WorldWideScience

Sample records for gelatin-siloxane nanoparticles decorated

  1. Microsphere-integrated gelatin-siloxane hybrid scaffolds for bone tissue engineering :in vitro bioactivity & antibacterial activity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microsphere integrated gelatin-siloxane hybrid scaffolds were successfully synthesized by using a combined sol-gel processing,post-gelation soaking and freeze-drying process.A bone-like apatite layer was able to form in the Ca2+-containing porous hybrids upon soaking in a simulated body fluid (SBF) up to 1 day.The rate of gentamicin sulfate (GS) release from the GS-loaded gelatin-siloxane hybrid microsphere became constant after a 4 h burst.The antibacterial activity was assessed by the agar diffusion test (ADT) and the bactericidal effect test.It is evident that the as-synthesized porous scaffolds have excellent bioactivity and antibacterial activity,and may be favorable in bone tissue engineering.

  2. Synthesis of Bioactive Gelatin-siloxane Hybrids for Bone Tissue Engineering and Evaluation of Its Drug Release Behaviors in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Porous and bioactive gentamicin sulfate-loaded gelatin-siloxane hybrids were successfully synthesized by using a combined sol-gel processing, post-gelation soaking, and freeze-drying process. A bone-like apatite layer was able to form in the Ca2 + -containing porous gentamicin-loaded hybrids upon soaking in a simulated body fluid (SBF) up to 1 day. The drug release of gentamicin sulfate was with a burst, followed by an almost constant release up to 7 days. And the rate of release in acidic medium was lower than that in the neutral and basic media.

  3. Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles

    DEFF Research Database (Denmark)

    Manzoni, G.; Ponzoni, S.; Galimberti, G.

    2016-01-01

    The relaxation dynamics of unaligned multi-walled carbon nanotubes decorated with metallic nanoparticles have been studied by using transient optical measurements. The fast dynamics due to the short-lived free-charge carriers excited by the pump are not affected by the presence of nanoparticles...

  4. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    Science.gov (United States)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-08-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.

  5. Ultra-small Palladium Nanoparticle Decorated Carbon Nanotubes: Conductivity and Reactivity.

    Science.gov (United States)

    Li, Xiuting; Batchelor-McAuley, Christopher; Tschulik, Kristina; Shao, Lidong; Compton, Richard G

    2015-08-03

    Carbon nanotubes decorated with ultra-small metal nanoparticles are of great value in catalysis. We report that individual multiwalled carbon nanotubes decorated with ultra-small palladium nanoparticles can be detected by using the nano-impacts method. The high conductivity and reactivity of each decorated carbon nanotube is directly evidenced; this is achieved through studying the proton-reduction reaction for the underpotential deposition of hydrogen onto the nanoparticles decorated on the carbon nanotube walls. The reductive spikes from current amplification are analyzed to estimate the approximate length of the decorated carbon nanotubes, revealing that the decorated carbon nanotubes are electroactive along its entire length of several micrometers.

  6. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  7. Characterisation of carbon nanotubes decorated with platinum nanoparticles

    OpenAIRE

    M. Pawlyta; D. Łukowiec; A.D. Dobrzańska-Danikiewicz

    2012-01-01

    Purpose: In presented work results of synthesis of carbon nanotubes decorated with platinum nanoparticles by organic colloidal process as an example of direct formation of nanoparticles onto CNTs are reported.Design/methodology/approach: Powder XRD and transmission electron microscopy were used for characterisation of the morphology of composite as well as the distribution of nanocrystals on the CNTs surfaces.Findings: TEM results confirm that CNT were homogeneous and clean, without any admix...

  8. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    Science.gov (United States)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  9. Antifungal Applications of Ag-Decorated Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    C. A. Zamperini

    2013-01-01

    Full Text Available Pure hydroxyapatite (HA and hydroxyapatite decorated with silver (HA@Ag nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated against Candida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects.

  10. Polymer decorated gold nanoparticles in nanomedicine conjugates.

    Science.gov (United States)

    Capek, Ignác

    2017-02-15

    Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review

  11. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-07-15

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could be a promising procedure for improving the antibacterial properties for orthopedic and dental implants.

  12. Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles

    Science.gov (United States)

    Xu, Jiarong; Zhang, Yu; Zhao, Yanbao; Zou, Xueyan

    2017-09-01

    N-halamine decorated mesoporous silica nanoparticles (mSiO2/halamine NPs) were prepared by coating mSiO2 NPs with poly (1-allylhydantoin-co-methyl methacrylate) (AH-co-MMA) by the aid of the radical polymerization, followed by chlorination treatment. The sterilizing effect on the bacterial strain is investigated by incubating Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results indicated that the mSiO2/halamine NPs had excellent antibacterial activity and no significant change occurred in antibacterial efficiency after five recycle experiments.

  13. Uniform Decoration of Reduced Graphene Oxide Sheets with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Huanping Yang

    2012-01-01

    Full Text Available A simple method employing ionic liquid functionalization is developed to achieve the uniform decoration of reduced graphene oxide sheets with gold nanoparticles. The synthesis of ionic liquid modified graphene oxide is accomplished by covalently binding 1-(3-Aminopropyl imidazole with GO sheets. The formation mechanism of Au nanoparticles on RGO sheets is proposed to load AuCl4- onto the surface of GO sheets through anion exchange; then reduce AuCl4- to Au NPs and at the same time reduce GO sheets to RGO sheets via a one-step process. The presence of Au NPs is well identified by SEM, TEM, and XPS. As a concept, the RGO-supported Au NPs is applied to surface-enhanced Raman spectroscopy.

  14. Fabrication of Phenanthroline Modified Graphene Nanosheets Decorated with Palladium Nanoparticles.

    Science.gov (United States)

    Lingappan, Niranjanmurthi; Kim, Do Hoon; Park, Chan; Gal, Yeong-Soon; Lim, Kwon Taek

    2015-01-01

    Palladium nanoparticles decorated modified reduced graphene oxide (RGO) composite was synthesized by a two-step process using 1,10-Phenanthroline (PHEN) as bridging agent. Firstly, the graphene oxide (GO) was non-covalently modified with the PHEN molecules through π-π interaction between two components. Then, the modified GO was complexed with Pd precursor and subsequently reduced from Pd2+ to Pd0 using NaBH4 to yield Pd dispersed modified RGO sheets. The structure and morphology of the resulting composites were characterized by FTIR, TGA, EDX, FESEM, HRTEM and XRD measurements. XPS results revealed that the reduction of Pd2+ to metal-lic Pd was successfully achieved, while the HRTEM and FESEM micrographs suggested that the Pd nanoparticles were well-dispersed on the functionalized graphene sheets.

  15. Cu-Ni nanoparticle-decorated graphene based photodetector

    Science.gov (United States)

    Kumar, Anil; Husale, Sudhir; Srivastava, A. K.; Dutta, P. K.; Dhar, Ajay

    2014-06-01

    We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device.We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00916a

  16. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Zhiqiang Shen

    2016-03-01

    Full Text Available The size, shape, stiffness (composition and surface properties of nanoparticles (NPs have been recognized as key design parameters for NP-mediated drug delivery platforms. Among them, the surface functionalization of NPs is of great significance for targeted drug delivery. For instance, targeting moieties are covalently coated on the surface of NPs to improve their selectively and affinity to cancer cells. However, due to a broad range of possible choices of surface decorating molecules, it is difficult to choose the proper one for targeted functions. In this work, we will review several representative experimental and computational studies in selecting the proper surface functional groups. Experimental studies reveal that: (1 the NPs with surface decorated amphiphilic polymers can enter the cell interior through penetrating pathway; (2 the NPs with tunable stiffness and identical surface chemistry can be selectively accepted by the diseased cells according to their stiffness; and (3 the NPs grafted with pH-responsive polymers can be accepted or rejected by the cells due to the local pH environment. In addition, we show that computer simulations could be useful to understand the detailed physical mechanisms behind these phenomena and guide the design of next-generation NP-based drug carriers with high selectivity, affinity, and low toxicity. For example, the detailed free energy analysis and molecular dynamics simulation reveals that amphiphilic polymer-decorated NPs can penetrate into the cell membrane through the “snorkeling” mechanism, by maximizing the interaction energy between the hydrophobic ligands and lipid tails. We anticipate that this work will inspire future studies in the design of environment-responsive NPs for targeted drug delivery.

  17. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng, E-mail: xfxiao@fjnu.edu.cn

    2015-01-01

    Highlights: • P25 nanoparticles decorated on titania nanotube arrays were prepared by hydrothermal treatment. • P25 nanoparticles were conducive to improve the loading effect of ibuprofen into nanotube arrays. • The diameters of the decorated nanotubes were decrease markedly which led to an effective and prolonged drug release. - Abstract: In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO{sub 2}) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs–P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10{sup −4} M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  18. Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications

    CSIR Research Space (South Africa)

    Bello, A

    2014-01-01

    Full Text Available Silver metal nanoparticles were decorated by electron beam evaporation on graphene foam (GF) grown by chemical vapour deposition. X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and atomic force microscopy were...

  19. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    Science.gov (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  20. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Directory of Open Access Journals (Sweden)

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  1. Synthesis of Metal Nanoparticle-decorated Carbon Nanotubes under Ambient Conditions

    Science.gov (United States)

    Lin, Yi; Watson, Kent A.; Ghose, Sayata; Smith, Joseph G.; Connell, John W.

    2008-01-01

    This viewgraph presentation reviews the production of Metal Nanoparticle-decorated carbon Nanotubes. Multi-walled carbon nanotubes (MWCNTs) were efficiently decorated with metal nanoparticles (e.g. Ag, Pt, etc.) using the corresponding metal acetate in a simple mixing process without the need of chemical reagents or further processing. The conversion of acetate compounds to the corresponding metal reached over 90%, forming nanoparticles with average diameters less than 10 nm under certain conditions. The process was readily scalable allowing for the convenient preparation of multi-gram quantities of metal nanoparticle-decorated MWCNTs in a matter of a few minutes. These materials are under evaluation for a variety of electrical and catalytic applications. The preparation and characterization of these materials will be presented. The microscopic views of the processed MWCNTs are shown

  2. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.

    Science.gov (United States)

    Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin

    2017-04-01

    In order to improve the antibacterial activities while decrease the cytotoxity of silver nanoparticles, we prepared a novel nanocomposites composed of silver nanoparticles decorated lipase-sensitive polyurethane micelles (PUM-Ag) with MPEG brush on the surface. The nanocomposite was characterized by UV-vis, TEM and DLS. UV-vis and TEM demonstrated the formation of silver nanoparticles on PU micelles and the nanoassembly remained intact without the presence of lipase. The silver nanoparticles were protected by the polymer matrix and PEG brush which show good cytocompatibility to HUVEC cells and low hemolysis. Moreover, at the presence of lipase, the polymer matrix of nanocomposites is subject to degradation and the small silver nanoparticles were released as is shown by DLS and TEM. The MIC and MBC studies showed an enhanced toxicity of the nanocomposites to both gram negative and gram positive bacteria, i.e. E. coli and S. aureus, as the result of the degradation of polymer matrix by bacterial lipase. Therefore, the nanocomposites are biocompatible to mammalian cells cells which can also lead to activated smaller silver nanoparticles release at the presence of bacteria and subsequently enhanced inhibition of bacteria growth. The satisfactory selectivity for bacteria compared to HUVEC and RBCs make PUM-Ag a promising antibacterial nanomedicine in biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yanyan; Zhang Peng [Department of Chemistry, New Mexico Tech, Socorro, NM 87801 (United States); Rogelj, Snezna, E-mail: pzhang@nmt.edu [Department of Biology, New Mexico Tech, Socorro, NM 87801 (United States)

    2010-02-10

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO{sub 2}-NH{sub 2}-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO{sub 2}-NH{sub 2}-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  4. Enhanced viscoelastic property of iron oxide nanoparticle decorated organoclay fluid under magnetic field

    Science.gov (United States)

    Son, You-Hwan; Jung, Youngsoo; Roh, Heesuk; Lee, Jung-Kun

    2017-08-01

    Stable hydrophobic nanocomposites of magnetic nanoparticles and clay are prepared by the self-assembly of magnetite (Fe3O4) nanoparticles on surfaces of exfoliated clay platelets. Due to the attractive interaction between hydrophobic groups, oleic acid coated nanoparticles are strongly attached to the surface of cetyl trimethylammonium cation coated clay platelets in organic media. Crystal structure and magnetic property of composite particles are examined using electron microscopy, x-ray diffractometer and vibration sample magnetometer. In addition, composite particles are dispersed in mineral oil and rheological properties of composite particle suspensions are characterized using steady-state and oscillatory measurements. Magnetite nanoparticle decorated organoclay forms a tunable network in mineral oil. When a magnetic field is applied, the composite particle fluid exhibits higher storage modulus and maintains a solid-like property at larger strain. Our results show that the viscoelastic property of the magnetite nanoparticle decorated organoclay fluid is controlled by applying external magnetic field.

  5. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Science.gov (United States)

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng

    2015-01-01

    In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO2) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs-P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10-4 M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  6. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  7. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    Science.gov (United States)

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-10-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation.

  8. Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor

    Science.gov (United States)

    Toloman, D.; Popa, A.; Stan, M.; Socaci, C.; Biris, A. R.; Katona, G.; Tudorache, F.; Petrila, I.; Iacomi, F.

    2017-04-01

    Reduced graphene oxide (rGO) decorated with Fe doped SnO2 nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO2 oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO2:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO2:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO2:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO2 nanoparticles.

  9. Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors

    Science.gov (United States)

    Kheel, Hyejoon; Sun, Gun-Joo; Lee, Jae Kyung; Mirzaei, Ali; Choi, Seungbok; Lee, Chongmu

    2017-01-01

    Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO nanorods followed by thermal annealing. X-ray diffraction was performed to examine the structure and purity of the synthesized nanoatuctures. Scanning electron microscopy was used to examine the morphology and shape of the nanostuctures. The Nb2O5 nanoparticles-decorated CuO nanorod sensor showed responses of 217.05-862.54%, response times of 161-199 s and recovery times of 163-171 s toward H2 gas with concentrations in a range of 0.5 - 5% at the optimal working temperature of 300 °C. The Nb2O5 nanoparticle-decorated CuO nanorod sensor showed superior sensing performance to the pristine CuO nanorod sensor for the same H2 concentration range. The underlying mechanism for the enhanced hydrogen sensing performance of the CuO nanorods decorated with Nb2O5 nanoparticles is discussed.

  10. Morphology, Microstructure and Transport Properties of ZnO Decorated SiO2 Nanoparticles (Preprint)

    Science.gov (United States)

    2010-04-15

    nanoparticle core. Previous efforts involving gold nanocluster decoration of silica nanopar- ticles have been reported by Westcott et. al16, how- ever metal...2010). 16 S. Westcott , S. Oldenburg, T. Lee, and N. Halas, Langmuir 14, 5396 (1998). 17 W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26

  11. Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide

    National Research Council Canada - National Science Library

    Xiaojuan Wang Xinli Guo Jian Chen Chuang Ge Hongyi Zhang Yuanyuan Liu Li Zhao Yao Zhang Zengmei Wang Litao Sun

    The Au nanoparticles decorated graphene(AuNPs@Gr)/nickel foam(Gr/NiF) nanocomposite(AuNPs@Gr/NiF) was prepared by chemical vapor deposition followed by electrophoretic deposition of AuNPs on Gr/NiF...

  12. Hierarchical nanoflowers assembled with Au nanoparticles decorated ZnO nanosheets toward enhanced photocatalytic properties

    DEFF Research Database (Denmark)

    Yu, Cuiyan; Yu, Yanlong; Xu, Tao

    2017-01-01

    Hierarchical nanoflowers assembled with Au nanoparticles (NPs) decorated ZnO nanosheets (Au-ZnO nanosheet flowers, AZNSFs) were successful synthesized. The AZNSFs showed more efficient activity to photodegradation of RhB than that of pure ZnO nanosheet flowers and commercial ZnO nanopowders...

  13. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed.

  14. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    Science.gov (United States)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  15. Facile synthesis of decorated graphene oxide sheets with WO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Adineh, Ensieh; Rasuli, Reza [University of Zanjan, Department of Physics, Faculty of Science, P.O. Box 45371-38791, Zanjan (Iran, Islamic Republic of)

    2015-09-15

    Potential applications of graphene oxide (GO) nanocomposites have attracted remarkable attention to modify its properties by functionalizing and decorating with nanoparticles. In this work, after synthesis of GO sheets by oxidation and exfoliation of natural graphite, they were decorated with tungsten oxide nanoparticles using arc discharge in GO solution. Transmission electron microscopy shows that the chain of WO{sub 3} nanoparticles decorates the GO sheets. Fourier transform infrared spectroscopy and Raman spectroscopy show that WO{sub 3} nanoparticles are attached to GO sheets by bond formation between the tungsten and oxygen of functional groups, especially with epoxides on the GO sheets. Nanocomposite production in different arc currents shows that the greater the electrical current, the stronger the bond is formed between WO{sub 3} and GO. X-ray diffraction confirms that the WO{sub 3} nanoparticles on the GO are highly crystalline in monoclinic phase. Moreover, by increasing the arc current from 20 to 40 A, the band gap energy of GO + WO{sub 3} decreases to ∝2.6 eV. (orig.)

  16. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    Science.gov (United States)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  17. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications

    Science.gov (United States)

    Luchini, Alessandra; Irace, Carlo; Santamaria, Rita; Montesarchio, Daniela; Heenan, Richard K.; Szekely, Noemi; Flori, Alessandra; Menichetti, Luca; Paduano, Luigi

    2016-05-01

    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are

  18. Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles.

    Science.gov (United States)

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Rossi, Riccardo; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2017-01-01

    Multiwalled carbon nanotube (MWCNT)-based chemiresistors were electrochemically decorated with Au and Pd nanoparticles (NPs), resulting in an improvement in the detection of gaseous pollutants as compared to sensors based on pristine MWCNTs. Electrophoresis was used to decorate MWCNTs with preformed Au or Pd NPs, thus preserving their nanometer-sized dimensions and allowing the metal content to be tuned by simply varying the deposition time. The sensing response of unmodified and metal-decorated MWCNTs was evaluated towards different gaseous pollutants (e.g., NO2, H2S, NH3 and C4H10) at a wide range of concentrations in the operating temperature range of 45-200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses.

  19. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  20. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Science.gov (United States)

    Holtz, R. D.; Souza Filho, A. G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O. L.

    2010-05-01

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  1. Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ming-Kai Chuang

    2015-08-01

    Full Text Available Atomically thin two-dimensional (2D transition metal dichalcogenides have also attracted immense interest because they exhibit appealing electronic, optical and mechanical properties. In this work, we prepared gold nanoparticle-decorated molybdenum sulfide (AuNP@MoS2 through a simple spontaneous redox reaction. Transmission electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy were used to characterize the properties of the AuNP@MoS2 nanomaterials. Then we employed such nanocomposites as the cathode buffer layers of organic photovoltaic devices (OPVs to trigger surface plasmonic resonance, leading to noticeable enhancements in overall device efficiencies. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the effects of localized surface plasmonic resonance. Our results suggest that the metal nanoparticle-decorated two-dimensional materials appear to have great potential for use in high-performance OPVs.

  2. Design strategy of surface decoration for efficient delivery of nanoparticles by computer simulation

    Science.gov (United States)

    Ding, Hong-Ming; Ma, Yu-Qiang

    2016-05-01

    Understanding the role of surface decoration of nanoparticles in protein adsorption and cellular uptake is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we take two typical coating polymers (i.e., hydrophilic and zwitterionic polymers) as an example, and systematically investigate their effect on cellular delivery of hydrophobic and charged nanoparticles (in the presence of serum protein). Our results show that though two types of polymers are charge-neutral and can both reduce the protein adsorption, there exist some differences between their ability of protein resistance, especially in the case of positively charged nanoparticles. Besides, it is found that the coating polymers may also greatly decrease the cellular uptake efficiency of nanoparticles. Nevertheless, and importantly, since the zwitterionic polymers may become positively charged under low pH environments, the nanoparticle can attach onto cell membrane more firmly than that coated with hydrophilic polymers, which can further enhance the active targeting of nanoparticles. Finally, we also provide the design maps for surface decoration to achieve efficient cellular delivery. These results can help better understand how to keep the balance between protein resistance and cell targeting, which may give some useful guidelines on optimal design of future nanomaterials in drug delivery.

  3. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications.

    Science.gov (United States)

    Luchini, Alessandra; Irace, Carlo; Santamaria, Rita; Montesarchio, Daniela; Heenan, Richard K; Szekely, Noemi; Flori, Alessandra; Menichetti, Luca; Paduano, Luigi

    2016-05-21

    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.

  4. Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles.

    Science.gov (United States)

    Zhang, Xiaolei; Xiao, Xiangheng; Dai, Zhigao; Wu, Wei; Zhang, Xingang; Fu, Lei; Jiang, Changzhong

    2017-03-02

    Low-cost, stabilized and ultrasensitive three-dimensional (3D) hierarchical surface-enhanced Raman scattering substrates ("sunflower-like" nanoarrays decorated with Ag nanoparticles, denoted as SLNAs-Ag) have been obtained by fabricating binary colloidal crystals and then decorating with Ag nanoparticles. In order to provide a larger density of hot spots within the laser-illumination area, the silica sphere arrays were chosen as the island-type platform for the polystyrene (PS) nanosphere deposition, and the distances between the PS nanospheres were tuned by etching for different durations. Compared with conventional 2D planar systems, the as-fabricated 3D SLNAs-Ag exhibited extremely high SERS sensitivity ascribed to the larger SERS active regions. Quantitative detection of molecules with an extremely low incident laser power was achieved on the "sunflower-like" nanoarrays in which the PS nanospheres were etched for 5 minutes and decorated with Ag nanoparticles, and the corresponding analytical enhancement factor is calculated to be 2 × 10(14) with the concentration of rhodamine 6G down to 10(-15) M. Based on the achieved SERS substrates, we have further demonstrated the highly sensitive detection of molecules such as melamine for food safety inspection.

  5. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir.

    Science.gov (United States)

    Gupta, Swati; Agarwal, Abhinav; Gupta, Nishant Kumar; Saraogi, Gauravkant; Agrawal, Himanshu; Agrawal, G P

    2013-12-01

    The present study explores prospective of surface tailored nanoparticles for targeted delivery of acyclovir along with the interception of minimal side effects. Acyclovir loaded plain and galactosylated poly lectic co glycolic acid (PLGA) nanoparticles were efficiently prepared and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), size, polydispersity index, zeta potential, and entrapment efficiency. The formulations were evaluated for in vitro drug release and hemolysis. Further, biodistribution study and fluorescent microscopic studies were carried out to determine the targeting potential of formulations. SEM revealed smooth morphology and spherical shape of the nanoparticles. In vitro, the galactosylated nanoparticles were found to be least hemolytic and exhibited a sustained release pattern. In vivo studies exhibited an augmented bioavailability, increased residence time and enhanced delivery of acyclovir to the liver upon galactosylation. It may therefore be concluded that galactose conjugated PLGA nanoparticles can be used suitably as vehicles for delivery of bioactives specifically to the hepatic tissues and may be thus exploited in the effective management of various liver disorders.

  6. The Interactions between L-Tyrosine Based Nanoparticles Decorated with Folic Acid and Cervical Cancer Cells Under Physiological Flow

    Science.gov (United States)

    Ditto, Andrew J.; Shah, Kush N.; Robishaw, Nikki K.; Panzner, Matthew J.; Youngs, Wiley J.; Yun, Yang H.

    2012-01-01

    Many anticancer drugs have been established clinically, but their efficacy can be compromised by nonspecific toxicity and an inability to reach the desired cancerous intracellular spaces. In order to address these issues, researchers have explored the use of folic acid as a targeted moiety to increase specificity of chemotherapeutic drugs. To expand upon such research, we have conjugated folic acid to functionalized poly(ethylene glycol) and subsequently decorated the surface of L-tyrosine polyphosphate (LTP) nanoparticles. These nanoparticles possess the appropriate size (100–500 nm) for internalization as shown by scanning electron microscopy and dynamic light scattering. Under simulated physiological flow, LTP nanoparticles decorated with folic acid (targeted nanoparticles) show a 10-fold greater attachment to HeLa, a cervical cancer cell line, compared to control nanoparticles and to human dermal fibroblasts. The attachment of these targeted nanoparticles progresses at a linear rate, and the strength of this nanoparticle attachment is shown to withstand shear stresses of 3.0 dynes/cm2. These interactions of the targeted nanoparticles to HeLa are likely a result of a receptor-ligand binding, as a competition study with free folic acid inhibits the nanoparticle attachment. Finally, the targeted nanoparticles encapsulated with a silver based drug show increased efficacy in comparison to non-decorated (plain) nanoparticles and drug alone against HeLa cells. Thus, targeted nanoparticles are a promising delivery platform for developing anticancer therapies that over-express the folate receptors (FRs). PMID:22957928

  7. Gold Nanoparticles Decorated with Mannose-6-phosphate Analogues

    Directory of Open Access Journals (Sweden)

    Stéphanie Combemale

    2014-01-01

    Full Text Available Herein, the preparation of neoglycoconjugates bearing mannose-6-phosphate analogues is described by: (a synthesis of a cyclic sulfate precursor to access the carbohydrate head-group by nucleophilic displacement with an appropriate nucleophile; (b introduction of spacers on the mannose-6-phosphate analogues via Huisgen’s cycloaddition, the Julia reaction, or the thiol-ene reaction under ultrasound activation. With the resulting compounds in hand, gold nanoparticles could be functionalized with various carbohydrate derivatives (glycoconjugates and then tested for angiogenic activity. It was observed that the length and flexibility of the spacer separating the sugar analogue from the nanoparticle have little influence on the biological response. One particular nanoparticle system substantially inhibits blood vessel growth in contrast to activation by the corresponding monomeric glycoconjugate, thereby demonstrating the importance of multivalency in angiogenic activity.

  8. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruey-Juen; Chen, Po-Chung [Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taiwan, ROC (China); Prasannan, Adhimoorthy; Vinayagam, Jayaraman; Huang, Chun-Chiang; Chou, Peng-Yi; Weng, Cheng-Chih [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC (China); Tsai, Hsieh Chih, E-mail: h.c.tsai@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC (China); Lin, Shuian-Yin [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu 300 (China)

    2016-06-01

    A core-shell gold (Au) nanoparticle with improved photosensitization have been successfully fabricated using Au nanoparticles and 5,10,15,20 tetrakis pentafluorophenyl)-21H,23H-porphine (PF6) dye, forming a dyad through molecular self-assembly. Au nanoparticles were decorated on the shell and PF6 was placed in the core of the nanoparticles. Highly stable Au nanoparticles were achieved using PF6 with poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide) graft copolymer hybridization. This was compared with hybridization using cetyltrimethylammonium bromide and polyethylene glycol-b-poly(D,L-lactide) for shell formation with PF6–Au. The resulting PF6-poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide)-Au core–shell nanoparticle were utilized for photothermal and photodynamic activities. The spectroscopic analysis and zeta potential values of micelles revealed the presence of a thin Au layer coated on the PF6 nanoparticle surface, which generally enhanced the thermal stability of the gold nanoparticles and the photothermal effect of the shell. The core–shell PF6–Au nanoparticles were avidly taken up by cells and demonstrated cellular phototoxicity upon irradiation with 300 W halogen lamps. The structural arrangement of PF6 dyes in the core–shell particles assures the effectiveness of singlet oxygen production. The study verifies that PF6 particles when companied with Au nanoparticles as PF6–Au have possible combinational applications in photodynamic and photothermal therapies for cancer cells because of their high production of singlet oxygen and heat. - Highlights: • Core-shell PF6-Au nanoparticles were prepared through a graft-copolymer-based micelle with photosensitization and photothermic behavior. • PF6 was placed in the core of the nanoparticles through molecular self-assembly. Au nanoparticles were decorated on this 60-nm-diameter shell. • Core-shell PF6-Au nanoparticles demonstrated effective singlet oxygen production

  9. Decorating multiwalled carbon nanotubes with zinc oxide nanoparticles by thermally decomposing Zn-oleate in an organic medium

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuNing; WU YiLiang

    2009-01-01

    Carbon nanotubes decorated with zinc oxide nanoparticles were produced by thermally decomposing a Zn-oleate complex in an octadecene medium. The structure of the ZnO decorating nanotube surfaces was characterized by transmission electron microscopy, scanning electron microscopy and X-ray dif-fraction. The surfaces were shown to be densely and homogeneously covered by ZnO nanoparticles with a size below 10 nm. The nanoparticles had the wurtzite hexagonal crystal structure and showed good adhesion to the nanotubes. The carbon nanotubes decorated by metal oxide nanoparticles were synthesized at relatively low temperature and non-oxidation environment. Moreover, the large-scale production with low cost can be realized.

  10. Decorating multiwalled carbon nanotubes with zinc oxide nanoparticles by thermally decomposing Zn-oleate in an organic medium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon nanotubes decorated with zinc oxide nanoparticles were produced by thermally decomposing a Zn-oleate complex in an octadecene medium.The structure of the ZnO decorating nanotube surfaces was characterized by transmission electron microscopy,scanning electron microscopy and X-ray dif-fraction.The surfaces were shown to be densely and homogeneously covered by ZnO nanoparticles with a size below 10 nm.The nanoparticles had the wurtzite hexagonal crystal structure and showed good adhesion to the nanotubes.The carbon nanotubes decorated by metal oxide nanoparticles were synthesized at relatively low temperature and non-oxidation environment.Moreover,the large-scale production with low cost can be realized.

  11. Low Temperature CO oxidation over Iron Oxide Nanoparticles Decorating Internal Structures of a Mesoporous Alumina

    Science.gov (United States)

    Kim, Il Hee; Seo, Hyun Ook; Park, Eun Ji; Han, Sang Wook; Kim, Young Dok

    2017-01-01

    Using a chemical vapor deposition method with regulated sample temperatures under ambient pressure conditions, we were able to fully decorate the internal structure of a mesoporous Al2O3 bead (~1 mm in particle diameter) with iron oxide nanoparticles (with a mean lateral size of less than 1 nm). The iron oxide-decorated Al2O3 showed a high CO oxidation reactivity, even at room temperature. Very little deactivation of the CO oxidation activity was observed with increasing reaction time at ~100 °C. Additionally, this catalyst showed high CO oxidation activity, even after annealing at ~900 °C under atmospheric conditions (i.e., the structure of the catalysts could be maintained under very harsh treatment conditions). We show that our catalysts have potential for application as oxidation catalysts in industrial processes due to the simplicity of their fabrication process as well as the high and stable catalytic performance. PMID:28091561

  12. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A M; Shames, A I [Department of Physics, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel); Altman, A [The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osipov, V Yu; Aleksenskiy, A E; Vul' , A Ya, E-mail: pan@bgu.ac.il [Ioffe Physical-Technical Institute, Polytechnicheskaya 26, St Petersburg 194021 (Russian Federation)

    2011-03-30

    We report on a {sup 1}H NMR study of diamond nanoparticles decorated by copper and cobalt. Increase in the {sup 1}H relaxation rate under decoration results from the interactions of hydrogen nuclear spins of the surface hydrocarbon and hydroxyl groups with paramagnetic copper and cobalt ions. This finding reveals the appearance of paramagnetic Cu{sup 2+} or Co{sup 2+} ions on the detonation nanodiamond (DND) surface rather than as a separate phase, which is consistent with the {sup 13}C NMR data of the same samples. Our results shed light on the mechanism of ion incorporation. A topological model for relative position of paramagnetic Cu{sup 2+} or Co{sup 2+} ions and hydrogen atoms on the DND surface is suggested. An application of the studied nanomaterials in the field of biomedicine is discussed.

  13. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions

    Science.gov (United States)

    Panich, A. M.; Altman, A.; Shames, A. I.; Osipov, V. Yu; Aleksenskiy, A. E.; Vul', A. Ya

    2011-03-01

    We report on a 1H NMR study of diamond nanoparticles decorated by copper and cobalt. Increase in the 1H relaxation rate under decoration results from the interactions of hydrogen nuclear spins of the surface hydrocarbon and hydroxyl groups with paramagnetic copper and cobalt ions. This finding reveals the appearance of paramagnetic Cu2+ or Co2+ ions on the detonation nanodiamond (DND) surface rather than as a separate phase, which is consistent with the 13C NMR data of the same samples. Our results shed light on the mechanism of ion incorporation. A topological model for relative position of paramagnetic Cu2+ or Co2+ ions and hydrogen atoms on the DND surface is suggested. An application of the studied nanomaterials in the field of biomedicine is discussed.

  14. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    Science.gov (United States)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  15. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    Science.gov (United States)

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments.

