infections. Recent investigations using housekeeping and virulence genes have revealed that the species consists of three major evolutionary clades (types I, II, and III. In order to investigate protein expression differences between these phylogroups, proteomic profiles of 21 strains of P. acnes were investigated. The proteins extracted from cells cultured under anaerobic and aerobic conditions were analysed using a SELDI-TOF mass spectrometer, high-resolution capillary gel electrophoresis, and LC-MS/ MS. The SELDI spectral profiles were visualised as a heat map and a dendrogram, which resulted in four proteomic groups. Strains belonging to type I were represented in the proteome Group A, while Group B contained type III strains. Groups C and D contained mixtures of types I and II. Each of these groups was not influenced by differences in culture conditions. Under anoxic growth conditions, a type IB strain yielded high expressions of some proteins, such as methylmalonyl-CoA epimerase and the Christie-Atkins-Munch-Petersen (CAMP factor. The present study revealed good congruence between genomic and proteomic data suggesting that the microenvironment of each subtype may influence protein expression.

  4. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells.

    Science.gov (United States)

    Lardenois, Aurélie; Jagot, Sabrina; Lagarrigue, Mélanie; Guével, Blandine; Ledevin, Mireille; Larcher, Thibaut; Dubreil, Laurence; Pineau, Charles; Rouger, Karl; Guével, Laëtitia

    2016-07-01

    Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).

  5. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    Science.gov (United States)

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  6. Going against the Grain: Gender-Specific Media Education in Catholic High Schools

    Science.gov (United States)

    Lapayese, Yvette V.

    2012-01-01

    The Catholic Church has addressed the power of media, as well as the critical importance of understanding and educating Catholic youth on the media's role and place in modern culture. In this article, the narratives of female Catholic teachers are prioritized to illustrate how gender-specific media education influences the schooling experiences of…

  7. Novel gender-specific visceral adiposity index for Mexican pediatric population

    Directory of Open Access Journals (Sweden)

    María J. Garcés

    2014-10-01

    Conclusions: VAI formula construction seemed to be different in children compared to adults. In the present study we propose a new gender-specific visceral adipose index for pediatric Mexican population living in urban areas that could be further used to predict abnormal cardiometabolic outcomes.

  8. The Utility of a Gender-Specific Definition of Binge Drinking on the AUDIT

    Science.gov (United States)

    Olthuis, Janine V.; Zamboanga, Byron L.; Ham, Lindsay S.; Van Tyne, Kathryne

    2011-01-01

    Objective: Although binge drinking is commonly defined as the consumption of at least 5 drinks in 1 sitting for men and 4 for women, the Alcohol Use Disorders Identification Test (AUDIT) defines binge drinking as the consumption of 6 or more drinks in 1 sitting for both men and women. This study examined the effect of using gender-specific binge…

  9. Better Educational Website Interface Design: The Implications from Gender-Specific Preferences in Graduate Students

    Science.gov (United States)

    Hsu, Yu-chang

    2006-01-01

    This study investigated graduate students gender-specific preferences for certain website interface design features, intending to generate useful information for instructors in choosing and for website designers in creating educational websites. The features investigated in this study included colour value, major navigation buttons placement, and…

  10. Adolescent depressive symptoms and smoking behavior: The gender-specific role of weight concern and dieting

    NARCIS (Netherlands)

    Larsen, J.K.; Otten, R.; Engels, R.C.M.E.

    2009-01-01

    Objective - Increased weight concern and dieting are associated with both depression and smoking among adolescents, particularly girls. This cross-sectional study examined the gender-specific role of weight concerns and dieting on the adolescent depression–smoking association. Methods - Participants

  11. The Utility of a Gender-Specific Definition of Binge Drinking on the AUDIT

    Science.gov (United States)

    Olthuis, Janine V.; Zamboanga, Byron L.; Ham, Lindsay S.; Van Tyne, Kathryne

    2011-01-01

    Objective: Although binge drinking is commonly defined as the consumption of at least 5 drinks in 1 sitting for men and 4 for women, the Alcohol Use Disorders Identification Test (AUDIT) defines binge drinking as the consumption of 6 or more drinks in 1 sitting for both men and women. This study examined the effect of using gender-specific binge…

  12. Health and Ageing in Older Adults: A gender-specific and life-course perspective

    NARCIS (Netherlands)

    L. Jaspers (Loes)

    2017-01-01

    markdownabstractIn this thesis we aimed to provide insights in health and ageing of older adults whilst adopting an integrated, gender-specific, and life-course approach. As a first step we studied the global micro-economic and macro-economic impact of NCDs in societies. Thereafter, we developed a

  13. Gender-specific changes in quality of life following cardiovascular disease: A prospective study

    NARCIS (Netherlands)

    van Jaarsveld, C.H.M.; Sanderman, R.; Ranchor, A.V; Ormel, J.; Van Veldhuisen, D.J.; Kempen, G.I J M

    2002-01-01

    Gender-specific changes in Quality of Life (QoL) following cardiovascular disease (CVD) were studied in 208 patients to determine whether gender-related differences in postmorbid QoL result from differences in disease severity, premorbid QoL, or different CVD-related recovery. Premorbid data were

  14. Gender-specific changes in quality of life following cardiovascular disease : A prospective study

    NARCIS (Netherlands)

    van Jaarsveld, C.H.; Sanderman, R.; Ranchor, A.V.; Ormel, J.; van Veldhuisen, D.J.; Kempen, G.I.

    2002-01-01

    Gender-specific changes in Quality of Life (QoL) following cardiovascular disease (CVD) were studied in 208 patients to determine whether gender-related differences in postmorbid QoL result from differences in disease severity, premorbid QoL, or different CVD-related recovery. Premorbid data were

  15. Are There Gender-Specific Risk Factors for Suicidal Activity among Patients with Schizophrenia and Depression?

    Science.gov (United States)

    Kaplan, Kalman J.; Harrow, Martin; Faull, Robert N.

    2012-01-01

    Are there gender-specific risk factors for suicidal activity among patients with schizophrenia and depression? A total of 74 schizophrenia patients (51 men, 23 women) and 77 unipolar nonpsychotic depressed patients (26 men, 51 women) from the Chicago Follow-up Study were studied prospectively at 2 years posthospitalization and again at 7.5 years.…

  16. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    Science.gov (United States)

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  17. Emotional Intelligence and Negative Feelings: A Gender Specific Moderated Mediation Model

    Science.gov (United States)

    Karakus, Mehmet

    2013-01-01

    This study aims to clarify the effect of emotional intelligence (EI) on negative feelings (stress, anxiety, burnout and depression) in a gender specific model. Four hundred and twenty-five primary school teachers (326 males, 99 females) completed the measures of EI, stress, anxiety, burnout and depression. The multi-group analysis was performed…

  18. Gender-specific changes in quality of life following cardiovascular disease : A prospective study

    NARCIS (Netherlands)

    van Jaarsveld, C.H.; Sanderman, R.; Ranchor, A.V.; Ormel, J.; van Veldhuisen, D.J.; Kempen, G.I.

    2002-01-01

    Gender-specific changes in Quality of Life (QoL) following cardiovascular disease (CVD) were studied in 208 patients to determine whether gender-related differences in postmorbid QoL result from differences in disease severity, premorbid QoL, or different CVD-related recovery. Premorbid data were av

  19. Age and gender-specific reference values of orbital fat and muscle volumes in Caucasians

    NARCIS (Netherlands)

    Regensburg, N.I.; Wiersinga, W.M.; van Velthoven, M.E.J.; Berendschot, T.T.J.M.; Zonneveld, F.W.; Baldeschi, L.; Saeed, P.; Mourits, M.P.

    2011-01-01

    To provide age and gender-specific reference values for orbital fat and muscle volumes (MV) in Caucasian adults. Computed tomographic scans of 160 orbits from 52 men and 55 women, aged 20-80 years, not affected by orbital disease were evaluated. Orbital bony cavity volume (OV), fat volume (FV) and M

  20. Age and gender-specific reference values of orbital fat and muscle volumes in Caucasians

    NARCIS (Netherlands)

    Regensburg, N.I.; Wiersinga, W.M.; van Velthoven, M.E.J.; Berendschot, T.T.J.M.; Zonneveld, F.W.; Baldeschi, L.; Saeed, P.; Mourits, M.P.

    2011-01-01

    To provide age and gender-specific reference values for orbital fat and muscle volumes (MV) in Caucasian adults. Computed tomographic scans of 160 orbits from 52 men and 55 women, aged 20-80 years, not affected by orbital disease were evaluated. Orbital bony cavity volume (OV), fat volume (FV) and

  1. Gender-specific changes in quality of life following cardiovascular disease: A prospective study

    NARCIS (Netherlands)

    van Jaarsveld, C.H.M.; Sanderman, R.; Ranchor, A.V; Ormel, J.; Van Veldhuisen, D.J.; Kempen, G.I J M

    2002-01-01

    Gender-specific changes in Quality of Life (QoL) following cardiovascular disease (CVD) were studied in 208 patients to determine whether gender-related differences in postmorbid QoL result from differences in disease severity, premorbid QoL, or different CVD-related recovery. Premorbid data were av

  2. Proteome analysis and tissue array for profiling protein markers associated with type B thymoma subclassification

    Institute of Scientific and Technical Information of China (English)

    SUN Qiang-ling; FANG Wen-tao; FENG Jian; ZHANG Jie; YANG Xiao-hua; GU Zhi-tao; ZHU Lei; SHA Hui-fang

    2012-01-01

    Background The prognostic relevance of World Health Organization (WHO) subtypes within type B thymomas is still controversial.Understanding of the molecular characteristics of the different histologic types of thymomas will provide meaningful information for diagnosis and therapeutic management in type B thymoma.Methods Proteins extracted from twelve type B thymoma tissue specimens (six type B1 and six type B2) were analyzed by two-dimensional electrophoresis (2-DE) coupled with MALDI-TOF-MS.Differentially expressed proteins were then assayed in sixty-nine type B thymoma tissues (including B1,B2 and B3) by tissue array analysis with immunohistochemistry staining.The relationship of their expression with clinicopathological parameters,such as tumor stage or WHO classification,was estimated by Spearman's Rank Correlation Test.Results Sixteen differentially expressed proteins between type B1 and B2 thymoma tissues were identified.The differential levels of ezrin and glutathione S-transferase pi (GSTP1) were validated using immunohistochemistry staining.A statistically significant difference was observed in the positive rate of ezrin expression between type B1 thymoma and type B3 thymoma (Z=-2.963,P <0.01).Ezrin showed a tendency to be expressed in higher classification tumors from type B1 to B3.A statistical analysis demonstrated that type B2 and B3 tumors had significantly higher positive expression of GSTP1 than the B1 group (type B2 vs.B1:Z=-2.582,P ≤0.01; type B3 vs.B1:Z=-4.012,P≤0.001).The results also showed a strong correlation between GSTP1 and WHO type staging of B1 to B3 tumors (Spearman's correlation coefficient:0.633,P≤0.001).Statistical analysis showed that there was close correlation between GSTP1 and ezrin expression with the clinical stage (Spearman's correlation coefficients,ezrin:0.481,P <0.05; GSTP1:0.484,P <0.01).Conclusions Differentially expressed proteins between type B1 and B2 thymoma tissues were analyzed by comparative proteomic

  3. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations.

    Science.gov (United States)

    Sassi, Mauro; Arena, Simona; Scaloni, Andrea

    2015-07-15

    Adulteration of ovine, caprine, and buffalo milks with more common bovine material occurs for economic reasons and seasonal availability. Frauds are also associated with the use of powdered milk instead of declared, fresh material. In this context, various analytical methods have been adapted to dairy science applications with the aim to evaluate adulteration of milk samples, although time-consuming, suitable only for speciation or thermal treatment analysis, or useful for a specific fraud type. An integrated MALDI-TOF-MS platform for the combined peptidomic and proteomic profiling of milk samples is here presented, which allows rapid detection of illegal adulterations due to the addition of either nondeclared bovine material to water buffalo, goat, and ovine milks or of powdered bovine milk to the fresh counterpart. Peptide and protein markers of each animal milk were identified after direct analysis of a large number of diluted skimmed and/or enriched diluted skimmed filtrate samples. In parallel, markers of thermal treatment were characterized in different types of commercial milks. Principal components scores of ad hoc prepared species- or thermal treatment-associated adulterated milk samples were subjected to partial least-squares regression, permitting a fast accurate estimate of the fraud extents in test samples at either protein and peptide level. With respect to previous reports on MALDI-TOF-MS protein profiling methodologies for milk speciation, this study extends that approach to the analysis of the thermal treatment and introduces an independent, complementary peptide profiling measurement, which integrates protein data with additional information on peptides, validating final results and ultimately broadening the method applicability.

  4. Comparative Analysis of Viperidae Venoms Antibacterial Profile: a Short Communication for Proteomics

    Science.gov (United States)

    Ferreira, Bruno L.; Santos, Dilvani O.; dos Santos, André Luis; Rodrigues, Carlos R.; de Freitas, Cícero C.; Cabral, Lúcio M.; Castro, Helena C.

    2011-01-01

    Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta) against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC) = 1–32 μg mL−1), A. rhodostoma and B. atrox venoms were active against Staphylococcus epidermidis and Enterococcus faecalis (MIC = 4.5 μg mL−1), while B. jararaca inhibited S. aureus growth (MIC = 13 μg ml−1). As genomic and proteomic technologies are improving and developing rapidly, our results suggested that A. rhodostoma, B. atrox and B. jararaca venoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques. PMID:18955360

  5. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    Science.gov (United States)

    Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It’s crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer. PMID:27684953

  6. Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2013-01-01

    Full Text Available Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS. We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes. Forty-two of the liver proteins identified were found in other reptiles and in amphibians. The findings of this study provide a good reference map of snake liver proteins that will be useful in molecular investigations of snake physiology and adaptation.

  7. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don Endl

    Directory of Open Access Journals (Sweden)

    Chen Yu-Ting

    2010-12-01

    Full Text Available Abstract Background Restoration of rooting competence is important for rejuvenation in Sequoia sempervirens (D. Don Endl and is achieved by repeatedly grafting Sequoia shoots after 16 and 30 years of cultivation in vitro. Results Mass spectrometry-based proteomic analysis revealed three proteins that differentially accumulated in different rejuvenation stages, including oxygen-evolving enhancer protein 2 (OEE2, glycine-rich RNA-binding protein (RNP, and a thaumatin-like protein. OEE2 was found to be phosphorylated and a phosphopeptide (YEDNFDGNSNVSVMVpTPpTDK was identified. Specifically, the protein levels of OEE2 increased as a result of grafting and displayed a higher abundance in plants during the juvenile and rejuvenated stages. Additionally, SsOEE2 displayed the highest expression levels in Sequoia shoots during the juvenile stage and less expression during the adult stage. The expression levels also steadily increased during grafting. Conclusion Our results indicate a positive correlation between the gene and protein expression patterns of SsOEE2 and the rejuvenation process, suggesting that this gene is involved in the rejuvenation of Sequoia sempervirens.

  8. Comparative Analysis of Viperidae Venoms Antibacterial Profile: a Short Communication for Proteomics

    Directory of Open Access Journals (Sweden)

    Bruno L. Ferreira

    2011-01-01

    Full Text Available Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC = 1–32 μg mL−1, A. rhodostoma and B. atrox venoms were active against Staphylococcus epidermidis and Enterococcus faecalis (MIC = 4.5 μg mL−1, while B. jararaca inhibited S. aureus growth (MIC = 13 μg ml−1. As genomic and proteomic technologies are improving and developing rapidly, our results suggested that A. rhodostoma, B. atrox and B. jararaca venoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques.

  9. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  10. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia.

    Science.gov (United States)

    Ihnatko, R; Post, C; Blomqvist, A

    2013-10-01

    Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain's metabolic control centre. The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed littermates was examined using two-dimensional electrophoresis (2-DE)-based comparative proteomics. Differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry. The 2-DE data showed an increased expression of dynamin 1, hexokinase, pyruvate carboxylase, oxoglutarate dehydrogenase, and N-ethylmaleimide-sensitive factor in tumour-bearing mice, whereas heat-shock 70 kDa cognate protein, selenium-binding protein 1, and guanine nucleotide-binding protein Gα0 were downregulated. The expression of several of the identified proteins was similarly altered also in the caloric-restricted pair-fed mice, suggesting an involvement of these proteins in brain metabolic adaptation to restricted nutrient availability. However, the expression of dynamin 1, which is required for receptor internalisation, and of hexokinase, and pyruvate carboxylase were specifically changed in tumour-bearing mice with anorexia. The identified differentially expressed proteins may be new candidate molecules involved in the pathophysiology of tumour-induced anorexia-cachexia.

  11. Proteomic Profiling for Peritoneal Dialysate: Differential Protein Expression in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2013-01-01

    Full Text Available Peritoneal dialysis (PD is an increasingly accepted modality of renal replacement therapy. It provides the advantages of having a flexible lifestyle, stable hemodynamics, and better preservation of residual renal function. To enhance our understanding of the peritoneal dialysate of diabetes mellitus (DM, peritoneal dialysate proteins were identified by two-dimensional gel electrophoresis (2DE combined with reverse-phase nano-ultra performance liquid chromatography electrospray ionization tandem mass spectrometry (RP-nano-UPLC-ESI-MS/MS followed by peptide fragmentation patterning. To validate the differential proteins, ELISA and Western blotting analyses were applied to detect candidate proteins that may be related to DM. We performed 2DE on the peritoneal dialysate samples, with detection of more than 300 spots. From this, 13 spots were excised, in-gel digested, and identified by RP-nano-UPLC-ESI-MS/MS. Ten of these showed significant differential expression between the DM and chronic glomerulonephritis (CGN peritoneal dialysate samples. In this study, we conducted a comparative proteomic study on these two groups of dialysate that may provide evidence for understanding the different peritoneal protein changes. These proteins may not be new biomarkers; however, they may indicate a situation for possible drug treatment and can be the predictors of peritonitis for a validation study in the future.

  12. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    Science.gov (United States)

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  13. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    Science.gov (United States)

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each Phypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual.

  14. Translational Targeted Proteomics Profiling of Mitochondrial Energy Metabolic Pathways in Mouse and Human Samples.

    Science.gov (United States)

    Wolters, Justina C; Ciapaite, Jolita; van Eunen, Karen; Niezen-Koning, Klary E; Matton, Alix; Porte, Robert J; Horvatovich, Peter; Bakker, Barbara M; Bischoff, Rainer; Permentier, Hjalmar P

    2016-09-01

    Absolute measurements of protein abundance are important in the understanding of biological processes and the precise computational modeling of biological pathways. We developed targeted LC-MS/MS assays in the selected reaction monitoring (SRM) mode to quantify over 50 mitochondrial proteins in a single run. The targeted proteins cover the tricarboxylic acid cycle, fatty acid β-oxidation, oxidative phosphorylation, and the detoxification of reactive oxygen species. Assays used isotopically labeled concatemers as internal standards designed to target murine mitochondrial proteins and their human orthologues. Most assays were also suitable to quantify the corresponding protein orthologues in rats. After exclusion of peptides that did not pass the selection criteria, we arrived at SRM assays for 55 mouse, 52 human, and 51 rat proteins. These assays were optimized in isolated mitochondrial fractions from mouse and rat liver and cultured human fibroblasts and in total liver extracts from mouse, rat, and human. The developed proteomics approach is suitable for the quantification of proteins in the mitochondrial energy metabolic pathways in mice, rats, and humans as a basis for translational research. Initial data show that the assays have great potential for elucidating the adaptive response of human patients to mutations in mitochondrial proteins in a clinical setting.

  15. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease

    Science.gov (United States)

    Soman, Kizhake V.; Zago, Maria P.; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N.; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R.

    2016-01-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30–40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy. PMID:26919708

  16. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Nisha Jain Garg

    2016-02-01

    Full Text Available Trypanosoma cruzi (Tc infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs of normal healthy controls (N/H, n = 30 and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25 or clinically symptomatic (C/S, n = 28 with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol and resolved by two-dimensional gel electrophoresis (2D-GE. After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy.

  17. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  18. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Science.gov (United States)

    te Pas, Marinus F W; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P L; Smits, Mari A

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  19. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  20. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi.

    Directory of Open Access Journals (Sweden)

    Stéphanie Val

    Full Text Available Chronic Otitis Media with effusion (COME develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi, the most common acute Otitis Media (OM pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line.NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC cultured at air-liquid interface over 48 hours- 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling.Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05. The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface.NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.

  1. The sheep conceptus modulates proteome profiles in caruncular endometrium during early pregnancy.

    Science.gov (United States)

    Arianmanesh, Mitra; Fowler, Paul A; Al-Gubory, Kaïs H

    2016-12-01

    The stage-specific expression of functional proteins within the endometrium, and their regulation by conceptus-derived signals, are crucial for conceptus development and successful establishment of pregnancy. Accurate knowledge of endometrium-conceptus interactions is key for the development of effective strategies to improve conceptus implantation rates both following natural conception and/or assisted reproductive technologies. The unilateral pregnant ewe provides a powerful experimental model for the study of endometrial function in the presence or absence of conceptuses during the peri-implantation period. Two-dimensional gel electrophoresis and mass spectrometry-based proteomics were used to compare and identify differentially expressed proteins in caruncular endometrium collected from the gravid uterine horns and the non-gravid uterine horns at the time of conceptus attachment (day 16 of pregnancy) and early post-implantation period (day 20 of pregnancy). Fifty seven protein spots were up-regulated in the gravid horn at day 16 of pregnancy and twenty seven protein spots were up-regulated in the gravid horn at day 20 of pregnancy. Sixteen proteins with different functions such as protein metabolism, cholesterol and ion transport and cell adhesion were identified. In conclusion, the use of the unilaterally pregnant ewe model provides evidence that the early implantation and post-implanting conceptus-derived signals up-regulate caruncle endometrial proteins, including carbonic anhydrase 2 (CA-II) and apolipoprotein A-1 (APOA1) and down-regulate caruncle endometrial proteins, including adenosylhomocysteinase (AHCY) and heat shock 60kDa protein 1 (HSP60). These regulated proteins are likely involved in providing a suitable intra-uterine environment required for conceptus attachment, implantation, early post-implantation development and the successful establishment of pregnancy in sheep.

  2. Multiplexed microbead immunoassays by flow cytometry for molecular profiling: Basic concepts and proteomics applications.

    Science.gov (United States)

    Krishhan, V V; Khan, Imran H; Luciw, Paul A

    2009-01-01

    Flow cytometry was originally established as an automated method for measuring optical or fluorescence characteristics of cells or particles in suspension. With the enormous increase in development of reliable electronics, lasers, micro-fluidics, as well as many advances in immunology and other fields, flow cytometers have become user-friendlier, less-expensive instruments with an increasing importance for both basic research and clinical applications. Conventional uses of flow cytometry include immunophenotyping of blood cells and the analysis of the cell cycle. Importantly, methods for labeling microbeads with unique combinations of fluorescent spectral signatures have made multiplex analysis of soluble analytes (i.e. the ability to detect multiple targets in a single test sample) feasible by flow cytometry. The result is a rapid, high-throughput, sensitive, and reproducible detection technology for a wide range of biomedical applications requiring detection of proteins (in cells and biofluids) and nucleic acids. Thus, novel methods of flow cytometry are becoming important for diagnostic purposes (e.g. identifying multiple clinical biomarkers for a wide range of diseases) as well as for developing novel therapies (e.g. elucidating drug mechanisms and potential toxicities). In addition, flow cytometry for multiplex analysis, coupled with automated sample handling devices, has the potential to significantly enhance proteomics research, particularly analysis of post-translational modifications of proteins, on a large scale. Inherently, flow cytometry methods are strongly rooted in the laws of the physics of optics, fluidics, and electromagnetism. This review article describes principles and early sources of flow cytometry, provides an introduction to the multiplex microbead technology, and discusses its applications and advantages in comparison to other methods. Anticipated future directions, particularly for translational research in medicine, are also discussed.

  3. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress.

    Science.gov (United States)

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R; Sivonen, Kaarina

    2015-08-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.

  4. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  5. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre.

    Directory of Open Access Journals (Sweden)

    Hervé Colinet

    Full Text Available BACKGROUND: Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE: The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.

  6. Proteomic Profiling of Plasma and Serum in Elderly Patients With Delirium

    NARCIS (Netherlands)

    B.C. van Munster; M.J. van Breemen; P.D. Moerland; D. Speijer; S.E. de Rooij; C.J. Pfrommer; M. Levi; M.W. Hollmann; J.M. Aerts; A.H. Zwinderman; J.C. Korevaar

    2009-01-01

    The aim of this study was to compare plasma and serum protein profiles in elderly acute hip fracture patients with and without delirium. The spectra from surface-enhanced laser desorption ionization (SELDI) using time-of-flight (TOF) mass spectrometry of 16 patients without and 16 patients with deli

  7. Proteomic profiling of epididymis and vas deferens: identification of proteins regulated during rat genital tract development.

    NARCIS (Netherlands)

    A. Umar (Arzu); M.P. Ooms (Marja); T.M. Luider (Theo); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    2003-01-01

    textabstractEpididymis and vas deferens form part of the male internal genital tract and are dependent on androgens for their growth and development. To better understand the molecular action of androgens during male genital tract development, protein expression profiles were gener

  8. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    Science.gov (United States)

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  9. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Zhifeng Wu

    2016-12-01

    Full Text Available Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD is a complicated and serious type of rhegmatogenous retinal detachment (RRD. In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD.

  10. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    Science.gov (United States)

    Wu, Zhifeng; Ding, Nannan; Yu, Mengxi; Wang, Ke; Luo, Shasha; Zou, Wenjun; Zhou, Ying; Yan, Biao; Jiang, Qin

    2016-01-01

    Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. PMID:27941623

  11. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis.

    Science.gov (United States)

    Gomes, Luciana S; Senna, Raquel; Sandim, Vanessa; Silva-Neto, Mário A C; Perales, Jonas E A; Zingali, Russolina B; Soares, Márcia R; Fialho, Eliane

    2014-02-12

    Soybeans have several functional properties due to their composition and may exert beneficial health effects that are attributed to proteins and their derivative peptides. The present study aimed to analyze the protein profiles of four new conventional soybean seeds (BRS 257, BRS 258, BRS 267, and Embrapa 48) with the use of proteomic tools. Two-dimensional (2D) and one-dimensional (1D) gel electrophoreses were performed, followed by MALDI-TOF/TOF and ESI-Q-TOF mass spectrometry analyses, respectively. These two different experimental approaches allowed the identification of 117 proteins from 1D gels and 46 differentially expressed protein spots in 2D gels. BRS 267 showed the greatest diversity of identified spots in the 2D gel analyses. In the 1D gels, the major groups were storage (25-40%) and lipid metabolism (11-25%) proteins. The differences in protein composition between cultivars could indicate functional and nutritional differences and could direct the development of new cultivars.

  12. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.

    Science.gov (United States)

    Ibebunjo, Chikwendu; Chick, Joel M; Kendall, Tracee; Eash, John K; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P; Glass, David J

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.

  13. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    Science.gov (United States)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  14. Microscopic resolution imaging and proteomics correlation at histogeographically identical location: point by point correlation between ex vivo tissue imaging with high field MRI and multiplex tissue immunoblotting for proteomics profiling

    Science.gov (United States)

    Matsuda, Kant M.; Chung, Joon-Yong; Ylaya, Kris; Dodd, Stephen; Fukunaga, Masaki; Hewitt, Stephen M.

    2010-03-01

    Histopathologic correlation is an essential component for validation of the radiological findings. There has been significant advancement in medical imaging technologies, including molecular imaging, such that, it is essential to establish the system beyond histopathologic correlation, to protein profiling that can be correlated with imaging at anatomically identical manner for accurate examination. Recently, a novel technology for proteomic profiling has been established, called "multiplex tissue immunoblotting (MTIB)" which can offer studying multiple protein expression from a single histology slide. Therefore, we attempted to establish the system to obtain an identical plane between high resolution imaging and histopathology at microscopic level so that proteomic profiling can be readily performed using MTIB. A variety of tissues were obtained from autopsy materials and initially scanned with high field MRI (14T) ex vivo along with the marker for tissue orientation. The histology slides were prepared from post-scanned tissue under the marker-guidance in order to obtain an identical plane with high resolution imaging. Subsequently, MTIB was carried out to study expression of proteins of interest and point by point correlation with high resolution imaging was performed at histogeographically identical manner.

  15. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    Science.gov (United States)

    2014-01-01

    Background The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Results Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment

  16. Development of Gender-Specific Technologies. Evidence from China, Poland and Sweden

    DEFF Research Database (Denmark)

    Göransson, Bo; Rolfstam, Max

    2013-01-01

    This article investigates the gender aspects of technology use in the innovation system. The generic question is: to what extent is it necessary to distinguish between women and men in the use of technology? A second question is: if gender-specific differences do exist, to what extent is the inno......This article investigates the gender aspects of technology use in the innovation system. The generic question is: to what extent is it necessary to distinguish between women and men in the use of technology? A second question is: if gender-specific differences do exist, to what extent...... is the innovation system capable of utilizing experiences from women as well? The article examines two sets of technologies—agricultural equipment for rural application and teleservices—in two transition economies, Poland and China, with Sweden as a point of reference. The empirical data presented here on women...

  17. Gender differences in colour naming performance for gender specific body shape images.

    Science.gov (United States)

    Elliman, N A; Green, M W; Wan, W K

    1998-03-01

    Males are increasingly subjected to pressures to conform to aesthetic body stereotypes. There is, however, comparatively little published research on the aetiology of male body shape concerns. Two experiments are presented, which investigate the relationship between gender specific body shape concerns and colour-naming performance. Each study comprised a between subject design, in which each subject was tested on a single occasion. A pictorial version of a modified Stroop task was used in both studies. Subjects colour-named gender specific obese and thin body shape images and semantically homogeneous neutral images (birds) presented in a blocked format. The first experiment investigated female subjects (N = 68) and the second investigated males (N = 56). Subjects also completed a self-report measure of eating behaviour. Currently dieting female subjects exhibited significant colour-naming differences between obese and neutral images. A similar pattern of colour-naming performance was found to be related to external eating in the male subjects.

  18. Gender-Specificity in Sexual Interest in Bisexual Men and Women.

    Science.gov (United States)

    Rullo, Jordan E; Strassberg, Donald S; Miner, Michael H

    2015-07-01

    The present study assessed the gender-specificity of sexual interest of bisexually-identified men and women, compared to gay men and lesbian women. Utilizing viewing time as a measure of sexual interest, self-identified bisexual men (N = 50) and women (N = 54) rated the sexual appeal of sexually provocative pictures while the amount of time spent viewing each picture was inconspicuously measured. As hypothesized, bisexual men and women demonstrated a pattern of sexual interest that was significantly less gender-specific than that of a gay/lesbian sample. That is, bisexual men and women (1) viewed other-sex pictures significantly longer than gay men/lesbian women viewed other-sex pictures and (2) rated other sex pictures significantly more sexually appealing than gay men/lesbians rated other-sex pictures. Additionally, the difference in viewing times and appeal ratings between male and female sexual stimuli for bisexuals was significantly less than the difference evidenced by gay men and lesbians. These findings suggest that self-identified bisexual men and women demonstrate a truly bisexual pattern of sexual interest, characterized by greater other-sex attraction and less gender-specificity than is true for gay men and lesbians.

  19. Gender-specific metabolic responses in gonad of mussel Perna viridis to triazophos.

    Science.gov (United States)

    Zhang, Linbao; Sun, Wei; Zhang, Zhe; Chen, Haigang; Jia, Xiaoping; Cai, Wengui

    2017-09-19

    Triazophos, as a lipophilic organophosphate pesticide, displays higher bioaccumulation in the gonads of shellfish. To study the reproductive toxicity of triazophos, we applied metabolomics to characterize the gender-specific metabolic responses in mussel Perna viridis exposed to triazophos. Metabolites were differently altered by triazophos in ovaries of mussel at different concentrations and time intervals, while basically similar metabolic response patterns were observed in male mussels at the two tested concentrations after exposure for 24 and 48h. The significant changes of metabolites in ovaries of mussel exhibited the disturbances in energy metabolism and osmotic regulation, while in male samples triazophos only affected the energy metabolism. Moreover, glycine, sn-glycero-3-phosphocholine, ethanol, aspartate, etc. exhibited consistent variation tendency in both male and female individuals. While the changes of homarine, betaine, taurine, hypotaurine, malonate, β-alanine, succinate, and choline showed obviously gender-specific responses. Overall, this study confirmed the gender-specific responses in gonad of P. viridis to triazophos exposure. Copyright © 2017. Published by Elsevier Ltd.

  20. Gender-specific normative perceptions of alcohol-related protective behavioral strategies.

    Science.gov (United States)

    Lewis, Melissa A; Rees, Michiko; Lee, Christine M

    2009-09-01

    The present research aimed (a) to determine whether students underestimate gender-specific descriptive normative perceptions for protective behavioral strategies; (b) to evaluate the relationships among perceived gender-specific descriptive and injunctive drinking norms and perceived gender-specific descriptive norms for protective behavioral strategies; and (c) to examine whether normative perceptions for protective behavioral strategies relate to use of these strategies when controlling for relevant drinking behavior factors (i.e., alcohol consumption, negative consequences, and attitude toward drinking behavior) and social norms factors (i.e., perceived descriptive and injunctive norms). Students (N = 666; 56.6% men) completed measures assessing drinking behavior and attitudes toward drinking, perceived descriptive and injunctive norms, perceived protective behavioral strategies, and protective behavioral strategies. Findings demonstrated that students consistently underestimated the use of strategies for the typical male student, whereas results were less consistent for the typical female student. In addition, results indicated that same-sex normative perceptions for protective behavioral strategies were associated with personal use of these strategies, even when controlling for relevant drinking behavior and social norms factors. Results stress the importance of evaluating factors that are associated with use of protective behavioral strategies. Implications for social norms preventative interventions are discussed.

  1. Spatial risk for gender-specific adult mortality in an area of southern China

    Directory of Open Access Journals (Sweden)

    Ochiai Rion

    2007-07-01

    Full Text Available Abstract Background Although economic reforms have brought significant benefits, including improved health care to many Chinese people, accessibility to improved care has not been distributed evenly throughout Chinese society. Also, the effects of the uneven distribution of improved healthcare are not clearly understood. Evidence suggests that mortality is an indicator for evaluating accessibility to improved health care services. We constructed spatially smoothed risk maps for gender-specific adult mortality in an area of southern China comprising both urban and rural areas and identified ecological factors of gender-specific mortality across societies. Results The study analyzed the data of the Hechi Prefecture in southern in China. An average of 124,204 people lived in the area during the study period (2002–2004. Individual level data for 2002–2004 were grouped using identical rectangular cells (regular lattice of 0.25 km2. Poisson regression was fitted to the group level data to identify gender-specific ecological factors of adult (ages 15– Conclusion We found a disparity in mortality rates between rural and urban areas in the study area in southern China, especially for adult men. There were also differences in mortality rates between poorer and wealthy populations in both rural and urban areas, which may in part reflect differences in health care quality. Spatial influences upon adult male versus adult female mortality difference underscore the need for more research on gender-related influences on adult mortality in China.

  2. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...... profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4 h PI and first decreased by 9-fold until 72 h PI followed by a 5...

  3. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling.

    Science.gov (United States)

    Huber, Kilian V M; Olek, Karin M; Müller, André C; Tan, Chris Soon Heng; Bennett, Keiryn L; Colinge, Jacques; Superti-Furga, Giulio

    2015-11-01

    Thermal stabilization of proteins after ligand binding provides an efficient means to assess the binding of small molecules to proteins. We show here that in combination with quantitative mass spectrometry, the approach allows for the systematic survey of protein engagement by cellular metabolites and drugs. We profiled the targets of the drugs methotrexate and (S)-crizotinib and the metabolite 2'3'-cGAMP in intact cells and identified the 2'3'-cGAMP cognate transmembrane receptor STING, involved in immune signaling.

  4. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems

    Directory of Open Access Journals (Sweden)

    C. Rory Goodwin

    2016-04-01

    Full Text Available Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states.

  5. Proteomic profile in Perna viridis after exposed to Prorocentrum lima, a dinoflagellate producing DSP toxins.

    Science.gov (United States)

    Huang, Lu; Zou, Ying; Weng, Hui-wen; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong

    2015-01-01

    In the current study, we compared protein profiles in gills of Perna viridis after exposure to Prorocentrumlima, a dinoflagellate producing DSP toxins, and identified the differential abundances of protein spots using 2D-electrophoresis. After exposure to P. lima, the level of okadaic acid (a main component of DSP toxins) in gills of P. viridis significantly increased at 6 h, but mussels were all apparently healthy without death. Among the 28 identified protein spots by MALDI TOF/TOF-MS, 12 proteins were up-regulated and 16 were down-regulated in the P. lima-exposed mussels. These identified proteins were involved in various biological activities, such as metabolism, cytoskeleton, signal transduction, response to oxidative stress and detoxification. Taken together, our results indicated that the presence of P. lima caused DSP toxins accumulation in mussel gill, and might consequently induce cytoskeletonal disorganization,oxidative stress, a dysfunction in metabolism and ubiquitination/proteasome activity.

  6. Sequential extraction results in improved proteome profiling of medicinal plant Pinellia ternata tubers, which contain large amounts of high-abundance proteins.

    Directory of Open Access Journals (Sweden)

    Xiaolin Wu

    Full Text Available Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs, mainly mannose-binding lectin (agglutinin, exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE. Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae.

  7. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes.

    Directory of Open Access Journals (Sweden)

    Hongyan Sun

    Full Text Available To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low-grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2, trypsin inhibitor, dehydroascorbate reductase (DHAR, pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars.

  8. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    Science.gov (United States)

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the

  9. Correlation of phenotypic profiles using targeted proteomics identifies mycobacterial esx-1 substrates.

    Science.gov (United States)

    Champion, Matthew M; Williams, Emily A; Pinapati, Richard S; Champion, Patricia A DiGiuseppe

    2014-11-07

    The Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes that promote protein translocation across the cytoplasmic membrane in a diverse range of pathogenic and nonpathogenic bacterial species. The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation in mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis. Although several genes have been associated with Esx-1-mediated transport and virulence, the contribution of individual Esx-1 genes to export is largely undefined. A unique aspect of Esx-1 export is that several substrates require each other for export/stability. We exploited substrate "codependency" to identify Esx-1 substrates. We simultaneously quantified changes in the levels of 13 Esx-1 proteins from both secreted and cytosolic protein fractions generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry. This expansion of measurable Esx-1 proteins allowed us to define statistical rules for assigning novel substrates using phenotypic profiles of known Esx-1 substrates. Using this approach, we identified three additional Esx-1 substrates encoded by the esx-1 region. Our studies begin to address how disruption of specific genes affects several proteins in the Esx-1 complex. Overall, our findings illuminate relationships between Esx-1 proteins and create a framework for the identification of secreted substrates applicable to other protein exporters and pathways.

  10. Correlation of Phenotypic Profiles Using Targeted Proteomics Identifies Mycobacterial Esx-1 Substrates

    Science.gov (United States)

    2015-01-01

    The Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes that promote protein translocation across the cytoplasmic membrane in a diverse range of pathogenic and nonpathogenic bacterial species. The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation in mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis. Although several genes have been associated with Esx-1-mediated transport and virulence, the contribution of individual Esx-1 genes to export is largely undefined. A unique aspect of Esx-1 export is that several substrates require each other for export/stability. We exploited substrate “codependency” to identify Esx-1 substrates. We simultaneously quantified changes in the levels of 13 Esx-1 proteins from both secreted and cytosolic protein fractions generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry. This expansion of measurable Esx-1 proteins allowed us to define statistical rules for assigning novel substrates using phenotypic profiles of known Esx-1 substrates. Using this approach, we identified three additional Esx-1 substrates encoded by the esx-1 region. Our studies begin to address how disruption of specific genes affects several proteins in the Esx-1 complex. Overall, our findings illuminate relationships between Esx-1 proteins and create a framework for the identification of secreted substrates applicable to other protein exporters and pathways. PMID:25106450

  11. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency.