  16. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  17. Nanoparticles during Laser Cleaning of Decoration Samples of Sigismund's Chapel

    Science.gov (United States)

    Barcikowski, Stephan; Walter, Jürgen Ostendorf, Andreas; Ostrowski, Roman; Marczak, Jan; Strzelec, Marek

    Sigismund Chapel of the Krakow Castle was built in 1525 by Bartholo Berecci. The latest total renovation was executed using laser ablation in order to reconstruct the original appearance of the chapel. Sandstone and gypsum samples from Sigismund Chapel were cleaned using the 'ReNOVALaser 5' system. Air contaminants which emerge during this laser ablation often cause health risks if released at the workplace and a decrease of laser cleaning quality if redeposited at the material surface. At the same time, nanoparticles are generated if short pulses are applied. Consequently, a description of the nanoparticle aerosol generation is given in the presented investigation. Though the emission rates for nanosecond laser ablation are remarkably lower than for conventional o laser technologies such as cutting or welding, the high respirability of particles can pose health risks. A clear shift of the mean aerodynamic diameter of the aerosols to smaller diameters compared to conventional lasers is observed, so that suitable capture systems near to the processing zone or personal protective equipment such as respiratory masks are required to avoid possible health risks.

  18. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    Science.gov (United States)

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  19. Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe2O4 nanoparticles

    Science.gov (United States)

    Ali, Syed Danish; Hussain, Syed Tajammul; Gilani, Syeda Rubina

    2013-04-01

    In this study, a simple, efficient and reproducible microemulsion method was applied for the successful decoration of carbon nanotubes (CNTs) with magnetic MIIFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles. The structure, composition and morphology of the prepared nanocomposite materials were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The magnetic properties were investigated by the vibrating sample magnetometer (VSM). The SEM results illustrated that large quantity of MIIFe2O4 nanoparticles were uniformly decorated around the circumference of CNTs and the sizes of the nanoparticles ranged from 15 to 20 nm. Magnetic hysteresis loop measurements revealed that all the MIIFe2O4/CNTs nanocomposites displayed ferromagnetic behavior at 300 K and can be manipulated using an external magnetic field. The CoFe2O4/CNTs nanocomposite showed maximum value of saturation magnetization which was 37.47 emu g-1. The as prepared MIIFe2O4/CNTs nanocomposites have many potential application in magnetically guided targeted drug delivery, clinical diagnosis, electrochemical biosensing, magnetic data storage and magnetic resonance imaging.

  20. Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles.

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    In this paper, we report an enzyme dependent, green one-pot deoxygenation cum decoration method to synthesize diastase-conjugated reduced graphene oxide (DRG) nanosheets, DRG/gold nanoparticles (DRG/Au) composite. The DRG synthesis was completed in 7h under heating at 90°C on water bath. Selected area electron diffraction (SAED) and Atomic force microscopy (AFM) study has revealed the formation of bilayered reduced graphene oxide sheets. Transmission electron microscopy (TEM) images of DRG/Au composite have shown the uniform decoration of gold nanoparticles (AuNPs) onto the DRG nanosheet surface. Fourier transform infrared spectroscopy (FTIR) and Raman results additionally have shown the functionalization of enzyme molecules onto the DRG nanosheet surface after reduction making it as an effective platform towards the efficient binding of gold nanoparticles. In vitro cytotoxicity studies by MTT assay on A549 and HCT116 cell lines exhibited that the cytotoxicity of the prepared graphene oxide (GO), DRG and DRG/Au is dose dependant. These results have shown that this synthetic method is effective for the production of large scale graphene in a low cost, simple and green method. Since this process avoids the use of hazardous and toxic substances, the produced DRG/Au composites are likely to offer various potential applications in biology and medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity.

    Science.gov (United States)

    Chen, Ruey-Juen; Chen, Po-Chung; Prasannan, Adhimoorthy; Vinayagam, Jayaraman; Huang, Chun-Chiang; Chou, Peng-Yi; Weng, Cheng-Chih; Tsai, Hsieh Chih; Lin, Shuian-Yin

    2016-06-01

    A core-shell gold (Au) nanoparticle with improved photosensitization have been successfully fabricated using Au nanoparticles and 5,10,15,20 tetrakis pentafluorophenyl)-21H,23H-porphine (PF6) dye, forming a dyad through molecular self-assembly. Au nanoparticles were decorated on the shell and PF6 was placed in the core of the nanoparticles. Highly stable Au nanoparticles were achieved using PF6 with poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide) graft copolymer hybridization. This was compared with hybridization using cetyltrimethylammonium bromide and polyethylene glycol-b-poly(D,L-lactide) for shell formation with PF6-Au. The resulting PF6-poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide)-Au core-shell nanoparticle were utilized for photothermal and photodynamic activities. The spectroscopic analysis and zeta potential values of micelles revealed the presence of a thin Au layer coated on the PF6 nanoparticle surface, which generally enhanced the thermal stability of the gold nanoparticles and the photothermal effect of the shell. The core-shell PF6-Au nanoparticles were avidly taken up by cells and demonstrated cellular phototoxicity upon irradiation with 300W halogen lamps. The structural arrangement of PF6 dyes in the core-shell particles assures the effectiveness of singlet oxygen production. The study verifies that PF6 particles when companied with Au nanoparticles as PF6-Au have possible combinational applications in photodynamic and photothermal therapies for cancer cells because of their high production of singlet oxygen and heat.

  2. Electrochemical Tailoring of Fibrous Polyaniline and Electroless Decoration with Gold and Platinum Nanoparticles.

    Science.gov (United States)

    Abdelhamid, Muhammad E; Snook, Graeme A; O'Mullane, Anthony P

    2016-09-06

    Presented in this work is a facile and quick electrochemical method for controlling the morphology of thick polyaniline (PANi) films, without the use of templates. By stepping the polymerization potential from high voltages to a lower (or series of lower) voltage(s), we successfully controlled the morphology of the polymer, and fibrous structures, unique to each potential step, were achieved. In addition, the resultant film was tested electrochemically for its viability as an electrode material for flexible batteries and supercapacitors. Furthermore, the PANi film was decorated with gold and platinum nanoparticles via an electroless deposition process for possible electrocatalytic applications, whereby the oxidation of hydrazine at the composite was investigated.

  3. Control over the charge transfer in dye-nanoparticle decorated graphene

    Science.gov (United States)

    Bongu, Sudhakara Reddy; Veluthandath, Aneesh V.; Nanda, B. R. K.; Ramaprabhu, Sundara; Bisht, Prem B.

    2016-01-01

    Charge transfer interaction between silver decorated graphene and three differently charged dyes, cationic (rhodamine 6G), neutral (rhodamine B) and anionic (fluorescein 27) has been studied. The ground state association constants have been evaluated and changes in the fluorescence intensity and lifetimes have been obtained in two solvents. Strength of complex-formation has been found to be higher with the cationic molecule in water. In a higher viscosity solvent, the ground state complex formation is restricted. Local field of localized surface plasmons of nanoparticles adsorbed on the graphene sheets leads to enhanced absorption and fluorescence of fluorescein 27.

  4. In situ decoration of graphene sheets with gold nanoparticles synthetized by pulsed laser ablation in liquids

    Science.gov (United States)

    Torres-Mendieta, Rafael; Ventura-Espinosa, David; Sabater, Sara; Lancis, Jesus; Mínguez-Vega, Gladys; Mata, Jose A.

    2016-07-01

    The demand for nanocomposites of graphene and carbonaceous materials decorated with metallic nanoparticles is increasing on account of their applications in science and technology. Traditionally, the production of graphene-metal assemblies is achieved by the non-environmentally friendly reduction of metallic salts in carbonaceous suspensions. However, precursor residues during nanoparticle growth may reduce their surface activity and promote cross-chemical undesired effects. In this work we present a laser-based alternative to synthesize ligand-free gold nanoparticles that are anchored onto the graphene surface in a single reaction step. Laser radiation is used to generate highly pure nanoparticles from a gold disk surrounded by a graphene oxide suspension. The produced gold nanoparticles are directly immobilized onto the graphene surface. Moreover, the presence of graphene oxide influences the size of the nanoparticles and its interaction with the laser, causes only a slight reduction of the material. This work constitutes a green alternative synthesis of graphene-metal assemblies and a practical methodology that may inspire future developments.

  5. The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles

    Science.gov (United States)

    Fellahi, Ouarda; Sarma, Rupak K.; Das, Manash R.; Saikia, Ratul; Marcon, Lionel; Coffinier, Yannick; Hadjersi, Toufik; Maamache, Mustapha; Boukherroub, Rabah

    2013-12-01

    The paper reports on the preparation and antibacterial activity of silicon nanowire (SiNW) substrates coated with Ag or Cu nanoparticles (NPs) against Escherichia coli (E. coli) bacteria. The substrates are easily prepared using the metal-assisted chemical etching of crystalline silicon in hydrofluoric acid/silver nitrate (HF/AgNO3) aqueous solution. Decoration of the SiNWs with metal NPs is achieved by simple immersion in HF aqueous solutions containing silver or copper salts. The SiNWs coated with Ag NPs are biocompatible with human lung adenocarcinoma epithelial cell line A549 while possessing strong antibacterial properties to E. coli. In contrast, the SiNWs decorated with Cu NPs showed higher cytotoxicity and slightly lower antibacterial activity. Moreover, it was also observed that leakage of sugars and proteins from the cell wall of E. coli in interaction with SiNWs decorated with Ag NPs is higher compared to SiNWs modified with Cu NPs.

  6. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection.

    Science.gov (United States)

    Cai, Bingjie; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-12-15

    Early detection is proven to be the best chance for successful cancer treatment. MiRNAs, as ideal biomarkers, can identify cancer in the early stage. Therefore, development of highly sensitive and selective detection methods for miRNA is still anticipated. Here we report on a gold nanoparticles (AuNPs)-decorated graphene field-effect transistor (FET) biosensor for highly sensitive, selective and label-free detection of miRNA. The AuNPs-decorated graphene FET biosensor was fabricated by drop-casting the reduced graphene oxide (R-GO) suspension onto the sensor surface, and subsequently decorating AuNPs onto the surface of R-GO. After peptide nucleic acid (PNA) probe was immobilized on the AuNPs surface, miRNA detection was carried out via PNA-miRNA hybridization. It was found that the developed FET biosensor was able to achieve a detection limit as low as 10 fM. In addition, the biosensor enabled an accurate distinction of complementary miRNA from one-base mismatched miRNA and noncomplementary miRNA. What's more, this highly sensitive and selective assay was also applied to the detection of miRNA in serum samples, making it a potential method for diagnosis of gene-related diseases.

  7. Highly Sensitive Surface Enhanced Raman Spectroscopy from Ag Nanoparticles Decorated Graphene Sheet

    Directory of Open Access Journals (Sweden)

    Hui Song

    2014-01-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS is a powerful analytical technique and has been most intensively studied. In this work, electroless deposition is proposed for Ag nanoparticles (NPs decorated on chemical vapor deposition (CVD growth graphene sheets (GS to create hybrid SERS substrate. From three aspects of size distribution, morphology, and coverage, Ag NPs controllable decoration on GS and SERS enhancement factors of the hybrid SERS substrate is investigated. 200–300 times enhanced SERS intensities are detected from the Ag NPs on GS hybrid as compared to pure GS. Controllable decoration is crucial for improving SERS enhancement factors βEF, because βEF from quasi cubic Ag NPs on GS is 6.53 times stronger than that from spheric one; 1.6 times βEF is detected while the Ag NPs size distribution is reduced to half, and when the coverage is doubled, βEF is nearly doubled. This controllable Ag NPs/GS hybrid is capable of serving as a high performance SERS substrate for efficient chemical and biological sensing applications.

  8. Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis.

    Science.gov (United States)

    Pearson, Andrew; Jani, Harit; Kalantar-zadeh, Kourosh; Bhargava, Suresh K; Bansal, Vipul

    2011-06-07

    We demonstrate a facile localized reduction approach to synthesizing a Au nanoparticle-decorated Keggin ion/TiO(2) photococatalyst for improved solar light photocatalysis application. This has been achieved by exploiting the ability of TiO(2)-bound Keggin ions to act as a UV-switchable, highly localized reducing agent. Notably, the approach proposed here does not lead to contamination of the resultant cocatalyst with free metal nanoparticles during aqueous solution-based synthesis. The study shows that for Keggin ions (phosphotungstic acid, PTA), being photoactive molecules, the presence of both Au nanoparticles and PTA on the TiO(2) surface in a cocatalytic system can have a dramatic effect on increasing the photocatalytic performance of the composite system, as opposed to a TiO(2) surface directly decorated with metal nanoparticles without a sandwiched PTA layer. The remarkable increase in the photocatalytic performance of these materials toward the degradation of a model organic Congo red dye correlates to an increase of 2.7-fold over that of anatase TiO(2) after adding Au to it and 4.3-fold after introducing PTA along with Au to it. The generalized localized reduction approach to preparing TiO(2)-PTA-Au cocatalysts reported here can be further extended to other similar systems, wherein a range of metal nanoparticles in the presence of different Keggin ions can be utilized. The composites reported here may have wide potential implications toward the degradation of organic species and solar cell applications.

  9. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    Science.gov (United States)

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  10. Porous silicon nanowire arrays decorated by Ag nanoparticles for surface enhanced Raman scattering study

    Science.gov (United States)

    Su, L.; Xu, H. J.; Chan, Y. F.; Sun, X. M.

    2012-02-01

    A large scale and highly ordered Ag nanoparticle-decorated porous silicon nanowire array was fabricated for a uniform and reproducible surface-enhanced Raman scattering (SERS) substrate. The overall process for the proposed structure is simple and reliable with the use of only chemical etching and metal reduction processes. The SERS sensitivity of the novel substrate as low as 10-16 M for rhodamine 6G (R6G) and the Raman enhancement factor as high as 10^14 were obtained. The excellent SERS performances were mainly attributed to the strong local electromagnetic effect which is associated with the formation of large-quantity Ag nanoparticles on porous silicon nanowire array and the existence of semiconductor silicon nanowires. Significantly, the quadratic relation between the logarithmic concentrations and the logarithmic integrated Raman peak intensities provided quantitative detection of R6G. Our results open new possibilities for applying SERS to trace detection of low-concentration biomolecules.

  11. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Panpan Guan

    2016-08-01

    Full Text Available Copper oxide (CuO-decorated cerium oxide (CeO2 nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.

  12. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method

    Science.gov (United States)

    Sahebian, S.; Zebarjad, S. M.; Vahdati Khaki, J.; Lazzeri, A.

    2016-07-01

    In this paper, nickel oxide (NiO) nanoparticles have been fabricated using wet method and deposited on the surface of multi-walled carbon nanotube (MWCNT). To do so, functional groups were introduced on the surface of MWCNTs by treating with concentrated nitric acid. Nickel oxide nanoparticles were formed on the surface of functionalized MWCNTs by incipient wetness impregnation of nickel nitrate, and the resultant product was calcinated in air atmosphere. Characteristics of the NiO/MWCNT were examined by various techniques, for example, Fourier transform spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and nitrogen adsorption-desorption isothermal as well as vibrating sample magnetometer (VSM). The FTIR spectra showed that carboxyl and hydroxyl functional groups existed on the surface of MWNTs after modification by concentrated nitric acid. The pattern of XRD indicated that MWNTs and nickel oxide nanoparticles coexisted in the NiO/MWCNT sample. The TEM images revealed that the NiO nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 60 nm. Thermogravimetric analysis proved that NiO content decorated on MWCNTs was 80 and 15 wt%. The results of the Brunauer-Emmett-Teller (BET) data showed that the slight increment in the specific surface areas and porosities in the presence of the NiO nanoparticles on the surface of CNT.

  13. Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baikousi, M.; Dimos, K. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Bourlinos, A.B. [Physics Department, University of Ioannina, GR-45110, Ioannina (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R. [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University in Olomouc, 77146 (Czech Republic); Papadas, I.; Deligiannakis, Y. [Department of Environmental and Natural Resources Management, University of Ioannina, Seferi 2, 30100 Agrinio (Greece); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)

    2012-02-01

    Carbonaceous nanosheets decorated with amino-functionalized organosilica nanoparticles have been synthesized by a direct pyrolysis of betaine at 400 Degree-Sign C in air, followed by a simple surface treatment with ([3-(2-aminoethylamino) propyl]trimethoxysilane under reflux conditions. Both pristine and organosilica modified carbon nanosheets (OMCNs), were characterized by Fourier-transform infrared (FTIR), Raman, and electron paramagnetic resonance (EPR) spectroscopies, transmission electron microscopy and thermal analysis methods. The experimental data reveal a dramatic increase in the number of radical centers on the surface of the developed OMCN hybrid. The organosilica nanoparticles, ranging in size between 3 and 15 nm, are spherical and homogenously anchored on the surface of carbon nanosheets. The formation of C-O-Si bridges between carbon sheets and the organosilica nanoparticles has been supported by FTIR and EPR. These nanoparticles are bound to the nanosheet surface together with individual functional organosilane groups at a spacing of about 4 Angstrom-Sign distance. The final hybrid is the complex nanosystem composed of 2D carbon nanosheets, spherical organosilica nanoparticles and immobilized amino organosilane molecules.

  14. Gas sensing properties of multiwall carbon nanotubes decorated with Rh nanoparticles

    CERN Document Server

    Leghrib, Radouane; Demoisson, Frédéric; Claessens, Nicolas; Reniers, François; Llobet, Eduard

    2016-01-01

    In the present work, multiwalled carbon nanotubes were decorated with rhodium nanoparticles using a colloidal solution in the post-discharge of an RF atmospheric plasma of argon (Ar) or argon/oxygen (Ar:O$_2$). The properties of these hybrid materials towards the room temperature detection of NO$_2$, C$_2$H$_4$, CO, C$_6$H$_6$ and moisture were investigated and discussed in view of compositional and morphological studies. It was found that the presence of oxygen in the plasma treatment is essential to significantly enhance the gas response of Rh-decorated multiwalled carbon nanotubes and to avoid response saturation even at low gas/vapor concentrations. These desirable effects are attributed to the presence of oxygen during the CNT plasma treatment since oxygenated vacancies act both as active adsorption sites for gases and as anchoring sites for Rh nanoparticles (the presence of Rh nanoclusters is nearly doubled in Ar-O$_2$ treated samples as compared to Ar treated samples). The oxygen treatment also makes e...

  15. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  16. Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering.

    Science.gov (United States)

    D'Andrea, Cristiano; Faro, Maria J Lo; Bertino, Giulia; Ossi, Paolo M; Neri, Fortunato; Trusso, Sebastiano; Musumeci, Paolo; Galli, Matteo; Cioffi, Nicola; Irrera, Alessia; Priolo, Francesco; Fazio, Barbara

    2016-09-16

    Silicon nanowires (Si NWs), produced by the chemical etching technique, were decorated with silver nanoparticles (NPs) produced at room temperature by the pulsed laser deposition (PLD) technique. Silver NPs were obtained by means of nanosecond pulsed laser ablation of a target in the presence of a controlled Ar atmosphere. Two different laser pulse numbers and Si NWs having different lengths were used to change the NP number density on the Si NW surface. The resulting Ag NP morphologies were studied by scanning electron microscopy imaging. The results show that this industrially compatible technological approach allows the coverage of the Si NW walls with Ag NPs with a strong control of the NP size distribution and spatial arrangement. The obtained Ag NP decorated Si NWs are free from chemicals contamination and there is no need of post deposition high temperature processes. The optical properties of Si NW arrays were investigated by reflectance spectroscopy that showed the presence of a plasmon related absorption peak, whose position and width is dependent on the Ag NP surface morphology. Coupling the huge surface-to-volume ratio of Si NW arrays with the plasmonic properties of silver nanoparticles resulted in a 3D structure suitable for very sensitive surface enhanced Raman scattering (SERS) applications, as demonstrated by the detection of Rhodamine 6G in aqueous solution at a concentration level of 10(-8) M.

  17. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  18. 3D Woven-Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithium-Ion Batteries.

    Science.gov (United States)

    Kang, Da-Young; Kim, Cheolho; Gueon, Donghee; Park, Gyulim; Kim, Jung Sub; Lee, Joong Kee; Moon, Jun Hyuk

    2015-10-26

    Carbon/silicon composite materials are a promising anode substrate for use in lithium-ion batteries. In this study, we suggest a new architecture for a composite electrode made of a woven-like carbon material decorated with silicon nanoparticles. The 3D woven-like carbon (WLC) structure was fabricated using direct carbonization of multi-beam interference lithography polymer patterns. Subsequent solution coating was applied to decorate the WLC with silicon nanoparticles (SiNPs). The SiNP/WLC electrode exhibited a specific capacity of 930 mAh g(-1) , which is three times higher than the specific capacity of the bare electrode. Specifically, the SiNP/WLC electrode exhibited an outstanding retention capacity of 81 % after 50 cycles and a Coulombic efficiency of more than 98 %. This rate capability performance was attributed to the WLC structure and the uniform decoration of the SiNPs.

  19. Interfacial Au nanoparticle decoration of a disulfide modified G-wire.

    Science.gov (United States)

    Goblirsch, Brandon R; Kalb, Evan M; Marsh, Thomas C

    2017-05-01

    The guanine-rich oligonucleotide (GRO), dGGGGTTGGGG (G4T2G4), has the capacity to form a linear supramolecular polymer known as a G-wire. Individual nucleotides of the component GROs can be functionally modified to serve as site-specific attachment points in the G-wire while not interfering with its self-assembling properties. An amine linker modification to an internal thymine base of the GRO, denoted G4TT*G4, serves as a chemically versatile attachment site. In this work, addition of an alkyl disulfide to G4TT*G4 produces the GRO G4TT(d)G4 enabling binding to gold nanoparticles via place exchange chemistry. G-wires assembled by combining G4T2G4 and G4TT(d)G4 were stably maintained in an aqueous environment. Disulfide modified G-wires (DS_G-wire) were then covered with dodecanethiol capped gold nanoparticles in an organic solvent via an interfacial place exchange reaction. Tapping Mode AFM and TEM were used to image G-wires decorated with gold nanoparticles. The specificity of the interfacial place exchange reaction was measured using a fluorometric dye displacement from the gold nanoparticles. The results show that a two component DS_G-wire with an amphipathic tether readily self-assemble as shown by PAGE and TM-AFM. The amphipathic disulfide moiety of DS_G-wires facilitates place exchange chemistry with alkylthiol protected Au nanoparticles across an aqueous-organic interface. Interfacial place exchange is an effective strategy for decorating DS_G-wires with Au nanoparticles. The use of modified G-wire self-assembly combined with a high degree of nanoparticle binding specificity presents another strategy for the use of G-wires as a rigid one-dimensional molecular scaffold with potential applications in nanoscale device construction. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration.

    Science.gov (United States)

    Yu, Choongho; Ryu, Yeontack; Yin, Liang; Yang, Hongjoo

    2011-02-22

    Nanoparticle decoration on carbon nanotubes was employed to modulate their electrical conductance and thermopower and thereby improved the thermoelectric power factor. Nanotubes were made into films by spraying nanotube solutions on glass substrates, and then the films were immersed in different concentrations of CuSO(4) or HAuCl(4) solutions for various time periods. Copper ions in the solutions were reduced on nanotubes by obtaining electrons from zinc electrodes, whose reduction potential is lower than that of copper (galvanic displacement). Gold ions were reduced on nanotubes by both silver counter electrodes and spontaneous reaction due to larger reduction potentials than those of nanotubes. These reactions made electrons donated to (copper incorporation) or withdrawn from (gold incorporation) nanotubes depending on the difference in their work functions and reduction potentials, resulting in considerable changes in electron transport. In this paper, a series of experiments at different ion concentrations and reaction time periods were systematically performed in order to find optimum nanoparticle formation conditions and corresponding electronic transport changes for better thermoelectric power factor. Transport measurement results show that electronic properties can be considerably altered and modulated, resulting in 2-fold improvement in the thermoelectric power factor with 1 mM/30 min reaction. Reactions with solutions of a low metal ion concentration, such as 1 mM, yielded well-distributed small particles over large surface areas, which strongly affected electron transfer between nanoparticles and nanotubes. Successive copper and gold decorations on nanotubes made electrical conductance (or thermopower) serially decreased and increased (or increased and decreased) upon precipitating different metal particles. This transport behavior is believed to be from the changes in the Fermi level as a result of electron exchanges between reduced metals and nanotubes

  1. Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Robinson, Donald A; Yoo, Jason J; Castañeda, Alma D; Gu, Brett; Dasari, Radhika; Crooks, Richard M; Stevenson, Keith J

    2015-07-28

    An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.

  2. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    Science.gov (United States)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  3. Visible light responsive photocatalytic ZnO:Al films decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, M., E-mail: monserrat@iim.unam.mx; Martínez-Padilla, E.

    2014-02-28

    The spray pyrolysis technique was used to grow ZnO:Al films decorated with silver nanoparticles in their surface, in order to increase and stabilize the photocatalytic activity of ZnO. The appropriate amount of Ag nanoparticles was determined varying the concentration of an AgNO{sub 3} solution and the spraying time. The films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersed spectroscopy. The photocatalytic activity of the films was evaluated by the degradation of a methyl orange dye solution. The stability of the photocatalytic activity was studied along five degradation cycles while exposed to simulated sunlight, white light and UV light. We found that a spraying time of 8 min of the AgNO{sub 3} solution gives nearly 3 at% of Ag in the ZnO:Al films. This amount of Ag nanoparticles stabilized the photoactivity under UV and sunlight along five degradation cycles, showing a synergistic effect between Al and Ag that greatly improved the photocatalytic performance of ZnO films. - Highlights: • ZnO:Al/Ag films were produced in a two step process by spray pyrolysis. • ZnO:Al/Ag films presented a high photocatalytic activity under visible light. • Ag nanoparticles stabilized the photocatalytic efficiency after several reuses. • Al and Ag impurities gave a synergistic effect that improved ZnO photocatalytic performance.

  4. Synthesis and nonlinear optical response of silver nanoparticles decorated polydiacetylene composite nanovesicles

    Science.gov (United States)

    Bhushan, B.; Kundu, T.; Singh, B. P.

    2014-02-01

    We have synthesized, characterized and studied the third-order nonlinear optical properties of polydiacetylene (PDA) nanovesicles decorated by silver nanoparticles. The second molecular hyperpolarizability γ (- ω ; ω , - ω , ω) of the sample was investigated by the antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique using femtosecond modelocked Ti:sapphire laser in the spectral range of 720-820 nm. The observed dispersion of γ has been explained in the framework of three-essential states model involving the ground state, a one-photon excited state and a two-photon excited state. The energy of two-photon state, transition dipole moments and line width of the transitions have been estimated. Our investigation reveals that the spectral dispersion characteristic of γ for coated PDA nanovesicles is qualitatively similar to that observed for uncoated PDA nanovesicles but bears no resemblance to that observed in silver nanoparticles. The presence of silver nanoparticles increases the γ values of coated nanovesicles slightly as compared to that of uncoated nanovesicles, suggesting a definite but weak coupling between free electrons of metal nanoparticles and π -electrons of polymer in the composite system.

  5. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    Science.gov (United States)

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag.

  6. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    Science.gov (United States)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  7. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles.

    Science.gov (United States)

    Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun

    2014-08-01

    Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis.

  8. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Science.gov (United States)

    Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie

    2012-01-01

    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers. PMID:22359460

  9. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    Science.gov (United States)

    Hu, Jin; You, Ning; Yu, Zhe; Zhou, Gang; Xu, Xiaoyong

    2016-08-01

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated charge separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10-2 min-1 and the hydrogen production rate of 350 μmol h-1 g-1.

  10. Decoration of Silica Nanoparticles on Polypropylene Separator for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Jing; Huang, Yudai; Zhang, Su; Jia, Wei; Wang, Xingchao; Guo, Yong; Jia, Dianzeng; Wang, Lishi

    2017-03-01

    A SiO2 nanoparticle decorated polypropylene (PP) separator (PP-SiO2) has been prepared by simply immersing the PP separator in the hydrolysis solution of tetraethyl orthosilicate (TEOS) with the assistance of Tween-80. After decoration, the thermal stability and the electrolyte wettability of the PP-SiO2 separator are obviously improved. When the PP-SiO2 separator is used for lithium-sulfur (Li-S) batteries, the cyclic stability and rate capability of the batteries are greatly enhanced. The capacity retention ratio of the Li-S battery configured with the PP-SiO2 separator is 64% after 200 cycles at 0.2 C, which is much higher than that configured with the PP separator (45%). Moreover, the rate capacity of the Li-S batteries using the PP-SiO2 separator reaches 956.3, 691.5, 621, and 567.6 mAh g(-1) at the current density of 0.2, 0.5, 1, and 2 C, respectively. The reason could be ascribed to that the polar silica coating not only alleviates the shuttle effect but also facilitates Li-ion migration.

  11. Cerium Oxide Nanoparticles Decorated Graphene Nanosheets for Selective Detection of Dopamine.

    Science.gov (United States)

    Nayak, Pranati; Santhosh, P N; Ramaprabhu, S

    2015-07-01

    The fabrication of a novel amperometric biosensor based on selective determination of dopamine (DA) using nafion coated cerium oxide nanoparticles (NPs) decorated graphene nanosheets (CeO2-HEG-nafion) as a transducer candidate is reported. Graphene was synthesized by hydrogen exfoliation technique. Decoration of CeO2NPs over graphene nanosheets was done by chemical reduction method. The electrochemical impedance spectroscopy (EIS) study shows the enhanced electron transfer kinetics of the composite compared to HEG modified and bare glassy carbon electrode (GCE). The response of the composite towards dopamine displays a lower oxidation potential of 0.23 V and a high oxidation current. The sensor exhibits linearity from 10 µM to 780 µM with a detection limit of 1 µM. In the presence of nafion, it shows excellent selectivity for coexisting interference species like Ascorbic acid (AA) and Uric acid (UA). The excellent performance of the biosensor can be attributed to large active surface area, enhanced electron transfer kinetics and high catalytic activity of the composite.

  12. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Beibei; Liu, Changbing; Shi, Huaxia; Li, Chen; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Huang, Wei, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn; Dong, Xiaochen, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 (China)

    2014-06-16

    A facile strategy has been developed to synthesize sliver nanoparticles (Ag NPs) decorated three-dimensional graphene (3DG) through hydrothermal process. The AgNPs-3DG composites are directly fabricated into a free standing sensing electrode for electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}) in phosphate buffered solutions. Various techniques equipments including scanning electron microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphology and structure of the as-prepared composite. The electrochemical experiments reveal the AgNPs-3DG based biosensor exhibits fast amperometric sensing, low detection limitation, wide linear responding range, and perfect selectivity for non-enzyme H{sub 2}O{sub 2} detection, indicating the well synergistic effect of Ag NPs high electrocatalytic activity and 3DG high conductivity and large surface area.

  13. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity

    Science.gov (United States)

    Sreekanth, T. V. M.; Jung, Min-Ji; Eom, In-Yong

    2016-01-01

    In this study, we develop an inexpensive and green route for the synthesis of silver nanoparticles (AgNPs) using Picrasma quassioides bark aqueous extract as reducing and capping agent and also eco-friendly decorate graphene oxide (GO) nanosheets with AgNPs (GO-AgNPs). Green synthesized AgNPs and GO-AgNPs composites were characterized by UV-Visible spectroscopy, SEM-EDX, and TEM-SAED techniques. The resulting GO-AgNPs contained about 41.35% of Ag and the AgNPs size ranges 17.5-66.5 nm, and GO-AgNPs size ranges 10-49.5 nm. Moreover, the GO-AgNPs exhibited excellent catalytic activity towards the methylene blue (MB) in the presence of sodium borohydride (NaBH4) at room temperature. This catalytic reaction completed within 15 min.

  14. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis.

  15. Optical and photoelectrical studies of gold nanoparticle-decorated C{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Dmitruk, N.L., E-mail: dmitruk@isp.kiev.u [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Borkovskaya, O.Yu.; Mamykin, S.V.; Naumenko, D.O. [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Meza-Laguna, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Basiuk Golovataya-Dzhymbeeva, E.V. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (UNAM), Circuito exterior S/N Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Lee, I. Puente [Facultad de Quimica, UNAM, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-01-01

    Optical and photoelectrical studies were performed on octane-1,8-dithiol cross-linked fullerene films, with supported gold nanoparticles (C{sub 60}-DT-Au). According to high-resolution transmission electron microscopy observations, the average size of obtained gold nanoparticles was about 5 nm, and the shape was spherical. The comparative investigation of optical properties of pristine and cross-linked with octane-1,8-dithiol C{sub 60} films, decorated with gold nanoparticles, found the difference in the extinction coefficient spectra, which was observed also in the photocurrent spectra of barrier heterostructure Au/C{sub 60}/Si. The analysis of dark current-voltage characteristics for Au/C{sub 60}/Si heterostructures showed that the model for them includes the barrier at the C{sub 60}/Si interface and internal barriers in the C{sub 60} layer, caused by the trapping centers. The hopping mechanism of the current transport in the C{sub 60} layer was supplemented with the Poole-Frenkel emission process on these centers, with the barrier height greater for the fullerene C{sub 60} film cross-linked with octane-1,8-dithiol.