    Science.gov (United States)

    Marín-Buera, Lorena; García-Bartolomé, Alberto; Morán, María; López-Bernardo, Elia; Cadenas, Susana; Hidalgo, Beatriz; Sánchez, Ricardo; Seneca, Sara; Arenas, Joaquín; Martín, Miguel A; Ugalde, Cristina

    2015-01-15

    We have analyzed the cellular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in BCS1L, a major genetic cause of mitochondrial complex III enzyme deficiency. Mutant fibroblasts exhibited low oxygen consumption rates and intracellular ATP levels, indicating that the main altered molecular event probably is a limited respiration-coupled ATP production through the OXPHOS system. Two-dimensional DIGE and MALDI-TOF/TOF mass spectrometry analyses unambiguously identified 39 proteins whose expression was significantly altered in complex III-deficient fibroblasts. Extensive statistical and cluster analyses revealed a protein profile characteristic for the BCS1L mutant fibroblasts that included alterations in energy metabolism, cell signaling and gene expression regulation, cytoskeleton formation and maintenance, and intracellular stress responses. The physiological validation of the predicted functional adaptations of human cultured fibroblasts to complex III deficiency confirmed the up-regulation of glycolytic enzyme activities and the accumulation of branched-chain among other amino acids, suggesting the activation of anaerobic glycolysis and cellular catabolic states, in particular protein catabolism, together with autophagy as adaptive responses to mitochondrial respiratory chain dysfunction and ATP deficiency. Our data point to an overall metabolic and genetic reprogramming that could contribute to explain the clinical manifestations of complex III deficiency in patients. Despite considerable knowledge about their genetic origins, the pathophysiological mechanisms that contribute to the clinical manifestations of mitochondrial disorders remain poorly understood. We have investigated the molecular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in the BCS1L gene, a primary cause of mitochondrial complex III enzyme deficiency. Two-dimensional DIGE

  12. Gender-specific transcriptomic response to environmental exposure in Flemish adults.

    Science.gov (United States)

    De Coster, Sam; van Leeuwen, Danitsja M; Jennen, Danyel G J; Koppen, Gudrun; Den Hond, Elly; Nelen, Vera; Schoeters, Greet; Baeyens, Willy; van Delft, Joost H M; Kleinjans, Jos C S; van Larebeke, Nicolas

    2013-08-01

    Flanders, Belgium, is one of the most densely populated areas in Europe. The Flemish Environment and Health Survey (2002-2006) aimed at determining exposure to pollutants of neonates, adolescents, and older adults and to assess associated biological and health effects. This study investigated genome wide gene expression changes associated with a range of environmental pollutants, including cadmium, lead, PCBs, dioxin, hexachlorobenzene, p,p'-DDE, benzene, and PAHs. Gene expression levels were measured in peripheral blood cells of 20 adults with relatively high and 20 adults with relatively low combined internal exposure levels, all non-smokers aged 50-65. Pearson correlation was used to analyze associations between pollutants and gene expression levels, separately for both genders. Pollutant- and gender-specific correlation analysis results were obtained. For organochlorine pollutants, analysis within genders revealed that genes were predominantly regulated in opposite directions in males and females. Significantly modulated pathways were found to be associated with each of the exposure biomarkers measured. Pathways and/or genes related to estrogen and STAT5 signaling were correlated to organochlorine exposures in both genders. Our work demonstrates that gene expression in peripheral blood is influenced by environmental pollutants. In particular, gender-specific changes are associated with organochlorine pollutants, including gender-specific modulation of endocrine related pathways and genes. These pathways and genes have previously been linked to endocrine disruption related disorders, which in turn have been associated with organochlorine exposure. Based on our results, we recommend that males and females be considered separately when analyzing gene expression changes associated with exposures that may include chemicals with endocrine disrupting properties.

  13. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi.

    Science.gov (United States)

    Liu, Xiaoli; Sun, Hushan; Wang, Yiyan; Ma, Mengwen; Zhang, Yuemei

    2014-10-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish and frequently studied in shellfish immunology. In this work, the gender-specific metabolic responses induced by Vibrio harveyi in hepatopancreas from M. galloprovincialis were characterized using NMR-based metabolomics. In details, V. harveyi challenge increased the levels of amino acids including (valine, leucine, isoleucine, threonine, alanine, arginine and tyrosine) and ATP, and decreased the level of glucose in male mussel hepatopancreas. In V. harveyi-challenged female mussel hepatopancreas, both threonine and AMP were significantly elevated, and choline, phoshphocholine, sn-glycero-3-phosphocholine, taurine, betaine and ATP were depleted. Obviously, only threonine was similarly altered to that in V. harveyi-challenged male mussel hepatopancreas. These findings confirmed the gender-specific metabolic responses in mussels challenged by V. harveyi. Overall, V. harveyi induced an enhanced energy demand through activated glycolysis and immune response indicated by increased BCAAs in male mussel hepatopancreas. In female mussel hepatopancreas, V. harveyi basically caused disturbances in both osmotic regulation and energy metabolism through the metabolic pathways of conversions of phosphocholine and ADP to choline and ATP, and sn-glycero-3-phosphocholine and H2O into choline and sn-glycerol 3-phosphate. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, lysozyme and defensin) suggested that V. harveyi induced obvious oxidative and immune stresses in both male and female mussel hepatopancreas. This work demonstrated that V. harveyi could induce gender-specific metabolic responses in mussel M. galloprovincialis hepatopancreas using NMR-based metabolomics.

  14. Gender specific expression of tumor suppressor PKCd versus oncogenic PKCn in renal cell carcinoma

    OpenAIRE

    Brenner, Walburgis; Färber, Gloria; Jan G. Hengstler; Herget, Thomas; Thüroff, Joachim W.; Wiesner, Christoph

    2003-01-01

    Tumor incidence for renal cell carcinoma is two-fold higher in males than in females. Members of the protein kinase C (PKC) gene family have been shown to be relevant for carcinogenesis. However, little is known about a possible gender specific role of PKC in renal cell carcinoma (RCC). In this study, we quantified expression of eleven PKC-isoforms in clear cell RCCs (ccRCC) and in the corresponding normal renal tissue. A possible association of PKC-isoforms with gender of the patients was ex...

  15. Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Callister, Stephen J.; Wilkins, Michael J.; Nicora, Carrie D.; Williams, Kenneth H.; Banfield, Jillian F.; VerBerkmoes, Nathan; Hettich, Robert L.; N' Guessan, A. Lucie; Mouser, Paula; Elifantz, H.; Smith, Richard D.; Lovley, Derek R.; Lipton, Mary S.; Long, Philip E.

    2010-12-01

    Stimulated by acetate-amendment field experiments conducted in 2007 and 2008, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this period, planktonic biomass was sampled at various time points and used to quantitatively evaluate proteomes, both spatially and temporally to study the dynamics of the microbial community proteome dynamics in relationship to geochemical measurements. As there were no comprehensive genome sequence data available at the time, we systematically evaluated different organisms to generate a "pseudo-metagenome" for proteomics analyses. Proteomics results supported the dominance of Geobacteraceae during biostimulation and revealed a shift from iron reduction to sulfate reduction, evidenced by changes in community membership. Because U(VI) is reduced at a lower rate during sulfate reduction, detecting this shift is important to maintaining the maximum rate of U(VI) reduction. In addition, the comparison of proteome measurements made at the end of the 2007 field experiment to the 2008 field experiment revealed a modified community structure. Importantly, the failure of a community to rebound following the cessation of biostimulation needs to be included in long-term remediation strategies.

  16. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity

    Science.gov (United States)

    Fransen, Floris; van Beek, Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F.; de Jonge, Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul

    2017-01-01

    Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system. PMID:28713378

  17. Knee and hip joint biomechanics are gender-specific in runners with high running mileage.

    Science.gov (United States)

    Gehring, D; Mornieux, G; Fleischmann, J; Gollhofer, A

    2014-02-01

    Female runners are reported to be more prone to develop specific knee joint injuries than males. It has been suggested that increased frontal plane joint loading might be related to the incidence of these knee injuries in running. The purpose of this study was to evaluate if frontal plane knee and hip joint kinematics and kinetics are gender-specific in runners with high mileage. 3D-kinematics and kinetics were recorded from 16 female and 16 male runners at a speed of 3 m/s, 4 m/s, and 5 m/s. Frontal plane joint angles and joint moments were ascertained and compared between genders among speed conditions. Across all speed conditions, females showed increased hip adduction and reduced knee adduction angles compared to males (p running speed (p = 0.07). Hip and knee frontal plane joint kinematics are gender-specific. In addition, there are indications that frontal plane joint loading is increased in female runners. Future research should focus on the relationship of these observations regarding overuse running injuries.

  18. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  19. Assessment of violations of the proteomic profile in blood plasma in children being under inhalation exposure to fine dust containing vanadium

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2016-03-01

    Full Text Available The results of research and evaluation of the protein profile in blood plasma in children, that have been exposed to long-term effect of fine dust containing vanadium in the zone of influence of metallurgical production sources, are demonstrated. It was established that under conditions of poor air quality in the residential area due to vanadium pentoxide dust content at the level up to 1.2 mean daily MAC (34 RfC chr , by the suspended solids – up to 0.6 mean daily MAC (1.2 RfC chr , there is vanadium concentration in blood of the exposed 4–7 aged children, that exceeds up to 6 times the reference level. The technology of the proteomic analysis showed that children with high content of vanadium in blood have changes in proteomic profile in blood plasma in the type of increase of the relative volume of acid glycoprotein alpha-1; reduction of clusterin, apolipoprotein A-IV, alpha-2-HS-glycoprotein, that are associated with vanadium concentration in blood. In the absence of timely primary and secondary prevention and the preservation of vanadium sustained exposure the revealed cell-molecular abnormalities allow us to predict further development of functional disturbances on tissue and organ levels as the early development of osteoporosis and osteoarticular pathology, atherosclerotic vascular changes, autoimmune allergic processes on the background of disorders of immune regulation, oncology diseases.

  20. Preoperative protein profiles in cerebrospinal fluid in elderly hip fracture patients at risk for delirium : A proteomics and validation study

    NARCIS (Netherlands)

    Westhoff, Dunja; Witlox, Joost; van Aalst, Corneli; Scholtens, Rikie M.; de Rooij, Sophia E; van Munster, Barbara C; de Jonghe, Jos F M; Houdijk, Alexander P J; Eikelenboom, Piet; van Westerloo, David J; van de Beek, Diederik; van Gool, Willem A; Koenderman, Leo

    2015-01-01

    BACKGROUND: A neuroinflammatory response is suggested to play an important role in delirium, a common complication in older hospitalized patients. We examined whether hip fracture patients who develop postoperative delirium have a different proteome in cerebrospinal fluid (CSF) prior to surgery. MET

  1. Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

    NARCIS (Netherlands)

    Pellis, L.; Erk, M.J. van; Ommen, B. van; Bakker, G.C.M.; Hendriks, H.F.J.; Cnubben, N.H.P.; Kleemann, R.; Someren, E.P. van; Bobeldijk, I.; Rubingh, C.M.; Wopereis, S.

    2012-01-01

    We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 ener

  2. Preoperative protein profiles in cerebrospinal fluid in elderly hip fracture patients at risk for delirium : A proteomics and validation study

    NARCIS (Netherlands)

    Westhoff, Dunja; Witlox, Joost; van Aalst, Corneli; Scholtens, Rikie M.; de Rooij, Sophia E; van Munster, Barbara C; de Jonghe, Jos F M; Houdijk, Alexander P J; Eikelenboom, Piet; van Westerloo, David J; van de Beek, Diederik; van Gool, Willem A; Koenderman, Leo

    2015-01-01

    BACKGROUND: A neuroinflammatory response is suggested to play an important role in delirium, a common complication in older hospitalized patients. We examined whether hip fracture patients who develop postoperative delirium have a different proteome in cerebrospinal fluid (CSF) prior to surgery.

  3. Proteome profiles of vaginal fluids from women affected by bacterial vaginosis and healthy controls: outcomes of rifaximin treatment.

    Science.gov (United States)

    Cruciani, Federica; Wasinger, Valerie; Turroni, Silvia; Calanni, Fiorella; Donders, Gilbert; Brigidi, Patrizia; Vitali, Beatrice

    2013-11-01

    This study was designed to characterize the proteome of vaginal fluid (VF) from women with bacterial vaginosis (BV) in comparison with that from healthy women, and to evaluate the effect exerted by rifaximin vaginal tablets. Women with BV (n = 39) and matched healthy controls (n = 41) were included in the study. BV patients were distributed among four groups receiving different doses of rifaximin. Vaginal rinsings were collected at the screening visit from all the participants and at a follow-up visit from BV-affected women. The VF proteome was analysed by tandem mass spectrometry using an Orbitrap mass analyser. A large number of human proteins were differentially expressed in women with BV in comparison with healthy women (n = 118) and in BV-affected women treated with rifaximin (n = 284). In both comparisons, a high proportion of the dysregulated proteins (∼20%) were involved in the innate immune response. Twenty-one of 24 proteins increased in abundance in women with BV versus healthy women and 31/59 proteins decreased after rifaximin treatment, suggesting a general reduction of the immune response resulting from the therapy. Major changes in protein abundance were found following treatment with 25 mg of rifaximin once daily for 5 days. BV is associated with a massive change in the VF proteome, mainly regarding the abundance of proteins involved in the innate immune response. Rifaximin at a dosage of 25 mg for 5 days modulated the vaginal proteome, counteracting the alterations associated with the BV condition.

  4. Gender-Specific Election Violence: The Role of Information and Communication Technologies

    Directory of Open Access Journals (Sweden)

    Gabrielle Bardall

    2013-11-01

    Full Text Available The rising influence of new information and communication technologies (ICTs has paralleled the rapid development of women’s political participation worldwide. For women entering political life or holding public positions, new ICTs are frequently used as tools of gender-specific electoral and political violence. There is evidence of ICTs being used to perpetrate a broad range of violent acts against women during elections, especially acts inflicting fear and psychological harm. Specific characteristics of ICTs are particularly adapted to misuse in this manner. Despite these significant challenges, ICTs also offer groundbreaking solutions for preventing and mitigating violence against women in elections (VAWE. Notably, ICTs combat VAWE through monitoring and documenting violence, via education and awareness-raising platforms and through empowerment and advocacy initiatives.

  5. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque.

    Science.gov (United States)

    Pincivero, Danny M; Salfetnikov, Yuliya; Campy, Robert M; Coelho, Alan J

    2004-11-01

    The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.

  6. Effects of Preslaughter Stress Levels on the Post-mortem Sarcoplasmic Proteomic Profile of Gilthead Seabream Muscle

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Cordeiro, Odete D; Matos, Elisabete D.

    2012-01-01

    affects these post-mortem processes. For the experiment, two groups of gilthead seabream (n = 5) were subjected to distinct levels of preslaughter stress, with three muscle samples being taken from each fish. Proteins were extracted from the muscle samples, fractionated, and separated by 2DE. Protein......Fish welfare is an important concern in aquaculture, not only due to the ethical implications but also for productivity and quality-related reasons. The purpose of this study was to track soluble proteome expression in post-mortem gilthead seabream muscle and to observe how preslaughter stress...... been hastened by preslaughter stress, confirming that it induces clear post-mortem changes in the muscle proteome of gilthead seabream....

  7. The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide

    DEFF Research Database (Denmark)

    Cassoli, Juliana Silva; Verano-Braga, Thiago; Oliveira, Joacir Stolarz

    2013-01-01

    duerdeni from Brazilian coast. We used a combination of offline RPC-MALDI-TOF and online nano-RPC-ESI-LTQ-Orbitrap proteomic techniques as well as functional bioassays. The mucus was milked by electric stimulation and fractionated by gel filtration on Sephadex G-50 yielding 5 main fractions. The low......, a new peptide of 3431Da, named U-SHTX-Sdd1, was purified and completely sequenced by automated Edman's degradation and tandem mass spectrometry. An analysis of U-SHTX-Sdd1 revealed a modified O-HexNAc-Threonine at position 1, which, at the best of our knowledge, constitutes the first sea anemone toxin...... present in sea anemone secretions, the number of reported primary sequences is still low. Thus, to access the scenery of protein components from S. duerdeni mucus, including their biological functions, a robust proteomic approach was used together with bioinformatic tools. The demonstrated strategy...

  8. Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins.

    Science.gov (United States)

    Siljamäki, Pia; Varmanen, Pekka; Kankainen, Matti; Pyörälä, Satu; Karonen, Taru; Iivanainen, Antti; Auvinen, Petri; Paulin, Lars; Laine, Pia K; Taponen, Suvi; Simojoki, Heli; Sukura, Antti; Nyman, Tuula A; Savijoki, Kirsi

    2014-08-01

    The present study reports a comparative proteome cataloging of a bovine mastitis and a human-associated Staphylococcus epidermidis strain with a specific focus on surfome (cell-wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC-MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house-keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy-metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein- and DNA-mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 (http://proteomecentral.proteomexchange.org/dataset/PXD000404).

  9. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  10. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip.

    Science.gov (United States)

    Snouber, Leila Choucha; Letourneur, Franck; Chafey, Philippe; Broussard, Cedric; Monge, Matthieu; Legallais, Cécile; Leclerc, Eric

    2012-01-01

    We have evaluated the influence of the microfluidic environment on renal cell functionality. For that purpose, we performed a time lapse transcriptomic and proteomic analysis in which we compared gene and protein expressions of Madin-Darby canine kidney cells after 24 h and 96 h of culture in both microfluidic biochips and plates. The transcriptomic and proteomic integration revealed that the ion transporters involved in calcium, phosphate, and sodium homoeostasis and several genes involved in H(+) transporters and pH regulation were up-regulated in microfluidic biochips. Concerning drug metabolism, we found Phase I (CYP P450), Phase II enzymes (GST), various multidrug resistance genes (MRP), and Phase III transporters (SLC) were also up-regulated in the biochips. Furthermore, the study shows that those inductions were correlated with the induction of the Ahr and Nrf-2 dependent pathways, which results in a global cytoprotective response induced by the microenvironment. However, there was no apoptosis situation or cell death in the biochips. Microfluidic biochips may thus provide an important insight into exploring xenobiotic injury and transport modifications in this type of bioartificial microfluidic kidney. Finally, the investigation demonstrated that combining the transcriptomic and proteomic analyses obtained from a cell "on chip" culture would provide a pertinent new tool in the mechanistic interpretation of cellular mechanisms for predicting kidney cell toxicity and renal clearance in vitro. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  11. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers

    Science.gov (United States)

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-01-01

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies. PMID:28257117

  12. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    Science.gov (United States)

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect.

  13. Parasite-based screening and proteome profiling reveal orlistat, an FDA-approved drug, as a potential anti Trypanosoma brucei agent.

    Science.gov (United States)

    Yang, Peng-Yu; Wang, Min; Liu, Kai; Ngai, Mun Hong; Sheriff, Omar; Lear, Martin J; Sze, Siu Kwan; He, Cynthia Y; Yao, Shao Q

    2012-07-02

    Trypanosoma brucei is a parasite that causes African sleeping sickness in humans and nagana in livestock and is transmitted by the tsetse fly. There is an urgent need for the development of new drugs against African trypanosomiasis due to the lack of vaccines and effective drugs. Orlistat (also called tetrahydrolipstatin or THL) is an FDA-approved antiobesity drug targeting primarily the pancreatic and gastric lipases within the gastrointestinal tract. It shows potential activities against tumors, mycobacteria, and parasites. Herein, we report the synthesis and evaluation of an expanded set of orlistat-like compounds, some of which showed highly potent trypanocidal activities in both the bloodstream form (BSF) and the procyclic form (PCF) of T. brucei. Subsequent in situ parasite-based proteome profiling was carried out to elucidate potential cellular targets of the drug in both forms. Some newly identified targets were further validated by the labeling of recombinantly expressed enzymes in Escherichia coli lysates. Bioimaging experiments with a selected compound were carried out to study the cellular uptake of the drug in T. brucei. Results indicated that orlistat is much more efficiently taken up by the BSF than the PCF of T. brucei and has clear effects on the morphology of mitochondria, glycosomes, and the endoplasmic reticulum in both BSF and PCF cells. These results support specific effects of orlistat on these organelles and correlate well with our in situ proteome profiling. Given the economic challenges of de novo drug development for neglected diseases, we hope that our findings will stimulate further research towards the conversion of orlistat-like compounds into new trypanocidal drugs.

  14. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    Directory of Open Access Journals (Sweden)

    Brauer Aimee L

    2010-06-01

    Full Text Available Abstract Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival

  15. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  16. Recent changes in the age- and gender-specific rates of attempted suicide in Gent.