  16. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  17. Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering

    Science.gov (United States)

    Yang, Min; Zhang, Ling; Chen, Bin; Wang, Zheng; Chen, Chao; Zeng, Heping

    2017-02-01

    Raman spectra are considered as signatures of matter and have been widely used to identify several classes of materials. The development of mobile spectrometers further extends applications of Raman spectroscopy, and both indoor/outdoor and in vivo/in vitro measurements have been evaluated on site. However, the finite detection level restricts its application in high density matters. Here we report a facile silver nanoparticle decorated nanoporous gold (NanoAg@NPG) substrate, which can provide high enhancement of the Raman signal from nearby molecules by 785 nm photoexcitation. This enhancement is attributed to the abundant Raman-active nanogaps constructed by adjacent nanoparticles and also by the NPG ligaments and adhered nanoparticles. This NanoAg@NPG substrate shows great potential as a reproducible and quantifiable near infrared surface-enhanced Raman scattering probe for various targets, since it performs well in the so-called biological window which can avoid autofluorescence and absorption either from targets or surroundings in the visible optical region.

  18. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles.

    Science.gov (United States)

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria.

  19. Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins.

    Science.gov (United States)

    Liu, Jia-Wei; Yang, Ting; Ma, Lin-Yu; Chen, Xu-Wei; Wang, Jian-Hua

    2013-12-20

    Nickel nanoparticle decorated graphene (GP-Ni) is prepared by one-pot hydrothermal reduction of graphene oxide and nickel cations by hydrazine hydrate in the presence of poly(sodium-p-styrenesulfonate) (PSS). The GP-Ni hybrid is characterized by XRD, TEM, SEM, XPS, Raman and FT-IR spectra, demonstrating the formation of poly-dispersed nickel nanoparticles with an average size of 83 nm attached on the surface of graphene sheets. The GP-Ni hybrid exhibits ferromagnetic behavior with a magnetization saturation of 31.1 emu g(-1) at 10,000 Oersted (Oe). The GP-Ni also possesses favorable stability in aqueous medium and rapid magnetic response to an external magnetic field. These make it a novel magnetic adsorbent for the separation/isolation of His6-tagged recombinant proteins from a complex sample matrix (cell lysate). The targeted protein species is captured onto the surface of the GP-Ni hybrid via specific metal affinity force between polyhistidine groups and nickel nanoparticles. The SDS-PAGE assay indicates highly selective separation of His6-tagged Smt A from cell lysate. The GP-Ni hybrid displays favorable performance on the separation/isolation of His6-tagged recombinant proteins with respect to the commercial NTA-Ni(2+) column.

  20. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Y

    2012-02-01

    Full Text Available Fang Yang1*, Quanming Tang1,2*, Xueyun Zhong3, Yan Bai1, Tianfeng Chen1, Yibo Zhang1, Yinghua Li1, Wenjie Zheng11Department of Chemistry, Jinan University, Guangzhou, China; 2South China Seas Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; 3Department of Pathology, Jinan University, Guangzhou, China*These authors contributed equally to this workAbstract: A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs with Spirulina polysaccharides (SPS has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50% inhibitory concentration value of 7.94 µM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.Keywords: selenium nanoparticles, Spirulina polysaccharide, cellular uptake, anticancer, apoptosis

  1. Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene.

    Science.gov (United States)

    Lee, Jaewook; Kim, Jeonghyo; Ahmed, Syed Rahin; Zhou, Hongjian; Kim, Jong-Man; Lee, Jaebeom

    2014-12-10

    Metal-nanoparticle-functionalized graphene, in particular, graphene sheets containing Au nanoparticles (Au NPs), have generated considerable interest because of their unique optical and electrical characteristics. In this study, we successfully produced graphene sheets decorated with Au NPs (AuGrp) using phytochemicals as reducing agents. During this reaction, Au ions intercalated into the layered graphene flakes and were then reduced into NPs, exfoliating the graphene sheets. The physicochemical properties of the AuGrp nanocomposites were characterized, and the exfoliation process was investigated using a molecular dynamics simulation of Au NPs between graphene sheets. Our proposed technique is advantageous because the phytochemicals are mild reducing agents that preserve the graphene structure during exfoliation and NP decoration. The dispersity of the NPs on the graphene sheets was drastically improved due to the use of metal-ion intercalation. Moreover, the electrical conductivity was 6-30 times higher than that of bare graphene and reduced graphene oxide. Using antibody (Ab) modified AuGrp sheets and quantum dots, a plasmonic-induced photoluminescence immunoassay of tuberculosis (TB) antigen (aG) CFP-10 was demonstrated for a potential application of these materials. The enhancement of photoluminescence (PL) response was monitored depending on the various TB aG concentrations from 5.1 pg/mL to 51 μg/mL, and the detection limit for CFP-10 was 4.5 pg/mL. Furthermore, the selectivity was demonstrated with Ag85 as the other TB aG, and PL enhancement was not observed in this case. Therefore, AuGrp-based immunoassay showed the potential for biosensor application.

  2. Imaging the electronic structure of carbon nanotubes decorated with Fe{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Yuting; Bai, Lili; Gao, Jing; Liu, Jinyin; Zhao, Guanqi; Xie, Tian; Sun, Xu-Hui [Soochow University-Western University Centre for Synchrotron Radiation Research, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou 215123 (China); Zhong, Jun, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou 215123 (China)

    2013-05-15

    Carbon nanotubes (CNTs) with external and internal decoration of Fe{sub 2}O{sub 3} nanoparticles (NPs) were imaged by scanning transmission X-ray microscopy (STXM) with a concurrent identification of the electronic structure. For Fe{sub 2}O{sub 3} outside CNTs, a carbon coating on CNTs was observed while for Fe{sub 2}O{sub 3} inside CNTs, pure CNTs without carbon coating could be clearly identified. Surface oxidation of CNTs with internal decoration of Fe{sub 2}O{sub 3} NPs was also found which showed a heterogeneous distribution. Further experiments suggest that the oxidization of CNTs may favor the internal Fe{sub 2}O{sub 3} decoration of CNTs.

  3. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  4. Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine.

    Science.gov (United States)

    Huang, Yunpeng; Miao, Yue-E; Ji, Shanshan; Tjiu, Weng Weei; Liu, Tianxi

    2014-08-13

    Electrospun nanoporous carbon nanofibers (pCNFs) decorated with Ag-Pt bimetallic nanoparticles have been successfully synthesized by combining template carbonization and seed-growth reduction approach. Porous-structured polyacrylonitrile (PAN) nanofibers (pPAN) were first prepared by electrospinning PAN/polyvinylpyrrolidone (PVP) blend solution, followed by subsequent water extraction and heat treatment to obtain pCNFs. Ag-Pt/pCNFs were then obtained by using pCNFs as support for bimetallic nanoparticle loading. Thus, the obtained Ag-Pt/pCNFs were used to modify glassy carbon electrode (GCE) for selective detection of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA). This novel sensor exhibits fast amperometric response and high sensitivity toward DA with a wide linear concentration range of 10-500 μM and a low detection limit of 0.11 μM (S/N = 3), wherein the interference of UA and AA can be eliminated effectively.

  5. Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Ngo Xuan Dinh

    2015-01-01

    Full Text Available Recently, development of carbon nanocomposites composed of carbon nanostructures and metal nanoparticles has attracted much interests because of their large potential for technological applications such as catalyst, sensor, biomedicine, and disinfection. In this work, we established a simple chemistry method to synthesize multiwalled carbon nanotubes (MWCNTs decorated with silver nanoparticles (Ag-NPs using a modified photochemical reaction (Tollens process. The formation and interaction of Ag-NPs with functionalized groups on the surface of MWCNTs were analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The average size of Ag-NPs on the MWCNTs was approximately ~7 nm with nearly uniform size distribution. Antibacterial effect of Ag-MWCNTs nanocomposites was evaluated against two pathogenic bacteria including Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus bacteria. Interaction and bactericidal mechanism of Ag-MWCNTs with tested bacteria was studied by adapting the electron microscopy. Analysis on ultrastructural changes of bacterial cells indicates that antibacterial action mechanism of Ag-MWCNTs is physical interaction with cell membrane, the large formation of cell-Ag-MWCNTs aggregates, and faster destructibility of cell membrane and disruption of membrane function, hence resulting in cells death.

  6. Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles.

    Science.gov (United States)

    Loo, Siew-Leng; Krantz, William B; Fane, Anthony G; Gao, Yiben; Lim, Teik-Thye; Hu, Xiao

    2015-02-17

    The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).

  7. Highly sensitive and selective trimethylamine sensors based on WO3 nanorods decorated with Au nanoparticles

    Science.gov (United States)

    Liu, Lu; Song, Peng; Yang, Zhongxi; Wang, Qi

    2017-06-01

    One-dimensional tungsten oxide (WO3) gas sensing materials have been widely used for the detection of trimethylamine (TMA) gas. Furthermore, it is believed that an effective method to improve the gas sensing performance is to introduce noble metals into sensing materials. In this work, a novel gas sensing material was prepared by decorating Au nanoparticles on WO3 nanorods. Based on field emission scanning electron microscopy (FESEM/EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the morphology and microstructure of as-prepared samples were characterized. Results show that Au nanoparticles with diameter of 13-15 nm are loaded on the surface of WO3 nanorods with length of about 1-2 μm and width of 50-80 nm. Gas sensing tests reveal that the Au@WO3 sensor has remarkably enhanced response to TMA gas compared with pure WO3 nanorods. In addition, and the gas sensing mechanism has been investigated based on the experimental results. The superior sensing features indicate the present Au@WO3 nanocomposites are promising for gas sensors, which can be used in the detection of the trimethylamine gas and this work provides insights and strategies for the fabrication of sensing materials.

  8. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal.

    Science.gov (United States)

    Zhang, Shengxiao; Zhang, Yuanyuan; Bi, Guoming; Liu, Junshen; Wang, Zhigang; Xu, Qiang; Xu, Hui; Li, Xiaoyan

    2014-04-15

    The polydopamine polymer decorated with magnetic nanoparticles (Fe3O4/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe3O4/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8h, and Fe3O4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe3O4/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu(2+), Ag(+), and Hg(2+) were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g(-1), respectively. The Fe3O4/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.

  9. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  10. Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yu-Yan Zhou; Chang-Hai Liu; Jie Liu; Xin-Lei Cai; Ying Lu; Hui Zhang; Xu-Hui Sun; Sui-Dong Wang

    2016-01-01

    A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1–2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demon-strates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.

  11. Partially crystallized Pd nanoparticles decorated TiO2 prepared by atmospheric-pressure cold plasma and its enhanced photocatalytic performance

    Institute of Scientific and Technical Information of China (English)

    Zhijian Xu; Bin Qi; Lanbo Di; Xiuling Zhang

    2014-01-01

    TiO2 decorated with partially crystallized Pd nanoparticles (Pd/TiO2-P) was successfully prepared by atmospheric-pressure dielectric barrier discharge cold plasma. The XRD and XPS analyses proved that Pd ions were reduced to partially crystallized metallic Pd nanoparticles in Pd/TiO2-P. The XPS spectra also indicated that an enhanced metal-support interaction was formed due to the existence of partially crystallized Pd nanoparticles with lower coordination number in Pd/TiO2-P. Photocatalytic activity of Pd/TiO2-P was much higher than that of TiO2 samples decorated with well crystallized Pd nanoparticles.

  12. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles

    Directory of Open Access Journals (Sweden)

    Dongmei Zhao

    2010-09-01

    Full Text Available Dongmei Zhao, Xiuhua Zhao, Yuangang Zu, Jialei Li, Yu Zhang, Ru Jiang, Zhonghua ZhangKey Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, ChinaAbstract: Paclitaxel (Taxol® is an important anticancer drug in clinical use for treatment of a variety of cancers. Because of its low solubility, it is formulated in high concentration in Cremophor EL® which induces hypersensitivity reactions. In this study, targeted delivery of paclitaxel-loaded nanoparticles was prepared by a desolvation procedure, crosslinked on the wall material of bovine serum albumin, and subsequently decorated by folic acid. The characteristics of the nanoparticles, such as amount of folate conjugation, surface morphology, drug entrapment efficiency, drug loading efficiency, and release kinetics were investigated in vitro. The targeting effect was investigated in vitro by cancer cell uptake of fluorescein isothiocyanate-labeled nanoparticles. The spherical nanoparticles obtained were negatively charged with a zeta potential of about -30 mV, and characterized around 210 nm with a narrow size distribution. Drug entrapment efficiency and drug loading efficiency were approximately 95.3% and 27.2%, respectively. The amount of folate conjugation was 9.22 µg/mg of bovine serum albumin. The folate-decorated nanoparticles targeted a human prostate cancer cell line effectively.Keywords: paclitaxel, bovine serum albumin, folate, nanoparticles, target delivery

  13. Installing multifunctionality on titanium with RGD-decorated polyurethane-polyurea roxithromycin loaded nanoparticles: toward new osseointegrative therapies.

    Science.gov (United States)

    Rocas, Pau; Hoyos-Nogués, Mireia; Rocas, Josep; Manero, José M; Gil, Javier; Albericio, Fernando; Mas-Moruno, Carlos

    2015-09-16

    A novel class of polyurethane-polyurea nanoparticles (PUUa NPs) to install multifunctionality on biomaterials is presented. Biofunctionalization of titanium with roxithromycin loaded RGD-decorated PUUa NPs results in an outstanding improvement of osteoblast adhesion and strong suppression of bacterial attachment. This strategy represents a powerful approach to enhance the osseointegration of implant materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Efficient decoration of nanoparticles intended for intracellular drug targeting with targeting residues, as revealed by a new indirect analytical approach.

    Science.gov (United States)

    Kaplun, Veronika; Stepensky, David

    2014-08-04

    In our previous studies, we developed a nanodrug delivery system (nano-DDS) based on poly(lactic-co-glycolic acid) PLGA nanoparticles encapsulating antigenic peptide and fluorescent marker and 3-stage approach for its decoration with peptide targeting residues. The objectives of this study were (a) to develop methods for quantitative analysis of efficiency of individual conjugation steps and (b) to determine, based on these methods, the efficiency of our 3-stage approach of nano-DDS decoration. We prepared antigenic peptide-loaded PLGA-based nano-DDSs and sequentially decorated them with specific residues using carbodiimide and Click (azide-alkyne Huisgen cycloaddition using copper(I) catalysis) reactions. The extent of cargo encapsulation and release kinetics were analyzed using HPLC-based and colorimetric analytical methods. The efficiency of residue conjugation to the nano-DDSs was analyzed using FTIR spectroscopy and by quantifying the unreacted residues in the reaction mixture (i.e., by indirect analysis of reaction efficiencies). We revealed that copper, the catalyst of the Click reactions, formed complexes with unreacted targeting residues and interfered with the analysis of their conjugation efficiency. We used penicillamine (a chelator) to disrupt these complexes, and to recover the unreacted residues. Quantitative analysis revealed that 28,800-34,000 targeting residues (corresponding to 11-13 nm(2) surface area per residue) had been conjugated to a single nano-DDS using our 3-stage decoration approach, which is much higher than previously reported conjugation efficiencies. We conclude that the applied analytical tools allow quantitative analysis of nano-DDSs and the efficiency of their conjugation with targeting residues. The 3-stage decoration approach resulted in dense conjugation of nano-DDSs with targeting residues. The present decoration and analytical approaches can be effectively applied to other types of delivery systems and other targeting

  15. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  16. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration

    Science.gov (United States)

    Wang, Xin; Wei, Bing; Cheng, Xu; Wang, Jun; Tang, Rupei

    2016-09-01

    Phenylboronic acid-decorated nanoparticles (NPs) were prepared for tumor-targeted drug delivery. 3-carboxyphenylboronic acid (3-CPBA) was modified on the surface of conventional gelatin NPs (designated as NP1) to give tumor-targeting NPs (designated as NP2). The morphology and stability of NP1 and NP2 were then investigated using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The results show that both NP1 and NP2 are spherical-like and kinetically stable under various conditions. Doxorubicin hydrochloride (DOX) was used as a model anticancer drug and was loaded into NP1 (NP1-DOX) and NP2 (NP2-DOX). The i n vitro cellular uptake and cytotoxicity of NP1-DOX and NP2-DOX were measured using SH-SY5Y cells, H22 cells, and HepG2 cells. Tumor penetration, accumulation, and antitumor activity were investigated using SH-SY5Y tumor-like spheroids and H22 tumor-bearing mice. All results demonstrated that the conjugation of 3-CPBA can efficiently enhance non-targeted NPs’ tumor-homing activity, thus improving their tumor accumulation and antitumor effect.

  17. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  18. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  19. Multifunctional CNTs nanohybrids decorated with magnetic and fluorescent nanoparticles layer-by-layer

    Indian Academy of Sciences (India)

    Li Liu; Wei Jiang; Lei Yao; Xi-Wen Yang; Bin-Hua Chen; Shi-Xi Wu; Feng-Sheng Li

    2013-06-01

    Fe3O4/CNTs nanocomposites, which were prepared by polyol-medium in situ high-temperature decomposition of Fe()3 using PVP as stabilizing agent andmodified with SDS, were further decorated with high-quality ZnS nanocrystal via a wet technique in glycol solution. The obtained ZnS/Fe3O4/CNTs nanohybrids were characterized by XRD, FT–IR, Raman microscope, TEM, EDS, XPS, VSM and fluorophotometers. Results indicated that magnetic Fe3O4 nanoparticles and fluorescent ZnS nanocrystal were uniformly dispersed on the surface of CNTs layer-by-layer with PVP and SDS as stabilizing agent and ion-capture agent, respectively. The novel multi-functional nanohybrids exhibit super-paramagnetic properties with a saturation magnetization about 6.795 emu g-1 at room temperature and show a strong emission band at 367 nm with a broad shoulder around 342–483 nm due to the interactions and/or background emissions of Fe3O4 and CNTs. The superparamagnetic and fluorescent properties of obtained products are promising for potential applications in magnetically guided and fluorescence tracing drug delivery systems.

  20. Development of biofuel cells based on gold nanoparticle decorated multi-walled carbon nanotubes.

    Science.gov (United States)

    Naruse, Junichi; Hoa, Le Quynh; Sugano, Yasuhito; Ikeuchi, Tomohiko; Yoshikawa, Hiroyuki; Saito, Masato; Tamiya, Eiichi

    2011-12-15

    This study focused on developing the synthesis of Au nanoparticle-decorated functionalized multi-walled carbon nanotubes (Au-NPs/f-MWCNTs) for monosaccharide (bio-fuel) oxidation reactions and practical application in air-biofuel cells. We developed a scalable and straightforward method to synthesize Au-NPs/f-MWCNTs which allow us to control the loading and size of the Au-NPs. The Au-NPs/f-MWCNTs exhibited better catalytic activities and stability than the Au sheet and subsequently resulted in a threefold increase in the power density of the air-glucose fuel cell with an exceptionally high open circuit voltage (~1.3 V). The catalytic efficiency was confirmed by high performance liquid chromatography with the superior of the Au-NPs/f-MWCNTs over a bare gold electrode. In addition, the application of this advanced catalyst to other monosaccharide oxidation reactions figured out that the configuration of -OH groups at C(2) and C(3) of the reactants plays an important role in the initial adsorption process, and thus, affects the required activation energy for further oxidation. The different monosaccharides lead to significantly different fuel cell performances in terms of power density, which coherently corresponds to the difference in the configuration of C(2) and C(3). Because two small air-glucose fuel cells using Au-NPs/f-MWCNTs can run a LED lamp, further applications of other monosaccharides as fuel in biofuel cells for equivalent required power devices may be possible.

  1. Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors.

    Science.gov (United States)

    Zhu, Ye; Son, Jung Ik; Shim, Yoon-Bo

    2010-11-15

    A novel amperometric immunosensor with an enhanced sensitivity for the detection of neomycin (Neo) was prepared by covalently immobilizing a monoclonal Neo antibody onto a new conducting polymer, poly-[2,5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (pDPB), as a sensor probe. The probe was used to detect Neo in a sandwich-type approach, where the secondary antibody was attached to gold nanoparticle-decorated multi-wall carbon nanotubes labeled with hydrazine (Hyd-MWCNT(AuNP)-Ab(2)). Hydrazine on the conjugate served as a catalyst for the reduction of hydrogen peroxide, and the catalytic current was monitored at -0.45 V vs. Ag/AgCl. The performance of the immunosensor with and without AuNPs on the probe and the conjugate was compared. The parameters affecting the immunosensor response in terms of antibody dilution ratio, incubation time, pH, applied potential, and temperature were optimized. A linear dynamic range for Neo analysis was obtained between 10 ng/mL and 250 ng/mL with a detection limit of 6.76 ± 0.17 ng/mL. The proposed immunosensor was successfully applied to detect Neo content in real meat samples.

  2. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides.

    Science.gov (United States)

    Wang, Jianguo; Zhang, Yifeng; Yuan, Yahong; Yue, Tianli

    2014-06-01

    In this study, we employed a one-step method to prepare selenium nanoparticles (SeNPs) decorated by the water-soluble derivative of Ganoderma lucidum polysaccharides (SPS). The SeNPs-SPS complexes were stable, and the diameter of the SeNPs was homogeneous at around 25 nm. We investigated the anti-inflammatory activity of SeNPs-SPS against murine Raw 264.7 macrophage cells induced by LPS. SeNPs-SPS were found to significantly inhibit LPS-stimulated nitric oxide (NO) production against Raw 264.7 macrophages. RT-PCR results reveal the down-regulation of mRNA gene expressions for pro-inflammatory cytokines, including inducible NO synthase (iNOS), interleukin (IL)-1 and TNF-α in a dose-dependent manner. However, the anti-inflammation cytokine IL-10 was markedly increased. In the NF-κB signal pathway, SeNPs-SPS significantly inhibited the phosphorylation of Iκ-Bα. Similar results were observed for inhibition of the phosphorylation of JNK1/2 and p38 mitogen-activated protein kinase(MAPKs), whereas ERK1/2 MAPK was not apparently affected by SeNPs-SPS. All of these results suggest that SeNPs-SPS complexes have anti-inflammatory potential modulating pro-/anti-inflammation cytokine secretion profiles, and that the mechanism is partially due to inhibition of activations of NF-κB, JNK1/2 and p38 MAPKs.

  3. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles

    Science.gov (United States)

    Hurtado-Morales, M.; Ortiz, M.; Acuña, C.; Nerl, H. C.; Nicolosi, V.; Hernández, Y.

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene.

  4. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    Science.gov (United States)

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  5. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide.

    Science.gov (United States)

    Wang, Jiao; Shi, Anqi; Fang, Xian; Han, Xiaowei; Zhang, Yuzhong

    2015-01-15

    In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained "capture-target-signal probe"; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1μM to 0.1fM with a detection limit of 35aM (signal/noise=3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.

  6. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor.

    Science.gov (United States)

    Zhang, Zhangyuan; Zou, Xuming; Xu, Lei; Liao, Lei; Liu, Wei; Ho, Johnny; Xiao, Xiangheng; Jiang, Changzhong; Li, Jinchai

    2015-06-14

    In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.

  7. Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Thi; Chi, Do Thi; Dinh, Ngo Xuan; Hung, Nguyen Duy; Lan, Hoang [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Tuan, Pham Anh [Vietnam Metrology Institute, 08 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Thang, Le Hong [School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Trung, Nguyen Ngoc [School of Engineering Physics, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Hoa, Nguyen Quang [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Huy, Tran Quang [Laboratory for Ultrastructure and Bionanotechnology (LUBN), National Institute of Hygiene and Epidemiology (NIHE), No. 1 Yecxanh Street, Hai Ba Trung District, Hanoi (Viet Nam); Quy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Duong, Thanh-Tung [Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764 Daejeon (Korea, Republic of); Phan, Vu Ngoc [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan, E-mail: tuan.leanh1@hust.edu.vn [Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam)

    2014-12-05

    Highlights: • A photochemical method for effective decoration of the Ag-NPs on GO nanosheets is presented. • The average size of the Ag-NPs on the GO nanosheets obtained ∼6–7 nm with uniform size distribution. • Surface interaction of Ag-NPs with GO nanosheets leads to surface plasmon-enhanced luminescence. - Abstract: Nanohybrid materials based on silver nanoparticles (Ag-NPs) and graphene oxide (GO) are attracting considerable research interest because of their potential many applications including surface-enhanced Raman scattering, catalysis, sensors, biomedicine and antimicrobials. In this study, we established a simple and effective method of preparing a finely dispersed Ag-GO aqueous solution using modified Hummer and photochemical technique. The Ag-NPs formation on GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The average size of Ag-NPs on the GO nanosheets was approximately 6–7 nm with nearly uniform size distribution. The Ag-GO nanohybrid also exhibits an adsorption band at 435 nm because of the presence of Ag-NPs on the GO nanosheets. Photoluminescence emission of the Ag-GO nanohybrid was found at 400 and 530 nm, which can be attributed to the interaction between the luminescence of exploited GO nanosheets and localized surface plasmon resonance from metallic Ag-NPs. The observed excellent optical properties of the as-prepared Ag-GO nanohybrid showed a significant potential for optoelectronics applications.

  8. ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries

    Science.gov (United States)

    Kim, Tae-Hee; Park, Song Yi; Lee, Tack Ho; Jeong, Jaeki; Kim, Dong Suk; Swihart, Mark T.; Song, Hyun-Kon; Kim, Jin Young; Kim, Seongbeom

    2017-03-01

    Germanium exhibits high charge capacity and high lithium diffusivity, both are the key requirements for electrode materials in high performance lithium ion batteries (LIBs). However, high volume expansion and segregation from the electrode during charge–discharge cycling have limited use of germanium in LIBs. Here, we demonstrate that ZnO decorated Ge nanoparticles (Ge@ZnO NPs) can overcome these limitations of Ge as an LIB anode material. We produced Ge NPs at high rates by laser pyrolysis of GeH4, then coated them with solution phase synthesized ZnO NPs. Half-cell tests revealed dramatically enhanced cycling stability and higher rate capability of Ge@ZnO NPs compared to Ge NPs. Enhancements arise from the core–shell structure of Ge@ZnO NPs as well as production of metallic Zn from the ZnO layer. These findings not only demonstrate a new surface treatment for Ge NPs, but also provide a new opportunity for development of high-rate LIBs.

  9. Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raubach, Cristiane W., E-mail: cristiane@liec.ufscar.br; Polastro, Lisânias; Ferrer, Mateus M.; Perrin, Andre; Perrin, Christiane [INCTMN-UFSCar, Universidade Federal de São Carlos, Rod.Washington Luís Km 235, São Carlos 13565-905, SP (Brazil); Albuquerque, Anderson R.; Buzolin, Prescila G. C.; Sambrano, Julio R. [Grupo de Modelagem e Simulação Molecular, INCTMN-UNESP, São Paulo State University, P.O. Box 47 3, Bauru 17033-360, SP (Brazil); Santana, Yuri B. V. de; Varela, José A.; Longo, Elson [INCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, Araraquara 14801-907, SP (Brazil)

    2014-06-07

    Herein, we report a theoretical and experimental study on the photocatalytic activity of CeO{sub 2} ZnS, and ZnS decorated CeO{sub 2} nanoparticles prepared by a microwave-assisted solvothermal method. Theoretical models were established to analyze electron transitions primarily at the interface between CeO{sub 2} and ZnS. As observed, the particle morphology strongly influenced the photocatalytic degradation of organic dye Rhodamine B. A model was proposed to rationalize the photocatalytic behavior of the prepared decorated systems taking into account different extrinsic and intrinsic defect distributions, including order-disorder effects at interfacial and intra-facial regions, and vacancy concentration.

  10. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    Science.gov (United States)

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides.

  11. Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles

    Indian Academy of Sciences (India)

    Sedigheh Abbasi; Seyed Mojtaba Zebarjad; Seyed Hossein Noie Baghban; Abbas Youssefi

    2014-10-01

    In this paper, we report for the first time the statistical analysis of thermal conductivity of nanofluids containing TiO2 nanoparticles, pristine MWCNTs and decorated MWCNTs with different amounts of TiO2 nanoparticles. The functionalized MWCNT and synthesized hybrid of MWCNT–TiO2 were characterized using transmission electron microscopy (TEM). TEM image confirmed that the ends of MWCNTs were opened during their oxidation of them in HNO3 and TiO2 nanoparticles successfully attach to the outer surface of oxidized MWCNTs. Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data means is carried out with Duncan’s multiple-range test. Statistical analysis of experimental data show that temperature and weight fraction have a reasonable impact on the thermal conductivity of all tested nanofluids ( = 0.05). The results also show that increased temperature and weight fraction leads to the increased thermal conductivity.

  12. One-step interfacial thiol-ene photopolymerization for metal nanoparticle-decorated microcapsules (MNP@MCs).

    Science.gov (United States)

    Liu, Dandan; Jiang, Xuesong; Yin, Jie

    2014-06-24

    We herein reported a one-step strategy to prepare the noble metal nanoparticle-decorated microcapsules (MNP@MCs) through the interfacial thiol-ene photopolymerization. In the presence of amphiphlic polyhedral oligomeric silsesquioxane (POSS) containing thiol groups (PTPS) as a reactive surfactant and trimethylolpropane triacrylate (TMPTA) as a cross-linker, the oil phase of toluene dissolved with a photoinitiator was emulsified into a water phase containing a metal precursor to form an oil-in-water (O/W) emulsion. Upon irradiation of ultraviolet (UV) light, the thiol-ene photoploymerization and photoreduction at the interface of toluene/water lead to the formation of the cross-linked wall and metal nanoparticles, respectively. A series of gold, silver, and platinum nanoparticle-decorated microcapsules (AuNP@MC, AgNP@MC, and PtNP@MC) were prepared through this one-step interfacial thiol-ene photopolymerization and were characterized carefully by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results revealed that the obtained MNP@MCs were 2.2-2.7 μm in diameter with a wall of 40-70 nm in thickness, which was covered with the metal nanoparticles. The size and amount of metal nanoparticles increased with the increasing concentration of the metal precursor in water. Furthermore, the catalyst performance of AuNP@MC was studied by reduction of aromatic nitro compounds and exhibited the enhanced catalytic activity and good stability in the reduction of hydrophobic nitrophenol. It is believed that this robust, convenient, simple strategy based on the one-step interfacial thiol-ene photopolymerization will provide an important alternative to fabricate the functional metal nanoparticle-modified microcapsules.

  13. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Science.gov (United States)

    Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin

    2016-10-01

    Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.

  14. Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhigang, E-mail: zgzeng@shu.edu.cn [Department of Physics, College of Sciences, Shanghai University, Shanghai 200444 (China); Institute of NanoMicroEnergy, College of Sciences, Shanghai University, Shanghai 200444 (China); Zhou, Haijun; Long, Xiao; Guo, Erjuan [Department of Physics, College of Sciences, Shanghai University, Shanghai 200444 (China); Institute of NanoMicroEnergy, College of Sciences, Shanghai University, Shanghai 200444 (China); Wang, Xiaohong [Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444 (China); Institute of NanoMicroEnergy, College of Sciences, Shanghai University, Shanghai 200444 (China)

    2015-05-25

    Highlights: • Pt-NPs decorated NPG as current collector for electrodeposition of MnO{sub x} nanosheets. • Pt-NPs facilitate the formation of MnO{sub x} nanosheets and improve the conductivity. • MnO{sub x}/Pt@NPG electrode shows low contact resistance and excellent cycling stability. • Nanosized subunits in hybrid electrode can improve the electrochemical performance. - Abstract: A novel three dimensional nanoarchitecture of manganese oxide nanosheets/Pt@nanoporous gold (MnO{sub x}/Pt@NPG) was designed and synthesized by galvanostatic electrodepositon for supercapacitors application. Nanoporous gold (NPG) membrane was fabricated by a dealloying method as a current collector and discontinuous platinum nanoparticles were pulse electrodeposited on NPG. The morphology and chemical composition of the MnO{sub x}/Pt@NPG products were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the as-prepared MnO{sub x} as an electrode material for supercapacitor were investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy measurements in 1 M Na{sub 2}SO{sub 4} electrolyte. Importantly, the optimized MnO{sub x}/Pt@NPG hybrid electrodes obtain a maximum specific capacitance of 775 F g{sup −1} at 1 A g{sup −1} (about two times larger than that of MnO{sub x}/NPG electrodes with 404 F g{sup −1}), about half of the internal resistance of MnO{sub x}/NPG electrodes and excellent cycling stability, making it a promising candidate for supercapacitors.