    Science.gov (United States)

    van Heeringen, C; Jannes, C

    1993-04-01

    The gender-specific rate of attempted suicide, calculated from hospital admission data, was significantly lower in 1990 than in 1986 in females and, when age is taken into account, in females younger than 35 and in males younger than 25 years. The incidence of suicide attempts seen by general practitioners also decreased. Indications for rejection of the artefact hypothesis as explanation for this decrease have been investigated. It was shown that the decrease in the prevalence was found at local and national levels and was not the result of a decrease in referrals to general hospitals. Moreover, the decrease in the rate was associated with an increase in the use of outpatient mental health facilities in females and with a trend to increase in the 15-24 age group. The number of suicide attempts referred by Community Mental Health Services to the general hospital and the suicide rate in out-patients remained constant during the study period. The findings do not support the artefact hypothesis but indicate that there was a real decrease in the rate of attempted suicide. Moreover, the findings suggest that out-patient treatment can be efficacious in the primary prevention of suicidal behaviour.

  17. Gender-Specific Differences in the Association of Adiponectin Gene Polymorphisms with Body Mass Index

    Science.gov (United States)

    Tabatabaei-Malazy, Ozra; Hasani-Ranjbar, Shirin; Amoli, Mahsa M.; Heshmat, Ramin; Sajadi, Mohammadali; Derakhshan, Reza; Amiri, Parvin; Namakchian, Mahsa; Rezazadeh, Ebrahim; Tavakkoly-Bazzaz, Javad; Keshtkar, Abbasali; Larijani, Bagher

    2010-01-01

    OBJECTIVE: Adiponectin gene polymorphisms are associated with obesity, metabolic syndrome and type 2 diabetes (T2D). The study evaluated possible associations of +45T/G and -11391G/A adiponectin gene polymorphisms with body mass index (BMI), waist circumferences (WC), and blood pressure in diabetic and non-diabetic Iranians. METHODS: This cross-sectional study involved two groups of subjects: 243 diabetic patients and 173 non-diabetic subjects recruited from Rafsanjan city in the south-east of Iran. RESULTS: No significant association was found between +45T/G and -11391G/A adiponectin gene polymorphisms and systolic or diastolic blood pressure. However, male carriers of the TT genotype of +45T/G had a significantly higher mean BMI than male GG homozygotes (p = 0.018). Also, male carriers of the GG genotype of -11391G/A had significantly higher mean BMI than male GA or AA homozygotes (p = 0.041). Female carriers of the GG genotype of -11391G/A had significantly higher mean WC than female GA or AA homozygotes (p = 0.038). CONCLUSIONS: We observed a significantly higher BMI in women, and GA or AA carriers of -11391G/A polymorphism. Also, there was a significantly lower WC in females and GG carriers of +45T/G. These results point to a gender-specific impact of the studied genotypes on BMI and WC. PMID:21409316

  18. Gender-specific differences in risk for intimate partner violence in South Korea.

    Science.gov (United States)

    Lee, Minjee; Stefani, Katherine M; Park, Eun-Cheol

    2014-05-01

    Various risk factors of intimate partner violence (IPV) have been found to vary by gender. South Korea has one of the highest prevalences of IPV in the world; however, little is known about potential risk factors of IPV and whether gender influences this relationship. Using data from the 2006 Korea Welfare Panel Study, 8,877 married participants (4,545 men and 4,332 women) aged ≥30 years were included. Reported IPV was categorized as verbal or physical IPV and the association between IPV and related factors was assessed by multivariate logistic regression analysis. Women were significantly more likely than men were to report IPV victimization (verbal 28.2% vs. 24.4%; physical 6.9% vs. 3.4%). Wor odds of physical perpetration than women satisfied with their family. Moreover, alcohol intake was significantly associated with IPV perpetration and victimization in both genders. Significant gender-specific differences were found among factors related to perpetrating violence and being a victim of violence among adults in heterosexual relationships in South Korea.

  19. Gender Specific Mutation Incidence and Survival Associations in Clear Cell Renal Cell Carcinoma (CCRCC.

    Directory of Open Access Journals (Sweden)

    Christopher J Ricketts

    Full Text Available Renal cell carcinoma (RCC is diagnosed in >200,000 individuals worldwide each year, accounting for ~2% of all cancers, but the spread of this disease amongst genders is distinctly uneven. In the U.S. the male:female incidence ratio is approximately 2:1. A potential hypothesis is mutation spectra may differ between tumors dependent upon the gender of the patient, such as mutations of X chromosome encoded genes being more prevalent in male-derived tumors. Combined analysis of three recent large-scale clear cell renal cell carcinoma (CCRCC mutation sequencing projects identified a significantly increased mutation frequency of PBRM1 and the X chromosome encoded KDM5C in tumors from male patients and BAP1 in tumors from female patients. Mutation of BAP1 had previously been significantly associated with poorer overall survival; however, when stratified by gender, mutation of BAP1 only significantly affected overall survival in female patients. Mutation of chromatin remodeling genes alters gene regulation, but the overall effect of these alterations may also be modified by the presence of other gender specific factors. Thus, the combination of gender and mutation of a specific gene, such as BAP1, may have implications not only for prognosis but also for understanding the role of chromatin remodeling gene mutations in kidney cancer progression.

  20. [Genetics and epigenetics. Explanatory approaches for (gender-specific) mechanisms of disease development].

    Science.gov (United States)

    Zerres, K; Eggermann, T

    2014-09-01

    Whereas the central role of DNA as the carrier of genetic information has long been well known, the impact of epigenetic mechanisms as mediators between genes and environment is now becoming increasingly clear. Epigenetics helps explain the partially reversible interplay between gene function and environment and even permits observation of the transgenerational transmission of epigenetic modifications. Of special interest are gender-specific mechanisms of gene regulation which, among others, offer an explanation for gender differences in human diseases. Since the study of epigenetic mechanisms and their impact on the etiology of common diseases is in its infancy, it is too early to draw general conclusions from the current state of knowledge. Moreover, completely new strategies are needed to research these effects. In addition to molecular findings, definitions of specific phenotypes are required, including biographic data of affected individuals and their ancestors. Epigenetics needs to be viewed in the context of the theory of evolution, classical genetics, and environmental research. Its aim is not to substitute the knowledge in these disciplines, but rather to provide a key to link their findings, thereby opening up new possibilities in terms of interpretation and understanding of gender differences in medicine. If these epigenetic mechanisms are better understood, particularly in terms of specific diseases, it is conceivable that these disorders could be influenced and treated in a more targeted manner in the future.

  1. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    Science.gov (United States)

    Andrade, Andre; Costa, Marcelo; Paolucci, Leopoldo; Braga, Antônio; Pires, Flavio; Ugrinowitsch, Herbert; Menzel, Hans-Joachim

    2015-01-01

    The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

  2. Gender-Specific Differences in the Relationship between Autobiographical Memory and Intertemporal Choice in Older Adults.

    Directory of Open Access Journals (Sweden)

    Maayke Seinstra

    Full Text Available As the population of older adults grows, their economic choices will have increasing impact on society. Research on the effects of aging on intertemporal decisions shows inconsistent, often opposing results, indicating that yet unexplored factors might play an essential role in guiding one's choices. Recent studies suggest that episodic future thinking, which is based on the same neural network involved in episodic memory functions, leads to reductions in discounting of future rewards. As episodic memory functioning declines with normal aging, but to greatly variable degrees, individual differences in delay discounting might be due to individual differences in the vitality of this memory system in older adults. We investigated this hypothesis, using a sample of healthy older adults who completed an intertemporal choice task as well as two episodic memory tasks. We found no clear evidence for a relationship between episodic memory performance and delay discounting in older adults. However, when additionally considering gender differences, we found an interaction effect of gender and autobiographical memory on delay discounting: while men with higher memory scores showed less delay discounting, women with higher memory scores tended to discount the future more. We speculate that this gender effect might stem from the gender-specific use of different modal representation formats (i.e. temporal or visual during assessment of intertemporal choice options.

  3. Dietary essential fatty acids and gender-specific behavioral responses in cranially irradiated rats.

    Science.gov (United States)

    Elkin, T David; Wollan, Michael O; Anderson, Stacy L; Gaston, Robert; Meyer, William; Fuemmeler, Bernard F; Holloway, Frank A; Martin, Rex E

    2006-09-01

    Specific memory deficits, reduced intellectual processing speed, and a variety of social and behavioral problems have been implicated as long-term effects of cranial radiation therapy (CRT). These deficits are thought to be related to changes in brain cytology and structure associated with microvascular aberrations. N-3 fatty acids may serve as protectants in pediatric patients who receive CRT for brain tumors. Timed-pregnant rat dams were fed one of four diets that were identical in all respects, except for their essential fatty acid content. The dams were placed on these diets at the beginning of the third trimester of gestation and their pups remained on them throughout the study. The rats' behavioral response as judged by acoustic startle response (ASR) and neurocognitive response (performance in a radial maze, RM) were evaluated in relation to diet, gender, and CRT. The following hypotheses were tested: (1) female rats will show greater CRT-induced neurocognitive and behavioral deficits; (2) dietary n-3 fatty acids will diminish CRT-induced neurocognitive and behavioral deficits; (3) gender-specific differences would be dampened by n-3 fatty acids in the diet. All three hypotheses were partially supported. These findings are discussed in light of the potential neuroprotective effects of n-3 fatty acids.

  4. Gender-specific regulation of response to thyroid hormone in aging

    Directory of Open Access Journals (Sweden)

    Suzuki Satoru

    2012-01-01

    Full Text Available Abstract Background Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for the assessment of thyroid hormone action is TSH level. Although age and gender are believed to modify the pituitary set point or response to free thyroid hormone concentration, the precise age- and gender-dependent responses to thyroid hormone have yet to be reported. Methods We analyzed the results of 3564 thyroid function tests obtained from patients who received medication at both out- and inpatient clinics of Shinshu University Hospital. Subjects were from among those with thyroid function test results in the normal or mildly abnormal range. Based on a log-linear relationship between the concentrations of FHs and TSH, we established the putative resistance index to assess the relation between serum FH and TSH levels. Results Free thyroid hormone and TSH concentration showed an inverse log-linear relation. In males, there was a negative relationship between the free T3 resistance index and age. In females, although there were no relationships between age and FHs, the indices were positively related to age. Conclusions These findings indicated that there is a gender-specific response to thyroid hormone with aging. Although the TSH level is a useful marker for the assessment of peripheral thyroid hormone action, the values should be interpreted carefully, especially with regard to age- and gender-related differences.

  5. Preschool externalizing behavior predicts gender-specific variation in adolescent neural structure.

    Directory of Open Access Journals (Sweden)

    Jessica Z K Caldwell

    Full Text Available Dysfunction in the prefrontal cortex, amygdala, and hippocampus is believed to underlie the development of much psychopathology. However, to date only limited longitudinal data relate early behavior with neural structure later in life. Our objective was to examine the relationship of early life externalizing behavior with adolescent brain structure. We report here the first longitudinal study linking externalizing behavior during preschool to brain structure during adolescence. We examined the relationship of preschool externalizing behavior with amygdala, hippocampus, and prefrontal cortex volumes at age 15 years in a community sample of 76 adolescents followed longitudinally since their mothers' pregnancy. A significant gender by externalizing behavior interaction revealed that males-but not females-with greater early childhood externalizing behavior had smaller amygdala volumes at adolescence (t = 2.33, p = .023. No significant results were found for the hippocampus or the prefrontal cortex. Greater early externalizing behavior also related to smaller volume of a cluster including the angular gyrus and tempoparietal junction across genders. Results were not attributable to the impact of preschool anxiety, preschool maternal stress, school-age internalizing or externalizing behaviors, or adolescent substance use. These findings demonstrate a novel, gender-specific relationship between early-childhood externalizing behavior and adolescent amygdala volume, as well as a cross-gender result for the angular gyrus and tempoparietal junction.

  6. Gender-specific experiences of uncertainty of professional status in the period of maturity

    Directory of Open Access Journals (Sweden)

    Koltachuk E.V.

    2016-09-01

    Full Text Available The article represents socio-psychological analysis of gender-specific experiences of uncertainty of professional status in the period of maturity. The authors describe the results of qualitative and quantitative data analysis of 112 people aged 33—39 years old, employed on full time and staying in a situation of threat of job loss or change of important parameters of their employment. On the basis of obtained results the authors make the conclusion about the existence of gender differences in the experiences of uncertainty of professional status in the period of maturity, which become apparent in the decreasing trends of the individual components of the experience of uncertainty from sample to sample, in the differences in the level of expression of these components, as well as in the differences in the configuration of the correlation relationship with different types of gender identity at this stage of ontogenesis. The article indicates the ordered impact of gender identity on the experience of professional status uncertainty in adult life, which is evident in a non-random trend of decreasing symptoms from sample to sample: passion, integral readiness for change and distraction decrease from masculine to feminine; from feminine to masculine — emotions and MITN decrease; from androgynous to feminine — avoidance decreases; from masculine to androgynous — frequency of problem-focused coping decreases.

  7. Gender specific changes in cortical activation patterns during exposure to artificial gravity

    Science.gov (United States)

    Schneider, Stefan; Robinson, Ryan; Smith, Craig; von der Wiesche, Melanie; Goswami, Nandu

    2014-11-01

    Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function. 16 participants (8 male and 8 female, GENDER) were exposed to 10 min at a baseline gravitational load (G-Load) of +.03 Gz, then 10 min at +.6 Gz for females and +.8 Gz for males, before being exposed to increasing levels of AG in a stepped manner by increasing the acceleration by +.1 Gz every 3 min until showing signs of pre-syncope. EEG recordings were taken of brain activity during 2 min time periods at each AG level. Analysing the results of the mixed total population of participants by two way ANOVA, a significant effect of centrifugation on alpha and beta activity was found (p<.01). Furthermore results revealed a significant interaction between G-LOAD and GENDER alpha-activity (p<.01), but not for beta-activity. Although the increase in alpha and beta activity with G-LOAD does not reflect a general model of cortical arousal and therefore cannot support previous findings reporting that AG may be a cognitively arousing environment, the gender specific responses identified in this study may have wider implications for EEG and AG research.

  8. Profiling of Age-Related Changes in the Tibialis Anterior Muscle Proteome of the mdx Mouse Model of Dystrophinopathy

    Directory of Open Access Journals (Sweden)

    Steven Carberry

    2012-01-01

    Full Text Available X-linked muscular dystrophy is a highly progressive disease of childhood and characterized by primary genetic abnormalities in the dystrophin gene. Senescent mdx specimens were used for a large-scale survey of potential age-related alterations in the dystrophic phenotype, because the established mdx animal model of dystrophinopathy exhibits progressive deterioration of muscle tissue with age. Since the mdx tibialis anterior muscle is a frequently used model system in muscular dystrophy research, we employed this particular muscle to determine global changes in the dystrophic skeletal muscle proteome. The comparison of mdx mice aged 8 weeks versus 22 months by mass-spectrometry-based proteomics revealed altered expression levels in 8 distinct protein species. Increased levels were shown for carbonic anhydrase, aldolase, and electron transferring flavoprotein, while the expressions of pyruvate kinase, myosin, tropomyosin, and the small heat shock protein Hsp27 were found to be reduced in aged muscle. Immunoblotting confirmed age-dependent changes in the density of key muscle proteins in mdx muscle. Thus, segmental necrosis in mdx tibialis anterior muscle appears to trigger age-related protein perturbations due to dystrophin deficiency. The identification of novel indicators of progressive muscular dystrophy might be useful for the establishment of a muscle subtype-specific biomarker signature of dystrophinopathy.

  9. Proteome profiling for assessing diversity: analysis of individual heads of Drosophila melanogaster using LC-ion mobility-MS.

    Science.gov (United States)

    Taraszka, John A; Gao, Xinfeng; Valentine, Stephen J; Sowell, Renã A; Koeniger, Stormy L; Miller, David F; Kaufman, Thomas C; Clemmer, David E

    2005-01-01

    The proteomes of three heads of individual Drosophila melanogaster organisms have been analyzed and compared by a combination of liquid chromatography, ion mobility spectrometry, and mass spectrometry approaches. In total, 197 proteins are identified among all three individuals (an average of 120 +/- 20 proteins per individual), of which at least 101 proteins are present in all three individuals. Within all three datasets, more than 25 000 molecular ions (an average of 9000 +/- 2000 per individual) corresponding to protonated precursor ions of individual peptides have been observed. A comparison of peaks among the datasets reveals that peaks corresponding to protonated peptides that are found in all heads are more intense than those features that appear between pairs of or within only one of the individuals. Moreover, there is little variability in the relative intensities of the peaks common among all individuals. It appears that it is the lower abundance components of the proteome that play the most significant role in determining unique features of individuals.

  10. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.

    Science.gov (United States)

    Schauer, Kevin L; Freund, Dana M; Prenni, Jessica E; Curthoys, Norman P

    2013-09-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.

  11. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure.

    Science.gov (United States)

    Wang, Minghua; Lee, Jae-Seong; Li, Yan

    2017-05-16

    Previously, we found that ocean acidification (OA) mitigates mercury (Hg) toxicity to marine copepod Tigriopus japonicus under multigenerational exposure (four generations, F0-F3). To determine the response mechanisms of T. japonicus against long-term exposure to OA and Hg pollution, we investigated the proteome of F3 copepods after multigenerational exposure to four conditions: pCO2 400 μatm + control; pCO2 1000 μatm + control; pCO2 400 μatm +1.0 μg/L Hg; and pCO2 1000 μatm +1.0 μg/L Hg. Functional enrichment analysis indicated that OA enhanced the copepod's energy production mainly by increasing protein assimilation and proteolysis as a compensatory strategy, which explained its physiological resilience to reduced pH. Conversely, Hg treatment decreased many critical processes, including ferric iron binding, antioxidant activity, cellular homeostasis, and glutathione metabolism, and these toxic events could translate into higher-level responses, i.e., restrained reproduction in copepods. Importantly, the mediation of Hg toxicity in T. japonicus by OA could be explained by the enhanced lysosome-autophagy pathway proteomes that are responsible for repairing and removing damaged proteins and enzymes under stress. Overall, this study provided molecular insights into the response of T. japonicus to long-term exposure of OA and Hg, with a particular emphasis on the mitigating impact of the CO2-driven acidification on Hg toxicity.

  12. Proteomic and profile analysis of the proteins laced with aragonite and vaterite in the freshwater mussel Hyriopsis cumingii shell biominerals.

    Science.gov (United States)

    Berland, Sophie; Ma, Yufei; Marie, Arul; Andrieu, Jean-Pierre; Bedouet, Laurent; Feng, Qingling

    2013-10-01

    Hyriopsis cumingii (Lea, Unionidae), a freshwater bivalve species widely distributed in China and commercially exploited for freshwater pearl production, was chosen as the reference model to investigate the protein signature in the organic scaffold matching calcium carbonate crystallization mode. This study takes advantage of different calcium carbonate habits production by the organism: aragonite in shell and pearl and vaterite in alternative pearl formation. Amino acid global composition and proteomics analysis have been undertaken to study the amino acid imbalance with respect to biominerals and microstructures. Forty peptides sequences were obtained by proteomics, of which ten are shared by all the different samples, nine are laced with aragonite; another nine with vaterite and twelve are related to pearls. Bioinformatics analysis allowed the peptides to be matched to the deduced protein sequences from EST databases and allowed functional assignment (e.g. scaffolding, strain strength, chitin binding or carbonic anhydrase function) to the proteins found in the different materials. Such panel of motifs tailored in vaterite and aragonite habits produced in a freshwater mollusk gives food for thought about organic control of the biomineralization processes.

  13. Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea.

    Science.gov (United States)

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-27

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  14. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    Directory of Open Access Journals (Sweden)

    José Carlos Martins

    2014-01-01

    Full Text Available Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs, in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  15. Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms.

    Science.gov (United States)

    Xiao, Qiuyun; Ma, Fuying; Li, Yan; Yu, Hongbo; Li, Chengyun; Zhang, Xiaoyu

    2017-01-01

    Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose.

  16. PROTEOMIC PROFILE REVEALS THE DIVERSITY AND COMPLEXITY OF LEAF PROTEINS IN SPINACH (BETA VULGARIS VAR. ALL GREEN

    Directory of Open Access Journals (Sweden)

    Sudip Ghosh

    2016-06-01

    Full Text Available Leaf is a source organ that serves dual function in photosynthesis and transpiration. As a primary interface between plant and ecosystem, it performs a range of biological processes from carbon assimilation and metabolite partitioning to plant productivity. Basic features of the leaf functionality are conserved in angiosperms exhibiting common and unique characteristics. Spinach has been the model crop for studying leaf function, primarily photosynthesis. It is a reservoir of several hundreds of primary and secondary biomolecules. To better understand the molecular basis for photochemical reaction and metabolic partitioning, we developed leaf proteome of Indian spinach (Beta vulgaris var. all green. LC-ESI-MS/MS analysis identified 639 proteins exhibiting discrete molecular features and functions, including photosynthesis, transpiration, gaseous exchange, transport, redox status, cell defense, and floral induction besides the presence of proteins with unknown function. This represents the first comprehensive foliage proteome of green leafy vegetable. Together, this work provides important insights into the molecular networks underlying spinach leaf biological processes.

  17. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells

    Science.gov (United States)

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-01-01

    In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry (“shotgun”) proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis. PMID:21500348

  18. Reversed-Phase Chromatography with Multiple Fraction Concatenation Strategy for Proteome Profiling of Human MCF10A Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese RW; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-05-01

    Two dimensional liquid chromatography (2D LC) is commonly used for shotgun proteomics to improve the analysis dynamic range. Reversed phase liquid chromatography (RPLC) has been routinely employed as the second dimensional separation prior to the mass spectrometric analysis. Construction of 2D separation with RP-RP arises a concern for the separation orthogonality. In this study, we applied a novel concatenation strategy to improve the orthogonality of 2D RP-RP formed by low pH (i.e., pH 3) and high pH (i.e., pH 10) RPLC. We confidently identified 3753 proteins (18570 unique peptides) and 5907 proteins (37633 unique peptides) from low pH RPLC-RP and high pH RPLC-RP, respectively, for a trypsin-digested human MCF10A cell sample. Compared with SCX-RP, the high pH-low pH RP-RP approach resulted in 1.8-fold and 1.6-fold in the number of peptide and protein identifications, respectively. In addition to the broader identifications, the High pH-low pH RP-RP approach has advantages including the improved protein sequence coverage, the simplified sample processing, and the reduced sample loss. These results demonstrated that the concatenation high pH-low pH RP-RP strategy is an attractive alternative to SCX for 2D LC shotgun proteomic analysis.

  19. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells.

    Science.gov (United States)

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A; Wang, Yingchun; Clauss, Therese; Liu, Tao; Shen, Yufeng; Monroe, Matthew E; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J; Klemke, Richard L; Camp, David G; Smith, Richard D

    2011-05-01

    In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry ("shotgun") proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis.

  20. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    Science.gov (United States)

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  1. Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: Role of myeloperoxidase and arylamine free radicals.

    Science.gov (United States)

    Khan, Saifur R; Baghdasarian, Argishti; Nagar, Prarthna H; Fahlman, Richard; Jurasz, Paul; Michail, Karim; Aljuhani, Naif; Siraki, Arno G

    2015-09-01

    In this study, the cellular effects resulting from the metabolism of aminoglutethimide by myeloperoxidase were investigated. Human promyelocytic leukemia (HL-60) cells were treated with aminoglutethimide (AG), an arylamine drug that has a risk of adverse drug reactions, including drug-induced agranulocytosis. HL-60 cells contain abundant amounts of myeloperoxidase (MPO), a hemoprotein, which catalyzes one-electron oxidation of arylamines using H2O2 as a cofactor. Previous studies have shown that arylamine metabolism by MPO results in protein radical formation. The purpose of this study was to determine if pathways associated with a toxic response could be determined from conditions that produced protein radicals. Conditions for AG-induced protein radical formation (with minimal cytotoxicity) were optimized, and these conditions were used to carry out proteomic studies. We identified 43 proteins that were changed significantly upon AG treatment among which 18 were up-regulated and 25 were down-regulated. The quantitative proteomic data showed that AG peroxidative metabolism led to the down-regulation of critical anti-apoptotic proteins responsible for inhibiting the release of pro-apoptotic factors from the mitochondria as well as cytoskeletal proteins such as nuclear lamina. This overall pro-apoptotic response was confirmed with flow cytometry which demonstrated apoptosis to be the main mode of cell death, and this was attenuated by MPO inhibition. This response correlated with the intensity of AG-induced protein radical formation in HL-60 cells, which may play a role in cell death signaling mechanisms.

  2. Gender-specific Associations of Marine n-3 Fatty Acids and Fish Consumption with 10-year Incidence of Stroke

    NARCIS (Netherlands)

    Goede, de J.; Verschuren, W.M.M.; Boer, J.M.A.; Kromhout, D.; Geleijnse, J.M.

    2012-01-01

    Background There is some evidence that the association of fish and marine fatty acids with stroke risk differs between men and women. We investigated the gender-specific associations of habitual intake of the marine fatty acids eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) and fish on

  3. Climbing the ladder : Gender-specific career advancement in financial services and the influence of flexible work-time arrangements

    NARCIS (Netherlands)

    Noback, Inge; Broersma, Lourens; Van Dijk, Jouke

    2013-01-01

    The aim of this study is to gain insight into the gender-specific career advancement of about 10,000 middle- and top-level managers in a Dutch financial services company. Our results indicate that women earn less, work at lower job levels, but show slightly higher career mobility than men. However,

  4. Climbing the ladder : Gender-specific career advancement in financial services and the influence of flexible work-time arrangements

    NARCIS (Netherlands)

    Noback, Inge; Broersma, Lourens; Van Dijk, Jouke

    2013-01-01

    The aim of this study is to gain insight into the gender-specific career advancement of about 10,000 middle- and top-level managers in a Dutch financial services company. Our results indicate that women earn less, work at lower job levels, but show slightly higher career mobility than men. However,

  5. Gender-Specific Determinants and Patterns of Online Health Information Seeking: Results From a Representative German Health Survey

    Science.gov (United States)

    Baumann, Eva; Czerwinski, Fabian

    2017-01-01

    Background Online health information-seeking behavior (OHISB) is currently a widespread and common behavior that has been described as an important prerequisite of empowerment and health literacy. Although demographic factors such as socioeconomic status (SES), age, and gender have been identified as important determinants of OHISB, research is limited regarding the gender-specific motivational determinants of OHISB and differences between women and men in the use of online resources for health information purposes. Objective The aim of this study was to identify gender-specific determinants and patterns of OHISB by analyzing data from a representative German sample of adults (N=1728) with special attention to access and frequency of use as well as topics and sources of OHISB. Methods We employed a 2-step analysis, that is, after exploring differences between users and nonusers of online health information using logistic regression models, we highlighted gender-specific determinants of the frequency of OHISB by applying zero-truncated negative binomial models. Results Age (odds ratio, OR for females=0.97, 95% CI 0.96-0.99) and degree of satisfaction with one’s general practitioner (GP) (OR for males=0.73, 95% CI 0.57-0.92) were gender-specific determinants of access to OHISB. Regarding the frequency of OHISB, daily Internet use (incidence rate ratio, IRR=1.67, 95% CI 1.19-2.33) and a strong interest in health topics (IRR=1.45, 95% CI 1.19-1.77) were revealed to be more important predictors than SES (IRR for high SES=1.25, 95% CI 0.91-1.73). Conclusions Users indicate that the Internet seems to be capable of providing a valuable source of informational support and patient empowerment. Increasing the potential value of the Internet as a source for health literacy and patient empowerment requires need-oriented and gender-specific health communication efforts, media, and information strategies. PMID:28377367

  6. CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences.

    Science.gov (United States)

    Timofeeva, Maria N; Kropp, Silke; Sauter, Wiebke; Beckmann, Lars; Rosenberger, Albert; Illig, Thomas; Jäger, Birgit; Mittelstrass, Kirstin; Dienemann, Hendrik; Bartsch, Helmut; Bickeböller, Heike; Chang-Claude, Jenny C; Risch, Angela; Wichmann, Heinz-Erich

    2009-07-01

    Cytochrome P450 (CYP) enzymes, involved in metabolism of tobacco carcinogens, are also involved in estrogen metabolism and many are regulated by estrogens. These genes may thus be of relevance to gender-specific differences in lung cancer risk, particularly in early-onset lung cancer, where a high proportion of women is observed. We conducted a case-control study to investigate genetic polymorphisms in cytochromes that might modify the risk of developing early-onset lung cancer. In total, 638 Caucasian patients under the age of 51 with primary lung cancer and 1300 cancer-free control individuals, matched by age and sex, were included in this analysis. Thirteen polymorphisms in the CYP1A1, CYP1B1, CYP2A13, CYP3A4 and CYP3A5 genes were analyzed. No significant association was found for any of the analyzed polymorphisms and lung cancer risk overall. However, among women, a significantly increased risk of early-onset lung cancer was observed for carriers of the minor allele of CYP1B1 SNP rs1056836 [odds ratio (OR) 1.97; 95% confidence interval (CI) 1.32-2.94; P lung cancer risk was observed in the group of women carriers of the minor allele of CYP2A13 SNP rs1709084 (OR 1.64; 95% CI 1.00-2.70; P = 0.05). The effect of these two polymorphisms was shown to be modified by smoking. Haplotype analysis was performed for CYP1B1 and CYP2A13. No differences between cases and controls were observed for both genes (P = 0.63 and P = 0.42 for CYP1B1 and CYP2A13, respectively). Our results suggest that the CYP1B1 and the CYP2A13 genotypes may contribute to individual susceptibility to early-onset lung cancer in women.

  7. Serum 25(OHD and VEGF in diabetes mellitus type 2: gender-specific associations '

    Directory of Open Access Journals (Sweden)

    Nikolaos Tentolouris

    2011-10-01

    Full Text Available Background: Vitamin D insufficiency has been defined as serum 25-hydroxyvitamin D (25(OHD levels below 30 ng/mL and is common among patients with diabetes mellitus (DM type 2 and the elderly.Aim & Objectives: Our aim was to investigate clinically meaningful associations implicating low serum levels of 25(OHD and vascular endothelial growth factor (VEGF levels in DM type 2.Methods: Serum 25(OHD and VEGF levels were determined in 40 patients with DM type 2 and vitamin D insufficiency. Their correlation with markers of advanced diabetic disease (amputation, diabetic foot, proliferative diabetic retinopathy, insulin dependence as well as with serum biochemical parameters was examined. Subanalyses were performed on men and women.Results: Compared with males, female patients exhibited lower 25(OHD levels (p<0.0001 but higher serum VEGF (p=0.018. There was a trend towards an inverse vitamin D - VEGF association. Subanalysis on women showed low serum 25(OHD levels strongly associated with amputation (p=0.003. High serum VEGF levels were associated with amputation (p=0.038, and marginally with diabetic foot (p=0.058, insulin dependence (p=0.084 and proliferative diabetic retinopathy (p=0.086. Higher serum 25(OHD levels were associated with serum uric acid (p=0.007, calcium (p=0.042 and albumin levels (p=0.033. Subanalysis on men demonstrated positive correlation between 25(OHD levels, albumin (p=0.004 and calcium levels (p=0.060, borderline association.Conclusion: The association between low serum 25(OHD levels and amputation in women may be inscribed into the wider context portraying vitamin D insufficiency as a poor prognostic factor. Vitamin D insufficiency may exert gender-specific effects in the context of DM type 2.

  8. Identification of Gender-Specific Genetic Variants in Patients With Bicuspid Aortic Valve.

    Science.gov (United States)

    Dargis, Natasha; Lamontagne, Maxime; Gaudreault, Nathalie; Sbarra, Laura; Henry, Cyndi; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-02-01

    Bicuspid aortic valve (BAV) is the most frequent congenital heart defect and has a male predominance of 3 to 1. A large proportion of patients develop valvular and aortic complications. Despite the high prevalence of BAV, its cause and genetic origins remain elusive. The goal of this study was to identify genetic variants associated with BAV. Nine genes previously associated with BAV (NOTCH1, AXIN1, EGFR, ENG, GATA5, NKX2-5, NOS3, PDIA2, and TGFBR2) were sequenced in 48 patients with BAV using the Ion Torrent Personal Genome Machine. Pathogenicity of genetic variants was evaluated with the Combined Annotation Dependent Depletion framework. A selection of 89 variants identified by sequencing or in previous BAV genetic studies was genotyped, and allele frequencies were compared in 323 patients with BAV confirmed at surgery and 584 controls. Analyses were also performed by gender. Nine novel and 19 potentially pathogenic variants were identified by next-generation sequencing and confirmed by Sanger sequencing, but they were not associated with BAV in the case-control population. A significant association was observed between an in silico-predicted benign EGFR intronic variant (rs17290301) and BAV. Analyses performed by gender revealed different variants associated with BAV in men (EGFR rs533525993 and TEX26 rs12857479) and women (NOTCH1 rs61751489, TGFBR2 rs1155705, and NKX2-5 rs2277923). In conclusion, these results constitute the first association between EGFR genetic variants and BAV in humans and support a possible role of gender-specific polymorphisms in the development of BAV.

  9. Proteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase η in the Alternative Lengthening of Telomeres

    Directory of Open Access Journals (Sweden)

    Laura Garcia-Exposito

    2016-11-01

    Full Text Available Cancer cells rely on the activation of telomerase or the alternative lengthening of telomeres (ALT pathways for telomere maintenance and survival. ALT involves homologous recombination (HR-dependent exchange and/or HR-associated synthesis of telomeric DNA. Utilizing proximity-dependent biotinylation (BioID, we sought to determine the proteome of telomeres in cancer cells that employ these distinct telomere elongation mechanisms. Our analysis reveals that multiple DNA repair networks converge at ALT telomeres. These include the specialized translesion DNA synthesis (TLS proteins FANCJ-RAD18-PCNA and, most notably, DNA polymerase eta (Polη. We observe that the depletion of Polη leads to increased ALT activity and late DNA polymerase δ (Polδ-dependent synthesis of telomeric DNA in mitosis. We propose that Polη fulfills an important role in managing replicative stress at ALT telomeres, maintaining telomere recombination at tolerable levels and stimulating DNA synthesis by Polδ.

  10. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen;

    2005-01-01

    One of the major limitations for understanding the biology of human mesenchymal stem cells (hMSCs) is the absence of prospective markers needed for distinguishing them from other cells and for monitoring lineage-specific differentiation. Mass spectrometry (MS)-based proteomics has proven extremely...... in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...... or membrane-anchored proteins and 159 membrane-associated proteins. Twenty-nine integrins and cell adhesion molecules, 20 receptors, and 18 Ras-related small GTPases were also identified. Upon OB differentiation, the expression levels of 83 proteins increased by at least twofold whereas the levels of another...

  11. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.

    2017-07-13

    Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins with at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.

  12. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression.

    Directory of Open Access Journals (Sweden)

    Danilo Marimpietri

    Full Text Available Neuroblastoma (NB is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133, basigin (CD147 and B7-H3 (CD276. Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.

  13. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes

    Directory of Open Access Journals (Sweden)

    María Gómez-Serrano

    2017-04-01

    Full Text Available Human age-related diseases, including obesity and type 2 diabetes (T2DM, have long been associated to mitochondrial dysfunction; however, the role for adipose tissue mitochondria in these conditions remains unknown. We have tackled the impact of aging and T2DM on adipocyte mitochondria from obese patients by quantitating not only the corresponding abundance changes of proteins, but also the redox alterations undergone by Cys residues thereof. For that, we have resorted to a high-throughput proteomic approach based on isobaric labeling, liquid chromatography and mass spectrometry. The alterations undergone by the mitochondrial proteome revealed aging- and T2DM-specific hallmarks. Thus, while a global decrease of oxidative phosphorylation (OXPHOS subunits was found in aging, the diabetic patients exhibited a reduction of specific OXPHOS complexes as well as an up-regulation of the anti-oxidant response. Under both conditions, evidence is shown for the first time of a link between increased thiol protein oxidation and decreased protein abundance in adipose tissue mitochondria. This association was stronger in T2DM, where OXPHOS mitochondrial- vs. nuclear-encoded protein modules were found altered, suggesting impaired mitochondrial protein translocation and complex assembly. The marked down-regulation of OXPHOS oxidized proteins and the alteration of oxidized Cys residues related to protein import through the redox-active MIA (Mitochondrial Intermembrane space Assembly pathway support that defects in protein translocation to the mitochondria may be an important underlying mechanism for mitochondrial dysfunction in T2DM and physiological aging. The present draft of redox targets together with the quantification of protein and oxidative changes may help to better understand the role of oxidative stress in both a physiological process like aging and a pathological condition like T2DM.

  14. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Directory of Open Access Journals (Sweden)

    Fan Lin

    2017-07-01

    Full Text Available Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.

  15. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans.

    Directory of Open Access Journals (Sweden)

    Sandi L Navarro

    Full Text Available Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans.We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d plus chondroitin sulfate (1200 mg/d for 28 days compared to placebo in 18 (9 men, 9 women healthy, overweight (body mass index 25.0-32.5 kg/m2 adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP, interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin.Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048. There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16, after glucosamine and chondroitin compared to placebo.Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer.ClinicalTrials.gov NCT01682694.

  16. Proteomic profiling of renal allograft rejection in serum using magnetic bead-based sample fractionation and MALDI-TOF MS.

    Science.gov (United States)

    Sui, Weiguo; Huang, Liling; Dai, Yong; Chen, Jiejing; Yan, Qiang; Huang, He

    2010-12-01

    Proteomics is one of the emerging techniques for biomarker discovery. Biomarkers can be used for early noninvasive diagnosis and prognosis of diseases and treatment efficacy evaluation. In the present study, the well-established research systems of ClinProt Micro solution incorporated unique magnetic bead sample preparation technology, which, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), have become very successful in bioinformatics due to its outstanding performance and reproducibility for discovery disease-related biomarker. We collected fasting blood samples from patients with biopsy-confirmed acute renal allograft rejection (n = 12), chronic rejection (n = 12), stable graft function (n = 12) and also from healthy volunteers (n = 13) to study serum peptidome patterns. Specimens were purified with magnetic bead-based weak cation exchange chromatography and analyzed with a MALDI-TOF mass spectrometer. The results indicated that 18 differential peptide peaks were selected as potential biomarkers of acute renal allograft rejection, and 6 differential peptide peaks were selected as potential biomarkers of chronic rejection. A Quick Classifier Algorithm was used to set up the classification models for acute and chronic renal allograft rejection. The algorithm models recognize 82.64% of acute rejection and 98.96% of chronic rejection episodes, respectively. We were able to identify serum protein fingerprints in small sample sizes of recipients with renal allograft rejection and establish the models for diagnosis of renal allograft rejection. This preliminary study demonstrated that proteomics is an emerging tool for early diagnosis of renal allograft rejection and helps us to better understand the pathogenesis of disease process.

  17. Study on the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry for setting up a diagnostic model of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Liu Hai-yuan; Liu Chun-yan; Leng Jin-hua; Liu Zhu-feng; Sun Da-wei; Zhu Lan; Lang Jing-he; Zheng Yan-hua; Zhang Jian-zhong

    2007-01-01

    Objective: To determine the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) combined with bioinformatics for screening biomarkers of endometriosis and primarily setting up a diagnostic model of endometriosis.Method.Thirty-six patients with endometriosis diagnosed laparoscopically and thirty-five healthy controls were included in the study.Their serum were analyzed by SELDI and protein chip to generate protein profiling spectra.Student t test was used to compare the peak intensifies of the protein profiling results from the different groups.Biomarker Pattern Software was used to analyze the data between two groups and set up a diagnostic model for endometriosis.Protein profiling spectra from sixteen endometriosis patients and fifteen healthy controls were used double-blindedly to test the efficiency of the diagnostic model and generate the sensitivity and specificity of the model.Result: Fourteen abnormally expressed protein peaks were detected in the plasma of patients with endometriosis (P<0.01).The endometriosis diagnostic model was composed of three protein peaks.It correctly identified 33 of 36 patients with endometriosis and 29 of 35 controls in the training test.In the masked set 14 of 16 patients with endometriosis and 12 of 15 normal controls were correctly identified with sensitivity of 87.5% and specificity of 8o%.Conclusion: Patients with endometriosis have a unique cluster of proteins in plasma detected by SELDI.SELDI provides a new approach for screening novel biomarkers of endometriosis.Its utility in clinical practice need further study.

  18. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response.