  15. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  16. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengxiao, E-mail: beijingzsx@163.com [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Zhang, Yuanyuan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Bi, Guoming [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Liu, Junshen [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Wang, Zhigang [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Xu, Qiang; Xu, Hui; Li, Xiaoyan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China)

    2014-04-01

    Highlights: • The Fe{sub 3}O{sub 4}/PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe{sub 3}O{sub 4}/PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe{sub 3}O{sub 4}/PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe{sub 3}O{sub 4}/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe{sub 3}O{sub 4}/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe{sub 3}O{sub 4} nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe{sub 3}O{sub 4}/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu{sup 2+}, Ag{sup +}, and Hg{sup 2+} were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g{sup −1}, respectively. The Fe{sub 3}O{sub 4}/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.

  17. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells.

    Science.gov (United States)

    Rao, Wei; Wang, Hai; Han, Jianfeng; Zhao, Shuting; Dumbleton, Jenna; Agarwal, Pranay; Zhang, Wujie; Zhao, Gang; Yu, Jianhua; Zynger, Debra L; Lu, Xiongbin; He, Xiaoming

    2015-06-23

    Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.

  18. Carbon Nanodot-Decorated Ag@SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays.

    Science.gov (United States)

    Zhang, Xianfeng; Du, Xuezhong

    2016-01-13

    A novel immunoassay protocol was demonstrated by the combination of fluorescent carbon nanodots (CNDs) and Ag@SiO2 surface-enhanced Raman scattering (SERS) tag nanoparticles into ensembles for a bifunctional nanoplatform. The CND-decorated Ag@SiO2 nanoparticles were constructed for sensitive fluorescence and SERS immunoassays. The silica shell thickness and amount of Ag@SiO2 nanoparticles were optimized for availability of strong fluorescence emission. The considerably large Raman scattering cross section of in situ-generated actual Raman reporter, 4,4'-dimercaptoazobenzene, from the apparent reporter p-aminothiophenol modified on the surfaces of Ag nanoparticles upon illumination of laser compensated for the reduction of SERS signals resulting from silica coating to a great degree. The antibody-modified bifunctional nanoparticles were captured by antibody-modified quartz slides in the presence of antigens in the sandwich structures for fluorescence and SERS immunoassays. The bifunctional nanoparticles could be used not only as bimodal probes for biodetection but also as bimodal tracers for bioimaging.

  19. A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles.

    Science.gov (United States)

    Cabrera, Flávio C; Melo, Antonio F A A; de Souza, João C P; Job, Aldo E; Crespilho, Frank N

    2015-04-21

    Magnetite decorated with gold nanoparticles (Fe3O4-AuNPs) is a ferrimagnetic material with unprecedented applications in immunosensors, as a contrast agent for imaging diagnosis, and for the photothermal ablation of tumor cells. Here, we show the preparation of controlled amounts of Fe3O4-AuNPs without organic solvents, surfactants, or heat treatment. For this, we have developed a customized natural-rubber-based microfluidic device (NRMD) as a flexible lab-on-a-chip for the decoration of Fe3O4 with AuNPs. With a novel NRMD configuration, monodisperse Fe3O4-NPs (ϕ = 10 nm) decorated with AuNPs (ϕ = 4 nm) were readily obtained. The AuNPs were homogenous in terms of their size and their distribution on the Fe3O4-NP surfaces. Furthermore, the lab-on-a-chip was projected with an internal system for magnetic separation, an innovation in terms of aqueous/carrier phase separation. Finally, the nanomaterials produced with this NRMD are free of organic solvents and surfactants, allowing them to be used directly for medical applications.

  20. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    Science.gov (United States)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  1. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis.

    Science.gov (United States)

    Pearson, Andrew; Zheng, Haidong; Kalantar-Zadeh, Kourosh; Bhargava, Suresh K; Bansal, Vipul

    2012-10-09

    We present the employment of the Keggin ion 12-phosphotungstic acid as a UV-switchable reducing agent for the decoration of Au, Ag, Pt, and Cu nanoparticles onto the surface of TiO(2) nanotubes synthesized by electrochemical anodization. The synthesized composites were studied using SEM, GADDS XRD, and EDX, and the photocatalytic activity of the composites was examined by measuring the photodegradation of the organic dye "Congo red" under simulated solar light. Decoration with metal nanoparticles was observed to enhance the activity of the photocatalytic process by upward of 100% with respect to unmodified TiO(2) nanotubes.

  2. Ultrasonic assisted polyol-reduction of HAuCl4 for nanoparticle decoration of multiwall carbon nanotubes

    Science.gov (United States)

    Lasserre, Federico; Suarez, Sebastian; Mücklich, Frank

    2016-12-01

    The decoration of carbon nanotubes with metallic nanoparticles has been extensively studied for different systems. Despite the fact that several routes are available for the production of these heterostructures, their complexity and large amount of different reagents severely hinder their applicability. In this study, we propose an alternative route based on an ultrasonic assisted polyol reduction, which requires lower temperatures and amount of reagents when compared to traditional methodologies. Furthermore, the used solvent (ethylene glycol) is more environmentally friendly than other common reagents, resulting in a less aggressive process. We observed that the proposed route provides the possibility of straightforwardly tune the final nanoparticle size by controlling simple parameters such as exposure time and relative reagent concentrations. Moreover, the influence of the bath temperature has been studied, finding an upper limit of 50 °C for the proposed methodology.

  3. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO{sub 3} film by decorating with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shen, Mingrong; Fang, Liang, E-mail: lfang@suda.edu.cn [College of Physics, Optoelectronics and Energy and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Zhou, Yang; You, Lu; Wang, Junling [School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore 639798 (Singapore)

    2016-01-11

    Polycrystalline BiFeO{sub 3} (BFO) films are fabricated on Pt/Ti/SiO{sub 2}/Si(100) substrate as photoelectrode using sol-gel method. The microstructure, optical, and photoelectrochemical (PEC) properties of the films are characterized and optimized by controlling the film thickness. Moreover, the PEC properties of the BFO films are dependent on ferroelectric polarization, which is mainly ascribed to the modulation of band structure at the BFO/electrolyte interface by the polarization. Further enhancement of PEC properties is obtained by decorating the samples with appropriate amounts of Ag nanoparticles, which is attributed to the reduced electron-hole recombination, and localized surface plasmon resonance effect of Ag nanoparticles.

  4. Synthesis of reduced graphene oxide sheets decorated by zinc oxide nanoparticles: Crystallographic, optical, morphological and photocatalytic study

    Science.gov (United States)

    Labhane, P. K.; Patle, L. B.; Huse, V. R.; Sonawane, G. H.; Sonawane, S. H.

    2016-09-01

    Reduced graphene oxide (RGO) sheets decorated by ZnO nanoparticles were synthesized using wet impregnation method. The composite material was characterized by means of X-ray diffraction (XRD), Williamson-Hall Plot (W-H Plot) and Scanning Electron Microscope (SEM) analysis. The XRD pattern revealed orderly hexagonal (wurtzite) structure of the ZnO nanoparticles. Surface morphology of ZnO, RGO and RGO-ZnO was investigated using SEM analysis. SEM images indicated the uniform distribution of ZnO onto the RGO surface. The photocatalytic activity of nanocomposite was demonstrated by determining the degradation of methylene blue dye. The degradation of dye took place due to efficient electron-hole recombination of photo-induced electrons. Finally, plausible mechanism was explained with the help of scavengers. Overall, wet impregnation method was found efficient to produce RGO with uniform ZnO loading. The prepared RGO-ZnO composite can efficiently degrade the dye under UV radiation.

  5. Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing.

    Science.gov (United States)

    Hu, Yuwei; Hua, Shucheng; Li, Fenghua; Jiang, Yuanyuan; Bai, Xiaoxue; Li, Dan; Niu, Li

    2011-07-15

    Sensitive electrochemical impedance assay of DNA hybridization by using a novel graphene sheets platform was achieved. The graphene sheets were firstly functionalized with 3,4,9,10-perylene tetracarboxylic acid (PTCA). PTCA molecules separated graphene sheets efficiently and introduced more negatively-charged -COOH sites, both of which were beneficial to the decoration of graphene with gold nanoparticles. Then amine-terminated ionic liquid (NH₂-IL) was applied to the reduction of HAuCl₄ to gold nanoparticles. The green-synthesized gold nanoparticles, with the mean diameter of 3 nm, dispersed uniformly on graphene sheets and its outer layer was positively charged imidazole termini. Due to the presence of large graphene sheets and NH₂-IL protected gold nanoparticles, DNA probes could be immobilized via electrostatic interaction and adsorption effect. Electrochemical impedance value increased after DNA probes immobilization and hybridization, which was adopted as the signal for label-free DNA hybridization detection. Unlike previously anchoring DNA to gold nanoparticles, this label-free method was simple and noninvasive. The conserved sequence of the pol gene of human immunodeficiency virus 1 was satisfactorily detected via this strategy.

  6. Effective decoration of Pd nanoparticles on the surface of SnO{sub 2} nanowires for enhancement of CO gas-sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Trung, Do Dang [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi (Viet Nam); Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi (Viet Nam); Tong, Pham Van; Duy, Nguyen Van [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi (Viet Nam); Dao, T.D.; Chung, H.V.; Nagao, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi (Viet Nam)

    2014-01-30

    Highlights: • Pd nanoparticles decoration on nanowire's surface was done via a simple route. • The size and distribution of Pd nanoparticles was controlled by in situ reduction of the Pd complex. • The coating Pd enhanced capable detection of hazardous CO gas of on-chip growth SnO{sub 2} nanowires. • Pd-decorated SnO{sub 2} nanowires sensors have good stability to hazardous CO gas. -- Abstract: Decoration of noble metal nanoparticles (NPs) on the surface of semiconducting metal oxide nanowires (NWs) to enhance material characteristics, functionalization, and sensing abilities has attracted increasing interests from researchers worldwide. In this study, we introduce an effective method for the decoration of Pd NPs on the surface of SnO{sub 2} NWs to enhance CO gas-sensing performance. Single-crystal SnO{sub 2} NWs were fabricated by chemical vapor deposition, whereas Pd NPs were decorated on the surface of SnO{sub 2} NWs by in situ reduction of the Pd complex at room temperature without using any linker or reduction agent excepting the copolymer P123. The materials were characterized by advanced techniques, such as high-resolution transmission electron microscopy, scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pd NPs were effectively decorated on the surface of SnO{sub 2} NWs. As an example, the CO sensing characteristics of SnO{sub 2} NWs decorated with Pd NPs were investigated at different temperatures. Results revealed that the gas sensor exhibited excellent sensing performance to CO at low concentration (1–25 ppm) with ultrafast response-recovery time (in seconds), high responsivity, good stability, and reproducibility.

  7. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  8. Synthesis of Pd-coated FeCo@Fe/C core-shell nanoparticles: microwave-induced ‘top-down’ nanostructuring and decoration

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2013-01-01

    Full Text Available We report a novel microwave-induced fast and efficient synthesis of sub-10 nm sized palladium-decorated FeCo@Fe core–shell nanoparticles (ca. 3–7 nm) from a large-sized FeCo@Fe (0.21–1.5 µm) precursor, suggesting ‘top-down’ nanosizing. The high...

  9. A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water.

    Science.gov (United States)

    He, Hongkun; Gao, Chao

    2010-07-02

    The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2-3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1) CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2) different types of CNTs, including single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multiwalled carbon nanotubes (MWCNTs); and 3) different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH(4), and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  10. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  11. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qingchun [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Wu, Qingsheng, E-mail: qswu@tongji.edu.cn [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2015-02-11

    Highlights: • Carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared. • AgNP-CMSs show not only rapid and high adsorption capacity to methylene blue (MB) in water, but also excellent reusability. • It exhibits photocatalytic activity to Rhodamine B as well as MB under visible light. • The adsorption is from the ionic interactions but not the π–π conjugations. • The origin of photocatalysis is a surface plasmon resonance effect of AgNP on CMSs. - Abstract: Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV–vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant π–π conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs.

  12. Structure of multiresponsive brush-decorated nanoparticles: A combined electrokinetic, DLS, and SANS study

    NARCIS (Netherlands)

    Martin, J.R.S.; Bihannic, J.; Santos, C.; Farinha, J.P.; Deme, B.; Leermakers, F.A.M.; Pinheiro, J.P.

    2015-01-01

    Particles consisting of a glassy poly(methyl methacrylate) core (ca. 40 nm in radius) decorated with a poly(N-isopropylacrylamide) anionic corona are synthesized using either methacrylic acid (MA) or acrylic acid (AA) as reactive comonomers in the shell. The different reactivity ratios of MA and AA

  13. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    Science.gov (United States)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  14. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    Science.gov (United States)

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.

  15. Realization of low power-laser induced thermionic emission from Ag nanoparticle-decorated CNT forest: A consequence of surface plasmon resonance

    Science.gov (United States)

    Monshipouri, Mahta; Abdi, Yaser; Darbari, Sara

    2016-11-01

    Enhancement of electron emission from Ag nanoparticle-decorated carbon nanotube (CNT) forest, using low power-lasers, is reported in this work. Realization of thermionic emission from CNTs using the low power laser can be achievable when the CNT forest is illuminated by a narrow laser beam which leads to localized heating of the CNT forest surface. For this purpose, CNT forest was decorated with Ag nanoparticles. Surface plasmon resonance of Ag nano-particles led to intense local electric field which is responsible for localized heating and thermionic emission from CNTs. Enhancement of emission current from CNTs depends on the wavelength of the excitation laser, so that matching the wavelength of laser to the wavelength of the plasmon resonance leaded to a maximum enhancement in electron emission.

  16. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    Science.gov (United States)

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  17. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination.

    Science.gov (United States)

    Daneshvar, Leili; Rounaghi, Gholam Hossein; Es'haghi, Zarrin; Chamsaz, Mahmoud; Tarahomi, Somayeh

    2016-12-01

    This paper proposes a simple approach for sensing of citalopram (CTL) using gold-palladium bimetallic nanoparticles (Au-PdNPs) decorated graphene modified gold electrode. Au-PdNPs were deposited at the surface of a graphene modified gold electrode with simple electrodeposition method. The morphology and the electrochemical properties of the modified electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy dispersion spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The novel sensor exhibited an excellent catalytic activity towards the oxidation of CTL. The oxidation peak current of CTL, was linear in the range of 0.5-50μM with a detection limit 0.049μM with respect to concentration of citalopram. The proposed sensor was successfully applied for determination of CTL tablet and human plasma samples with satisfactory results.

  18. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    Science.gov (United States)

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-01

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP.

  19. Fabrication of Ag-Decorated CaTiO₃ Nanoparticles and Their Enhanced Photocatalytic Activity for Dye Degradation.

    Science.gov (United States)

    Xian, T; Yang, H; Huo, Y S; Ma, J Y; Zhang, H M; Su, J Y; Feng, W J

    2016-01-01

    CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation.

  20. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  1. Electrochemical sensing platform for L-CySH based on nearly uniform Au nanoparticles decorated graphene nanosheets.

    Science.gov (United States)

    Xu, Fugui; Wang, Fan; Yang, Duanguang; Gao, Yong; Li, Huaming

    2014-05-01

    In this study, Au nanoparticles decorated graphene nanosheets were prepared using poly(vinylpyrrolidone) (PVP) covalently functionalized graphene oxide and chloroauric acid as template and Au precursor, respectively. Both the density and the size of Au nanoparticles deposited on the surface of graphene could be adjusted by the PVP grafting density. The graphene-Au hybrid nanosheets were then applied to fabricate a highly sensitive l-cysteine (L-CySH) electrochemical sensing platform. The cyclic voltammetry results showed that the modified glassy carbon electrode with graphene-Au hybrid nanosheets exhibited strong catalytic activity toward the electrooxidation of L-CySH. The current exhibited a widely linear response ranging from 0.1 to 24 μM with a low detection limit under the optimized conditions. The detection limit of L-CySH could reach as low as 20.5 nM (S/N=3). The enhanced electrochemical performance of the fabricated sensor was attributed to the combination of the excellent conductivity of graphene and strong catalytic property of uniform Au nanoparticles.

  2. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers.

    Science.gov (United States)

    Li, Yu-An; Tai, Nyan-Hwa; Chen, Swe-Kai; Tsai, Tsung-Yen

    2011-08-23

    This work demonstrates the processing and characterization of the transparent and highly electrically conductive film using few-walled carbon nanotubes (FWCNTs) decorated with Pd nanoparticles as fillers. The approach included functionalizing the FWCNTs, immersing them in an aqueous solution of palladate salts, and subsequently subjecting them to a reduction reaction in H(2). Field-emission scanning electron microscopy and transmission electron microscopy images showed that the functionalized FWCNTs (f-FWCNTs) were decorated with uniform and homogeneous Pd nanoparticles with an average diameter of 5 nm. A shift of the G-band to a higher frequency in the Raman spectra of the Pd-decorated f-FWCNTs (Pd@f-FWCNTs) illustrates that the p-type doping effect was enhanced. X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed that PdCl(2) was the primary decoration compound on the f-FWCNTs prior to the reduction reaction and that Pd nanoparticles were the only decorated nanoparticles after H(2) reduction. The contact resistance between the metallic materials and the semiconducting CNTs in FWCNTs, controlled by the Schottky barrier, was significantly decreased compared to the pristine FWCNTs. The decrease in contact resistance is attributed to the 0.26 eV increase of the work function of the Pd@f-FWCNTs. Extremely low sheet resistance of 274 ohm/sq of the poly(ethylene terephthalate) substrates coated with Pd@f-FWCNTs was attained, which was 1/25 the resistance exhibited by those coated with FWCNTs, whereas the same optical transmittance of 81.65% at a wavelength of 550 nm was maintained. © 2011 American Chemical Society

  3. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Asadian, Elham [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran (Iran, Islamic Republic of); Iraji zad, Azam [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, Tehran 14588-89694 (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2016-01-01

    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10{sup −7} to 1 × 10{sup −4} mol L{sup −1} with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations. - Highlights: • A novel electrochemical sensing platform based on graphene nanosheets decorated with Ag nanoparticles was constructed for determination of Azathioprine. • The prepared modified electrode showed an efficient catalytic role toward the electro-reduction of Azathioprine. • The prepared modified electrode shows a wide linear dynamic range and a nanomolar detection limit for Azathioprine. • The modification procedure provides a

  4. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination

    Science.gov (United States)

    Peng, Chuchu; Wang, Wenzhong; Zhang, Weiwei; Liang, Yujie; Zhuo, La

    2017-10-01

    Here, we demonstrate that TiO2 nanowires (NWs) can be significantly driven by visible light through the decoration with Ag nanoparticles (NPs) (Ag-decorated TiO2 NWs). The Ag-decorated TiO2 NWs show remarkably photoelectrochemical (PEC) water splitting performance under illumination with λ > 420 visible light due to surface plasmon resonance (SPR) of Ag NPs. In this work, low power of the used light source (100 mW/cm2) was not capable of heating the Ag-decorated TiO2 nanowire photoanode enough to directly split water. In addition, under irradiation with λ > 420 nm visible light, no photocurrent was produced by TiO2 nanowire photoanode indicates that electron transitions between valence band and conduction band do not take place in prepared anatase TiO2 NWs. Meanwhile, the SPR energy (2.95-2.13 eV performance of Ag-decorated TiO2 NWs is attributed to electron transfer from Ag NPs to the conduction band of TiO2 NWs mediated by SPR. In addition, a Schottky barrier established at the interface of Ag NPs and TiO2 NWs prevents these transferred electrons from returning to the Ag NPs and significantly retarded the recombination of electron-hole pairs in the Ag NPs, also contributing to visible-light-driven PEC water splitting performance. So the remarkably visible-light-driven PEC water splitting performance of Ag-decorated TiO2 NWs is attributed to the synergistic effects of electron transfer mediated by SPR and the Schottky barrier between Ag NPs and TiO2 NWs. The achieved Ag-decorated TiO2 NWs can be added to these previously prepared TiO2 photocatalysts mainly driven by SPR of Au NPs for the development of new visible light photocatalysts.

  5. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance.

    Science.gov (United States)

    Trung, Do Dang; Hoa, Nguyen Duc; Tong, Pham Van; Duy, Nguyen Van; Dao, T D; Chung, H V; Nagao, T; Hieu, Nguyen Van

    2014-01-30

    Decoration of noble metal nanoparticles (NPs) on the surface of semiconducting metal oxide nanowires (NWs) to enhance material characteristics, functionalization, and sensing abilities has attracted increasing interests from researchers worldwide. In this study, we introduce an effective method for the decoration of Pd NPs on the surface of SnO2 NWs to enhance CO gas-sensing performance. Single-crystal SnO2 NWs were fabricated by chemical vapor deposition, whereas Pd NPs were decorated on the surface of SnO2 NWs by in situ reduction of the Pd complex at room temperature without using any linker or reduction agent excepting the copolymer P123. The materials were characterized by advanced techniques, such as high-resolution transmission electron microscopy, scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pd NPs were effectively decorated on the surface of SnO2 NWs. As an example, the CO sensing characteristics of SnO2 NWs decorated with Pd NPs were investigated at different temperatures. Results revealed that the gas sensor exhibited excellent sensing performance to CO at low concentration (1-25ppm) with ultrafast response-recovery time (in seconds), high responsivity, good stability, and reproducibility.

  6. A General Strategy for the Preparation of Carbon Nanotubes and Graphene Oxide Decorated with PdO Nanoparticles in Water

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2010-07-01

    Full Text Available The preparation of carbon nanotube (CNT/PdO nanoparticles and graphene oxide (GO/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step “green” synthetic approach in aqueous Pd(NO32 solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2–3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1 CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2 different types of CNTs, including single-walled carbon nanotubes (SWCNTs, double-walled carbon nanotubes (DWCNTs, and multiwalled carbon nanotubes (MWCNTs; and 3 different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH4, and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  7. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Berven, C.A.; Clarke, L.; Wybourne, M.N. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Mooster, J.L.; Hutchison, J.E. [Oregon Univ., Eugene, OR (United States). Dept. of Chemistry

    2001-01-16

    Gold nanoparticles assembled on a biopolymer template between metal electrodes on an insulating substrate are shown to exhibit unambiguous single electron charging effects that are found to depend on the nanoparticle properties and the geometrical contraints imposed by the biopolymer. The results support the idea of using nanoparticles in conjunction with biomolecular organization to produce nanoscale systems with defect-tolerant current-voltage behavior. (orig.)

  8. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Say, R Latin-Small-Letter-Dotless-I dvan, E-mail: rsay@anadolu.edu.tr [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Yazar, Suzan [Sanovel Pharmaceutical Company (Turkey); Ugur, Alper; Huer, Deniz [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey)

    2013-01-15

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg{sup 2+} provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  9. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution.

    Science.gov (United States)

    Chen, Qingchun; Wu, Qingsheng

    2015-01-01

    Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV-vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant π-π conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs.

  10. Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming

    2014-06-01

    A highly selective amperometric sensor was developed for the trace level determination of hydrazine at bismuth nanoparticles (Bi) decorated graphene nanosheets (GR) composite film modified glassy carbon electrode (GCE). GR-Bi nanocomposite has been successfully prepared via simple and facile chemical reduction approach and its structure was characterized by various techniques. Surface morphological and X-ray diffraction studies revealed the formation and high loading of Bi nanoparticles on graphene sheets. GR-Bi nanocomposite modified GCE exhibited greatly enhanced electrocatalytic performance towards electro-oxidation of hydrazine in terms of decrease in overpotential and increase in oxidation peak current (Ip). The kinetic parameters such as electron transfer coefficient (α) and diffusion coefficient (Do) of the hydrazine oxidation were determined to be 0.70 and 2.65×10(-5) cm(2) s(-1), respectively. An amperometric sensor has been fabricated which detects trace level concentration of hydrazine. The sensor exhibited a wide linear range from 20 nM to 0.28 mM and a very low detection limit (LOD) of 5 nM. Remarkably, this is the lowest LOD achieved for the determination of hydrazine in neutral pH among other reported electrochemical hydrazine sensors. In addition, the sensor selectively detects hydrazine even in the presence of 1000 fold excess quantity of common interferrants. The practical feasibility of the sensor has been assessed in water and urine samples with good recoveries. Furthermore, the sensor exhibited appreciable stability, repeatability and reproducibility results.

  11. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-05-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  12. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    Science.gov (United States)

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-05-09

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Science.gov (United States)

    Say, Rıdvan; Yazar, Suzan; Uğur, Alper; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2013-01-01

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg2+ provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP- co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  14. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid

    Directory of Open Access Journals (Sweden)

    Tessy Theres Baby

    2013-01-01

    Full Text Available The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT, hydrogen exfoliated graphene (HEG and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are discussed. The hybrid structure of MWNT and HEG (MWNT-HEG has been synthesized by a simple mixing of MWNT and graphite oxide (GO followed by exfoliation of this mixture in hydrogen atmosphere. The sample has been characterized with different experimental techniques. After surface functionalization, this hybrid material is decorated with silver nanoparticles (Ag/(MWNT-HEG and dispersed in ethylene glycol (EG without any surfactant. The thermal conductivity and convective heat transfer properties are measured for different volume fractions. An enhancement of ∼8% in thermal conductivity is obtained for a volume fraction of 0.04% at 25°C. The convective heat transfer coefficient of these nanofluids is determined using an in-house fabricated setup. The enhancement in heat transfer coefficient is about 570% for 0.005% volume fraction at the entrance of the pipe for Re = 250.

  15. Graphene Aerogels Decorated with α-FeOOH Nanoparticles for Efficient Adsorption of Arsenic from Contaminated Waters.

    Science.gov (United States)

    Andjelkovic, Ivan; Tran, Diana N H; Kabiri, Shervin; Azari, Sara; Markovic, Marijana; Losic, Dusan

    2015-05-13

    Arsenic (As) is the world's most hazardous chemical found in drinking water of many countries; therefore, there is an urgent need for the development of low-cost adsorbents for its removal. Here, we report a highly versatile and synthetic route for the preparation of a three-dimensional (3D) graphene-iron oxide nanoparticle aerogel composite for the efficient removal of As from contaminated water. This unique three-dimensional (3D) interconnected network was prepared from natural graphite rocks with a simple reaction, without the use of harsh chemicals, which combines with the exfoliation of graphene oxide (GO) sheets via the reduction of ferrous ion to form a graphene aerogel composite decorated with iron oxide nanoparticles. The prepared adsorbent showed outstanding absorption performance for the removal of As from contaminated water, because of its high surface-to-volume ratio and characteristic pore network in the 3D architecture. The performed case study using real drinking water contaminated with As under batch conditions showed successful removal of arsenic to the concentration recommended by the World Health Organisation (WHO).

  16. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    Science.gov (United States)

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  17. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    Science.gov (United States)

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%.

  18. Rapid detection of single nucleotide mutation in p53 gene based on gold nanoparticles decorated on graphene nanosheets

    Indian Academy of Sciences (India)

    SEYEDEH ZEINAB MOUSAVISANI; JAHAN BAKHSH RAOOF; REZA OJANI; ROUDABEH VALIOLLAHI

    2017-01-01

    A simple and highly sensitive electrochemical DNA sensor for the rapid detection of a specific DNA sequence related to the p53 gene is described. The structure and morphology of the synthesized graphene nanosheets and Au nanoparticles were characterized through transmission electron microscopy, UV–Vis spectroscopyand energy dispersion X-ray spectroscopy techniques. The new electrochemical biosensor was prepared by modifying a graphite screen printed electrode (SPE) with gold nanoparticles decorated on graphene (AuNPs/G) nanocomposite. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniqueswere employed to clarify the changes in charge transfer during the fabrication and utilization of the DNA biosensor. The DNA hybridization event was monitored by differential pulse voltammetry (DPV). Under optimal conditions, the decrease of the peak current had a linear relation with the logarithm of the concentration of target complementary DNA in the range 0.5 fM to 0.05 nM, with a detection limit of 0.36 ± 0.04 fM.

  19. Cesium Salt of Sodium 30-Tungstopentaphosphate: An Effective and Green Polyoxometalate for Synthesis of Gold Nanoparticles along with Decoration of Titanium Dioxide with Gold Nanoparticles for Bleaching of Malachite Green

    OpenAIRE

    Fatemeh Farrash Bamoharram; Afsaneh Moghadam Jafari; Ali Ayati; Bahareh Tanhaei; Mika Sillanpää

    2013-01-01

    For the first time, capability of the cesium salt of sodium 30-tungstopentaphosphate, the so-called Preyssler’s anion (CsP5), as a green and eco-friendly polyoxometalate was investigated in the synthesis of gold nanoparticles and decoration of titanium dioxide with gold nanoparticles. Gold nanoparticles and nanocomposites were characterized by TEM, XRD, UV, and FTIR. TEM images showed that the gold nanoparticles have tubular and spherical shapes and particle size ranges from 10 to 25 nm. For ...

  20. Microlandscaping on a graphene oxide film via localized decoration of Ag nanoparticles.

    Science.gov (United States)

    Teoh, Hao Fatt; Dzung, Pham; Lim, Wan Qi; Chua, Jun Hui; Lee, Kian Keat; Hu, Zhibin; Tan, Huiru; Tok, Eng Soon; Sow, Chorng Haur

    2014-03-21

    A direct and facile method for micro-landscaping of Ag nanoparticles on reduced graphene oxide (rGO) is presented. This method employs a focused laser beam to achieve local reduction of Ag(+) ions to Ag NPs by laser irradiation on a GO film that is submerged in AgNO3 solution. Using this method, the Ag nanoparticles can be directly anchored on a rGO film, creating a microlandscape of Ag nanoparticles on the rGO film. In addition, varying the intensity of the laser beam can control the shapes, sizes and distributions of Ag nanoparticles. The resulting hybrid materials exhibit surface enhanced Raman scattering of up to 16 times depending on the size and number density of silver nanoparticles. In addition, the hybrid Ag-rGO material shows superior photoresponse when compared to rGO.

  1. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    Science.gov (United States)

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  2. Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hsiung; Chen, Chao-Hong [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chen, Dong-Hwang, E-mail: chendh@mail.ncku.edu.tw [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2013-03-25

    Highlights: ► AZO nanorod array thin film is used as a photoanode for solar water splitting. ► Hydrogen treatment and sensitization by PbS nanoparticles enhance photocurrent. ► A novel ITO/FTO-free composite photoelectrode is developed. ► The pre-fabrication and use of an extra TCO thin film substrate is unnecessary. -- Abstract: Al-doped ZnO (AZO) nanorod arrays thin film with hydrogen treatment is directly used as a photoelectrode for solar water splitting without an extra transparent conducting oxide (TCO) thin film because it possesses the functions of TCO thin film and photoactive 1-dimensional nanostructured semiconductor simultaneously. To enhance the absorption in the visible region, PbS nanoparticles decorated the AZO nanorods via successive ionic layer adsorption and reaction route. The PbS nanoparticles have a face-centered cubic structure and their decoration does not destroy the 1-dimensional morphology of AZO nanorod arrays. With increasing the cycle number of PbS nanoparticles decoration, the grain size and loading of PbS nanoparticles become larger gradually which leads to lower energy bandgap and stronger absorption. A maximum photocurrent density of 1.65 mW cm{sup −2} is obtained when the cycle number is 20, which is much higher than those without PbS nanoparticles sensitization or hydrogen treatment. This demonstrates that the AZO nanorod array thin film with hydrogen treatment can be directly used as a photoelectrode without an extra TCO thin film. Because the use of expensive metals can be avoided and the pre-fabrication of TCO thin film substrate is necessary no more, the fabrication of such a composite photoelectrode becomes simple and low-cost. So, it has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption.

  3. Photocurrent enhancement of an individual gallium nitride nanowire decorated with gold nanoparticles

    Science.gov (United States)

    Sundararajan, Jency Pricilla; Sargent, Meredith; McIlroy, David N.

    2011-03-01

    Variation in electron transport properties of individual n-type gallium nitride (GaN) nanowire and gold decorated gallium nitride (Au-GaN) nanowire were studied with respect to laser exposure of different wavelength and intensity. Single nanowire devices were manufactured by photolithography process in nanotechnology cleanroom, were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). A drop in electrical conductivity of Au-GaN nanowire was observed relative to bare GaN nanowire. Under laser illumination, we noticed an enhancement in photocurrent in Au-GaN nanowire, which increased with increase in excitation power at ambient conditions. We present a comparative study of the opto-electrical behavior of bare GaN nanowire vs Au-GaN nanowire and explain the IV characteristics and FET characteristics with respect to the length and diameter of nanowire. USDA, UI-BANTech.

  4. Nanoparticles Decorated on Resin Particles and Their Flame Retardancy Behavior for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Nour F. Attia

    2017-01-01

    Full Text Available New nanocomposites have been developed by doping of amberlite IR120 resin with spherical TiO2 nanoparticles in the presence of maleate diphosphate. Polystyrene composites of resin, maleate diphosphate, and resin-maleate diphosphate were prepared individually. This is in addition to preparation of polymer nanocomposites of polystyrene-resin doped TiO2 nanoparticles-maleate diphosphate. The flame retardancy and thermal stability properties of these developed polymer composites were evaluated. The inclusion of resin and resin doped nanoparticles improved the fire retardant behavior of polystyrene composites and enhanced their thermal stability. Synergistic behavior between flame retardant, resin, and nanoparticles was detected. The rate of burning of the polymer nanocomposites was recorded as 10.7 mm/min achieving 77% reduction compared to pure polystyrene (46.5 mm/min. The peak heat release rate (PHRR of the new polymer composites has reduced achieving 46% reduction compared to blank polymer. The morphology and dispersion of nanoparticles on resin and in polymer nanocomposites were characterized using transmission and scanning electron microscopy, respectively. The flame retardancy and thermal properties were evaluated using UL94 flame chamber, cone tests, and thermogravimetric analysis, respectively.

  5. Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region.

    Science.gov (United States)

    Yang, Weiwei; Xiong, Yunjie; Zou, Liangliang; Zou, Zhiqing; Li, Dongdong; Mi, Qixi; Wang, Yanshan; Yang, Hui

    2016-12-01

    The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO4 and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO4 and Pd NR-decorated BiVO4 could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO4 electrodes leads to a broad-band enhancement across visible-NIR region.

  6. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops.

    Science.gov (United States)

    Karthik, R; Govindasamy, Mani; Chen, Shen-Ming; Mani, Veerappan; Lou, Bih-Show; Devasenathipathy, Rajkumar; Hou, Yu-Shen; Elangovan, A

    2016-08-01

    A simple and rapid green synthesis using Bischofia javanica Blume leaves as reducing agent was developed for the preparation of gold nanoparticles (AuNPs). AuNPs decorated graphene oxide (AuNPs/GO) was prepared and employed for the sensitive amperometric determination of chloramphenicol. The green biosynthesis requires less than 40s to reduce gold salts to AuNPs. The formations of AuNPs and AuNPs/GO were evaluated by scanning electron and atomic force microscopies, UV-Visible and energy dispersive X-ray spectroscopies, X-ray diffraction studies, and electrochemical methods. AuNPs/GO composite film modified electrode was fabricated and shown excellent electrocatalytic ability towards chloramphenicol. Under optimal conditions, the amperometric sensing platform has delivered wide linear range of 1.5-2.95μM, low detection limit of 0.25μM and high sensitivity of 3.81μAμM(-1)cm(-2). The developed sensor exhibited good repeatability and reproducibility, anti-interference ability and long-term storage stability. Practical feasibility of the sensor has been demonstrated in food samples (milk, powdered milk and honey) and pharmaceutical sample (eye drops). The green synthesized AuNPs/GO composite has great potential for analysis of food samples in food safety measures.

  7. Photodegradation of Unsymmetrical Dimethylhydrazine by TiO2 Nanorod Arrays Decorated with CdS Nanoparticles Under Visible Light.

    Science.gov (United States)

    Gao, Xin; Liu, Xiangxuan; Wang, Xuanjun; Zhu, Zuoming; Xie, Zheng; Li, Jun

    2016-12-01

    Photocatalysis technology could utilize solar energy to degrade many toxic pollutants and provides possibility to deal with unsymmetrical dimethylhydrazine (UDMH) wastewater with less energy consumption. In this study, well-aligned TiO2 nanorod arrays (TiO2 NRAs) were grown directly on transparent conductive glass (FTO) via a hydrothermal method, and TiO2 NRAs/CdS heterostructure films were prepared by decorating TiO2 NRAs with CdS nanoparticles through successive ion layer adsorption and reaction (SILAR). Under visible light, the TiO2 NRAs/CdS heterostructure displays enhanced photodegrading capacity compared with the bare TiO2 NRAs, and the highest photodegradation rate, 27.5% higher than that of the bare TiO2 NRAs, was achieved by the sample with 15 SILAR cycles. Additionally, the solution pH had some influence on the degradation process, which shows that the best degradation rate can be achieved in the neutral solution (pH is ca. 7.2), and the photodegradation process can be better in alkaline solution than in the acid solution. Moreover, the visible photocatalytic stability of the TiO2 NRAs/CdS sample was investigated. Finally, the underlying photocatalytic mechanism was discussed according to the photoelectrochemical and photoluminescence results.

  8. Spontaneous decoration of Au nanoparticles on micro-patterned reduced graphene oxide shaped by focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y. C.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Teoh, H. F. [Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore); Sow, C. H. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore)

    2015-02-07

    We report a facile, two-step method for the micro-landscaping of Au nanoparticles(NPs) on reduced graphene oxide (rGO) film en route to micro-patterned Au(NPs)-rGO hybrid functional materials. This method employs a focused laser beam to first locally convert GO to rGO before immersing the micro-patterned GO-rGO film into HAuCl{sub 4} solution. The rGO micro-pattern, shaped by the focused laser beam, serves as nucleation sites for the reduction of Au ions. The reduction mechanism that governs the decoration of Au NPs on rGO films is akin to electroless deposition process. In this instance, surface charges that are formed during laser reduction of GO to rGO provide active nucleation sites for Au{sup 3+} ions to form Au NPs when HAuCl{sub 4} solution is introduced. The number density, the size, and size distribution of the Au NPs can thus be directly tuned and preferentially anchored onto the rGO micro-pattern by varying the incident laser power, the scanning speed of the laser, or the concentration of HAuCl{sub 4}. The resulting hybrid materials can be used as a substrate for Surface Enhanced Raman Spectroscopy (SERS). Using Rhodamine 6G as the test subject, we found an improvement of SERS enhancement over bare rGO of up to four times, depending on the size of the Au NPs.

  9. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates

    Institute of Scientific and Technical Information of China (English)

    Haibin Tang[1; Guowen Meng[1,2; Zhongbo Li[1; Chuhong Zhu[1; Zhulin Huang[1; Zhaoming Wang[1; Fadi Li[1

    2015-01-01

    The surface topography of noble metal particles is a significant factor in tailoring surface-enhanced Raman scattering (SERS) properties. Here, we present a simple fabrication route to hexagonally arranged arrays of surface-roughened urchin- like Ag hemispheres (Ag-HSs) decorated with Ag nanoparticles (Ag-NPs) for highly active and reproducible SERS substrates. The urchin-like Ag-HS arrays are achieved by sputtering Ag onto the top surface of a highly ordered porous anodic aluminum oxide (AAO) template to form ordered arrays of smooth Ag-HSs and then by electrodepositing Ag-NPs onto the surface of each Ag-HS. Owing to the ordered arrangement of the Ag-HSs and the improved surface roughness, the urchin-like hierarchical Ag-HS arrays can provide sufficient and uniform "hot spots" for reproducible and highly active SERS effects. Using the urchin-like Ag-HS arrays as SERS substrates, 10-7 M dibutyl phthalate (a member of plasticizers family) and 1.5 × 10-5 M PCB-77 (one congener of polychlorinated biphenyl, a notorious class of pollutants) are identified, showing promising potential for these substrates in the rapid recognition of organic pollutants.

  10. Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chunming; Chen Hui; Yu Cheng; Zhang Song; Liu Baohong [Department of Chemistry, Fudan University, Shanghai, 200433 (China); Kong Jilie [Department of Chemistry, Fudan University, Shanghai, 200433 (China); Institutes of Biomedical Science, Fudan University, Shanghai, 200433 (China); Research Center for Analysis and Measurement, Fudan University, Shanghai, 200433 (China)], E-mail: jlkong@fudan.edu.cn

    2009-01-01

    In this work, a novel 3D nanocomposite is presented, which is consisted of poly(N-acetylaniline) (PAANI)/multi-walled carbon nanotubes (MWNTs) nanorods (in which the inner layer was comprised of MWNTs and the outer layer was PAANI, forming a core-shell structure) and the decorated Pt nanoparticles. Electrochemical techniques (such as electrochemical impedance spectroscopy (EIS)), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the nanocomposite. The resulting Pt/PAANI/MWNTs nanocomposite can be served as a higher efficient catalyst for the electrochemical oxidation of formaldehyde at 0.41 V with the catalytic current of 0.73 mA, which was accompanied with about 45 mV potential negative shifts and two-fold increase in peak current comparison to the Pt/PAANI. These results reveal that the Pt/PAANI/MWNTs nanocomposite film is quite promising in the fuel cell applications.

  11. Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets.

    Science.gov (United States)

    Su, Shao; Sun, Haofan; Cao, Wenfang; Chao, Jie; Peng, Hongzhen; Zuo, Xiaolei; Yuwen, Lihui; Fan, Chunhai; Wang, Lianhui

    2016-03-23

    A MoS2-based electrochemical aptasensor has been developed for the simultaneous detection of thrombin and adenosine triphosphate (ATP) based on gold nanoparticles-decorated MoS2 (AuNPs-MoS2) nanocomposites. Two different aptamer probes labeled with redox tags were simultaneously immobilized on an AuNPs-MoS2 film modified electrode via Au-S bonds. The aptamers presented structural switches with the addition of target molecules (thrombin and ATP), resulting in methylene blue (MB) far from or ferrocene (Fc) close to the electrode surface. Therefore, a dual signaling detection strategy was developed, which featured both "signal-on" and "signal-off" elements in the detection system because of the target-induced structure switching. This proposed aptasensor could simultaneously determine ATP and thrombin as low as 0.74 nM ATP and 0.0012 nM thrombin with high selectivity, respectively. In addition, thrombin and ATP could act as inputs to activate an AND logic gate.

  12. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode.

  13. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    Science.gov (United States)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  14. An ultrasensitive sandwich type electrochemiluminescence immunosensor for triiodothyronine detection using silver nanoparticle-decorated graphene oxide as a nanocarrier.

    Science.gov (United States)

    Chou, Hung-Tao; Fu, Chien-Yu; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2015-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed to detect 3,3',5-triiodothyronine (T3). The system employed T3-conjugated, silver nanoparticle-decorated carboxylic graphene oxide (Ag@fGO-T3) as a carrier and anti-T3 antibody-tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)3(2+)) as a probe. The Ag@fGO-T3 and Ru(bpy)3(2+) complex could be mobilized rapidly to the anode in the reaction chamber through electrophoresis. The fGO is reduced electrochemically at the electrode, and the electrons could transfer from an anode to the Ru(bpy)3(2+). The complex is excited at the electrode and an ECL signal is produced upon reacting with tripropylamine (TPrA). Because of its large surface area and excellent conductivity, Ag@fGO could enhance ECL signal significantly in the system. Quantitative measurement of T3 could be achieved in the range from 0.1 pg/mL to 0.8 ng/mL with a detection limit of 0.05 pg/mL. In addition, the novel immunosensor showed good specificity in the presence of serum, indicating its high potential in clinical use.

  15. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-02-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g-1 h-1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.

  16. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode.

    Science.gov (United States)

    Prabakaran, E; Pandian, K

    2015-01-01

    A simple and sensitive electrochemical method was developed to determine the concentration of Sudan I in chili powder based on silver nanoparticles decorated graphene oxide modified glassy carbon electrode (AgNPs@GO/GCE). The voltammetry behaviour of Sudan I on modified GCE was investigated in phosphate buffer medium (PBS) with various pH ranges and the electron transfer properties were studied. It is found that the AgNPs@GO/GCE can catalyse the reduction of azo group, -N=N- followed by electrochemical oxidation of (-)OH group present in Sudan I dye molecule. Quantitative detection of Sudan I present in food products was carried out by amperometry method in which reduction potential was fixed at -0.77 V vs. Ag/AgCl. The amperometry method showed an excellent performance with a sensitivity of 6.83 μA mM(-1) and a detection limit of 11.4 × 10(-7)ML(-1). A linear calibration graph was constructed in the ranging 3.90 × 10(-6) to 3.19 × 10(-5)ML(-1). The method was successfully applied for the determination of Sudan I in red chili powder samples.

  17. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles.

    Science.gov (United States)

    Asadian, Elham; Iraji Zad, Azam; Shahrokhian, Saeed

    2016-01-01

    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations.

  18. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-11-01

    Full Text Available We describe the preparation of nanoporous carbon nanofibers (CNFs decorated with platinum nanoparticles (PtNPs in this work by electrospining polyacrylonitrile (PAN nanofibers and subsequent carbonization and binding of PtNPs. The fabricated nanoporous CNF-PtNP hybrids were further utilized to modify glass carbon electrodes and used for the non-enzymatic amperometric biosensor for the highly sensitive detection of hydrogen peroxide (H2O2. The morphologies of the fabricated nanoporous CNF-PtNP hybrids were observed by scanning electron microscopy, transmission electron microscopy, and their structure was further investigated with Brunauer–Emmett–Teller (BET surface area analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The cyclic voltammetry experiments indicate that CNF-PtNP modified electrodes have high electrocatalytic activity toward H2O2 and the chronoamperometry measurements illustrate that the fabricated biosensor has a high sensitivity for detecting H2O2. We anticipate that the strategies utilized in this work will not only guide the further design and fabrication of functional nanofiber-based biomaterials and nanodevices, but also extend the potential applications in energy storage, cytology, and tissue engineering.

  19. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  20. Uniform Gold Nanoparticles Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-09

    The {001}-faceted anatase TiO2 micro/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO2 nanostructures but their practical applications still require improved energy conversion efficiency under solar light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar light photocatalytic performance of the synthesized TiO2 nanosheets can be significantly improved by decorating with vapor-phase deposited uniformly-distributed plasmonic gold nanoparticles. The fabricated Au-TiO2 hybrid system shows an eight-fold solar light photocatalysis enhancement factor in photo-degrading Rhodamine B, a high photocurrent density of 300 μA cm-2 under the illumination of AM 1.5G, and 100% recyclability under consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem type separation and transition of plasmon-induced hot electrons from Au nanoparticles to {001} facet of anatase TiO2, and then to neighboring {101} facet is responsible to the enhanced solar light photochemical performance of the hybrid system. The Au-TiO2 nanosheet system well addresses the problems of limited solar-light response of anatase TiO2 and fast recombination of photo-generated electron-hole pairs, representing a promising high-performance recyclable solar light responded system for practical photocatalytic reactions.

  1. D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles.

    Science.gov (United States)

    Beluomini, Maísa Azevedo; da Silva, José L; Sedenho, Graziela Cristina; Stradiotto, Nelson Ramos

    2017-04-01

    An electrochemical sensor for D-mannitol based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles was developed in this present work. The sensor was constructed for the first time via the electropolymerization of o-phenylenediamine (o-PD) over a surface containing reduced graphene oxide (RGO) and gold nanoparticles (AuNP) in the presence of D-mannitol molecules. The surface modification with AuNP/RGO-GCE facilitated the charge transfer processes of [Fe(CN)6](3-/4-), which was used as an electrochemical probe. It also contributed meaningfully towards the increase in the surface/volume ratio, creating more locations for imprinting, and providing greater sensitivity to the sensor. The MIP/AuNP/RGO-GCE sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray Photoelectron Spectroscopy (XPS). Important parameters that exert control over the performance of the molecularly imprinted sensor (such as number of cycles, pH, monomer and template concentration and extraction and rebinding conditions) were investigated and optimized. The imprinting factor was 4.9, showing greater response to the D-mannitol molecule compared to the interfering molecules. The limit of detection, limit of quantification and amperometric sensitivity were 7.7×10(-13)molL(-1), 2.6×10(-12)molL(-1) and 3.9×10(10)µALmol(-1) (n=3) respectively. The MIP/AuNP/RGO-GCE sensor was successfully applied towards the selective determination of D-mannitol in sugarcane vinasse, thus making it, in essence, a valuable tool for the accurate and reliable determination of this molecule.

  2. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.

    Science.gov (United States)

    Selvaraj, V; Grace, A Nirmala; Alagar, M

    2009-05-01

    A potent catalyst has been prepared consisting of platinum (Pt), and platinum-palladium (Pt-Pd) nanoparticles supported on purified single-walled carbon nanotubes (Pt/CNT and Pt-Pd/CNT). Electrochemical characteristics of formic acid and formaldehyde oxidation on these catalysts are investigated via cyclic voltammetric analysis in mixed 0.5 M HCOOH (or 0.5 M HCHO) and 0.5 M H(2)SO(4) solutions. The results imply that the Pt-Pd/CNT electrodes exhibit a better activity than the corresponding Pt nanoparticles modified SWCNT electrodes. The modified electrode exhibits significant electrocatalytic activity towards formic acid and formaldehyde oxidation, which may be attributed due to the uniform dispersion of nanoparticles on SWCNTs and the efficacy of Pd species in Pt-Pd system. Such nanoparticles modified CNT electrodes exhibit better catalytic behavior towards formic acid and formaldehyde than the corresponding carbon electrodes, indicating that the system studied in the present work is the more promising system for use in fuel cells.

  3. Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties

    Science.gov (United States)

    Lamastra, F. R.; Grilli, M. L.; Leahu, G.; Belardini, A.; Li Voti, R.; Sibilia, C.; Salvatori, D.; Cacciotti, I.; Nanni, F.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn2+ chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments. The optical properties of ZnO/DE hybrid powders were measured for the first time by means of photoacoustic spectroscopy (PAS). A new method to retrieve both the optical absorption and scattering coefficients from PAS is here discussed for powder aggregates. The fingerprint of the zinc oxide nanoparticles has been highlighted in the Mie scattering resonance in the UV-Vis range, and in the enhancement of the optical absorption with respect to diatomite.

  4. Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huízar-Félix, A.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Barandiarán, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); García-Gutiérrez, D.I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Orue, I. [SGIKER Medidas Magnéticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); and others

    2016-09-05

    Nanocomposites of reduced graphene oxide (RGO) with PtNi nanoparticles were obtained by in situ thermal reduction of a physical mixture of GO and metallic precursors. RGO and PtNiRGO nanocomposites were studied by differential thermal analysis and thermogravimetry, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The method presented here is a one-step thermal reduction procedure that allows the deposition of bimetallic PtNi nanoparticles with tetragonal crystalline structure and particle size ranging from 3 nm to 30 nm on RGO. The magnetic properties of the RGO and PtNiRGO nanocomposites were measured by vibrating sample magnetometry, which revealed that the RGO exhibited diamagnetism at room temperature and paramagnetism at temperatures below 10 K. PtNiRGO nanocomposites show hysteresis and ferromagnetic ordering at room temperature with a Curie temperature of 658 K. In addition, its magnetic properties at low temperature were strongly influenced by the paramagnetic contribution of RGO and the morphology of the bimetallic nanoparticles. - Highlights: • Simultaneous synthesis method for growth of PtNi nanoparticles on RGO. • Microstructural features of PtNiRGO nanocomposite were studied with extensive characterization. • Diamagnetic behavior of RGO and ferromagnetic ordering for PtNiRGO nanocomposite.

  5. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  6. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles

    Science.gov (United States)

    Lai, Chao-Shun; Chen, Yi-Chen; Wang, Hsiao-Fang; Ho, Hsin-Chia; Ho, Rong-Ming; Tsai, De-Hao

    2017-01-01

    We report a systematic study of the controlled gas-phase synthesis of silver-silica hybrid nanostructures (Ag-SiO2 NP) using the concept of evaporation-induced self-assembly. The approach includes the use of a direct gas-phase electrophoresis for size classification and in situ characterization of mobility size. Transmission electron microscopy and ultraviolet-visible light spectroscopy were employed complementarily to determine the morphology and surface plasmon resonance of Ag-SiO2 NP. Results show that two types of Ag-SiO2 NPs were successfully synthesized: (1) AgNPs decorated on a SiO2-NP (Ag-T-SiO2 NP), and (2) AgNPs doped in a cluster of SiO2-NPs (Ag-C-SiO2 NP). The physical size, morphology, and compositions of Ag-SiO2 NPs were tunable through the adjustments of precursor concentrations and the selected mobility sizes. The results also show that SPR performance, colloidal stability, and dispersibility of AgNPs enhanced significantly in an aqueous environment after the hybridization with SiO2-NP (especially for Ag-C-SiO2 NP). The results and corresponding methodology summarized here provide the proof of concept to fabricate high-purity AgNP-based hybrid nanostructures through gas-phase evaporation-induced self-assembly for future biomedical applications (e.g., hyperthermal therapy, targeted drug delivery, and antibacterial applications).

  7. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Yousefzadeh, S.; Faraji, M. [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Taiwan (China); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • CdS nanoparticles were deposited on TiO{sub 2}/graphene film by different SILAR cycles. • The visible light absorption increased due to graphene and CdS nanoparticles. • The highest photocurrent density was achieved for nanocomposite with 30 CdS cycles. • A mechanism has been suggested for nanocomposite photoanodes, significantly. - Abstract: CdS/TiO{sub 2}/graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO{sub 2}/graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO{sub 2} nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO{sub 2} thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited that visible absorption of the CTG samples increased with increasing CdS SILAR deposition cycle (n). Enhanced photocurrent response of the CTG(n) photoanodes measured as compared with the TG and T photoanodes due to good electrical conductivity and large surface area of graphene as well as the visible light-harvesting ability of CdS nanoparticles. Maximum photocurrent density of about 4.5 A/m{sup 2} and electron life time of about 5 s was measured for the CTG(30) photoanodes.

  8. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications.

    Science.gov (United States)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl(3) as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  9. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl{sub 3} as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  10. Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman

    2015-03-01

    Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.

  11. A novel non-enzymatic H{sub 2}O{sub 2} sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites

    Energy Technology Data Exchange (ETDEWEB)

    Moozarm Nia, Pooria, E-mail: pooriamn@yahoo.com; Lorestani, Farnaz, E-mail: farnaz.lorestani@siswa.um.edu.my; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-03-30

    Graphical abstract: - Highlights: • Decorating silver nanoparticles on the surface of graphene oxide nanocomposites. • Using and comparing two different electrochemical methods for reducing graphene oxide. • Investigating the effect of cyclic voltammetry and amperometry on electropolymerization of polypyrrole nanofibers. • The senor shows superior performances (LOD, LOQ, selectivity, repeatability, reproducibility and stability) towards H{sub 2}O{sub 2}. - Abstract: Graphene oxide (GO) decorated with silver nanoparticles (AgNPs), was electrochemically reduced on glassy carbon electrode (GCE) by an amperometry method (AMP-AgNPs-rGO/GCE). Then, Pyrrole was electropolymerized on the surface of the modified electrode through amperometry process in order to obtain nanofibers of polypyrrole (AMP-PpyNFs-AgNPs-rGO). Fourier-transform infrared transmission spectroscopy and X-ray diffraction approved that during the amperometry process, the GO and Ppy nanofibers were reduced and polymerized respectively and the silver nanoparticles were formed. Field emission scanning electron microscope images indicated that the silver nanoparticles were homogeneously distributed on the rGO surface with a narrow nano size distribution and polypyrrole synthesized in the form of nanofibers with diameter around 100 nm. The first linear section was in the range of 0.1–5 mM with a limit of detection of 1.099 and the second linear section raised to 90 mM with a correlation factor of 0.085 (S/N of 3)

  12. Surface chemical bonds, surface-enhanced Raman scattering, and dielectric constant of SiO2 nanospheres in-situ decorated with Ag-nanoparticles by electron-irradiation

    Science.gov (United States)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Mathe, V. L.; Bhoraskar, S. V.; Late, D. J.; Bhoraskar, V. N.

    2016-12-01

    Nanostructures of dielectric materials decorated with metal nanoparticles are of great scientific interest; however, the involved synthesis methods are complicated and require multistep chemical processing, including functionalization of the dielectric surfaces. In the present work, without chemical processes, silver nanoparticles of average sizes in the range of 11 to 15 nm were in-situ synthesized and decorated on SiO2 nanospheres in a single step process by irradiating a solution (AgNO3-polyvinylpyrrolidone (PVP)-SiO2 nanospheres) with 6 MeV electrons at 1.5 × 1015 e-/cm2, 3.0 × 1015 e-/cm2, and 4.5 × 1015 e-/cm2 fluences. The electron irradiated solutions were characterized with different surface and other techniques. The results revealed that the SiO2 nanospheres were uniformly decorated with Ag nanoparticles, and the prominent chemical bonds involved were Ag-O, Si-O-Ag, and Si-Ag. Moreover, the sizes and the decoration density of Ag nanoparticles could be tailored by varying electron fluence. The Surface-enhanced Raman scattering (SERS) of 4-aminothiophenol (4-ATP) solutions was studied using substrates in the form of thin coatings of the solutions of Ag-decorated SiO2 nanospheres. The appearance of the characteristic SERS peaks of both 4-ATP and 4, 4'-dimercaptoazobenzene (4, 4'-DMAB) in Raman spectra confirmed the conversion of a fraction of 4-ATP into 4, 4'-DMAB in the presence of Ag nanoparticles. Composites in the form of thin films were synthesized from the mixture solutions of PVP and Ag-decorated SiO2 nanospheres. The dielectric constant of each thin film was higher as compared to polymers, and could be tailored by varying electron fluence used for decorating Ag nanoparticles.

  13. Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles

    KAUST Repository

    Boulfrad, S.

    2013-10-07

    In this work (La0.75Sr0.25)0.97Cr0.5Mn0.5O3 (LSCM) perovskite powders were pre-coated with 5 wt% nickel and mixed with different amounts of CGO for testing as anode materials under 3% wet H2. By using scanning transmission electron microscopy (STEM) with X-ray energy dispersive spectroscopy (EDS), we demonstrated that Ni forms a solid solution in the perovkite phase under oxidizing atmosphere and exsolves in form of nanoparticles under reducing atmospheres. The presence of the catalyst nanoparticles led to a decrease in the anodic activation energy by half and thus the polarization resistance was dropped by 60% at 800¢ªC. The effect of CGO amount will be also discussed.

  14. Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles

    Science.gov (United States)

    Karahaliloglu, Zeynep; Hacker, Christoph; Demirbilek, Murat; Seide, Gunnar; Denkbas, Emir Baki; Gries, Thomas

    2014-09-01

    Recently, nanomaterials, especially titanium-based nanomaterials, have a great potential for decolorization of textile dye effluents. In this article, the nanofibrillar filters functionalized with titanium nanoparticle (nTi) were designed to improve dyeing wastewater decolorization. Pristine polypropylene (PP) and nTi-PP nanocomposite nonwovens were produced as a photocatalyzer by melt-electrospinning process. The average diameter of pristine PP- and nTi-PP nanocomposite melt-electrospun fibers was found average as 700 ± 0.3 and 800 ± 0.4 nm, respectively. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to improve decomposition activity. Scanning electron microscopy (SEM) results revealed that titanium nanoparticles were deposited uniformly on the nanofibers. X-ray photon spectroscopy (XPS) results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by using methyl orange (MO) as a model compound. The decolorization experiments were carried out by varying initial dye concentration (10, 20, 40 mg/L), pH (2, 5, and 9), and loaded TiO2 amount (1 and 2 %). According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filter has better properties compared to GA-untreated group from point of photocatalytic efficiency, especially over 90 % decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. The complete decolarization of MO was observed at pH value of 5, photocatalyst concentration of 20 mg/L, and 1 % nTi-loading after 3 h. The results show that surface activated PP nonwovens, which is introduced Ti nanoparticles into and onto the structure, a good photocatalytic activity.

  15. Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing.

    Science.gov (United States)

    Liu, Hao; Choy, Kwang-Leong; Roe, Martin

    2013-07-07

    A process involving the filtration of graphene oxide (GO) dispersion through an alumina membrane, followed by oxygen annealing to synthesize alumina nanoparticles exclusively at the edges of holes or vacancies in the reduced graphene oxide (rGO) plane, is used to prepare paper-like composites with a 21% enhanced electrical conductivity. Moreover, the rGO/alumina nanocomposites have a smaller band gap and hydrophilic properties.

  16. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes

    KAUST Repository

    Hu, Liangbing

    2011-01-01

    We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire growth entails. © 2011 The Royal Society of Chemistry.

  17. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    Science.gov (United States)

    Yousefzadeh, S.; Faraji, M.; Nien, Y. T.; Moshfegh, A. Z.

    2014-11-01

    CdS/TiO2/graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO2/graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO2 nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO2 thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited that visible absorption of the CTG samples increased with increasing CdS SILAR deposition cycle (n). Enhanced photocurrent response of the CTG(n) photoanodes measured as compared with the TG and T photoanodes due to good electrical conductivity and large surface area of graphene as well as the visible light-harvesting ability of CdS nanoparticles. Maximum photocurrent density of about 4.5 A/m2 and electron life time of about 5 s was measured for the CTG(30) photoanodes.

  18. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    Science.gov (United States)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  19. Electrocatalytic Oxygen Reduction Performance of Silver Nanoparticle Decorated Electrochemically Exfoliated Graphene.

    Science.gov (United States)

    Lopes, Joao Henrique; Ye, Siyu; Gostick, Jeff T; Barralet, Jake E; Merle, Geraldine

    2015-09-01

    We have developed a potentiostatic double-pulse technique for silver nanoparticle (Ag NP) deposition on graphene (GRn) with superior electronic and ionic conductivity. This approach yielded a two-dimensional electrocatalyst with a homogeneous Ag NP spatial distribution having remarkable performance in the oxygen reduction reaction (ORR). GRn sheets were reproducibly prepared by the electrochemical exfoliation of graphite (GRp) at high yield and purity with a low degree of oxidation. Polystyrenesulfonate added during exfoliation enhanced the stability of the GRn solution by preventing the restacking of the graphene sheets and increased its ionic conductivity. The potentiostatic double-pulse technique is generally used to electrodeposit Pt nanoparticles and remains challenging for silver metal that exhibits nucleation and growth potentials relatively close to each other. We judiciously exploited this narrow margin of potential, and for the first time we report Ag NP electrodeposited onto graphene with the subsequent ability to control both the density and the size of metallic nanoparticles. Considering the high activity along with the lower cost of Ag compared to Pt, these findings are highly relevant to the successful commercialization of fuel cells and other electrochemical energy devices.

  20. Lanthano phosphomolybdate-decorated silica nanoparticles: novel hybrid materials with photochromic properties.

    Science.gov (United States)

    Pinto, Tânia V; Fernandes, Diana M; Pereira, Clara; Guedes, Alexandra; Blanco, Ginesa; Pintado, Jose M; Pereira, Manuel F R; Freire, Cristina

    2015-03-14

    Novel photochromic hybrid nanomaterials were prepared through the immobilization of the lacunary Keggin-type phosphomolybdate (TBA4H3[PMo11O39]·xH2O, denoted as PMo11) and sandwich-type lanthano phosphomolybdates (K11[Ln(III)(PMo11O39)2]·xH2O, denoted as Ln(PMo11)2, where Ln(III) = Sm, Eu, Gd, Tb and Dy) onto positively-charged functionalized silica nanoparticles. The functionalized silica nanoparticles were prepared by a one-step co-condensation route between tetraethyl orthosilicate and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, presenting an average particle size of 95 ± 26 nm, a spherical morphology and a pore diameter of 13.7 nm. All characterization techniques proved the successful immobilization of the phosphomolybdates. The photochromic properties of the resulting hybrid nanomaterials in the solid state were evaluated by UV-Vis spectroscopy and colorimetry. All materials revealed promising photochromic properties under UV irradiation (λ = 254 nm). The lacunary phosphomolybdate anchored onto the silica nanoparticles, C18-SiO2@PMo11, showed the best photoswitching properties, with the color changing from green to dark-blue (ΔE* = 26.8). Among the Ln(PMo11)2-based hybrid nanomaterials, those containing higher Mo loadings--Eu(III)- and Tb(III)-based samples--presented more significant color changes from green to dark-blue (ΔE* = 18.8-18.9). These results revealed that the optical properties of the as-prepared hybrid nanomaterials did not depend directly on the type of Ln(III) cation, but only on the amount of Mo, which was the target element responsible for the photochromic behavior.

  1. Synthesis and Photoluminescence Enhancement of Silver Nanoparticles Decorated Porous Anodic Alumina

    Institute of Scientific and Technical Information of China (English)

    Song Ye; Yidong Hou; Renyi Zhu; Shulong Gu; Jingquan Wang; Zhiyou Zhang; Sha Shi; Jinglei Du

    2011-01-01

    Silver nanoparticles (Ag NPs) were successfully assembled in porous anodic alumina (AAO) templates via a green silver mirror reaction. The Ag NPs/AAO composite templates then were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD). Furthermore, the photoluminescence (PL) properties were also investigated. Compared with the blank AAO, the PL intensity of Ag NPs/AAO templates are enhanced and the maximum enhancement is 2.58 times. Based on the local electric field enhancement effect, the theoretical values were also deduced, which are basically coincident with the experimental.

  2. Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate.