    Science.gov (United States)

    Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, Vitor

    2015-02-01

    The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In

  19. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with

  20. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Directory of Open Access Journals (Sweden)

    Martin Weiszenstein

    Full Text Available Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2 on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated. Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  1. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware

    Science.gov (United States)

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux. PMID:27023342

  2. Comparative Proteomic Profile of the Human Umbilical Cord Blood Exosomes between Normal and Preeclampsia Pregnancies with High-Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ruizhe Jia

    2015-07-01

    Full Text Available Background/Aims: Exosomes are extracellular vesicles that are involved in several biological processes. The roles of proteins from human umbilical cord blood exosomes in the pathogenesis of preeclampsia remains poorly understood. Methods: In this study, we used high-resolution LC-MS/MS technologies to construct a comparative proteomic profiling of human umbilical cord blood exosomes between normal and preeclamptic pregnancies. Results: A total of 221 proteins were detected in human umbilical cord blood exosomes, with 14 upregulated and 15 downregulated proteins were definitively identified between preeclamptic and control pregnancies. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed proteins correlate with enzyme regulator activity, binding, extracellular region, cell part, biological regulation, cellular process and complement and coagulation cascades occurring during pathological changes of preeclampsia. Conclusion: Our results show significantly altered expression profiles of proteins in human umbilical cord blood exosomes between normal and preeclampsia pregnancies. These proteins may be involved in the etiology of preeclampsia.

  3. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Science.gov (United States)

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  4. Gender-specific differences in chronic rhinosinusitis patients electing endoscopic sinus surgery.

    Science.gov (United States)

    Lal, Devyani; Rounds, Alexis B; Divekar, Rohit

    2016-03-01

    The objective of this study was to investigate gender-specific differences in chronic rhinosinusitis (CRS) patients electing endoscopic sinus surgery (ESS). This study was a retrospective review of CRS patients electing ESS (2011-2013) at a tertiary-care center. ESS was elected by 272 patients (mean age 54.6 years; 48.5% female). Mean Lund-Mackay computed tomography (CT) score was 10.9; total 22-item Sino-Nasal Outcome Test (SNOT-22) score was 41.8. Compared to men, women electing ESS had lower CT score (10.1 vs 11.7; p = 0.01) but higher total SNOT-22 score (44.9 vs 39; p = 0.02). Women reported significantly worse postnasal drainage (p embarrassment (p = 0.0021). SNOT-22 scores declined with advancing age (women, p = 0.003; men, p = 0.0005). Reduction in CT scores with age was seen only in males (p = 0.03). Stratifying by age, females aged 61 to 80 years had higher SNOT-22 scores compared to male counterparts (p = 0.04), whereas CT scores were similar. More women underwent surgery for CRS without nasal polyps (CRSsNP) (54.9%) whereas more men underwent surgery for CRS with nasal polyps (CRSwNP) (57.4%), but this difference missed statistical significance (p = 0.052). Women with CRSwNP had higher SNOT-22 scores than men (p = 0.02) for similar CT scores. Men electing ESS for CRSsNP had higher CT scores than women (p = 0.02). Women with CRSsNP aged 18 to 40 years reported higher SNOT-22 scores than men (p = 0.003), even though CT scores were lower (p = 0.005). Equivalent numbers of men and women underwent ESS for CRS. Overall, women electing ESS had higher total SNOT-22 scores and lower Lund-Mackay CT scores than men. Women reported more problems with postnasal drainage (CRS overall, CRSsNP, and CRSwNP), embarrassment (CRS overall and CRSwNP), and facial pain (CRSwNP). Gender differences in CRS are poorly understood and merit further study. © 2015 ARS-AAOA, LLC.

  5. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    Directory of Open Access Journals (Sweden)

    Álvarez-Fernández Ana

    2010-06-01

    Full Text Available Abstract Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS. Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe

  6. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R

    2007-01-01

    of recently developed methods for isolation of membrane proteins from 10-20 mg brain tissue [Nielsen, P.Aa., Olsen, J.V., Podtelejnokov, A.V., Andersen, J.R., Mann, M., Wisniewski, J.R., 2005. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteomics 4, 402--408] and the Hys......Analysis of the brain proteome and studying brain diseases through clinical biopsies and animal disease models require methods of quantitative proteomics that are sensitive and allow identification and quantification of low abundant membrane proteins from minute amount of tissue. Taking advantage......Tag-quantification method [Olsen, J.V., Andersen, J.R., Nielsen, P.Aa., Nielsen, M.L., Figeys, D., Mann, M., Wisniewski, J.R., 2004. HysTag---A novel proteomic qualification tool applied to differential analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics 3, 82--92] we performed...

  7. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gaffrey, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Su, Dian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Genentech Inc., South San Francisco, CA (United States); Liu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camp, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qian, Weijun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-12

    Reversible modifications on cysteine thiols play a significant role in redox signaling and regulation. A number of reversible redox modifications, including disulfide formation, S-nitrosylation, and S-glutathionylation, have been recognized for their significance in various physiological and pathological processes. Here we describe in detail a resin-assisted thiol-affinity enrichment protocol for both biochemical and proteomics applications. This protocol serves as a general approach for specific isolation of thiol-containing proteins or peptides derived from reversible redox-modified proteins. This approach utilizes thiol-affinity resins to directly capture thiol-containing proteins or peptides through a disulfide exchange reaction followed by on-resin protein digestion and on-resin multiplexed isobaric labeling to facilitate LC-MS/MS based quantitative site-specific analysis of redox modifications. The overall approach requires a much simpler workflow with increased specificity compared to the commonly used biotin switch technique. By coupling different selective reduction strategies, the resin-assisted approach provides the researcher with a useful tool capable of enriching different types of reversible modifications on protein thiols. Procedures for selective enrichment and analyses of S-nitrosylation and total reversible cysteine oxidation are presented to demonstrate the utility of this general strategy.

  8. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  9. Profiling the Proteome of Exhaled Breath Condensate in Healthy Smokers and COPD Patients by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Carmine Tinelli

    2012-10-01

    Full Text Available Three pools of exhaled breath condensate (EBC from non-smokers plus healthy smokers (NS + HS, n = 45; chronic obstructive pulmonary disease (COPD without emphysema (COPD, n = 15 and subjects with pulmonary emphysema associated with α1-antitrypsin deficiency (AATD, n = 23 were used for an exploratory proteomic study aimed at generating fingerprints of these groups that can be used in future pathophysiological and perhaps even clinical research. Liquid chromatography-tandem mass spectrometry (LC-MS/MS was the platform applied for this hypothesis-free investigation. Analysis of pooled specimens resulted in the production of a “fingerprint” made of 44 proteins for NS/HS; 17 for COPD and 15 for the group of AATD subjects. Several inflammatory cytokines (IL-1α, IL-1β, IL-2; IL-12, α and β subunits, IL-15, interferon α and γ, tumor necrosis factor α; Type I and II cytokeratins; two SP-A isoforms; Calgranulin A and B and α1-antitrypsin were detected and validated through the use of surface enhanced laser-desorption ionization mass spectrometry (SELDI-MS and/or by Western blot (WB analysis. These results are the prelude of quantitative studies aimed at identifying which of these proteins hold promise as identifiers of differences that could distinguish healthy subjects from patients.

  10. Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach.

    Science.gov (United States)

    Broncel, Malgorzata; Serwa, Remigiusz A; Bunney, Tom D; Katan, Matilda; Tate, Edward W

    2016-02-01

    AMPylation of mammalian small GTPases by bacterial virulence factors can be a key step in bacterial infection of host cells, and constitutes a potential drug target. This posttranslational modification also exists in eukaryotes, and AMP transferase activity was recently assigned to HYPE Filamentation induced by cyclic AMP domain containing protein (FICD) protein, which is conserved from Caenorhabditis elegans to humans. In contrast to bacterial AMP transferases, only a small number of HYPE substrates have been identified by immunoprecipitation and mass spectrometry approaches, and the full range of targets is yet to be determined in mammalian cells. We describe here the first example of global chemoproteomic screening and substrate validation for HYPE-mediated AMPylation in mammalian cell lysate. Through quantitative mass-spectrometry-based proteomics coupled with novel chemoproteomic tools providing MS/MS evidence of AMP modification, we identified a total of 25 AMPylated proteins, including the previously validated substrate endoplasmic reticulum (ER) chaperone BiP (HSPA5), and also novel substrates involved in pathways of gene expression, ATP biosynthesis, and maintenance of the cytoskeleton. This dataset represents the largest library of AMPylated human proteins reported to date and a foundation for substrate-specific investigations that can ultimately decipher the complex biological networks involved in eukaryotic AMPylation.

  11. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    Science.gov (United States)

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation.

  12. Differential proteome profile in ischemic heart disease: Prognostic value in chronic angina versus myocardial infarction. A proof of concept.

    Science.gov (United States)

    Scebba, Francesca; Papale, Massimo; Rocchiccioli, Silvia; Ucciferri, Nadia; Bigazzi, Federico; Sampietro, Tiziana; Carpeggiani, Clara; L'Abbate, Antonio; Coceani, Flavio; Angeloni, Debora

    2017-08-01

    The initial clinical manifestation of ischemic heart disease (IHD) i.e. unheralded myocardial infarction (MI) versus chronic angina pectoris (AP) is statistically associated with adverse or mild disease progression respectively in the long-term follow-up. Here, we subjected AP and MI patients to blood proteomic analysis by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) in order to investigate putative new prognostic biomarkers of IHD manifestation. We found several differentially expressed peaks but four of them (4176, 4475, 14,158m/z and 8922m/z for AP and MI, respectively) were most reliable. Two of them were identified; 14,158m/z peak was the double-charged form of Apolipoprotein A-I and its vasoprotective action accords with prominence in AP. The 4176m/z peak was related to FAM83C protein, while neither the 4475m/z peak nor the MI-linked 8922m/z peak could be identified. We conclude that SELDI-TOF-MS analysis may yield a panel of molecular signals able to retrospectively classify patients according to their clinical and molecular features, exploitable for predicting the natural course of IHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    Science.gov (United States)

    Atanasova, Lea; Druzhinina, Irina S.

    2010-01-01

    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool. PMID:20205302

  14. Investigation of the in vitro gender-specific partitioning of mefloquine in malarial infected red blood cells and plasma.

    Science.gov (United States)

    Seethorn, Nongluk; Wernsdorfer, Walther H; Noedl, Harald; Karbwang, Juntra; Na-Bangchang, Kesara

    2013-10-01

    The investigation of gender-specific partitioning of the antimalarial drug mefloquine to cellular and fluid blood compartments was performed using blood collected from a female and male healthy subject that were infected with Plasmodium falciparum PCM2 clone and spiked with mefloquine (0.25, 1, and 5 μM). Mefloquine concentrations in red cells of both female and male subjects were significantly higher than plasma, which suggests an intensive uptake by red cells. This was supported by a high ratio of mefloquine concentrations in the parasitized and non-parasitized red cells of about 4-fold. Gender-specific partitioning of mefloquine in parasitized blood was seen only in plasma where significantly higher concentrations were observed in female compared with male plasma. Down-adjusting the therapeutic dose of mefloquine in female patients with malaria is not advisable because mefloquine concentrations in the target cellular compartment are similar in both genders.

  15. Do gender-specific and high-resolution three dimensional body charts facilitate the communication of pain for women?

    DEFF Research Database (Denmark)

    Egsgaard, Line Lindhardt; Christensen, Trine Søby; Petersen, Ida Munk

    2016-01-01

    BACKGROUND: Chronic pain is more prevalent among women; however, the majority of standardized pain drawings are often collected using male-like androgynous body representations. OBJECTIVE: The purpose of this study was to assess whether gender-specific and high-resolution three-dimensional (3D......) body charts facilitate the communication of pain for women. METHODS: Using mixed-methods and a cross-over design, female patients with chronic pain were asked to provide detailed drawings of their current pain on masculine and feminine two-dimensional (2D) body schemas (N=41, Part I) or on female 2D...... enabled a more accurate expression of their pain due to the detailed contours of the musculature and bone structure, however, patients also reported the 3D body chart was too human and believed that skin-like appearance limited 'deep pain' expressions. CONCLUSIONS: Providing gender-specific body charts...

  16. Age- and Gender-Specific Unemployment in Scandinavian Countries: An Analysis based on Okun’s Law

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Hutengs, Oliver

    2014-01-01

    The paper investigates Scandinavian countries and their male and female unemployment rates. Okun’s law is used to estimate age cohort and gender-specific Okun coefficients to make inference about the business-cycle dependence of young peoples’ unemployment across Scandinavian countries. Results s...... show that men have higher Okun coefficients in absolute terms. Thus, their unemployment rate reacts more strongly to any change in GDP....

  17. Carrying the Pain of Abuse: Gender-Specific Findings on the Relationship between Childhood Physical Abuse and Obesity in Adulthood

    Directory of Open Access Journals (Sweden)

    Esme Fuller-Thomson

    2013-08-01

    Full Text Available Background: Childhood abuse has been associated with negative adult health outcomes, including obesity. This study sought to investigate the association between childhood physical abuse and adult obesity, while controlling for five clusters of potentially confounding factors: childhood stressors, socioeconomic indicators, marital status, health behaviors, and mental health. Methods: Representative data from the 2005 Canadian Community Health Survey were selected. The response rate was approximately 84%. Gender-specific logistic regression analyses determined the association between abuse and obesity, while controlling for age and race and five clusters of potentially confounding factors. Of the 12,590 respondents with complete data, 2,787 were obese and 976 reported physical abuse as a child or adolescent by someone close to them. Results: Among women with childhood physical abuse compared to no abuse, the odds of obesity were 35% higher, even when controlling for age, race, and the five clusters of factors (odds ratio (OR = 1.35; 95% confidence interval (CI = 1.09, 1.67. Childhood physical abuse was not associated with adult obesity among men (OR = 1.12; 95% CI = 0.82, 1.53. Conclusions: This study provides one of the first population-based, gender-specific analyses of the association between childhood physical abuse and obesity controlling for a wide range of factors. The gender-specific findings require further exploration.

  18. Gender-specific metabolic responses in gonad of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether.

    Science.gov (United States)

    Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2014-05-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as a class of brominated flame-retardants. As a congener of PBDEs, 2,2',4,4'-tetrabromodiphenylether (BDE 47) is the most toxic congener to animals. In this study, we applied metabolomics to characterize the gender-specific metabolic responses in mussel Mytilus galloprovincialis exposed to BDE 47 for 30 days. Results indicated the apparent gender-specific responses in M. galloprovincialis with BDE 47 exposures (1 and 10 μg/L) at metabolite level. Basically, BDE 47 induced disruption in osmotic regulation and altered energy metabolism in mussels, via differential metabolic pathways. In addition, the hormesis phenomenon was observed in both male and female mussel samples exposed the two concentrations of BDE 47, indicated by the contrarily altered metabolites from two BDE 47 treatments (1 and 10 μg/L), respectively. Overall, this study confirmed the gender-specific responses to BDE 47 exposures in mussels and suggested the gender differences should be considered in marine ecotoxicology.

  19. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome

    DEFF Research Database (Denmark)

    Finnie, Christine; Bak-Jensen, K.S.; Laugesen, Sabrina

    2006-01-01

    identified in spots with individual appearance profiles, indicating differential expression of isoforms. Three isoforms of beta-1,3 endoglucanase, including one not previously observed, each had a different temporal appearance pattern probably reflecting involvement in diverse processes such as cell wall......-grown barley. Appearance profiles are described for 105 proteins identified in 185 2D-gel spots in the overlapping pI ranges 4-7 and 6-11. Grouping of proteins according to appearance across functional categories revealed instances of differential regulation of protein forms. Thus, a single 1-cys...

  20. Proteomic Profiling of Hematopoietic Stem/Progenitor Cells after a Whole Body Exposure of CBA/CaJ Mice to Titanium (48Ti Ions

    Directory of Open Access Journals (Sweden)

    Kanokporn Noy Rithidech

    2015-07-01

    Full Text Available Myeloid leukemia (ML is one of the major health concerns from exposure to radiation. However, the risk assessment for developing ML after exposure to space radiation remains uncertain. To reduce the uncertainty in risk prediction for ML, a much increased understanding of space radiation-induced changes in the target cells, i.e., hematopoietic stem/progenitor cells (HSPCs, is critically important. We used the label-free quantitative mass spectrometry (LFQMS proteomic approach to determine the expression of protein in HSPC-derived myeloid colonies obtained at an early time-point (one week and a late time-point (six months after an acute whole body exposure of CBA/CaJ mice to a total dose of 0, 0.1, 0.25, or 0.5 Gy of heavy-ion titanium (48Ti ions, which are the important component of radiation found in the space environment. Mice exposed to 0 Gy of 48Ti ions served as non-irradiated sham controls. There were five mice per treatment groups at each harvest time. The Trans-Proteomic Pipeline (TPP was used to assign a probability of a particular protein being in the sample. A proof-of-concept based Ingenuity Pathway Analysis (IPA was used to characterize the functions, pathways, and networks of the identified proteins. Alterations of expression levels of proteins detected in samples collected at one week (wk post-irradiation reflects acute effects of exposure to 48Ti ions, while those detected in samples collected at six months (mos post-irradiation represent protein expression profiles involved in the induction of late-occurring damage (normally referred to as genomic instability. Our results obtained by using the IPA analyses indicate a wide array of signaling pathways involved in response to 1 GeV/n 48Ti ions at both harvest times. Our data also demonstrate that the patterns of protein expression profiles are dose and time dependent. The majority of proteins with altered expression levels are involved in cell cycle control, cellular growth and

  1. Identification of Analytical Factors Affecting Complex Proteomics Profiles Acquired in a Factorial Design Study with Analysis of Variance: Simultaneous Component Analysis.

    Science.gov (United States)

    Mitra, Vikram; Govorukhina, Natalia; Zwanenburg, Gooitzen; Hoefsloot, Huub; Westra, Inge; Smilde, Age; Reijmers, Theo; van der Zee, Ate G J; Suits, Frank; Bischoff, Rainer; Horvatovich, Péter

    2016-04-19

    Complex shotgun proteomics peptide profiles obtained in quantitative differential protein expression studies, such as in biomarker discovery, may be affected by multiple experimental factors. These preanalytical factors may affect the measured protein abundances which in turn influence the outcome of the associated statistical analysis and validation. It is therefore important to determine which factors influence the abundance of peptides in a complex proteomics experiment and to identify those peptides that are most influenced by these factors. In the current study we analyzed depleted human serum samples to evaluate experimental factors that may influence the resulting peptide profile such as the residence time in the autosampler at 4 °C, stopping or not stopping the trypsin digestion with acid, the type of blood collection tube, different hemolysis levels, differences in clotting times, the number of freeze-thaw cycles, and different trypsin/protein ratios. To this end we used a two-level fractional factorial design of resolution IV (2(IV)(7-3)). The design required analysis of 16 samples in which the main effects were not confounded by two-factor interactions. Data preprocessing using the Threshold Avoiding Proteomics Pipeline (Suits, F.; Hoekman, B.; Rosenling, T.; Bischoff, R.; Horvatovich, P. Anal. Chem. 2011, 83, 7786-7794, ref 1) produced a data-matrix containing quantitative information on 2,559 peaks. The intensity of the peaks was log-transformed, and peaks having intensities of a low t-test significance (p-value > 0.05) and a low absolute fold ratio (factor were removed. The remaining peaks were subjected to analysis of variance (ANOVA)-simultaneous component analysis (ASCA). Permutation tests were used to identify which of the preanalytical factors influenced the abundance of the measured peptides most significantly. The most important preanalytical factors affecting peptide intensity were (1) the hemolysis level, (2) stopping trypsin digestion with

  2. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.).

    Science.gov (United States)

    Wang, Yi; Wang, Xiaolu; Wang, Chao; Wang, Ruijiao; Peng, Fan; Xiao, Xue; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms.

  3. Immunocapture strategies in translational proteomics.

    Science.gov (United States)

    Fredolini, Claudia; Byström, Sanna; Pin, Elisa; Edfors, Fredrik; Tamburro, Davide; Iglesias, Maria Jesus; Häggmark, Anna; Hong, Mun-Gwan; Uhlen, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-01-01

    Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.

  4. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2016-09-01

    Protein modifications of meat cooked by typical dry-heat methods (e.g., roasting) are currently not well understood. The present study utilised a shotgun proteomic approach to examine the molecular-level effect of roasting on thin lamb longissimus thoracis et lumborum patties, in terms of changes to both the protein profile and amino acid residue side-chain modifications. Cooking caused aggregation of actin, myosin heavy chains and sarcoplasmic proteins. Longer roasting time resulted in significantly reduced protein extractability as well as protein truncation involving particularly a number of myofibrillar and sarcoplasmic proteins, e.g., 6-phosphofructokinase, beta-enolase, l-lactate dehydrogenase A chain, alpha-actinin-3, actin and possibly myosin heavy chains. Modifications that have potential influence on nutritional properties, including carboxyethyllysine and a potentially glucose-derived N-terminal Amadori compound, were observed in actin and myoglobin after roasting. This study provided new insights into molecular changes resulting from the dry-heat treatment of meat, such as commonly used in food preparation.