    Science.gov (United States)

    Junyaprasert, Varaporn Buraphacheep; Dhanahiranpruk, Sirithip; Suksiriworapong, Jiraphong; Sripha, Kittisak; Moongkarndi, Primchanien

    2015-12-01

    Folic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-FOL) decorated methotrexate (MTX)-conjugated nanoparticles were developed for targeted delivery of MTX to folate receptor-expressed tumor cells. The synthesis of TPGS-FOL followed 3-step process. Firstly, the terminal hydroxyl group of TPGS was converted to sulfonyl chloride using mesyl chloride in comparison with nosyl and tosyl chlorides. The highest conversion efficiency and yield were obtained by mesyl chloride due to the formation of higher reactive intermediate in a presence of triethylamine. Secondly, the substitution of sulfonyl group by sodium azide produced considerably high yield with conversion efficiency of over 90%. Lastly, the coupling reaction of azido-substituted TPGS and propargyl folamide by click reaction resulted in 96% conjugation efficiency without polymer degradation. To fabricate the folate receptor-targeted nanoparticles, 10 and 20%mol MTX-conjugated PEGylated poly(ϵ-caprolactone) nanoparticles were decorated with TPGS-FOL. The size and size distribution of MTX-conjugated nanoparticles relatively increased with %MTX. The MTX release from the nanoparticles was accelerated in acidic medium with an increase of %MTX but retarded in physiological pH medium. The decoration of TPGS-FOL onto the nanoparticles slightly enlarged the size and size distribution of the nanoparticles; however, it did not affect the surface charge. The cytotoxicity and cellular uptake of MCF-7 cells demonstrated that 10% MTX-conjugated nanoparticles and FOL-decorated nanoparticles possessed higher toxicity and uptake efficiency than 20% MTX-conjugated nanoparticles and undecorated nanoparticles, respectively. The results indicated that FOL-10% MTX-conjugated nanoparticles exhibited potential targeted delivery of MTX to folate receptor-expressed cancer cells.

  3. Synthesis, Structure, and Ethanol Gas Sensing Properties of In2O3 Nanorods Decorated with Bi2O3 Nanoparticles.

    Science.gov (United States)

    Park, Sunghoon; Kim, Soohyun; Sun, Gun-Joo; Lee, Chongmu

    2015-04-22

    Bi2O3-decorated In2O3 nanorods were synthesized using a one-step process, and their structure, as well as the effects of decoration of In2O3 nanorods with Bi2O3 on the ethanol gas-sensing properties were examined. The multiple networked Bi2O3-decorated In2O3 nanorod sensor showed responses of 171-1774% at ethanol concentrations of 10-200 ppm at 200 °C. The responses of the Bi2O3-decorated In2O3 nanorod sensor were stronger than those of the pristine-In2O3 nanorod sensors by 1.5-4.9 times at the corresponding concentrations. The two sensors exhibited short response times and long recovery times. The optimal Bi concentration in the Bi2O3-decorated In2O3 nanorod sensor and the optimal operation temperature of the sensor were 20% and 200 °C, respectively. The Bi2O3-decorated In2O3 nanorod sensor showed selectivity for ethanol gas over other gases. The origin of the enhanced response, sensing speed, and selectivity for ethanol gas of the Bi2O3-decorated In2O3 nanorod sensor to ethanol gas is discussed.

  4. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment.

    Science.gov (United States)

    Hussain, Mohammad Musarraf; Rahman, Mohammed M; Asiri, Abdullah M

    2017-03-01

    Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm(2)) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R(2)=0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10(-5)μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10(-4)μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future. Copyright © 2016. Published by Elsevier B.V.

  5. A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite.

    Science.gov (United States)

    Amanulla, Baishnisha; Palanisamy, Selvakumar; Chen, Shen-Ming; Velusamy, Vijayalakshmi; Chiu, Te-Wei; Chen, Tse-Wei; Ramaraj, Sayee Kannan

    2017-02-01

    A simple and facile green process was used for the synthesis of iron nanoparticles (FeNPs) decorated reduced graphene oxide (rGO) nanocomposite by using Ipomoea pes-tigridis leaf extract as a reducing and stabilizing agent. The as-prepared rGO/FeNPs nanocomposite was characterized by transmission electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy. The nanocomposite was further modified on the glassy carbon electrode and used for non-enzymatic sensing of hydrogen peroxide (H2O2). Cyclic voltammetry results reveal that rGO/FeNPs nanocomposite has excellent electro-reduction behavior to H2O2 when compared to the response of FeNPs and rGO modified electrodes. Furthermore, the nanocomposite modified electrode shows 9 and 6 folds enhanced reduction current response to H2O2 than that of rGO and FeNPs modified electrodes. Amperometric method was further used to quantify the H2O2 using rGO/FeNPs nanocomposite, and the response was linear over the concentration ranging from 0.1μM to 2.15mM. The detection limit and sensitivity of the sensor were estimated as 0.056μM and 0.2085μAμM(-1)cm(-2), respectively. The fabricated sensor also utilized for detection of H2O2 in the presence of potentially active interfering species, and found high selectivity towards H2O2. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ceria nanoparticles uniformly decorated on graphene nanosheets with coral-like morphology for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yan; Ruiyi, Li; Haiyan, Zhu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li, E-mail: zaijunli@jiangnan.edu.cn [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China)

    2016-06-15

    Graphical abstract: The study reported the synthesis of coral-like CeO{sub 2}/GNs for supercapacitors. The unique architecture with overall connected framework and good conducting network of the graphene greatly boosts the Faradaic redox reaction. Therefore, the CeO{sub 2}/GNs delivers an excellent electrochemical performance. - Highlights: • The study reported the synthesis of CeO{sub 2}/GNs. • The graphene was woven into CeO{sub 2}, acting as a good conducting network. • The CeO{sub 2}/GNs shows a coral-like structure. • The architecture creates an overall connected framework. • The CeO{sub 2}/GNs delivers good capacitive performances. - Abstract: CeO{sub 2}/graphene was synthesized by a simple microwave method along with subsequent calcination. CeO{sub 2} nanoparticles with an average size of 68.8 nm are uniformly decorated on graphene nanosheets (CeO{sub 2}/GNs). The CeO{sub 2}/GNs displays a like-coral morphology. The architecture including overall connected framework, abundant intercrossed and interconnected nanochannels and perfect conducting network of the graphene, endows the CeO{sub 2}/GNs material with a superior electron and mass transport. As a result, the CeO{sub 2}/GNs gives a high specific capacitance of 503.4 F/g at 2 A/g and good cycle performance with 91.8% capacitance retention after 3000 cycles. Further, an asymmetric supercapacitors was assembled by using CeO{sub 2}/GNs as the positive electrode and activated carbon as the negative electrode, the asymmetric device demonstrate a favorable energy density of 30.2 Wh/kg at the power density of 750.0 W/kg and superior cycle life with 86.4% the capacitance retenion at 5 A/g after 3000 cycles.

  7. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: surface charges and interactions with proteins in solution.

    Science.gov (United States)

    Schollbach, Moritz; Zhang, Fajun; Roosen-Runge, Felix; Skoda, Maximilian W A; Jacobs, Robert M J; Schreiber, Frank

    2014-07-15

    We have studied oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) coated gold nanoparticles (AuOEG) and their interactions with proteins in solutions using electrophoretic and dynamic light scattering (ELS and DLS). The results are compared with poly(ethylene glycol) (PEG) thiol coated AuNPs (AuPEG). We show that both AuOEG and AuPEG particles carry a low net negative charge and are very stable (remaining so for more than one year), but long-term aging or dialysis can reduce the stability. If the decorated AuNPs are mixed with bovine serum albumin (BSA), both effective size and zeta-potential of the AuNPs remain unchanged, indicating no adsorption of BSA to the colloid surface. However, when mixed with lysozyme, zeta-potential values increase with protein concentrations and lead to a charge inversion, indicating adsorption of lysozyme to the colloid surface. The colloidal solutions of AuOEG become unstable near zero charge, indicated by a cluster peak in the DLS measurements. The AuPEG solutions show similar charge inversion upon addition of lysozyme, but the solutions are stable under all experimental conditions, presumably because of the strong steric effect of PEG. Washing the protein bound colloids by centrifugation can remove only part of the adsorbed lysozyme molecules indicating that a few proteins adsorb strongly to the colloids. The effective charge inversion and rather strongly bound lysozyme on the colloid surface may suggest that in addition to the charges formed at the SAM-water interface, there are defects on the surface of the colloid, which are accessible to the proteins. The results of this study of surface charge, and stability shed light on the interaction with proteins of SAM coated AuNPs and their applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Photo-Promoted Platinum Nanoparticles Decorated MoS2@Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation.

    Science.gov (United States)

    Li, Xiao; Zhang, Li; Zang, Xiaobei; Li, Xinming; Zhu, Hongwei

    2016-05-01

    Hydrogen production from water splitting has been considered as an effective and sustainable method to solve future energy related crisis. Molybdenum sulfides (e.g., MoS2) show promising catalytic ability in hydrogen evolution reaction (HER). Combining MoS2 with conductive carbon-based materials has aroused tremendous research interest recently. In this work, a highly efficient multiple-catalyst is developed for HER by decorating Pt nanoparticles (Pt NPs) on MoS2@graphene protected nickel woven fabrics (NiWF) substrate, which comprises the following components: (i) Graphene protected NiWF acts as the underlying substrate, supporting the whole structure; (ii) MoS2 nanoplates serve as a central and essential photosensitive component, forming a heterostructure with graphene simultaneously; and (iii) on the basis of the intrinsic photoluminescence effect of MoS2, together with the photoelectric response at the MoS2/graphene interface, Pt NPs are successfully deposited on the whole structure under illumination. Particularly and foremost, this work emphasizes on discussion and verification of the underlying mechanism for photopromoted electroless Pt NPs deposition. Due to this assembly approach, the usage amount of Pt is controlled at ∼5 wt % (∼0.59 at. %) with respect to the whole catalyst. MoS2@Substrate with Pt NPs deposited under 643 nm illumination, with the synergistic effect of MoS2 active sites and Pt NPs, demonstrates the most superior electrocatalytic performance, with negligible overpotential and low Tafel slope of 39.4 mV/dec.

  9. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

    Science.gov (United States)

    Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-06-01

    Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.

  10. Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic M{sup II}Fe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Danish [National Centre for Physics, Quaid-e-Azam University Campus, Islamabad (Pakistan); Department of Chemistry, University of Engineering and Technology, Lahore (Pakistan); Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca [National Centre for Physics, Quaid-e-Azam University Campus, Islamabad (Pakistan); Gilani, Syeda Rubina [Department of Chemistry, University of Engineering and Technology, Lahore (Pakistan)

    2013-04-15

    In this study, a simple, efficient and reproducible microemulsion method was applied for the successful decoration of carbon nanotubes (CNTs) with magnetic M{sup II}Fe{sub 2}O{sub 4} (M = Co, Ni, Cu, Zn) nanoparticles. The structure, composition and morphology of the prepared nanocomposite materials were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The magnetic properties were investigated by the vibrating sample magnetometer (VSM). The SEM results illustrated that large quantity of M{sup II}Fe{sub 2}O{sub 4} nanoparticles were uniformly decorated around the circumference of CNTs and the sizes of the nanoparticles ranged from 15 to 20 nm. Magnetic hysteresis loop measurements revealed that all the M{sup II}Fe{sub 2}O{sub 4}/CNTs nanocomposites displayed ferromagnetic behavior at 300 K and can be manipulated using an external magnetic field. The CoFe{sub 2}O{sub 4}/CNTs nanocomposite showed maximum value of saturation magnetization which was 37.47 emu g{sup −1}. The as prepared M{sup II}Fe{sub 2}O{sub 4}/CNTs nanocomposites have many potential application in magnetically guided targeted drug delivery, clinical diagnosis, electrochemical biosensing, magnetic data storage and magnetic resonance imaging.

  11. A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO2/NiO Nanotubes.

    Science.gov (United States)

    Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Youn, Doo-Young; Park, Soojin; Kim, Il-Doo

    2016-12-27

    The combination of high-capacity and long-term cyclability has always been regarded as the first priority for next generation anode materials in lithium-ion batteries (LIBs). To meet these requirements, the Ag nanoparticle decorated mesoporous SnO2/NiO nanotube (m-SNT) anodes were synthesized via an electrospinning process, followed by fast ramping rate calcination and subsequent chemical reduction in this work. The one-dimensional porous hollow structure effectively alleviates a large volume expansion during cycling as well as provides a short lithium-ion duffusion length. Furthermore, metallic nickel (Ni) nanoparticles converted from the NiO nanograins during the lithiation process reversibly decompose Li2O during delithiation process, which significantly improves the reversible capacity of the m-SNT anodes. In addition, Ag nanoparticles uniformly decorated on the m-SNT via a simple chemical reduction process significantly improve rate capability and also contribute to long-term cyclability. The m-SNT@Ag anodes exhibited excellent cycling stability without obvious capacity fading after 500 cycles with a high capacity of 826 mAh g(-1) at a high current density of 1000 mA g(-1). Furthermore, even at a very high current density of 5000 mA g(-1), the charge-specific capacity remained as high as 721 mAh g(-1), corresponding to 60% of its initial capacity at a current density of 100 mA g(-1).

  12. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-06-02

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  13. DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells

    Science.gov (United States)

    Ursu, Elena-Laura; Doroftei, Florica; Peptanariu, Dragos; Pinteala, Mariana; Rotaru, Alexandru

    2017-05-01

    Single-walled carbon nanotubes (SWNTs) are 1D nanostructures with distinct physical and chemical properties that have shown great promise for applications in many fields, including biomedicine. Since for biomedical application the water solubility is crucial and SWNTs have low solubility, various methods (including polymer and biopolymer wrapping, chemical modifications) have been developed to solubilize and disperse them in water. Due to their unique optical properties such as photoluminescence in the NIR and strong resonant Raman signatures, they can be used as nanoprobes in biomedical imaging and phototherapies. Furthermore, decoration of SWNTs with noble metal nanoparticles will induce an excellent surface-enhanced Raman scattering (SERS) effect of the nanoparticles-SWNTs composites, with applications in cell imaging. Herein, we present a new and facile strategy for the DNA-assisted decoration of SWNTs with gold nanoparticles (AuNPs) and their application in SERS imaging. By ultrasonication at room temperature of SWNTs with AuNPs functionalized with synthetic DNA, SWNT-AuNPs nanocomposites with enhanced Raman signal were obtained. Among the important advantages of the proposed method are the presence of the free DNA overhangs around the SWNT-AuNPs suitable for post-synthetic modification of nanocomposite through hybridization of complementary DNA strands containing molecules of interest attached by well-developed bio-conjugation chemistry.

  14. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    Science.gov (United States)

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs.

  15. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations.

    Science.gov (United States)

    Monti, Susanna; Carravetta, Vincenzo; Ågren, Hans

    2016-07-14

    The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption.

  16. Optical Band Gap and Thermal Diffusivity of Polypyrrole-Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite Layer

    Directory of Open Access Journals (Sweden)

    Amir Reza Sadrolhosseini

    2016-01-01

    Full Text Available A polypyrrole-nanoparticles reduced graphene oxide nanocomposite layer was prepared using electrochemical method. The prepared samples were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and UV-visible spectroscopy. The band gap of nanocomposite layers was calculated from UV-visible spectra and the thermal diffusivity of layers was measured using a photoacoustic technique. As experimental results, the optical band gap was in the range between 3.580 eV and 3.853 eV, and thermal diffusivity was increased with increasing the layer thickness from 2.873 cm2/s to 12.446 cm2/s.

  17. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor

    Science.gov (United States)

    Venkatesan, A.; Rathi, Servin; Lee, In-yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E. S.

    2017-09-01

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite’s response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  18. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials

    Science.gov (United States)

    Pham, Chuyen V.; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-01

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL

  19. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations

    Science.gov (United States)

    Monti, Susanna; Carravetta, Vincenzo; Ågren, Hans

    2016-06-01

    The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption.The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption. Electronic supplementary information (ESI) available: Different views of the AuNP surface coverage. Distance map describing the position of each molecule in relation to the others on the AuNP (alpha carbon distances). See DOI: 10.1039/C

  20. Maghemite nanoparticle-decorated hollow fiber electromembrane extraction combined with dispersive liquid-liquid microextraction for the determination of thymol from Carum copticum

    DEFF Research Database (Denmark)

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Bohlooli, Mousa

    2017-01-01

    BACKGROUND A novel technique using maghemite nanoparticle-decorated hollow fibers to assist electromembrane extraction is proposed. Electromembrane extraction combined with dispersive liquid–liquid microextraction (EME-DLLME) was applied for the extraction of thymol from Carum copticum, followed.......2% respectively. The intra- and inter-day accuracy was higher than 93.6%. CONCLUSION The results indicated that EME-DLLME/GC-FID is a useful technique for the extraction and determination of thymol in C copticum. © 2016 Society of Chemical Industry...

  1. Facile Synthesis of Gold-nanoparticles-decorated Polymer Assemblies and Core-Shell Gold Nanoparticles Using Pluronic Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    SHOU Qing-hui; GUO Chen; GAO Hong-shuai; ZHOU Hua-cong; LIU Chun-zhao; LIU Hui-zhou

    2011-01-01

    Abstract:Synthesis of gold nanoparticles (AuNPs) and Pluronic triblock copolymer composite in aqueous medium was studied.Gold-polymer nanocomposite with different structures was fabricated by tailoring the molar ratio of gold precursors to Pluronic P123 molecules or pH value of the P123 solution.When a lower volume ratio of [AuCl4-]/[P123] (0.05) was employed at pH 11.1,a nanostructure similar to plum pudding was obtained.AuNPs with an average diameter of 13.1 nm were embedded in Pluronic assemblies,and each one held about 21 single gold nanoparticles.When [AuCl4-]/[P123] was increased to 0.1,core-shell structure was obtained if the pH value was in the range of 10.6~11.6,while gold polyhedra were fabricated when pH value was 8.1.Typical core-shell AuNPs had an average diameter of 9.6 nm with a narrow size distribution,while gold polyhedras with a mean diameter of 12.8 nm was obtained.The specific morphologies of the resultant nanocomposite were presumably obtained due to the synergistic interaction among the reactants.

  2. Designing CuOx Nanoparticle-Decorated CeO2 Nanocubes for Catalytic Soot Oxidation: Role of the Nanointerface in the Catalytic Performance of Heterostructured Nanomaterials.

    Science.gov (United States)

    Sudarsanam, Putla; Hillary, Brendan; Mallesham, Baithy; Rao, Bolla Govinda; Amin, Mohamad Hassan; Nafady, Ayman; Alsalme, Ali M; Reddy, B Mahipal; Bhargava, Suresh K

    2016-03-08

    This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.

  3. Fabrication of color changeable polystyrene spheres decorated by gold nanoparticles and their label-free biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yuetong; Lu Wensheng; Jiang Long, E-mail: jiangl@iccas.ac.cn [Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-02-26

    A novel and simple method for gold nanoshell synthesis with controllable core and shell sizes is reported here. A new 'tree-shape' surfactant bis(amidoethyl-carbamoylethyl) octadecylamine (C18N3) was synthesized and used as the glue for the fast combination of gold nanoparticles and the subsequent gold shell outside. The functionalized polystyrene (PS) cores were covered by a surfactant (PS-C18N3) bilayer. The presence of the surfactant double layer played the role of 'glue' in this method, so that upon controlling the amount of surfactant, it was possible to achieve: the manipulation of gold seed density on the PS-C18N3 spheres, the preparation of PS-Au hybrid structures, and a red-shift in the extinction absorption from 520 to 750 nm. Besides, the as-prepared PS-Au composites supported on a glass substrate exhibited excellent effectiveness in the molecular recognition of human-immunoglobulin G (h-IgG) and goat anti-human-immunoglobulin G (goat anti-h-IgG), showing a rapid response within 20 min with a low detection limit of 10 ng ml{sup -1}. This demonstrates that PS-Au prepared and assembled using our method is potentially useful as a nanosensor platform for immunoassay.

  4. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  5. Characteristics of Boron Decorated TiO2 Nanoparticles for Dye-Sensitized Solar Cell Photoanode

    Directory of Open Access Journals (Sweden)

    Ching-Yuan Ho

    2015-01-01

    Full Text Available Different boron weight percents on mixed-phase (anatase and rutile TiO2 nanoparticles were synthesized to investigate structure morphology, defect states, luminescence properties, and energy conversion. The measured results indicate that boron doping of TiO2 both increases the crystallite size and rutile-phase percent in an anatase matrix. Decreasing the band gap by boron doping can extend the absorption to the visible region, while undoped TiO2 exhibits high UV absorption. Oxygen vacancy defects generated by boron ions reduce Ti+4 and affect electron transport in dye-sensitized solar cells. Excess electrons originating from the oxygen vacancies of doped TiO2 downward shift in the conduction band edge and prompt the transfer of photoelectrons from the conduction band of the rutile phase to the lower energy anatase trapping sites; they then separate charges to enhance the photocurrent and Jsc. Although the resistance of the electron recombination (Rk between doped TiO2 photoanode and the electrolyte for the doped TiO2 sample is lower, a longer electron lifetime (τ of 19.7 ms with a higher electron density (ns of 2.1 × 1018 cm−3 contributes to high solar conversion efficiency.

  6. Photocatalytic properties of silver nanoparticles decorated nanobranched TiO2 nanofibers.

    Science.gov (United States)

    Yi, Chuan; Nirmala, R; Barakat, Nasser A M; Navamathavan, R; Kim, Hak-Yong

    2011-08-01

    In this study, nanobranched TiO2 nanofibers and silver loaded nanobranched TiO2 nanofibers were prepared by electrospinning technique followed by TiCl4 aqueous solution treatment and silver photodeposition method. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the products. X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted on the samples to study their chemical composition as well as crystallographic structure. The photocatalytic activities of these produced nanofibers were examined with two organic dyes, methylene blue and methyl orange, under ultraviolet (UV) light irradiation. The effect of nanobranches and silver modification on TiO2 nanofibers was revealed in the photocatalysis process. The photocatalytic degradation rates of silver loaded on nanobranched TiO2 nanofibers were 1.6 and 1.7 times as that of pure TiO2 nanofibers in the presence of methylene blue and methyl orange, respectively, which indicated silver nanoparticles combined nanobranches modified on the surface of TiO2 nanofibers could enhance the photocatalytic ability.

  7. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    Science.gov (United States)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2–3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600–900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g‑1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0–1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g‑1 at a current density of 1 A g‑1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

  8. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Cesaria, M.; Resta, V.; Taurino, A.; Colombelli, A.; Leo, C.; Klini, A.; Manousaki, A.; Convertino, A.; Rella, R.; Martino, M.; Perrone, A.

    2017-10-01

    The ablation of a metal target at laser energy densities in the range of 1-10 TW/cm2 leads to the generation of nanoparticles (NP) of the ablated material. This aspect is of particular interest if the immobilization of NPs on three-dimensional (3D) substrates is necessary as for example in sensing applications. In this work the deposition of Au NP by irradiation of a Au bulk target with a sub-picosecond laser beam (500 fs; 248 nm; 10 Hz) on 2D (silica and Si(100)) and 3D substrates (silica nanowire forests) is reported for different number of laser pulses (500, 1000, 1500, 2000, 2500). A uniform coverage of small Au NPs (with a diameter of few nm) on both kinds of substrates has been obtained using a suitable number of laser pulses. The presence of spherical droplets, with a diameter ranging from tens of nm up to few μm was also detected on the substrate surface and their presence can be explained by the weak electron-phonon coupling of Au. The optical characterization of the samples on 2D and 3D substrates evidenced the surface plasmon resonance peak characteristic of the Au NPs although further improvements of the size-distribution are necessary for future applications in sensing devices.

  9. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

    Science.gov (United States)

    Hsu, Chun-Wei; Lin, Zhong-Yi; Chan, Tzu-Yi; Chiu, Tai-Chia; Hu, Cho-Chun

    2017-06-01

    A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL(-1) (R(2)=0.998) with a detection limit of 0.003μgmL(-1) (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results.

  10. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  11. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.

  12. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    Science.gov (United States)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2–3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600–900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g−1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0–1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g−1 at a current density of 1 A g−1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis. PMID:26818461

  13. Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yao [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China); Li, Zhiming [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Chen, Jie; Yu, Chenguang; Huang, Xiao; Zhao, Cuizhen; Duan, Lianfeng; Yang, Yue [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China); Lü, Wei, E-mail: lw771119@hotmail.com [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China)

    2015-08-15

    Highlights: • Magnetic graphene/Fe{sub 3}O{sub 4} nanocomposites were synthesized by a facile and fast one-pot method. • The sizes of Fe{sub 3}O{sub 4} nanocrystals can be controlled by the weight ratio of GO to Fe{sub 3}O{sub 4}. • The graphene/Fe{sub 3}O{sub 4} hybrid structures are highly efficient in purification of wastewater. • The decline in efficiencies of graphene/Fe{sub 3}O{sub 4} is not more than 1.5% after five cycling runs. - Abstract: Magnetic graphene–Fe{sub 3}O{sub 4} nanocomposites (G/Fe{sub 3}O{sub 4}) were fabricated by a facile and fast one-pot method and used as adsorbent to remove dye for wastewater using Rhodamine B as the adsorbate. Samples with different weight ratios of graphene oxide (GO) to Fe{sub 3}O{sub 4} were prepared. The transmission electron microscopy results exhibit that the sizes of Fe{sub 3}O{sub 4} nanocrystals decrease with the increasing of weight ratio of GO to Fe{sub 3}O{sub 4}. The magnetic characterization demonstrates that the saturation magnetization of nanocomposites decreases with the decreasing sizes of Fe{sub 3}O{sub 4} nanocrystals. The investigation of adsorption kinetics and isotherm indicates the adsorption process can be described by Langmuir model and nanocomposites with the smaller sizes of Fe{sub 3}O{sub 4} nanoparticles show better adsorption ability. Furthermore, the adsorbents could be recovered conveniently by magnetic separation and recyclable used after desorption process, and the decline in efficiencies of all samples is not more than 1.5% after five cycling runs.

  14. An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing.

    Science.gov (United States)

    Guler, Emine; Bozokalfa, Guliz; Demir, Bilal; Gumus, Zinar Pinar; Guler, Bahar; Aldemir, Ebru; Timur, Suna; Coskunol, Hakan

    2017-04-01

    The consumption of illicit drugs such as cannabis, cocaine, and amphetamines is still a major health and social problem, creating an abuse in adults especially. Novel techniques which estimate the drug of abuse are needed for the detection of newly revealed psychoactive drugs. Herein, we have constructed a combinatorial platform by using quantum dots (QDs) and gold nanoparticles (AuNPs) as well as a functional aptamer which selectively recognizes cocaine and its metabolite benzoylecgonine (BE). We have called it an aptamer folding-based sensory device (AFSD). For the fabrication of AFSD, QDs were initially immobilized onto the poly-L-lysine coated μ-well surfaces. Then, the AuNP-aptamer conjugates were bound to the QDs. The addition of cocaine or BE caused a change in the aptamer structure which induced the close interaction of AuNPs with the QDs. Hence, quenching of the fluorescence of QDs was observed depending on the analyte amount. The linearity of cocaine and BE was 1.0-10 nM and 1.0-25 μM, respectively. Moreover, the limits of detection for cocaine and BE were calculated as 0.138 nM and 1.66 μM. The selectivity was tested by using different interfering substances (methamphetamine, bovine serum albumin, codeine, and 3-acetamidophenol). To investigate the use of AFSD in artificial urine matrix, cocaine/BE spiked samples were applied. Also, confirmatory analyses by using high performance liquid chromatography were performed. It is shown that AFSD has a good potential for testing the cocaine abuse and can be easily adapted for detection of various addictive drugs by changing the aptamer according to desired analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent.

    Science.gov (United States)

    Wang, Ning; Hu, Bo; Chen, Ming-Li; Wang, Jian-Hua

    2015-05-15

    A novel bactericidal material, Ag@rGO-Fe3O4-PEI composite is prepared by in situ growth of silver nanoparticles onto the polyethylenimine (PEI)-mediated magnetic reduced graphene oxide (GO). The antibacterial performances of the composite are investigated by using the gram-negative bacteria Escherichia coli O157:H7 (E. coli O157:H7) as a model. The results indicate that the Ag@rGO-Fe3O4-PEI composite exhibits excellent antibacterial performance against E. coli O157:H7, with an antibacterial performance superior to those for the ever-reported photothermal materials. The bactericidal capability or the inhibition capability for bacteria growth is found to depend on the dosage of the Ag@rGO-Fe3O4-PEI and Ag/rGO-Fe3O4-PEI mass ratio within a certain range. By using a dosage of 0.1 μg mL(-1), a killing rate of 99.9% is achieved for the E. coli O157:H7 (1 × 10(7) cfu mL(-1)) under a 0.5 min NIR laser irradiation (785 nm/50 mW cm(-2)). In addition, a minimum bactericidal concentration (MBC) of 0.100 μg mL(-1) is achieved under near infrared (NIR) laser irradiation for 10 min, for which case there is absolutely no colony of E. coli O157:H7 found in the broth agar plate.

  16. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.

    Science.gov (United States)

    He, Enjie; Zheng, Hairong; Dong, Jun; Gao, Wei; Han, Qingyan; Li, Junna; Hui, Le; Lu, Ying; Tian, Huani

    2014-01-31

    A novel hybrid nanostructure, that is a Ag nanoparticle decorated LaF(3):Yb(3+)/Ln(3+)@SiO(2) nanosphere (Ln=Er, Tm), was constructed by a facile strategy, and characterized by XRD, TEM, FTIR, XPS and UV-vis-NIR absorption. Obvious spectral broadening and red-shift on the surface plasmon resonance were obtained by adjusting the size and configuration of Ag nanoparticles. Effective upconversion luminescence enhancements for Er(3+) and Tm(3+) containing samples were obtained. It is suggested that the luminescence enhancement results from both the excitation and emission processes, and the configuration of the studied hybrid nanostructure is an efficient system to enhance the luminescence emission of rare earth doped nanomaterials. It is believed that the enhancement from the hybrid nanostructure will find great potential in the development of photovoltaic solar cells.

  17. Effect of Uniform Decoration of Ag2S Nanoparticles on Physical Properties of Granular TiO2 Thin Films Synthesized by Using Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    R.A. Wagh

    2016-12-01

    Full Text Available In this work, we report the effect of uniform decoration of silver sulphide (Ag2S nanoparticles on physical properties of titanium dioxide (TiO2 nanocrystalline thin films synthesized by using a spin coating technique by preparing TiO2 gel using P-25 TiO2, ethanol, acetyl acetone and p-hydroxybenzoic acid. Chemical bath deposited layer of Ag2S particles enhance the properties of TiO2 nanocrystalline thin films. The optical study reveals that the absorption edge shifts towards the visible region compared with the pure TiO2 thin film due to the incorporation of Ag2S nanoparticles into TiO2 nanocrystalline thin films.

  18. Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light.

    Science.gov (United States)

    Mamba, G; Mbianda, X Y; Mishra, A K

    2014-04-01

    Gadolinium oxide nanoparticles of diameters degradation of methylene blue under simulated solar light irradiation. Higher photocatalytic activity was observed for the gadolinium oxide-decorated multiwalled carbon nanotube-based nanocomposites compared to the neat multiwalled carbon nanotube/titania nanocomposite and commercial titania. This improvement in photocatalytic activity was ascribed to the gadolinium oxide nanoparticles supported at the interface of the carbon nanotubes and titania resulting in efficient electron transfer between the two components of the composite. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of methylene blue (80.0 % TOC removal) which minimise the possible formation of toxic by-products. The photocatalyst could be re-used for five times, reaching a maximum degradation efficiency of 85.9 % after the five cycles. The proposed photocatalytic degradation mechanism is outlined herein.

  19. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.

    Science.gov (United States)

    Xu, Fang; Yao, Yanwen; Bai, Dandan; Xu, Ruishu; Mei, Jingjing; Wu, Dapeng; Gao, Zhiyong; Jiang, Kai

    2015-11-15

    Au nanoparticles decorated WO3 nanorod array was prepared and applied for solar water oxidation. Scanning electron microscopy and transmission electron microscop images showed that Au distributed on the surface of WO3 nanorod array. The surface plasmon resonance effect of Au nanoparticles contributed to the enhancement of photoelectrochemical performance of Au-WO3 photoanode, such as enhanced photocurrent density of 1.17mA/cm(2) at 1.0V vs Ag/AgCl, a cathodic shift of onset of ∼0.2V and higher stability. UV-vis absorption, electrochemical impedance and Mott-Schottky measurements proved that Au-WO3 photoanode has enhanced light absorption, lower transfer resistance, increased photogenerated carriers density and higher hole injection yield. Therefore, Au-WO3 photoanode exhibited higher photoelectrochemical performance than WO3 photoanode.