  5. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization.

    Science.gov (United States)

    Baroncelli, Marta; van der Eerden, Bram C; Kan, Yik-Yang; Alves, Rodrigo D; Demmers, Jeroen A; van de Peppel, Jeroen; van Leeuwen, Johannes P

    2018-01-01

    The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell-secreted ECMs have become of interest as they reproduce tissue-architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast-derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast-differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non-ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast-differentiating MSCs with Activin-A. Extracellular proteins were upregulated in Activin-A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC-secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality. © 2017 Wiley Periodicals, Inc.

  6. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Taotao Liu; Ruyi Xue; Xiaowu Huang; Danying Zhang; Ling Dong; Hao Wu; Xizhong Shen

    2011-01-01

    Proteomic techniques are promising strategies in the surveillance of hepatocellular carcinoma (HCC). This study aimed to investigate the serum profiling with magnetic bead (MB) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and to further identify the biomarkers for HCC. Serum samples from 80 chronic hepatitis B (CHB) patients, 94 HCC concomitant with HBV patients and 24 healthy subjects were examined by MALDI-TOF MS after peptide enrichment on MBs. Based on the genetic algorithm,diagnostic models for HCC were established between 30HCC patients and 24 healthy subjects/30 CHB patients.Validations were done with the remaining cases. Markers in the models were identified through liquid chromatography (LC)/MS-MS. The three groups were well separated from each other and two discrimination models were established for HCC. The overall recognition capability of these two models was 96.25% and 93.33%, respectively.Validations showed the misdiagnosis ratio for HCC was 1.6% and 23.4%, respectively. The identified biomarkers for HCC included prothrombin precursor (fragment),calcium-dependent secretion activator 1, Baculoviral inhibitor of apoptosis repeat-containing protein 6, etc.MB-based MALDI-TOF MS is applicable in identifying the serum biomarkers and can be used in the surveillance of HCC among HBV-infected patients.

  7. Application of quantitative targeted absolute proteomics to profile protein expression changes of hepatic transporters and metabolizing enzymes during cholic acid-promoted liver regeneration.

    Science.gov (United States)

    Miura, Takayuki; Tachikawa, Masanori; Ohtsuka, Hideo; Fukase, Koji; Nakayama, Shun; Sakata, Naoaki; Motoi, Fuyuhiko; Naitoh, Takeshi; Katayose, Yu; Uchida, Yasuo; Ohtsuki, Sumio; Terasaki, Tetsuya; Unno, Michiaki

    2017-02-26

    Preoperative administration of cholic acid (CA) may be an option to increase the liver volume before elective liver resection surgery, so it is important to understand its effects on liver functionality for drug transport and metabolism. The purpose of this study was to clarify the absolute protein expression dynamics of transporters and metabolizing enzymes in the liver of mice fed CA-containing diet for 5 days (CA1) and mice fed CA-containing diet for 5 days followed by diet without CA for 7 days (CA2), in comparison with non CA-fed control mice. The CA1 group showed the increased liver weight, cell proliferation index, and oxidative stress, but no increase of apoptosis. Quantitative targeted absolute proteomics revealed (i) decreases in basolateral bile acid transporters ntcp, oatp1a1, oatp1b2, bile acid synthesis-related enzymes cyp7a1 and cyp8b1, and drug transporters bcrp, mrp6, ent1, oatp2b1, and (ii) increases in glutathione biosynthetic enzymes and drug-metabolizing enzyme cyp3a11. Liver concentrations of reduced and oxidized glutathione were both increased. In the CA2 group, the increased liver weight was maintained, while the biochemical features and protein profiles were restored to the non-CA-fed control levels. These findings suggest that CA administration alters liver functionality per body during liver regeneration and restoration.

  8. Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain

    Directory of Open Access Journals (Sweden)

    Hare Nathan J

    2012-01-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF. While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood. Results A dual proteomics approach consisting of gel-based and gel-free comparisons were undertaken to analyse protein profiles in a transmissible, early (acute isolate of the Australian epidemic strain 1 (AES-1R, the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1. Over 1700 P. aeruginosa proteins were confidently identified. AES-1R protein profiles revealed elevated abundance of proteins associated with virulence and siderophore biosynthesis and acquisition, antibiotic resistance and lipopolysaccharide and fatty acid biosynthesis. The most abundant protein in AES-1R was confirmed as a previously hypothetical protein with sequence similarity to carbohydrate-binding proteins and database search revealed this gene is only found in the CF-associated strain PA2192. The link with CF infection may suggest that transmissible strains have acquired an ability to rapidly interact with host mucosal glycoproteins. Conclusions Our data suggest that AES-1R expresses higher levels of proteins, such as those involved in antibiotic resistance, iron acquisition and virulence that may provide a competitive advantage during early infection in the CF lung. Identification of novel proteins associated with transmissibility and acute infection may aid in deciphering new strategies for intervention to limit P. aeruginosa infections in CF patients.

  9. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  10. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation.

    Science.gov (United States)

    Cheng, Jing-Sheng; Zhao, Yan; Qiao, Bin; Lu, Hua; Chen, Yao; Yuan, Ying-Jin

    2016-07-01

    The intracellular proteomes of the Penicillium chrysogenum throughout pilot and industrial processes were investigated by using 2-DE combined with MALDI-TOF-TOF MS, respectively. We detected a total of 223 spots corresponding to 154 proteins and 231 spots corresponding to 157 proteins throughout pilot and industrial processes, respectively. The levels of glyceraldehyde-3-phosphate dehydrogenase increased (5.1- and 2.5-fold) under the pilot process, while its levels were no significant changes under the industrial process at 140 and 170 h when compared with that at 2 h. The levels of isocitrate lyase and fumarate hydratase were increased significantly under the industrial process, while their levels had no obvious changes after 20 h of fermentation throughout the pilot process. These results indicate that there were remarkable differences in carbohydrate metabolism (including glycolysis, gluconeogenesis, pentose phosphate pathway, and tricarboxylic acid cycle) of P. chrysogenum during the pilot and industrial fermentations, which likely result in alterations of the primary metabolism and penicillin biosynthesis. Moreover, the differences in the levels of proteins involved in amino acid metabolisms (including valine, cysteine, and α-aminoadipic acid biosynthesis) indicated that the pilot and industrial processes influenced the supplies of penicillin precursors. Compared with that at 2 h, the maximum levels of superoxide (6.9-fold, at 32 h) and catalase (9-fold, at 80 h) during the industrial process and the maximum levels of superoxide (1.2-fold, at 20 h) and catalase (7.7-fold at 128 h) during the pilot process revealed the significant difference in cell redox homeostasis and stress responses during scale-up fermentation. Particularly, 10 spots corresponding to isopenicillin N synthetase and 4 spots corresponding to isopenicillin N (IPN) acyltransferase in pilot and industrial processes were identified, respectively. The levels of IPN acyltransferase (spots

  11. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    Directory of Open Access Journals (Sweden)

    Rydzak Thomas

    2012-09-01

    Full Text Available Abstract Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative

  12. Evolutionary conservation of the mature oocyte proteome

    Directory of Open Access Journals (Sweden)

    Tamar Lotan

    2014-06-01

    Significance: The current study provides the first proteomic profile of an oocyte of a cnidarian organism the starlet sea anemone N. vectensis and gives new insights on the ancient origin of an oocyte proteome template. The comparative analysis with a chordate oocyte suggests that the oocyte proteome predates the divergence of the cnidarian and bilaterian lineages. In addition, the data generated in the study will serve as a valuable resource for further developmental and evolutional studies.

  13. A conceptual muddle: an empirical analysis of the use of 'sex' and 'gender' in 'gender-specific medicine' journals.

    Directory of Open Access Journals (Sweden)

    Anne Hammarström

    Full Text Available BACKGROUND: At the same time as there is increasing awareness in medicine of the risks of exaggerating differences between men and women, there is a growing professional movement of 'gender-specific medicine' which is directed towards analysing 'sex' and 'gender' differences. The aim of this article is to empirically explore how the concepts of 'sex' and 'gender' are used in the new field of 'gender-specific medicine', as reflected in two medical journals which are foundational to this relatively new field. METHOD AND PRINCIPAL FINDINGS: The data consist of all articles from the first issue of each journal in 2004 and an issue published three years later (n = 43. In addition, all editorials over this period were included (n = 61. Quantitative and qualitative content analyses were undertaken by the authors. Less than half of the 104 papers used the concepts of 'sex' and 'gender'. Less than 1 in 10 papers attempted any definition of the concepts. Overall, the given definitions were simple, unspecific and created dualisms between men and women. Almost all papers which used the two concepts did so interchangeably, with any possible interplay between 'sex' and gender' referred to only in six of the papers. CONCLUSION: The use of the concepts of 'sex' and gender' in 'gender-specific medicine' is conceptually muddled. The simple, dualistic and individualised use of these concepts increases the risk of essentialism and reductivist thinking. It therefore highlights the need to clarify the use of the terms 'sex' and 'gender' in medical research and to develop more effective ways of conceptualising the interplay between 'sex' and 'gender' in relation to different diseases.

  14. Gender-Specific Effect of -102G>A Polymorphism in Insulin Induced Gene 2 on Obesity in Chinese Children

    Directory of Open Access Journals (Sweden)

    Fang-Hong Liu

    2015-01-01

    Full Text Available Background. Insulin induced gene 2 (INSIG2 encodes a protein that has a biological effect on regulation of adipocyte metabolism and body weight. This study aimed to investigate the association of INSIG2 gene -102G>A polymorphism with obesity related phenotypes in Chinese children and test gender-specific effects. Methods. The 2,030 independent individuals aged from 7 to 18 years, including 705 obese cases and 1,325 nonobese controls, were recruited from local schools. We measured the obesity-related phenotypes and detected the serum lipids. We genotype -102G>A polymorphism by using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. Results. In all individuals, we found that the GG/GA genotype of INSIG2 -102G>A polymorphism was associated with risk of severe obesity (OR = 1.62, 95% CI: 1.11–2.36, and P=0.012 under the dominant model. The association with severe obesity existed only in boys (OR = 1.91, 95% CI: 1.15–3.17, P=0.012. The GG/GA genotype of -102G>A polymorphism was also associated with higher waist circumference (β=2.61 cm, P=0.031 in boys. No similar association was found in girls. The polymorphism was not associated with other obesity-related phenotypes, neither in all individuals nor in gender-specific population. Conclusions. This study identified a gender-specific effect of INSIG2 -102G>A polymorphism on risk of severe obesity and waist circumference in Chinese boys.

  15. BRCA-1 Gene Expression and Comparative Proteomic Profile of Primordial Follicles from Young and Adult Buffalo (Bubalus bubalis) Ovaries.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Krishnagiri, Harshini; Chauhan, Manmohan Singh; Rao, A J

    2017-04-03

    In our previous study, we demonstrated that the repair efficiency of DNA double-strand breaks declines with increasing age in rat primordial follicles. In the present study, we extended our studies to buffalo (Bubalus bubalis) wherein we studied the expression of BRCA-1 related DNA repair genes in primordial follicles of young (12 months-22 months) and adult (72-96 months) buffaloes. The relative expression of selected genes, as determined by RT-PCR, revealed a significant (p primordial follicles as compared to the young. Western blot analysis revealed a significant (p primordial follicles. The protein expression profile of young and adult buffalo primordial follicles revealed differential expression of proteins involved in mitochondrial function, cell survival and cell metabolism. Similar to reports from aging rodent and human primordial follicles, our findings support the fact that impairment of DNA repair may be an universal mechanism involved in oocyte aging.

  16. Embryology in the era of proteomics.

    Science.gov (United States)

    Katz-Jaffe, Mandy G; McReynolds, Susanna

    2013-03-15

    Proteomic technologies have begun providing evidence that viable embryos possess unique protein profiles. Some of these potential protein biomarkers have been identified as extracellular and could be used in the development of a noninvasive quantitative method for embryo assessment. The field of assisted reproductive technologies would benefit from defining the human embryonic proteome and secretome, thereby expanding our current knowledge of embryonic cellular processes.

  17. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Waluga Plaingam

    2017-10-01

    Full Text Available Potentially useful in the treatment of neurodegenerative disorders, Kaempferia parviflora and Myristica fragrans have been shown to possess a wide spectrum of neuropharmacological activities and neuroprotective effects in vivo and in vitro. In this study, we determined whether and how K. parviflora ethanolic extract and M. fragrans volatile oil could influence the levels of neurotransmitters and the whole proteomic profile in the hippocampus of Sprague Dawley (SD rats. The effects of K. parviflora and M. fragrans on protein changes were analyzed by two-dimensional gel electrophoresis (2D-gel, and proteins were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS. The target proteins were then confirmed by Western blot. The levels of neurotransmitters were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC. The results showed that K. parviflora, M. fragrans and fluoxetine (the control drug for this study increased serotonin, norepinephrine and dopamine in the rat hippocampus compared to that of the vehicle-treated group. Our proteomic data showed that 37 proteins in the K. parviflora group were up-regulated, while 14 were down-regulated, and 27 proteins in the M. fragrans group were up-regulated, while 16 were down-regulated. In the fluoxetine treatment group, we found 29 proteins up-regulated, whereas 14 proteins were down-regulated. In line with the proteomic data, the levels of GFAP, PDIA3, DPYSL2 and p-DPYSL2 were modified in the SD rat groups treated with K. parviflora, M. fragrans and fluoxetine as confirmed by Western blot. K. parviflora and M. fragrans mediated not only the levels of monoamine neurotransmitters but also the proteomic profiles in the rat hippocampus, thus shedding light on the mechanisms targeting neurodegenerative diseases.

  18. 正常纯化尿路上皮细胞蛋白质表达谱鉴定%PROTEOMIC EXPRESSION PROFILE OF PURIFIED NORMAL UROTHELIUM

    Institute of Scientific and Technical Information of China (English)

    张宗亮; 周荣祥

    2011-01-01

    目的 研究正常尿路上皮细胞的蛋白质表达谱,为尿路上皮癌蛋白质芯片的研制奠定基础.方法 采用激光捕获显微切割技术从正常膀胱黏膜获得纯化的尿路上皮细胞,二维液相色谱电喷雾串联质谱鉴定标本中的蛋白质表达.应用生物信息学软件以及基因本体论(GO)工具分析鉴定蛋白质.结果 共鉴定 218 个蛋白质,其中19个为假定蛋白质,11个为疏水性蛋白质,40 个蛋白质等电点(PI)>9,42 个蛋白质相对分子质量或者>10,13 个蛋白具有跨膜结构.按 GO 划分218个蛋白质中具有生物学途径、细胞成分、分子功能注解的蛋白质分别为155、148、173个,浓集与缺失表达的GO术语分别为34/15、24/7、26/14个.结论 本研究为尿路上皮癌生物标记组研究提供了有效的候选蛋白.%Objective To study the proteomic expression profile of normal human urothelium so as to establish basis for constructing urothelium carcinoma protein chips.Methods Pure urothelium cells from normal bladder epithelium were harvested by laser capture microdissection (LCM), and the proteomic expression profile was identified by two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS).The identified proteins were analyzed by bioinformatic softwares and gene ontology (GO) tools.Results A total of 218 proteins were identified, of which, 19 were hypothetic proteins and 11 were hydrophobic proteins.There were 40 (18.3%) proteins with PI >9 and 42 (19.3%) proteins with MW<104 or MW>105, 13 proteins had transmembrane structure.According to GO category, of the 218 proteins, 155 (71.1 %) had biological process annotation, 148 (67.9%) with cellular component annotation and 173 (79.4 %) with molecular function annotation.The category enrichment/depletion in three ontologies were 34/15, 24/7 and 26/14, respectively.Conclusion The results of this study present candidate proteins for the research of biomarker of

  19. Platelet function and long-term antiplatelet therapy in women: is there a gender-specificity? A 'state-of-the-art' paper.

    Science.gov (United States)

    Patti, Giuseppe; De Caterina, Raffaele; Abbate, Rosanna; Andreotti, Felicita; Biasucci, Luigi Marzio; Calabrò, Paolo; Cioni, Gabriele; Davì, Giovanni; Di Sciascio, Germano; Golia, Enrica; Golino, Paolo; Malatesta, Gelsomina; Mangiacapra, Fabio; Marcucci, Rossella; Nusca, Annunziata; Parato, Vito Maurizio; Pengo, Vittorio; Prisco, Domenico; Pulcinelli, Fabio; Renda, Giulia; Ricottini, Elisabetta; Ruggieri, Benedetta; Santilli, Francesca; Sofi, Francesco; Zimarino, Marco

    2014-09-01

    Although the female gender is generally less represented in cardiovascular studies, observational and randomized investigations suggest that-compared with men-women may obtain different benefits from antiplatelet therapy. Multiple factors, including hormonal mechanisms and differences in platelet biology, might contribute to such apparent gender peculiarities. The thrombotic and bleeding risks, as well as outcomes after a cardiovascular event, appear to differ between genders, partly in relation to differences in age, comorbidities and body size. Equally, the benefits of antiplatelet therapy may differ in women compared with men in different vascular beds, during primary or secondary prevention and according to the type of an antiplatelet agent used. This document is an attempt to bring together current evidence, clinical practices and gaps of knowledge on gender-specific platelet function and antiplatelet therapy. On the basis of the available data, we provide suggestions on current indications of antiplatelet therapy for cardiovascular prevention in women with different clinical features; no strong recommendation may be given because the available data derive from observational studies or post hoc/subgroup analyses of randomized studies without systematic adjustments for baseline risk profiles. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  20. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication.

    Directory of Open Access Journals (Sweden)

    Regina Ching Hua Lee

    2015-03-01

    Full Text Available Chikungunya virus (CHIKV is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.

  1. Combined miRNA profiling and proteomics demonstrates that different miRNAs target a common set of proteins to promote colorectal cancer metastasis.

    Science.gov (United States)

    Torres, Sofía; Garcia-Palmero, Irene; Bartolomé, Rubén A; Fernandez-Aceñero, María Jesús; Molina, Elena; Calviño, Eva; Segura, Miguel F; Casal, J Ignacio

    2017-05-01

    The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Relationships between pulmonary micro-RNA and proteome profiles, systemic cytogenetic damage and lung tumors in cigarette smoke-exposed mice treated with chemopreventive agents.

    Science.gov (United States)

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; La Maestra, Sebastiano; Micale, Rosanna T; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2013-10-01

    Assessing the correlation between molecular endpoints and cancer induction or prevention aims at validating the use of intermediate biomarkers. We previously developed murine models that are suitable to detect both the carcinogenicity of mainstream cigarette smoke (MCS) and the induction of molecular alterations. In this study, we used 931 Swiss mice in two parallel experiments and in a preliminary toxicity study. The chemopreventive agents included vorinostat, myo-inositol, bexarotene, pioglitazone and a combination of bexarotene and pioglitazone. Pulmonary micro-RNAs and proteins were evaluated by microarray analyses at 10 weeks of age in male and female mice, either unexposed or exposed to MCS since birth, and either untreated or receiving each one of the five chemopreventive regimens with the diet after weaning. At 4 months of age, the frequency of micronucleated normochromatic erythrocytes was evaluated. At 7 months, the lungs were subjected to standard histopathological analysis. The results showed that exposure to MCS significantly downregulated the expression of 79 of 694 lung micro-RNAs (11.4%) and upregulated 66 of 1164 proteins (5.7%). Administration of chemopreventive agents modulated the baseline micro-RNA and proteome profiles and reversed several MCS-induced alterations, with some intergender differences. The stronger protective effects were produced by the combination of bexarotene and pioglitazone, which also inhibited the MCS-induced clastogenic damage and the yield of malignant tumors. Pioglitazone alone increased the yield of lung adenomas. Thus, micro-RNAs, proteins, cytogenetic damage and lung tumors were closely related. The molecular biomarkers contributed to evaluate both protective and adverse effects of chemopreventive agents and highlighted the mechanisms involved.