  20. Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe{sub 2}O{sub 4} nanoparticles using waste batteries extract

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Harthy, E.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80216, Jeddah 21589 (Saudi Arabia); Al Angari, Y.M.; Abdel Salam, M.; Asiri, A.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2016-06-01

    Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.2–0.8) nano-crystals, synthesized from recycling of Zn–C batteries, were successfully self-assembled alongside multi-walled carbon nanotubes (MWCNTs) via an environmentally friend sucrose auto-combustion method. The effect of Zn-content on structural and magnetic properties were investigated and discussed. XRD revealed the formation of single-phase ferrites. DTA–TG experiment showed that the auto-combustion reaction finished at about 350 {sup °}C. TEM exhibited that the MWCNTs are well decorated with ferrite particles. Hysteresis loop measurements revealed ferromagnetic behavior, with saturation magnetization decrease by the addition of MWCNTs or increasing Zn-Content. The kinetics of methylene blue dye (MB) removal using MWCNTs/Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O nano-composite was investigated and discussed. - Graphical abstract: TEM image of MWCNTs/Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} nano-composite showed that the MWCNTs were completely decorated with magnetic nanoparticles. The decoration passed through nucleation and growth processes in which nucleation of ferrite nanoparticles first takes place on the surface of MWCNTs followed by a subsequent growth of these nuclei. - Highlights: • Mn-Zn-ferrites were obtained via recycling process of spent Zn-C batteries. • Mn1−xZnxFe2O4/MWCNTS nano-composites were synthesized via sucrose combustion route. • Zn-substitution effect on structural and magnetic properties was investigated. • MWCNTs/Mn0.8Zn0.2Fe2O4 was investigated to remove MB dye from aqueous media.

  1. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-11

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  2. Enhanced Gas Sensing Properties of SnO2 Hollow Spheres Decorated with CeO2 Nanoparticles Heterostructure Composite Materials.

    Science.gov (United States)

    Liu, Jiangyang; Dai, Mingjun; Wang, Tianshuang; Sun, Peng; Liang, Xishuang; Lu, Geyu; Shimanoe, Kengo; Yamazoe, Noboru

    2016-03-01

    CeO2 decorated SnO2 hollow spheres were successfully synthesized via a two-step hydrothermal strategy. The morphology and structures of as-obtained CeO2/SnO2 composites were analyzed by various kinds of techniques. The SnO2 hollow spheres with uniform size around 300 nm were self-assembled with SnO2 nanoparticles and were hollow with a diameter of about 100 nm. The CeO2 nanoparticles on the surface of SnO2 hollow spheres could be clearly observed. X-ray photoelectron spectroscopy results confirmed the existence of Ce(3+) and the increased amount of both chemisorbed oxygen and oxygen vacancy after the CeO2 decorated. Compared with pure SnO2 hollow spheres, such composites revealed excellent enhanced sensing properties to ethanol. When the ethanol concentration was 100 ppm, the sensitivity of the CeO2/SnO2 composites was 37, which was 2.65-times higher than that of the primary SnO2 hollow spheres. The sensing mechanism of the enhanced gas sensing properties was also discussed.

  3. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  4. Tuning the activity of nanoplatelet MoS{sub 2}-based catalyst for efficient hydrogen evolution via electrochemical decoration with Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, Arunas, E-mail: jagmin@ktl.mii.lt [State Research Institute Centre for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius (Lithuania); Naujokaitis, Arnas [State Research Institute Centre for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius (Lithuania); Vilnius University, Faculty of Physics, Sauletekio av. 9, LT-10222 Vilnius (Lithuania); Žalnėravičius, Rokas; Jasulaitiene, Vitalija [State Research Institute Centre for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius (Lithuania); Valušis, Gintaras [State Research Institute Centre for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius (Lithuania); Vilnius University, Faculty of Physics, Sauletekio av. 9, LT-10222 Vilnius (Lithuania)

    2016-11-01

    Highlights: • MoS{sub 2}-based nanoplatelet films on Mo substrate by hydrothermal treatment. • Electrochemical decoration of MoS{sub 2} nanoplatelets with Pt nanoparticles. • Ultra-high efficiency of HER at heterostructured electrode surface. - Abstract: This study establishes a novel methodology for increasing the HER activity of the molybdenum substrate covered with amorphous molybdenum sulfide-oxide nano-structured film up to ultra-high level. We show that utilization of such nanoplatelet/nanoflowered film as electrocatalyst for HER in the sulfuric acidic solution cell with Pt anode and Ag/AgCl,KCl reference leads to obvious structural transformations and nice decoration of nanoplatelet edges with few-nm sized Pt nanoparticles. By this way, a surprising HER efficiency attaining ∼160 mA cm{sup −2} current density at −200 mV and ∼260 mA cm{sup −2} at −300 mV vs RHE overpotentials with the onset of reaction close to the one carried out at the bulk Pt electrode was obtained. To the best of our knowledge, these HER characteristics are among the best reported to date for hybrid MoS{sub 2}-based HER electrocatalysts. The results obtained were confirmed by SEM, XPS, XRD, conductive mode AFM and cyclic voltammetry. It is worth noticing that to achieve this synergetic effect only about 0.5 μg cm{sup −2} of Pt is required.

  5. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K.; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene. PMID:28074877

  6. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa.

    Science.gov (United States)

    Zhang, Shan; Shi, Jie; Deng, Qianchun; Zheng, Mingming; Wan, Chuyun; Zheng, Chang; Li, Ya; Huang, Fenghong

    2017-07-19

    Herein, a promising carrier, graphene oxide (GO) decorated with ZnO nanoparticles, denoted as GO/ZnO composite, has been designed and constructed. This carrier was characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetry. Then, Candida rugosa lipase (CRL) was immobilized onto the GO-based materials via physical adsorption. Our results indicated that the lipase loading amount on the GO/ZnO composites was about 73.52 mg of protein per g. In the activity assay, the novel immobilized lipase GO/ZnO@CRL, exhibited particularly excellent performance in terms of thermostability and reusability. Within 30 min at 50 °C, the free lipase, GO@CRL and ZnO@CRL had respectively lost 64%, 62% and 41% of their initial activity. However, GO/ZnO@CRL still retained its activity of 63% after 180 min at 50 °C. After reuse of the GO/ZnO@CRL 14 times, 90% of the initial activity can be recovered. Meanwhile, the relative activity of GO@CRL and ZnO@CRL was 28% and 23% under uniform conditions. Hence, GO-decorated ZnO nanoparticles may possess great potential as carriers for immobilizing lipase in a wide range of applications.

  7. Decoration of carbon nanotubes with magnetic Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} nanoparticles by microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca [National Centre for Physics, Quaid-e-Azam University Campus, Islamabad 44000 (Pakistan); Gilani, Syeda Rubina [Department of Chemistry, University of Engineering and Technology, Lahore (Pakistan); Ali, Syed Danish [National Centre for Physics, Quaid-e-Azam University Campus, Islamabad 44000 (Pakistan); Department of Chemistry, University of Engineering and Technology, Lahore (Pakistan); Safdar Bhatti, Humaira [National Centre for Physics, Quaid-e-Azam University Campus, Islamabad 44000 (Pakistan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The novel Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4}/CNTs nanocomposites were synthesized. Black-Right-Pointing-Pointer A simple microemulsion method was first time used for the synthesis of nanocomposites. Black-Right-Pointing-Pointer Carbon nanotubes were coated with large quantity of magnetic nanoparticles. Black-Right-Pointing-Pointer Ferrite/CNTs nanocomposites show ferromagnetic behavior at room temperature. Black-Right-Pointing-Pointer Ferrite/CNTs nanocomposites have many applications in nanoscience and technology. - Abstract: In this study, magnetic monodisperse ferrite Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} (x = 0.2, 0.4, 0.5, 0.6 and 0.8) nanoparticles have been successfully deposited on the side wall of the carbon nanotubes by a simple, effective and reproducible microemulsion method. The structure, composition and size of the as prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM). Vibrating sample magnetometer was used to investigate magnetic properties of prepared samples. Results indicated that a large number of high purity magnetic ferrite nanoparticles of size about 15-25 nm were decorated uniformly on the surface of carbon nanotubes. Magnetic measurements showed that all the CNTs decorated with ferrite nanoparticles show ferromagnetic behavior at room temperature and can be easily manipulated by an external magnetic field. The maximum saturation magnetization value of the Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4}/CNTs nanocomposites reached 44.21 emu/g. These magnetic ferrite/CNTs nanocomposites have many potential applications ranging from biomedical field to electromagnetic devices.

  8. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    Science.gov (United States)

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages.

  9. In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh198@gmail.com

    2016-03-01

    A facile one step in-situ solvothermal synthesis method has been used to synthesize CdS nanoparticles (NPs), graphene oxide (GO), reduced graphene oxide (rGO) and rGO decorated with highly dispersed CdS NPs. The optical properties of synthesized samples have been investigated using ultraviolet–visible (UV–VIS) spectroscopy, photoluminescence (PL) spectroscopy and Raman spectroscopy (RS) techniques and a comparative analysis of the results obtained by these techniques have been done. The CdS NPs decorated over rGO sheet act as an external perturbation that causes to split 2D Raman band into two distinct Raman peaks. The presence of two distinct Raman peaks in 2D band indicates that the synthesized rGO could be composed by double layers. The room temperature ferromagnetism (RTFM) of CdS NPs decorated over rGO is decreased compared to pure CdS NPs. The rGO-CdS nanocomposites show enhanced photocatalytic activity for the degradation of methylene blue (MB) dye than that of the pure CdS NPs. The improved photocatalytic activity of rGO-CdS nanocomposites could be attributed to the transfer of electron from conduction band (CB) of CdS NPs to the rGO sheets. It causes to increase the amount of ·OH and O{sub 2}·{sup −} radicals in the aqueous solution of dye, which react with MB dye and degrade it. Due to enhanced photocatalytic activity and coercivity, the rGO-CdS nanocomposites may be used for many practical applications in future nanotechnology. - Highlights: • rGO decorated with highly dispersed CdS NPs is synthesized by in-situ solvothermal method. • CdS NPs decorated over rGO surface act as an external perturbation for splitting of 2D band. • Two distinct Raman peaks in 2D band indicates that the rGO may be composed of double layers. • rGO-CdS nanocomposites show enhanced photocatalytic activity. • The rGO-CdS nanocomposites revealed RTFM.

  10. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB.

  11. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    Science.gov (United States)

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-03-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.

  12. Evolution of a high local strain in rolling up MoS2 sheets decorated with Ag and Au nanoparticles for surface-enhanced Raman scattering

    Science.gov (United States)

    Hwang, Da Young; Hack Suh, Dong

    2017-01-01

    We report that a high local strain was obtained for multilayer MoS2 nanoscrolls decorated with noble nanoparticles (Ag and Au NPs) using a rolling process beyond breaking or slipping of MoS2. The local strain was estimated through the bending strain in the nanoscrolls and the extent of coverage of Ag and Au NPs decorated on MoS2, exhibiting magnified surface-enhanced Raman scattering. TEM images showed that the MoS2-Ag and MoS2-Au nanoscrolls have a tube-like morphology decorated with NPs on the inner and outer sides of the MoS2 nanoscrolls. In the Raman spectra, we confirmed the red shift and broadness of the FWHM for nanoscrolls in the eigenvectors of the {{{E}}}{2{{g}}+}1 and {{{E}}}{2g+}1 modes. From the Grüneisen parameter γ and the shear deformation potential β, we obtained peak shifts of ˜4.9 cm-1/% at {{{E}}}{2g-}1 and ˜1.1 cm-1/% strain at {{{E}}}{2g+}1 for free-standing MoS2. According to the obtained relationship of the Raman shift and the induced uniaxial tensile strain, the {{{E}}}{2g-}1 and {{{E}}}{2g+}1 peaks shifted upwards to around -12.8 cm-1 and -2.9 cm-1, respectively, and can be converted to an induced uniaxial tensile strain of about 2.6% for MoS2-Ag nanoscrolls.

  13. TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shu-Mei; Ma, De-Kun, E-mail: dkma@wzu.edu.cn; Cai, Ping; Chen, Wei; Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn

    2014-12-15

    Graphical abstract: TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO{sub 2}. • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO{sub 2}. With increasing the amount of TiO{sub 2}, the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the

  14. Arrays of ZnO nanorods decorated with Au nanoparticles as surface-enhanced Raman scattering substrates for rapid detection of trace melamine

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Zao [College of Physics and Electronics, Central South University, Changsha 410083 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yi, Yong [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Luo, Jiangshan; Li, Xibo [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China); Xu, Xibin [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Jiang, Xiaodong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China); Yi, Yougen, E-mail: yougenyi@mail.csu.edu.cn [College of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Yongjian [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2014-10-15

    In this paper, as a new, highly sensitive and uniform hybrid surface-enhanced Raman scattering (SERS) substrate, arrays of ZnO nanorods (ZnO-NRs) decorated with Au nanoparticles (Au-NPs) have been prepared. This hybrid substrate manifests high SERS sensitivity to melamine and a detection limit as low as 1.0×10{sup −10} M (1.26 µg L{sup −1}). A maximum enhancement factor of 1.0×10{sup 9} can be obtained with the ZnO NF–Au (sample 2) film. Au-NPs gaps in the array can create lots of SERS “hot spots” that mainly contribute to the high SERS sensitivity. Moreover, the supporting chemical enhancement effect of ZnO-NRs and the better enrichment effect ascribed to the large surface area of the substrate also help to achieve a lower detection limit. The promising advantages of easy sample pretreatment, short detection time and low cost makes the arrays of ZnO-NRs decorated with Au-NPs substrate a potential detection tool in the field of food safety.

  15. Post-illumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic "memory".

    Science.gov (United States)

    Liu, Lingmei; Sun, Wuzhu; Yang, Weiyi; Li, Qi; Shang, Jian Ku

    2016-02-16

    Most photocatalysts only function under illumination, while many potential applications require continuous activities in dark. Thus, novel photocatalysts should be developed, which could store part of their photoactivity in "memory" under illumination and then be active from this "memory" after the illumination is turned off for an extended period of time. Here a novel composite photocatalyst of SnO2 nanoparticle-decorated Cu2O nanocubes is developed. Their large conduction band potential difference and the inner electrostatic field formed in the p-n heterojunction provide a strong driving force for photogenerated electrons to move from Cu2O to SnO2 under visible light illumination, which could then be released to react with O2 in dark to produce H2O2 for its post-illumination activity. This work demonstrates that the selection of decoration components for photocatalysts with the post-illumination photocatalytic "memory" could be largely expanded to semiconductors with conduction band potentials less positive than the two-electron reduction potential of O2.

  16. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  17. Electrochemical hydrogen evolution of multi-walled carbon nanotube/micro-hybrid composite decorated with Ni nanoparticles as catalyst through electroless deposition process.

    Science.gov (United States)

    Rahimi, Nazanin; Doroodmand, Mohammad Mahdi; Sabbaghi, Samad; Sheikhi, Mohammad Hossein

    2013-08-01

    Hydrogen evolution of multi-walled nanotube (MWCNT)/micro-hybrid polymer composite, decorated with Ni nanoparticles through electroless deposition process is studied by the electrochemical method. Cyclic voltammetry (CV) is utilized to clearly study the electrochemical hydrogen storage/evolution behavior of the composite through a potential window ranging from -1.60 to +0.60 V (vs. Ag/AgCl). Hydrogen adsorption/desorption peaks are positioned at -1.52 and -0.05 V, respectively. Chronoamperometry is also applied to estimate active surface area (0.145 m(2)g(-1)) of the composite as well as the diffusion coefficient (3.4×10(-11) m(2) s(-1)) of adsorbed hydrogen process. According to the chrono-charge/discharge technique, the capacity of fabricated Ni-MWCNT/micro-hybrid composite is estimated to be 2.98 wt.% during charging for a certain time (40 min).

  18. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water.

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-04-21

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.

  19. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  20. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    Science.gov (United States)

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).

  1. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy

    Science.gov (United States)

    Maiti, R.; Haldar, S.; Majumdar, D.; Singha, A.; Ray, S. K.

    2017-02-01

    The novel opto-chemical doping effect in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition has been investigated using Raman spectroscopy for the first time. We used both noble metal nanoparticles and optical excitation, in a hybrid opto-chemical route, to tune the doping level in graphene. Metal nanoparticle-induced chemical effects and laser power-induced substrate effects alter the doping nature of graphene from p- to n-type. Compared with earlier studies, the proposed method significantly lowers the laser intensity required for optical power-dependent doping, resulting in prevention of damage to the sample due to local heating. Some other interesting observations are the enhanced peak intensity in the Raman spectrum of graphene, enhancement of the D-band intensity and the introduction of G-band splitting. This novel, cheap and easily implemented hybrid optical-chemical doping strategy could be very useful for tuning graphene plasmons on the widely used Si/SiO2 substrates for various photonic device applications.

  2. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G

    2016-12-21

    The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.

  3. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  4. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Safiye [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush, E-mail: faridbodf@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ajloo, Davood [School of Chemistry, Damghan University, Damghan (Iran, Islamic Republic of); Mohammadipanah, Fatemeh [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO{sub 2}NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy){sub 3}]{sup 2+/3+} redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy){sub 3}]{sup 2+/3+} FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10{sup −15} to 1 × 10{sup −8} mol L{sup −1}. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL{sup −1} with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy){sub 3}]{sup 2+/3+} interaction with ssDNA before and after hybridization. - Highlights: • New DNA biosensor is designed for sub-femtomolar detection of Aeromonas hydrophila DNA sequence. • Reduced graphene oxide decorated Ceria nanoparticles was used as a new immobilization platform. • Biosensor was successfully used to detect A. hydrophila DNA sequence in fish pond water.

  5. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment

    Science.gov (United States)

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-01

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  6. A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors

    Science.gov (United States)

    Zhang, Jianfang; Wang, Yan; Qin, Yongqiang; Yu, Cuiping; Cui, Lihua; Shu, Xia; Cui, Jiewu; Zheng, Hongmei; Zhang, Yong; Wu, Yucheng

    2017-02-01

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn3O4 nanoparticles have been successfully deposited onto the inner surface of TiO2 nanotube arrays (TNAs). The content and size of Mn3O4 can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn3O4/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn3O4/TNAs electrodes are systematically investigated by the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn3O4/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g-1 at a current density of 1 A g-1. And it also shows an excellent long-term cycling stability at a current density of 5 A g-1, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn3O4 nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes.

  7. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.

    Science.gov (United States)

    Kumar, Nanjundan Ashok; Bund, Andreas; Cho, Byung Gwon; Lim, Kwon Taek; Jeong, Yeon Tae

    2009-06-03

    A well-reproducible and completely green route towards highly water dispersible multi-walled carbon nanotubes (MWNT) is achieved by a non-invasive, polymer wrapping technique, where the polymer is adsorbed on the MWNT's surface. Simply mixing an amino-acid-based polymer derivative, namely poly methacryloyl beta-alanine (PMBA) with purified MWNTs in distilled water resulted in the formation of PMBA-MWNT nanocomposite hybrids. Gold nanoparticles (AuNPs) were further anchored on the polymer-wrapped MWNTs, which were previously sonicated in distilled water, via the hydrogen bonding interaction between the carboxylic acid functional groups present in the polymer-modified MWNTs and the citrate-capped AuNPs. The surface morphologies and chemistries of the hybrids decorated with nanoparticles were characterized by transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. Additionally, the composites were also prepared by the in situ free radical polymerization of the monomer, methacryloyl beta-alanine (MBA), with MWNTs. Thus functionalized MWNTs were studied by thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and TEM. Both methods were effective in the nanotube functionalization and ensured good dispersion and high stability in water over three months. Due to the presence of the high densities of carboxylic acid functionalities on the surface of CNTs, various colloidal nanocrystals can be attached to MWNTs.

  8. Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime.

    Science.gov (United States)

    Shahrokhian, Saeed; Salimian, Razieh; Rastgar, Shokoufeh

    2014-01-01

    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT, time and potential of deposition of metal nanoparticles and the pH of the buffered solution on the electrode response are optimized. The proposed electrode showed a linear dynamic range of 0.05-50μM and the detection limit of 1nM for the CFZ. The modified electrode successfully supports the sensitive detection of trace amounts of the CFZ in pharmaceutical and clinical preparations.

  9. Hierarchical top-porous/bottom-tubular TiO 2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants

    KAUST Repository

    Zhang, Zhonghai

    2012-02-22

    In this paper, top-porous and bottom-tubular TiO 2 nanotubes (TiO 2 NTs) loaded with palladium nanoparticles (Pd/TiO 2 NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO 2 NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO 2 NTs via a photoreduction process. The PEC activity of Pd/TiO 2 NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO 2 and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO 2 NT electrode showed significantly higher PEC activities than TiO 2 NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. © 2012 American Chemical Society.

  10. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    Science.gov (United States)

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants.

  11. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance

    Science.gov (United States)

    Rajender, Gone; Choudhury, Biswajit; Giri, P. K.

    2017-09-01

    This work spotlights the development of a plasmonic photocatalyst showing surface plasmon induced enhanced visible light photocatalytic (PC) performance. Plasmonic Au nanoparticles (NPs) are decorated over the hybrid nanosystem of graphitic carbon nitride (GCN) and graphene quantum dots (GQD) by citrate reduction method. Surface plasmon resonance (SPR) induced enhancement of Raman G and 2D band intensity is encountered on excitation of the Plasmonic hybrid at 514.5 nm, which is near to the 532 nm absorption band of Au NPs. Time-resolved photoluminescence and XPS studies show charge transfer interaction between GQD-GCN and Au NPs. Plasmonic hybrid exhibits an enhanced PC activity over the other catalysts in the photodegradation of methylene blue (MB) under visible light illumination. Plasmonic photocatalyst displays more than 6 fold enhancement in the photodecomposition rate of MB over GQD and nearly 2 fold improvement over GCN and GQD-GCN. GQD-GCN absorbs mostly in the near visible region and can be photoexcited by visible light of wavelength (λ ) UV–visible light for photocatalysis. Furthermore, plasmonic Au act as antennas for accumulation and enhancement of localized electromagnetic field at the interface with GQD-GCN, and thereby promotes photogeneration of large numbers of carriers on GQD-GCN. The carriers are separated by charge transfer migration from hybrid to Au NPs. Finally, the carriers on the plasmonic Au nanostructures initiate MB degradation under visible light. Our results have shown that plasmon decoration is a suitable strategy to design a carbon based hybrid photocatalyst for solar energy conversion.

  12. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Alinajafi, Hossein A.; Jafari-Asl, M.; Rezaei, B.; Ghazaei, F.

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe{sub 2}O{sub 4}/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe{sub 2}O{sub 4}/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe{sub 2}O{sub 4}/EGO nanohybrid has synergetic effect towards the electro-reduction of H{sub 2}O{sub 2} and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L{sup −1} NADH and 0.9 to 900.0 μmol L{sup −1} H{sub 2}O{sub 2} with detections limit of 0.38 and 0.54 μmol L{sup −1}, respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H{sub 2}O{sub 2} in real samples with satisfactory results. - Highlights: • Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide was synthesized. • It was characterized by different electrochemical and spectroscopic methods. • The nanocomposites have synergic effect on H{sub 2}O{sub 2} reduction and NADH oxidation. • NADH and H{sub 2}O{sub 2} could be detected as low as 0.38 and 0.54 μmol/L respectively.

  13. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite.

    Science.gov (United States)

    Pur, Mohammad Reza Karimi; Hosseini, Morteza; Faridbod, Farnoush; Dezfuli, Amin Shiralizadeh; Ganjali, Mohammad Reza

    2016-10-01

    A novel ultrasensitive sensing system for the rapid detection of cytochrome c (Cyt C) was developed on the basis of an electrochemiluminescence (ECL) method. A nanocomposite biosensor was made of reduced graphene oxide decorated with cerium oxide/tris(2,2-bipyridyl)ruthenium(II)/chitosan (CeO2NPs-RGO/ Ru(bpy)3 (2+)/CHIT) and used for this purpose. The ECL signal was produced by an electrochemical interaction between Ru(bpy)3 (2+) and tripropyl amine (TPA) on the surface of the electrode. Addition of Cyt C to the solution decreases the ECL signal due to its affinity for TPA and inhibition of its reaction with Ru(bpy)3 (2+). The effects of the amount of CeO2NPs-RGO, Ru(bpy)3 (2+), TPA concentration as a co-reactant, and the pH of the electrolyte solution on the ECL signal intensity were studied and optimized. The results showed that the method was fast, reproducible, sensitive, and stable for the detection of Cyt C. The method has a linear range from 2.5 nM to 2 μM (R (2) = 0.995) with a detection limit of 0.7 nM. Finally, the proposed biosensor was used for the determination of Cyt C in human serum samples with RSDs of 1.8-3.6 %. The results demonstrate that this solid-state ECL quenching biosensor has high sensitivity, selectivity, and good stability. Graphical Abstract A novel solid-state electrochemiluminescence sensor for detection of cytochrome C based on Ceria Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite.

  14. Green approach for preparation of reduced graphene oxide decorated with gold nanoparticles and its optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Šimšíková, M., E-mail: michaela.simsikova@ceitec.vutbr.cz [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Bartoš, M. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Keša, P. [Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 54 Košice (Slovakia); Department of Biophysics, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Šikola, T. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2016-07-01

    Graphene oxide (GO) was reduced and modified by gold nanoparticles using aqueous leaf extract of green tea. Successful formation of gold nanoparticles (AuNPs) on graphene oxide surface was determined by scanning electron microscopy (SEM). Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared analyses (FT-IR) have been used to demonstrate the behavior of complex of reduced graphene oxide with gold nanoparticles (rGO-AuNPs), the removal of oxygen-containing groups from the graphene, and subsequent formation of reduced graphene oxide (rGO). We also demonstrated the change of optical properties of GO after the reduction and formation of gold nanoparticles on its surface by UV–vis spectroscopy and fluorescence spectroscopy. The positive impact of rGO-AuNPs composite on safranin T reduction in the presence of NaBH{sub 4} without light irradiation was examined, as well. The dye decolorization was observed within 60 min which highlights the exceptional catalytic potential of the rGO-AuNPs. - Highlights: • Reduction of GO was performed by an environmentally friendly approach. • Gold nanoparticles were prepared by self-assembly on the graphene oxide surface. • Surface properties were enhanced after the formation of gold nanoparticles. • Optical properties have been changed after the graphene reduction and formation of gold nanoparticles. • The decolorization of safranin T was observed within 60 min.

  15. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree

    2014-12-16

    Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.

  16. Laser ablative decoration of micro-diamonds by gold nanoparticles for fabrication of hybrid plasmonic-dielectric antennae

    Science.gov (United States)

    Ivanova, A. K.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Zayarny, D. A.; Nguyen, L. V.; Nguyen, T. T. H.; Pham, M. H.; Pham, D. V.; Do, T. H.

    2017-06-01

    Hybrid plasmonic-dielectric antennae are fabricated by laser ablation of gold in water sols of micro-diamonds. Electron microscopy and energy-dispersive x-ray spectroscopy of their deposits on a silicon wafer surface indicate close proximity of gold nanoparticles and micro-diamonds, which is supported by photoluminescence studies demonstrating strong (eight-fold) damping of micro-diamond luminescence owing to the attachment of the gold nanoparticles. UV-near-IR spectroscopy of their sols reveals a considerable plasmonic effect, related to red spectral shifts of surface plasmon resonance for the gold nanoparticles in the laser-ablation-fabricated antennae.

  17. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  18. One-step synthesis and characterization of CoS-Nanoparticles decorated multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2009-02-01

    Full Text Available The organization of metal or semiconductor nanoparticles like quantum dots (QDs) on carbon nanotubes (CNTs) is one good example motivated by the desire to combine the properties of two functional nanoscale materials to achieve a wider range...

  19. N-halamine-decorated polystyrene nanoparticles based on 5-allylbarbituric acid: from controllable fabrication to bactericidal evaluation.

    Science.gov (United States)

    Dong, Alideertu; Huang, Zhen; Lan, Shi; Wang, Qin; Bao, Sarina; Siriguleng; Zhang, Yanling; Gao, Ge; Liu, Fengqi; Harnoode, Chokto

    2014-01-01

    N-halamine-based antibacterial polystyrene nanoparticles with different particle size ranged from 91.5 nm to 562.5 nm were facilely fabricated by surfactant-free emulsion polymerization with 5-allylbarbituric acid served as N-halamine precursor. Effect of experimental parameters such as monomer concentration, initiator concentration, and ionic strength on particle size was investigated systematically. N-halamine-based antibacterial polystyrene nanoparticles showed enhanced antibacterial activity against both Gram-positive species Staphylococcus aureus and Gram-negative species Pseudomonas aeruginosa compared with bulk powder N-halamine. Biocidal activity of N-halamine-based antibacterial polystyrene nanoparticles can be tailored effectively by tuning particle size. Stability and bactericidal activity of N-halamine-based antibacterial polystyrene nanoparticles was detected as a function of extending period.

  20. Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanchun [Department of Oral and Maxillofacial Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 (China); Dong Shiwu [Biomechanics laboratory, Department of Anatomy, Third Military Medical University, Chongqing, 400038 (China); Shen Tao [Department of Oral and Maxillofacial Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 (China); Jian Congxiang [Department of Stomatolog, General Hospital of Chengdu Military Region, Chengdu, Sichuan Province, 610083 (China); Chang Huijun; Li Ying [Department of Oral and Maxillofacial Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 (China); Zhou Jixiang, E-mail: zhoujixiang2010@gmail.com [Department of Oral and Maxillofacial Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 (China)

    2011-07-01

    Graphical abstract: Display Omitted Highlights: > A novel redox film was constructed by doping the Ionic liquid (IL) to ferrocene-branched chitosan composite with good electric conductivity, redox reversibility and biocompatibility. > The Au nanoparticle decorated graphene nanosheets were prepared by a one-pot method in an aqueous-phase synthesis and were provided with a large surface area and multiple binding sites to allow high accessibility for the immobilization of secondary antibody and horseradish peroxidase. > Based on the sandwich immunoassay format, the electrochemical signal could be amplified and adequately achieved, according to the catalytic reaction of the carried HRP towards the reduction of H{sub 2}O{sub 2} with the aid of the IL and ferrocene synergistic effect. - Abstract: This paper describes a new signal amplification strategy based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets (AuNP-graphene) as labels for the sensitivity improvement of an electrochemical immunosensor. At first, an ionic liquid was doped into ferrocene-branched chitosan film to obtain a novel redox composite, which was employed as an antibody immobilization matrix due to its better biocompatibility and higher electron transfer mobility. Then, the AuNP-graphene were prepared by a one-pot method in a aqueous-phase synthesis and were provided with a large surface area and multiple binding sites to allow high accessibility for the immobilization of secondary antibody (Ab2) and horseradish peroxidase (HRP). Based on the sandwich immunoassay format, the electrochemical signal could be amplified and adequately achieved, according to the catalytic reaction of the carried HRP towards the reduction of H{sub 2}O{sub 2} with the aid of the IL and ferrocene synergistic effect. Using Immunoglobulin G (IgG) as a protein model, a good and repeatable linear relationship was found between the electrical signal outputs and human Ig

  1. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.

    Science.gov (United States)

    Lu, Yan; Zhang, Junlong; Ge, Lei; Han, Changcun; Qiu, Ping; Fang, Siman

    2016-12-01

    The vertically aligned one-dimensional (1D) ZnO nanorod arrays decorated with AuPd alloy nanoparticles have been synthesized with ZnO nanorod arrays as template via a mild hydrothermal method. In this work, the as-prepared AuPd/ZnO nanorod arrays demonstrated high light-harvesting efficiency. The microstructures, morphologies and chemical properties of the obtained AuPd/ZnO composite photocatalyst were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS). The photoelectrochemical (PEC) performances of as-obtained AuPd/ZnO nanorod arrays were examined, and the photocurrent density was up to 0.98mAcm(-2) at 0.787V versus Ag/AgCl, which was about 2.4 times higher than the pure ZnO sample. A possible photocatalytic mechanism of the AuPd/ZnO hybrid nanostructures under the simulated sunlight irradiation was proposed to guide further improvement of other desirable materials. According to the above experiment results, it can be clearly found that AuPd/ZnO composite nanorod arrays showed excellent PEC performance and had promising applications in the utilization of solar energy.

  2. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.

    Science.gov (United States)

    Zhao, Yong; Sun, Lei; Xi, Min; Feng, Quan; Jiang, Chaoyang; Fong, Hao

    2014-04-23

    In this study, the free-standing electrospun nanofibrous mat (i.e., nanofelt) consisting of anatase-phase TiO2 nanofibers with diameters of ∼200 nm was prepared, and the nanofelt was subsequently surface-decorated with Ag nanoparticles via an electroless plating method. The sensitivity toward surface enhanced Raman scattering (SERS) and UV-cleanable property of electrospun TiO2/Ag nanofelt were then investigated. In the SERS tests, the target analyte (i.e., 4-mercaptobenzoic acid, Rhodamine 6G, and 4-aminothiophenol) was first adsorbed onto the TiO2/Ag nanofelt as the probe analyte; this was followed by the measurements of Raman intensity and SERS maps. Thereafter, the nanofelt adsorbed with target analyte was cleaned and regenerated/recovered upon UV irradiation in O2-saturated water, and the removal of target analyte was attributed to photodegradation property of anatase-phase TiO2. This study suggested that the electrospun TiO2/Ag nanofelt would be promising as SERS-active substrate with UV-cleanable property for cost-effective and reproducible SERS applications.