  3. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials

    Science.gov (United States)

    Guo Gao, Tong; Yuan Xu, Yuan; Jiang, Feng; Zhen Li, Bao; Shui Yang, Jin; Tao Wang, En; Li Yuan, Hong

    2015-01-01

    The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525. PMID:26054030

  4. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2016-06-01

    Full Text Available Sacred lotus (Nelumbo nucifera belongs to Nelumbonaceae family. Its seeds are widely consumed in Asia countries as snacks or even medicine. Besides the market values, lotus seed also plays crucial roles in lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP which was corresponding to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal the metabolism adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acids metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide reference data set for the evaluation of primary metabolism during lotus seed development.

  5. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera).

    Science.gov (United States)

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.

  6. Gender-Specific Amelioration of SMA Phenotype upon Disruption of a Deep Intronic Structure by an Oligonucleotide.

    Science.gov (United States)

    Howell, Matthew D; Ottesen, Eric W; Singh, Natalia N; Anderson, Rachel L; Singh, Ravindra N

    2017-06-07

    Spinal muscular atrophy (SMA), the leading genetic disease of children, is caused by low levels of survival motor neuron (SMN) protein. Here, we employ A15/283, an antisense oligonucleotide targeting a deep intronic sequence/structure, to examine the impact of restoration of SMN in a mild SMA mouse model. We show gender-specific amelioration of tail necrosis upon subcutaneous administrations of A15/283 into SMA mice at postnatal days 1 and 3. We also demonstrate that a modest increase in SMN due to early administrations of A15/283 dramatically improves testicular development and spermatogenesis. Our results reveal near total correction of expression of several genes in adult testis upon temporary increase in SMN during early postnatal development. This is the first demonstration of in vivo efficacy of an antisense oligonucleotide targeting a deep intronic sequence/structure. This is also the first report of gender-specific amelioration of SMA pathology upon a modest peripheral increase of SMN. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Gender-Specificity of Initial and Controlled Visual Attention to Sexual Stimuli in Androphilic Women and Gynephilic Men.

    Directory of Open Access Journals (Sweden)

    Samantha J Dawson

    Full Text Available Research across groups and methods consistently finds a gender difference in patterns of specificity of genital response; however, empirically supported mechanisms to explain this difference are lacking. The information-processing model of sexual arousal posits that automatic and controlled cognitive processes are requisite for the generation of sexual responses. Androphilic women's gender-nonspecific response patterns may be the result of sexually-relevant cues that are common to both preferred and nonpreferred genders capturing attention and initiating an automatic sexual response, whereas men's attentional system may be biased towards the detection and response to sexually-preferred cues only. In the present study, we used eye tracking to assess visual attention to sexually-preferred and nonpreferred cues in a sample of androphilic women and gynephilic men. Results support predictions from the information-processing model regarding gendered processing of sexual stimuli in men and women. Men's initial attention patterns were gender-specific, whereas women's were nonspecific. In contrast, both men and women exhibited gender-specific patterns of controlled attention, although this effect was stronger among men. Finally, measures of attention and self-reported attraction were positively related in both men and women. These findings are discussed in the context of the information-processing model and evolutionary mechanisms that may have evolved to promote gendered attentional systems.

  8. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts.

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.

  9. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner. PMID:27242857

  10. New insight into quinoa seed quality under salinity: changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts

    Directory of Open Access Journals (Sweden)

    Iris eAloisi

    2016-05-01

    . VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent

  11. Gender-Specific DNA Methylome Analysis of a Han Chinese Longevity Population

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2014-01-01

    Full Text Available Human longevity is always a biological hotspot and so much effort has been devoted to identifying genes and genetic variations associated with longer lives. Most of the demographic studies have highlighted that females have a longer life span than males. The reasons for this are not entirely clear. In this study, we carried out a pool-based, epigenome-wide investigation of DNA methylation profiles in male and female nonagenarians/centenarians using the Illumina 450 K Methylation Beadchip assays. Although no significant difference was detected for the average methylation levels of examined CpGs (or probes between male and female samples, a significant number of differentially methylated probes (DMPs were identified, which appeared to be enriched in certain chromosome regions and certain parts of genes. Further analysis of DMP-containing genes (named DMGs revealed that almost all of them are solely hypermethylated or hypomethylated. Functional enrichment analysis of these DMGs indicated that DNA hypermethylation and hypomethylation may regulate genes involved in different biological processes, such as hormone regulation, neuron projection, and disease-related pathways. This is the first effort to explore the gender-based methylome difference in nonagenarians/centenarians, which may provide new insights into the complex mechanism of longevity gender gap of human beings.

  12. C-Tactile Mediated Erotic Touch Perception Relates to Sexual Desire and Performance in a Gender-Specific Way.

    Science.gov (United States)

    Bendas, Johanna; Georgiadis, Janniko R; Ritschel, Gerhard; Olausson, Håkan; Weidner, Kerstin; Croy, Ilona

    2017-05-01

    Unmyelinated low-threshold mechanoreceptors-the so-called C-tactile (CT) afferents-play a crucial role in the perception and conduction of caressing and pleasant touch sensations and significantly contribute to the concept of erotic touch perception. To investigate the relations between sexual desire and sexual performance and the perception of touch mediated by CT afferents. Seventy healthy participants (28 men, 42 women; mean age ± SD = 24.84 ± 4.08 years, range = 18-36 years) underwent standardized and highly controlled stroking stimulation that varied in the amount of CT fiber stimulation by changing stroking velocity (CT optimal = 1, 3 and 10 cm/s; CT suboptimal = 0.1, 0.3, and 30 cm/s). Participants rated the perceived pleasantness, eroticism, and intensity of the applied tactile stimulation on a visual analog scale, completed the Sexual Desire Inventory, and answered questions about sexual performance. Ratings of perceived eroticism of touch were related to self-report levels of sexual desire and sexual performance. Pleasantness and eroticism ratings showed similar dependence on stroking velocity that aligned with the activity of CT afferents. Erotic touch perception was related to sexual desire and sexual performance in a gender-specific way. In women, differences in eroticism ratings between CT optimal and suboptimal velocities correlated positively with desire for sexual interaction. In contrast, in men, this difference correlated to a decreased frequency and longer duration of partnered sexual activities. The present results lay the foundation for future research assessing these relations in patients with specific impairments of sexual functioning (eg, hypoactive sexual desire disorder). The strength of the study is the combination of standardized neurophysiologic methods and behavioral data. A clear limitation of the study design is the exclusion of exact data on the female menstrual cycle and the recruitment of an inhomogeneous sample

  13. Gender-specific relationships between depressive symptoms, marijuana use, parental communication and risky sexual behavior in adolescence.

    Science.gov (United States)

    Schuster, Randi Melissa; Mermelstein, Robin; Wakschlag, Laurie

    2013-08-01

    A large body of research has identified correlates of risky sexual behavior, with depressive symptoms and marijuana use among the most consistent psychosocial predictors of sexual risk. However, substantially less research has examined the relationship between these risk variables and adolescent risky sexual behavior over time as well as the interaction of these individual-level predictors with family-level variables such as parenting factors. Additionally, most studies have been restricted to one index of risky sexual behavior, have not taken into account the complex role of gender, and have not controlled for several of the factors that independently confer risk for risky sexual behavior. Therefore, the current study investigated the association between depressive symptoms and parameters of parenting on marijuana use, number of sexual partners and condom usage measured 9 months later for both boys and girls. Participants were 9th and 10th grade adolescents (N = 1,145; 57.7% female). We found that depressive symptoms may be a gender-specific risk factor for certain indices of risky sexual behavior. For boys only, marijuana use at Time 2 accounted for the variance in the relationship between depressive symptoms at Time 1 and number of partners at Time 2. Additionally, strictness of family rules at Time 1 was associated with the number of partners with whom girls engaged in sex at Time 2, but only among those with lower levels of depressive symptoms at Time 1. Results from the current investigation speak to the utility of examining the complex, gender-specific pathways to sexual risk in adolescents. Findings suggest that treatment of mental health and substance use problems may have important implications in rates of risky sexual behavior and, conceivably, controlling the high rates of serious individual and public health repercussions.

  14. Depression and HIV in Botswana: a population-based study on gender-specific socioeconomic and behavioral correlates.

    Directory of Open Access Journals (Sweden)

    Reshma Gupta

    Full Text Available BACKGROUND: Depression is a leading contributor to the burden of disease worldwide, a critical barrier to HIV prevention and a common serious HIV co-morbidity. However, depression screening and treatment are limited in sub-Saharan Africa, and there are few population-level studies examining the prevalence and gender-specific factors associated with depression. METHODS: We conducted a cross-sectional population-based study of 18-49 year-old adults from five districts in Botswana with the highest prevalence of HIV-infection. We examined the prevalence of depressive symptoms, using a Hopkins Symptom Checklist for Depression (HSCL-D score of ≥ 1.75 to define depression, and correlates of depression using multivariate logistic regression stratified by sex. RESULTS: Of 1,268 participants surveyed, 25.3% of women and 31.4% of men had depression. Among women, lower education (adjusted odds ratio [AOR] 2.07, 95% confidence interval [1.30-3.32], higher income (1.77 [1.09-2.86], and lack of control in sexual decision-making (2.35 [1.46-3.81] were positively associated with depression. Among men, being single (1.95 [1.02-3.74], living in a rural area (1.63 [1.02-2.65], having frequent visits to a health provider (3.29 [1.88-5.74], anticipated HIV stigma (fearing discrimination if HIV status was revealed (2.04 [1.27-3.29], and intergenerational sex (2.28 [1.17-4.41] were independently associated with depression. DISCUSSION: Depression is highly prevalent in Botswana, and its correlates are gender-specific. Our findings suggest multiple targets for screening and prevention of depression and highlight the need to integrate mental health counseling and treatment into primary health care to decrease morbidity and improve HIV management efforts.

  15. Platelet proteomics.

    Science.gov (United States)

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  16. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka;

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed ...... evaluates and monitors intervention in metabolic diseases....... in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten-protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly...

  17. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed...... by a year of weight maintenance. Using mass spectrometry-based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual-specific protein levels with wide-ranging effects of losing weight on the plasma proteome reflected in 93 significantly...... evaluates and monitors intervention in metabolic diseases....

  18. Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis

    NARCIS (Netherlands)

    Dihal, A.A.; Woude, H. van der; Hendriksen, P.J.M.; Charif, H.; Dekker, L.J.; IJsselstijn, L.; Boer, V.C.J. de; Alink, G.M.; Burgers, P.C.; Rietjens, I.M.C.M.; Woutersen, R.A.; Stierum, R.H.

    2008-01-01

    Quercetin has been shown to act as an anticarcinogen in experimental colorectal cancer (CRC). The aim of the present study was to characterize transcriptome and proteome changes occurring in the distal colon mucosa of rats supplemented with 10 g quercetin/kg diet for 11 wk. Transcriptome data analyz

  19. Proteomic classification of breast cancer.

    LENUS (Irish Health Repository)

    Kamel, Dalia

    2012-11-01

    Being a significant health problem that affects patients in various age groups, breast cancer has been extensively studied to date. Recently, molecular breast cancer classification has advanced significantly with the availability of genomic profiling technologies. Proteomic technologies have also advanced from traditional protein assays including enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry to more comprehensive approaches including mass spectrometry and reverse phase protein lysate arrays (RPPA). The purpose of this manuscript is to review the current protein markers that influence breast cancer prediction and prognosis and to focus on novel advances in proteomic classification of breast cancer.

  20. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...

  1. The magnitude and character of resistance-training-induced increase in tendon stiffness at old age is gender specific.

    Science.gov (United States)

    Onambele-Pearson, Gladys Leopoldine; Pearson, Stephen John

    2012-04-01

    Human tendon mechanical properties are modified with loading. Moreover, there are indications that the training response in the tendon is gender specific. The aim of the current study was to examine whether in vivo patella tendon stiffness (K) differentially alters with training in older males compared with females. We also aimed to identify which endocrine pathway underlies the responses. Maximal knee extensor forces were also monitored to determine the training effect on muscle function. Fourteen healthy, habitually active older persons (seven males aged 74.0 ± 1.2 years (mean±SEM) and seven females aged 76.7 ± 1.2 years) were tested at baseline and after 12 weeks of weekly, progressive resistance training. With training, percentage increase in quadriceps maximum voluntary isometric force (MVC) was similar in males (2,469.6 ± 168.0 to 3,097.3 ± 261.9 N; +25.3 ± 6.1% (p pattern was found whereby below ~40% MVC, the females showed their greatest degree of K changes, whereas the males showed their greatest degree of K change above this relative force level. This gender contrast was also true at a standardised force level (1,200 N), with 5.8 ± 0.4% vs. 82.5 ± 1.8% increments in the females (i.e. value change from 380.3 ± 14.1 to 402.4 ± 13.3 N/mm) and the males (i.e. value change from 317.8 ± 13.8 to 580.2 ± 30.9 N/mm), respectively (p < 0.001). While circulating levels of both IGF-I and IL-6 did not alter with training, IGFBP-3 showed a significant training effect (19.1 ± 4.8%, p < 0.001) and only in the male sub-group (p = 0.038). We show here that with training, in vivo older females' tendon is less dramatically modulated than that of males'. We also show that the relative forces, at which the greatest adaptations are exhibited, differ by gender, with a suggestion of endocrine adaptations in males only. We thus propose that both training and rehabilitation regimens should consider gender-specific tendon responsiveness, at least in older persons.

  2. Proteomic analysis.

    Science.gov (United States)

    Cosette, Pascal; Jouenne, Thierry

    2014-01-01

    Proteome provides highly valuable information on the amount, modifications, and subcellular localization of polypeptides. Accordingly, geneticists, molecular biologists, and biochemists have logically applied these new tools to respond to different lines of biological questions (inventory of proteins, impact of a mutation, dynamics of protein regulation under a given exposure, …). However, even if the results obtained are very informative, this approach needs an excellent experimental design which ensures robustness and thus yields reproducibility. The present chapter gives appropriate methods for assessing the proteome of Pseudomonas aeruginosa by using a two-dimensional gel electrophoresis approach. Protocols for crude protein extraction, protein separation by using immobilized pH gradients, and protein identification by Liquid Chromatography coupled with tandem Mass Spectrometry (LC-MS/MS) are given.

  3. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphisms with overweight/obesity on serum lipid levels in a Chinese Han population.

    Science.gov (United States)

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan

    2016-10-28

    Little is known regarding the interactions of methylenetetrahydrofolate reductase (MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms with overweight/obesity on serum lipid profiles. The aim of the current study was to explore interactions between the two polymorphisms and overweight/obesity on four common lipid levels in a Chinese Han population and further to evaluate whether these interactions exhibit gender-specificity. A total of 2239 participants (750 females and 1489 males) were enrolled into this study. The genotypes of the MTHFR C677T and MTRR A66G were determined by a TaqMan assay. Overweight and obesity were defined as a body mass index between 24 and 27.99 and ≥ 28 kg/m(2), respectively. The interactions were examined by factorial design covariance analysis, and further multiple comparisons were conducted by Bonferroni correction. There was no significant difference in the genotypic and allelic frequencies between females and males (MTHFR 677 T allele: 54.47 % for females and 54.40 % for males; MTRR 66G allele: 24.73 % for females and 24.71 % for males). Interaction between the MTHFR C677T polymorphism and overweight/obesity on serum triglyceride levels, and interaction between the MTRR A66G polymorphism and overweight/obesity on serum high-density lipoprotein cholesterol levels were detected in women (P = 0.015 and P = 0.056, respectively). For female subjects with overweight/obesity, the serum triglyceride levels in MTHFR 677TT genotype [1.09 (0.78-1.50) mmol/L] were significantly higher as compared with MTHFR 677CC genotype [0.90 (0.60-1.15) mmol/L, P = 0.007], and the MTRR 66GG genotype carriers had higher serum high-density lipoprotein cholesterol levels than those with MTRR 66AG genotype (1.46 ± 0.50 vs. 1.19 ± 0.31 mmol/L, P = 0.058). Furthermore, in male subjects with overweight/obesity, the MTHFR 677CT genotype carriers had higher low-density lipoprotein cholesterol levels than those

  4. Differential patterns of amygdala and ventral striatum activation predict gender-specific changes in sexual risk behavior.

    Science.gov (United States)

    Victor, Elizabeth C; Sansosti, Alexandra A; Bowman, Hilary C; Hariri, Ahmad R

    2015-06-10

    Although the initiation of sexual behavior is common among adolescents and young adults, some individuals express this behavior in a manner that significantly increases their risk for negative outcomes including sexually transmitted infections. Based on accumulating evidence, we have hypothesized that increased sexual risk behavior reflects, in part, an imbalance between neural circuits mediating approach and avoidance in particular as manifest by relatively increased ventral striatum (VS) activity and relatively decreased amygdala activity. Here, we test our hypothesis using data from seventy 18- to 22-year-old university students participating in the Duke Neurogenetics Study. We found a significant three-way interaction between amygdala activation, VS activation, and gender predicting changes in the number of sexual partners over time. Although relatively increased VS activation predicted greater increases in sexual partners for both men and women, the effect in men was contingent on the presence of relatively decreased amygdala activation and the effect in women was contingent on the presence of relatively increased amygdala activation. These findings suggest unique gender differences in how complex interactions between neural circuit function contributing to approach and avoidance may be expressed as sexual risk behavior in young adults. As such, our findings have the potential to inform the development of novel, gender-specific strategies that may be more effective at curtailing sexual risk behavior.

  5. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera

    Science.gov (United States)

    Bräutigam, Katharina; Soolanayakanahally, Raju; Champigny, Marc; Mansfield, Shawn; Douglas, Carl; Campbell, Malcolm M.; Cronk, Quentin

    2017-01-01

    Methylation has frequently been implicated in gender determination in plants. The recent discovery of the sex determining region (SDR) of balsam poplar, Populus balsamifera, pinpointed 13 genes with differentiated X and Y copies. We tested these genes for differential methylation using whole methylome sequencing of xylem tissue of multiple individuals grown under field conditions in two common gardens. The only SDR gene to show a marked pattern of gender-specific methylation is PbRR9, a member of the two component response regulator (type-A) gene family, involved in cytokinin signalling. It is an ortholog of Arabidopsis genes ARR16 and ARR17. The strongest patterns of differential methylation (mostly male-biased) are found in the putative promoter and the first intron. The 4th intron is strongly methylated in both sexes and the 5th intron is unmethylated in both sexes. Using a statistical learning algorithm we find that it is possible accurately to assign trees to gender using genome-wide methylation patterns alone. The strongest predictor is the region coincident with PbRR9, showing that this gene stands out against all genes in the genome in having the strongest sex-specific methylation pattern. We propose the hypothesis that PbRR9 has a direct, epigenetically mediated, role in poplar sex determination. PMID:28345647

  6. Gender specific association of genetic variation in peroxisome proliferator-activated receptor (PPAR)gamma-2 with longevity.

    Science.gov (United States)

    Barbieri, Michelangela; Bonafè, Massimiliano; Rizzo, Maria Rosaria; Ragno, Emilia; Olivieri, Fabiola; Marchegiani, Francesca; Franceschi, Claudio; Paolisso, Giuseppe

    2004-07-01

    Long-lived subjects have been shown to have peculiar anthropometric features (i.e. lower body mass index (BMI)) and metabolic parameters (i.e. improved insulin sensitivity). Life style and a genetic background potentially protective against the age-related metabolic derangement might contribute to such a particular phenotype. Peroxisome proliferator-activated receptor (PPAR)gamma-2 is an important regulator of adipose tissue metabolism, insulin sensitivity and inflammatory response. Thus, the potential role of genetic variability at Pro/Ala loci of PPARG gene on longevity was studied in 222 long-lived subjects and 250 aged subjects. We found a different Pro/Ala genotype frequency distribution between long-lived and aged men subjects, long-lived men having an increased frequency of Pro/Ala genotype (20 vs 8.5%); no differences was found when allele and genotype distribution of Pro/Ala gene polymorphism were analyzed in the two age group of women. Interestingly, subjects with Pro/Ala polymorphism had significantly lower BMI than Ala/Ala and Pro/Pro polymorphism. In conclusion, our study demonstrated that paraoxonase Pro/Ala gene polyporphism is associated with human longevity. Such an effect is probably due to the effect of Pro/Ala polymorphism on body composition and appears to be gender specific.

  7. Perceived parent-adolescent relationship, perceived parental online behaviors and pathological internet use among adolescents: gender-specific differences.