  3. Tuning the activity of nanoplatelet MoS2-based catalyst for efficient hydrogen evolution via electrochemical decoration with Pt nanoparticles

    Science.gov (United States)

    Jagminas, Arunas; Naujokaitis, Arnas; Žalnėravičius, Rokas; Jasulaitiene, Vitalija; Valušis, Gintaras

    2016-11-01

    This study establishes a novel methodology for increasing the HER activity of the molybdenum substrate covered with amorphous molybdenum sulfide-oxide nano-structured film up to ultra-high level. We show that utilization of such nanoplatelet/nanoflowered film as electrocatalyst for HER in the sulfuric acidic solution cell with Pt anode and Ag/AgCl,KCl reference leads to obvious structural transformations and nice decoration of nanoplatelet edges with few-nm sized Pt nanoparticles. By this way, a surprising HER efficiency attaining ∼160 mA cm-2 current density at -200 mV and ∼260 mA cm-2 at -300 mV vs RHE overpotentials with the onset of reaction close to the one carried out at the bulk Pt electrode was obtained. To the best of our knowledge, these HER characteristics are among the best reported to date for hybrid MoS2-based HER electrocatalysts. The results obtained were confirmed by SEM, XPS, XRD, conductive mode AFM and cyclic voltammetry. It is worth noticing that to achieve this synergetic effect only about 0.5 μg cm-2 of Pt is required.

  4. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer.

    Science.gov (United States)

    Wang, Fang; Li, Li; Liu, Bo; Chen, Zhen; Li, Changzhong

    2017-02-01

    This work aimed to develop hyaluronic acid (HA) decorated pluronic 85 (P85) coated solid lipid nanoparticles (SLN) loaded with paclitaxel (HA-PTX-P85-SLN) and to evaluate its potential to overcome drug resistance and to increase antitumor efficacy in mice bearing cervical and breast tumor. P85-Distearoyl Phosphoethanolamine (DSPE) was synthesized from P85 and DSPE by coupling in the presence of 1,10-carbonyldiimidazole (CDI) as a catalyst. The SLN were prepared by the hot homogenization technique and electrostatic interaction. PTX-loaded SLN was characterized for mean diameter, zeta potential, morphology, entrapment efficiency (EE), drug loading capacity (LC) and in vitro drug release. In vivo animal evaluation containing antitumor effect, pharmacokinetics and biodistribution were conducted in mice bearing cervical and breast tumor. The HA-PTX-P85-SLN showed a mean diameter of 160.3nm, negative zeta potential (-31.6mV), EE of 88.2%, and LC of 4.9%. PTX from HA-PTX-P85-SLN exhibited greater sustained drug release profiles compared free PTX. Pharmacokinetics results indicated that HA-PTX-P85-SLN exhibited a 5.5-fold increase in AUC in comparison to free PTX. Biodistribution results revealed that HA-PTX-P85-SLN exhibited higher tumor drug concentration compared with free PTX.

  5. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    Science.gov (United States)

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection.

  6. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    Science.gov (United States)

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization.

  7. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing.

    Science.gov (United States)

    Zhang, Cong; Zhang, Yanyan; Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Chen, Qiang

    2016-10-01

    A new electrocatalyst, Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide nanocomposite, was successfully synthesized by a facile, eco-friendly and controllable route. The morphological characterization of RGO/Pt-Ag NPs nanocomposite was examined by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) analyzer, X-ray diffraction (XRD) spectrum, and Fourier transform infrared spectrum (FT-IR), respectively. And then, the RGO/Pt-Ag NPs nanocomposite was immobilized on the surface of glassy carbon (GC) electrode to fabricate a novel and highly sensitive non-enzymatic hydrogen peroxide sensor. The electrochemical behaviors of the prepared sensor were investigated by cyclic voltammetry and chronoamperometry. The sensor showed excellent performance toward H2O2 with sensitivity as high as 699.6 μA mM(-1)cm(-2) and 402.7 μA mM(-1)cm(-2), wide linear range of 0.005-1.5mM and 1.5-7mM, and low detection limit of 0.04μM (S/N=3). Moreover, the prepared hydrogen peroxide sensor was applied to in real samples with satisfactory results. These excellent results indicate that the prepared RGO/Pt-Ag NPs nanocomposite has broad application prospect in the field of sensors.

  8. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    Science.gov (United States)

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-01

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society.

  9. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    Science.gov (United States)

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method.

  10. A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene-molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification.

    Science.gov (United States)

    Jing, Pei; Yi, Huayu; Xue, Shuyan; Chai, Yaqin; Yuan, Ruo; Xu, Wenju

    2015-01-01

    In the present study, with the aggregated advantages of graphene and molybdenum disulfide (MoS2), we prepared poly(diallyldimethylammonium chloride)-graphene/molybdenum disulfide (PDDA-G-MoS2) nanocomposites with flower-like structure, large surface area and excellent conductivity. Furthermore, an advanced sandwich-type electrochemical assay for sensitive detection of thrombin (TB) was fabricated using palladium nanoparticles decorated PDDA-G-MoS2 (PdNPs/PDDA-G-MoS2) as nanocarriers, which were functionalized by hemin/G-quadruplex, glucose oxidase (GOD), and toluidine blue (Tb) as redox probes. The signal amplification strategy was achieved as follows: Firstly, the immobilized GOD could effectively catalyze the oxidation of glucose to gluconolactone, coupling with the reduction of the dissolved oxygen to H2O2. Then, both PdNPs and hemin/G-quadruplex acting as hydrogen peroxide (HRP)-mimicking enzyme could further catalyze the reduction of H2O2, resulting in significant electrochemical signal amplification. So the proposed aptasensor showed high sensitivity with a wide dynamic linear range of 0.0001 to 40 nM and a relatively low detection limit of 0.062 pM for TB determination. The strategy showed huge potential of application in protein detection and disease diagnosis.

  11. Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes

    Science.gov (United States)

    Kurt, Belma Zengin; Durmus, Zehra; Durmus, Ali

    2016-01-01

    In this study, graphene nano sheets, prepared with chemical oxidation and reduction routes via modified-Hummer method, were successfully decorated with platinum (Pt) and palladium (Pd) nanoparticles. Structural and morphological features of resulted graphene-metal nanocomposites were characterized with FT-IR, XRD, SEM and TEM methods. Anti-oxidant activity (AOA) values of nanocomposites were determined. The IC50 values of Pt-graphene and Pd-graphene nanocomposites were found to be 46.1 and 90.2 μg/mL, respectively based on the ABTS method and 80.2 and 143.7 μg/mL according to the DPPH method. It was found that the graphene-metal nanocomposites exhibited superior free radical scavenging activity compared to several types of noble metal nano particles although the nanocomposites consist of much lower amount of active metal sites than the nano-crystalline metal powders. It was consequently reported that the graphene-metal nanocomposites could be successfully used for the photocatalytic elimination of fuchsin and indigo carmine dyes under light irradiation.

  12. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells

    Science.gov (United States)

    Zan, Xiaoli; Wang, Chenxu

    2016-01-01

    Abstract To circumvent the bottlenecks of non‐flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil–water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm−2 μm −1, up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nm, and a wide linear range of 87 nm to 100 μm. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well‐tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil–water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  13. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode.

    Science.gov (United States)

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming

    2015-07-06

    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm(-2), AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs.

  14. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels.

    Science.gov (United States)

    Ji, Lei; Guo, Zhankui; Yan, Tao; Ma, Hongmin; Du, Bin; Li, Yueyun; Wei, Qin

    2015-06-15

    An ultrasensitive sandwich-type electrochemical immunosensor for quantitative detection of alpha fetoprotein (AFP) was proposed based on a novel signal amplification strategy in this work. Carbon decorated Fe3O4 magnetic microspheres (Fe3O4@C) with large specific surface area and good adsorption property were used as labels to anchor palladium nanoparticles (Pd NPs) and the secondary antibodies (Ab2). Pd NPs were loaded on Fe3O4@C to obtain Fe3O4@C@Pd with core-shell structure by electrostatic attraction, which were further used to immobilize Ab2 due to the bonding of Pd-NH2. A signal amplification strategy was the noble metal nanoparticles, such as Pd NPs, exhibiting high electrocatalytic activities toward hydrogen peroxide (H2O2) reduction. This signal amplification was novel not only because of the great capacity, but also the ease of magnetic separation from the sample solution based on their magnetic property. Moreover, carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) were used for the immobilization of primary antibodies (Ab1). Therefore, high sensitivity could be realized by the designed immunosensor based on this novel signal amplification strategy. Under optimal conditions, the immunosensor exhibited a wide linear range of 0.5 pg/mL to 10 ng/mL toward AFP with a detection limit of 0.16 pg/mL (S/N=3). Moreover, it revealed good selectivity, acceptable reproducibility and stability, indicating a potential application in clinical monitoring of tumor biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir; Mohammadi, Bahareh

    2015-07-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations.

  16. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation

    Science.gov (United States)

    Min, Shixiong; Wang, Fang; Jin, Zhiliang; Xu, Jing

    2014-10-01

    Bismuth vanadate (BiVO4) is a chemically stable and nontoxic semiconductor (SC) photocatalyst that can absorb visible light to degrade most of pollutants in aqueous solution due to suitable band-gap energy (ca. 2.4 eV), but it usually shows a low activity in its pristine form owing to poor charge-separation characteristics and the weak surface adsorption properties. In this paper, we demonstrated that the photocatalytic activity of BiVO4 can be greatly enhanced by surface modification with Cu2O nanoparticles through polyol reduction method. The modified photocatalysts (Cu2O/BiVO4) with proper loading amount of Cu2O (0.75 wt%) showed the highest photocatalytic degradation activity for methylene blue (MB) degradation with the pseudo-first-order rate constant kapp and degradation efficiency two times higher than pristine BiVO4 under visible light and solar light irradiation. The characterizations of resulting photocatalysts revealed that decoration of Cu2O nanoparticles led to the formation of a p-n heterojunction at the contact interface of Cu2O and BiVO4, which narrowed the band gap of BiVO4 for extending the absorption range of visible light and promoted the charge transfer across interface for suppressing the recombination of photogenerated electron-hole pairs, thus improving the catalytic performance of photocatalysts. This work demonstrates that the structural integration of p-type Cu2O SC with n-type BiVO4 SC will be a new promising strategy to develop a high-efficient heterojunction photocatalyst for visible-light-driven degradation of pollutants.

  17. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    DEFF Research Database (Denmark)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong;

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries...

  18. Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell

    Science.gov (United States)

    Zeng, Guisheng; Li, Weiping; Ci, Suqin; Jia, Jingchun; Wen, Zhenhai

    2016-11-01

    Nickel oxide-decorated graphene nanosheet (NiO/GNS), as a novel non-enzymatic electrocatalyst for glucose oxidation reaction (GOR), was synthesized through a facile hydrothermal route followed by the heat treatment. The successful synthesis of NiO/GNS was characterized by a series of techniques including XRD, BET, SEM and TEM. Significantly, the NiO/GNS catalyst show excellent catalytic activity toward GOR, and was employed to develop a sensitive non-enzymatic glucose sensor. The developed glucose sensor could response to glucose in a wide range from 5 μM-4.2 mM with a low detection limit (LOD) of 5.0 μM (S/N = 3). Importantly, compared with bare NiO, the catalytic activity of NiO/GNS was much higher. The reason might be that the 2D structure of graphene could prevent the aggregation of NiO and facilitate the electron transfer at electrode interface. Moreover, the outstanding catalytic activity of NiO/GNS was further demonstrated by applying it to construct a biofuel cell using glucose as fuel, which exhibited high stability and current density.

  19. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    Science.gov (United States)

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results.

  20. Hierarchical Bi2WO6 architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities

    Science.gov (United States)

    Zhang, Jinniu; Chen, Tianhua; Lu, Hongbing; Yang, Zhibo; Yin, Feng; Gao, Jianzhi; Liu, Qianru; Tu, Yafang

    2017-05-01

    A new kind of hierarchical Pd-Bi2WO6 architecture decorated with different molar ratios of Pd to Bi, has been fabricated by a hydrothermal process, followed by a chemical deposition method. The photocatalytic activities of the pure Bi2WO6 and Pd-Bi2WO6 nanocatalyst were examined in the degradation of Rhodamine B (RhB) dyes and phenol under visible light. The photocatalytic results showed that the Pd-Bi2WO6 nanocomposites possessed observably enhanced photocatalytic activities. Particularly, the 2.0% Pd loaded Bi2WO6 had the highest photocatalytic activity, exhibiting a nearly complete degradation of 30 mg/L RhB and 10 mg/L phenol within only 50 and 60 min, respectively. In addition, the trapping experiment results indicated that the photo-generated holes (h+) and rad O2- played a crucial role in the degradation of RhB. According to the experimental results, the photocatalytic degradation mechanism of Pd-Bi2WO6 was also proposed. The enhanced photocatalytic activities were ascribed to the combined effects of the highly efficient separation of electrons and holes, improved visible light utilization and increased BET specific surface areas of the Pd-Bi2WO6 nanocomposites.

  1. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots.

    Science.gov (United States)

    Chung, Tze-Wen; Lin, Pei-Yi; Wang, Shoei-Shen; Chen, Yen-Fung

    2014-01-01

    Chitosan nanoparticles (NPs) decorated with adenosine diphosphate (ADP) (ANPs) or fibrinogen (FNPs) were used to fabricate hemostatic NPs that can shorten blood clotting time and prevent severe local hemorrhage. The structure and mechanical properties of the blood clot induced with ANP (clot/ANP) or FNP (clot/FNP) were also investigated. The NPs, ANPs, and FNPs, which had particle sizes of 245.1 ± 14.0, 251.0 ± 9.8, and 326.5 ± 14.5 nm and zeta potentials of 24.1 ± 0.5, 20.6 ± 1.9, and 15.3 ± 1.5 mV (n=4), respectively, were fabricated by ionic gelation and then decorated with ADP and fibrinogen. The zeta potentials and Fourier transform infrared (FTIR) spectroscopy of the NPs confirmed that their surfaces were successfully coated with ADP and fibrinogen. The scanning electron microscope (SEM) micrographs of the structure of the clot induced with "undecorated" chitosan NPs (clot/NP), clot/ANP, and clot/FNP (at 0.05 wt%) were different, after citrated bloods had been recalcified by a calcium chloride solution containing NPs, ANPs, or FNPs. This indicated that many NPs adhered on the membrane surfaces of red blood cells, that ANPs induced many platelet aggregates, and that FNPs were incorporated into the fibrin network in the clots. Measurements of the blood clotting times (Tc) of blood clot/NPs, clot/ANPs, and clot/FNPs, based on 90% of ultimate frequency shifts measured on a quartz crystal microbalance (QCM), were significantly (P<0.05) (n=4) shorter than that of a clot induced by a phosphate-buffered solution (PBS) (clot/PBS) (63.6% ± 3.1%, 48.3% ± 6.2%, and 63.2% ± 4.7%, respectively). The ΔF2 values in the spectra of frequency shifts associated with the propagation of fibrin networks in the clot/ANPs and clot/FNPs were significantly lower than those of clot/PBS. Interestingly, texture profile analysis of the compressional properties showed significantly lower hardness and compressibility in clot/NPs and clot/ANPs (P<0.05 or better) (n=4) compared with

  2. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    Science.gov (United States)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  3. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods.

    Science.gov (United States)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P K

    2016-08-05

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min(-1), which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  4. Gold nanoparticles-decorated electrospun poly(N-vinyl-2-pyrrolidone) nanofibers with tunable size and coverage density for nanomolar detection of single and binary component dyes by surface-enhanced raman spectroscopy

    Science.gov (United States)

    Kurniawan, Alfin; Wang, Meng-Jiy

    2017-09-01

    The application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this study, a simple approach to fabricate electrospun poly(N-vinylpyrrolidone) (PVP) mats decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination was presented. AuNPs were decorated on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the fiber mats could be tuned by varying the calcination temperature. Calcination of AuNPs-decorated PVP fibers at 500 °C-700 °C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fiber, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated mat which calcined at 500 °C (500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred μM. The fabricated SERS substrate demonstrated high reproducibility with the spot-to-spot variation in SERS signal intensities was ±10% and ±12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6%-96.6%) and reproducibility (%RSD values less than 15 for all samples).

  5. Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jinghua [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Liu Mujun [Central South University, School of Biological Science and Technology (China); Zhang Yangde; Zhao Jinfeng; Pan Yifeng [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Yang Xiyun, E-mail: bax_2007@126.com [Central South University, School of Metallurgical Science and Engineering (China)

    2012-03-15

    A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 {+-} 8.23 nm and +23.14 {+-} 4.25 mV, respectively with 46.8 {+-} 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.

  6. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip, E-mail: necipatar@gmail.com [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Eren, Tanju [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi [Department of Metallurgical and Materials Engineering, Sinop University, Sinop (Turkey)

    2015-09-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1} and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1}. • The nanocomposite exhibited a long-term cycle stability.

  7. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal.

    Science.gov (United States)

    Zhu, Jiahua; Wei, Suying; Gu, Hongbo; Rapole, Sowjanya B; Wang, Qiang; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Guo, Zhanhu

    2012-01-17

    A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.

  8. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration

    KAUST Repository

    Baby, Rakhi Raghavan

    2014-03-26

    Mesoporous cobalt oxide (Co3O4) nanosheet electrode arrays are directly grown over flexible carbon paper substrates using an economical and scalable two-step process for supercapacitor applications. The interconnected nanosheet arrays form a three-dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO 2 nanoparticles dispersed on the Co3O4 nanosheets. An optimum RuO2 electrodeposition time is found to result in the best supercapacitor performance, where the controlled morphology of the electrode provides a balance between good conductivity and efficient electrolyte access to the RuO2 nanoparticles. An excellent specific capacitance of 905 F/g at 1 A/g is obtained, and a nearly constant rate performance of 78% is achieved at current density ranging from 1 to 40 A/g. The sample could retain more than 96% of its maximum capacitance even after 5000 continuous charge-discharge cycles at a constant high current density of 10 A/g. Thicker RuO2 coating, while maintaining good conductivity, results in agglomeration, decreasing electrolyte access to active material and hence the capacitive performance. © 2014 American Chemical Society.

  9. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.

    Science.gov (United States)

    Upadhyay, J; Kumar, A; Gogoi, B; Buragohain, A K

    2015-09-01

    Polypyrrole nanotube-silver nanoparticle nanocomposites (PPy-NTs:Ag-NPs) have been synthesized by in-situ reduction of silver nitrate (AgNO3) to suppress the agglomeration of Ag-NPs. The morphology and chemical structure of the nanocomposites have been studied by HRTEM, SEM, XRD, FTIR and UV-vis spectroscopy. The average diameter of the polypyrrole nanotubes (PPy-NTs) is measured to be 130.59±5.5 nm with their length in the micrometer range, while the silver nanoparticles (Ag-NPs) exhibit spherical shape with an average diameter of 23.12±3.23 nm. In-vitro blood compatibility of the nanocomposites has been carried out via hemolysis assay. Antimicrobial activity of the nanocomposites has been investigated with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. The results depict that the hemolysis and antimicrobial activities of the nanocomposites increase with increasing Ag-NP concentration that can be controlled by the AgNO3 precursor concentration in the in-situ process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation

    Science.gov (United States)

    Chen, Biao-Qi; Kankala, Ranjith Kumar; Chen, Ai-Zheng; Yang, Ding-Zhu; Cheng, Xiao-Xia; Jiang, Ni-Na; Zhu, Kai; Wang, Shi-Bin

    2017-01-01

    Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF) nanoparticles were incorporated into poly(l-lactic acid) (PLLA) to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2). The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1) and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8) significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP), osteocalcin (OC) and collagen 1 (COL-1). These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering. PMID:28331312

  11. Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Reza Ojani; Saeid Safshekan; Jahan-Bakhsh Raoof

    2014-01-01

    This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electro-deposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemi-cally deposited on the surface of the electrode. The electrochemical and morphological characteris-tics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the sur-face of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solu-tion of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around-0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocat-alytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formal-dehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.

  12. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  13. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.

    Science.gov (United States)

    Ezhil Vilian, A T; Rajkumar, Muniyandi; Chen, Shen-Ming

    2014-03-01

    Highly loaded zirconium oxide (ZrO2) nanoparticles were supported on graphene oxide (ERGO/ZrO2) via an in situ, simple and clean strategy on the basis of the electrochemical redox reaction between zirconyl chloride and graphene oxide (ZrOCl2 and GO). The electrochemical measurements and surface morphology of the as prepared nanocomposite were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). This ZrO2 decorated reduced graphene oxide nanocomposite modified GCE (ERGO/ZrO2) exhibits a prominent electrocatalytic activity toward the selective detection and determination of dopamine (DA) and paracetamol (PA) in presence of ascorbic acid (AA). The peaks of linear sweep voltammetry (LSV) for DA and PA oxidation at ERGO/ZrO2 modified electrode surface were clearly separated from each other when they co-existed in the physiological pH (pH 7.0) with a potential value of 140 mV (between AA and DA) and 330 mV (between AA and PA). It was, therefore, possible to simultaneously determine DA and PA in the samples at ERGO/ZrO2 nanocomposite modified GCE. Linear calibration curves were obtained for 9-237 μM of PA and DA. The ERGO/ZrO2 nanocomposite electrode has been satisfactorily used for the determination of DA and PA in the presence of AA at pharmaceutical formulations in human urine samples with a linear range of 3-174 μM. The proposed biosensor shows a wide linear range, low detection limit, good reproducibility and acceptable stability, providing a biocompatible platform for bio sensing and bio catalysis.

  14. Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application.

    Science.gov (United States)

    Zhang, Zhenrong; Tang, Yanhong; Liu, Chengbin; Wan, Long

    2014-06-01

    In2S3 nanoparticle (NP) decorated self-organized TiO2 nanotube array (In2S3/TiO2 NT) hybrids were fabricated via simple successive ionic layer adsorption and reaction (SILAR) technique. The In2S3 NPs in a size of about 15 nm were found to deposit on the top surface of the highly oriented TiO2 NT while without clogging the tube entrances. The loading amount of In2S3 NPs on the TiO2 NT was controlled by the cycle number of SILAR deposition. Compared with the bare TiO2 NT, the In2S3/TiO2 NT hybrids showed stronger absorption in the visible light region and significantly enhanced photocurrent density. The photocatalytic activity of the In2S3/TiO2 NT photocatalyst far exceeds that of bare TiO2 NT in the degradation of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated solar light. After 160-min irradiation, almost 100% 2,4-D removal is obtained on the 7-In2S3/TiO2 NT prepared through seven SILAR deposition cycles, much higher than 26% on the bare TiO2 NT. After 10 successive cycles of photocatalytic process with total 1,600 min of irradiation, In2S3/TiO2 NT maintained as high 2,4-D removal efficiency as 95.1% with good stability and easy recovery, which justifies the potential of the photocatalytic system in application for the photocatalytic removal of organic pollutants such as herbicides or pesticides from water.

  15. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells.

    Science.gov (United States)

    Niemelä, Erik; Desai, Diti; Nkizinkiko, Yves; Eriksson, John E; Rosenholm, Jessica M

    2015-10-01

    Cancerous cells have a rapid metabolism by which they take up sugars, such as glucose, at significantly higher rates than normal cells. Celastrol is a traditional herbal medicine known for its anti-inflammatory and anti-cancer activities. The poor aqueous solubility and lack of target selectivity of celastrol result in low therapeutic concentration of the drug reaching subcellular compartments of the target tissue, making it an interesting candidate for nanoparticulate delivery. The goal of this study was to utilize glucose as an affinity ligand decorated on mesoporous silica nanoparticles (MSNs), with the aim of delivering these celastrol-loaded MSNs with high specificity to cancer cells and inducing minimal off-target effects in healthy cells. MSNs were thus functionalized with sugar moieties by two different routes, either by conjugation directly to the MSN surface or mediated by a hyperbranched poly(ethylene imine), PEI layer; the latter to increase the cellular uptake by providing an overall positive surface charge as well as to increase the reaction sites for sugar conjugation. The effect of surface functionalization on the target-specific efficacy of the particles was assessed by analyzing the uptake in HeLa and A549 cells as cancer cell models, as compared to mouse embryonic fibroblasts (MEF) as a representative for normal cells. To this end a comprehensive analysis strategy was employed, including flow cytometry, confocal microscopy, and spectrophotometry. When the apoptotic effect of celastrol was evaluated, the anti-cancer activity of celastrol was shown to be significantly enhanced when it was loaded into the specifically designed MSNs. The particles themselves did not induce any toxicity, and normal cells displayed minimal off-target effects. In summary, we show that glucose-functionalized MSNs can be used as efficient carriers for targeted celastrol delivery to achieve specific induction of apoptosis in cancer cells. Copyright © 2015 Elsevier B

  16. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO₂/graphene oxide decorated with Ag nanoparticles.

    Science.gov (United States)

    Cincotto, Fernando H; Canevari, Thiago C; Campos, Anderson M; Landers, Richard; Machado, Sérgio A S

    2014-09-21

    This paper describes the synthesis, characterization and applications of a new hybrid material composed of mesoporous silica (SiO2) modified with graphene oxide (GO), SiO2/GO, obtained by the sol-gel process using HF as the catalyst. The hybrid material, SiO2/GO, was decorated with silver nanoparticles (AgNPs) with a size of less than 20 nanometres, prepared directly on the surface of the material using N,N-dimethylformamide (DMF) as the reducing agent. The resulting material was designated as AgNP/SiO2/GO. The Ag/SiO2/GO material was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and high-resolution transmission electron microscopy (HR-TEM). A glassy carbon electrode modified with AgNP/SiO2/GO was used in the development of a sensitive electrochemical sensor for the simultaneous determination of epinephrine and dopamine employing electrocatalytic reduction using squarewave voltammetry. Well-defined and separate reduction peaks were observed in PBS buffer at pH 7. No significant interference was seen for primarily biological interferents such as uric acid and ascorbic acid in the detection of dopamine and epinephrine. Our study demonstrated that the resultant AgNP/SiO2/GO-modified electrode is highly sensitive for the simultaneous determination of dopamine and epinephrine, with the limits of detection being 0.26 and 0.27 μmol L(-1), respectively. The AgNP/SiO2/GO-modified electrode is highly selective and can be used to detect dopamine and epinephrine in a human urine sample.

  17. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection.

    Science.gov (United States)

    Xi, Jiangbo; Xie, Chuyi; Zhang, Yan; Wang, Lu; Xiao, Jian; Duan, Xianming; Ren, Jinghua; Xiao, Fei; Wang, Shuai

    2016-08-31

    The development of carbon based hollow-structured nanospheres (HNSs) materials has stimulated growing interest due to their controllable structure, high specific surface area, large void space, enhanced mass transport, and good biocompatibility. The incorporation of functional nanomaterials into their core and/or shell opens new horizons in designing functionalized HNSs for a wider spectrum of promising applications. In this work, we report a new type of functionalized HNSs based on Pd nanoparticles (NPs) decorated double shell structured N-doped graphene quantum dots (NGQDs)@N-doped carbon (NC) HNSs, with ultrafine Pd NPs and "nanozyme" NGQDs as dual signal-amplifying nanoprobes, and explore their promising application as a highly efficient electrocatalyst in electrochemical sensing of a newly emerging biomarker, i.e., hydrogen peroxide (H2O2), for cancer detection. Due to the synergistic effect of the robust and conductive HNS supports and catalytically active Pd NPs and NGQD in facilitating electron transfer, the NGQD@NC@Pd HNS hybrid material exhibits high electrocatalytic activity toward the direct reduction of H2O2 and can promote the electrochemical reduction reaction of H2O2 at a favorable potential of 0 V, which effectively restrains the redox of most electroactive species in physiological samples and eliminates interference signals. The resultant electrochemical H2O2 biosensor based hybrid HNSs materials demonstrates attractive performance, including low detection limit down to nanomole level, short response time within 2 s, as well as high sensitivity, reproducibility, selectivity, and stability, and have been used in real-time tracking of trace amounts of H2O2 secreted from different living cancer cells in a normal state and treated with chemotherapy and radiotherapy.

  18. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor

    Science.gov (United States)

    Vilian, A. T. Ezhil; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Kwak, Cheol Hwan; Huh, Yun Suk; Han, Young-Kyu

    2015-01-01

    A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe(II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10−9 mol cm−2 and 4.86 s−1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 μM and 1 to 8000 μM and lower detection limits of 0.01 μM and 0.002 μM, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples. PMID:26672985

  19. A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Pei; Yi, Huayu; Xue, Shuyan; Chai, Yaqin; Yuan, Ruo; Xu, Wenju, E-mail: xwju@swu.edu.cn

    2015-01-01

    Highlights: • PDDA–G–MoS{sub 2} nanoflowers were firstly used for the fabrication of thrombin aptasensor. • MoS{sub 2} was adopted to enhance the surface area of graphene and accelerate the electron transfer. • GOD, PdNPs and hemin/G-quadruplex could amplify the electrochemical signal through synergetic catalysis. • The proposed aptasensor displayed an improved sensitivity. - Abstract: In the present study, with the aggregated advantages of graphene and molybdenum disulfide (MoS{sub 2}), we prepared poly(diallyldimethylammonium chloride)–graphene/molybdenum disulfide (PDDA–G–MoS{sub 2}) nanocomposites with flower-like structure, large surface area and excellent conductivity. Furthermore, an advanced sandwich-type electrochemical assay for sensitive detection of thrombin (TB) was fabricated using palladium nanoparticles decorated PDDA–G–MoS{sub 2} (PdNPs/PDDA–G–MoS{sub 2}) as nanocarriers, which were functionalized by hemin/G-quadruplex, glucose oxidase (GOD), and toluidine blue (Tb) as redox probes. The signal amplification strategy was achieved as follows: Firstly, the immobilized GOD could effectively catalyze the oxidation of glucose to gluconolactone, coupling with the reduction of the dissolved oxygen to H{sub 2}O{sub 2}. Then, both PdNPs and hemin/G-quadruplex acting as hydrogen peroxide (HRP)-mimicking enzyme could further catalyze the reduction of H{sub 2}O{sub 2}, resulting in significant electrochemical signal amplification. So the proposed aptasensor showed high sensitivity with a wide dynamic linear range of 0.0001 to 40 nM and a relatively low detection limit of 0.062 pM for TB determination. The strategy showed huge potential of application in protein detection and disease diagnosis.

  20. Study and comparison of polydopamine and its derived carbon decorated nanoparticles in the magnetic solid-phase extraction of estrogens.

    Science.gov (United States)

    Huang, Zhenzhen; Lee, Hian Kee

    2015-10-02

    Surface functionalization enabled by bioinspired polydopamine (PDA) is recognized as a convenient route for fabrication of multifunctional nanoparticles. In the present work, magnetic nanoparticles with polymer (Fe3O4@PDA) and carbon shell (Fe3O4@C) were prepared by self-oxidation of dopamine, and carbonization of the PDA coating. The performance of the two magnetic sorbents in the extraction and determination of four estrogens, estrone (E1), estradiol (E2), estriol (E3) and diethylstilbestrol (DES) from water samples in the form of magnetic solid-phase extraction was investigated. Orthogonal array design was utilized to facilitate the optimization of the proposed sample preparation approach. The highest extraction capabilities of the two sorbents were achieved under different experimental conditions. Fe3O4@PDA was shown to be superior to Fe3O4@C in the enrichment of estrogens, suggesting stronger interactions were established between the PDA coating and the target compounds. The extraction and desorption operations were enabled more conveniently by magnetic separation and the extracts were analyzed by high-performance liquid chromatography coupled with ultraviolet and fluorescence detection. The limits of detection achieved in the proposed method were in the range of 0.072-0.15ng/mL for E1 and DES, and 0.0017-0.0062ng/mL for E2 and E3. Good precision (>0.9995) was obtained with the linearity ranging from 0.2 to 100ng/mL, and from 0.01 to 5ng/mL. The method developed was assessed by analysis of the estrogens in tap water, drain water and bottled mineral water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Weichun, E-mail: yewch@lzu.edu.cn [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Fu, Jiajia; Wang, Qin; Wang, Chunming [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Xue, Desheng, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni{sup 2+}, Co{sup 2+} and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2–18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to −17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications. - Highlights: • NiCoP alloys supported on graphene were prepared via a co-reduction method. • The nanocomposites exhibited strong microwave wave absorption properties. • The microwave absorption properties enhanced with the increase of Ni content. • The nanocomposites showed good anti-corrosion property.

  2. Investigation of silk fibroin nanoparticle-decorated poly(L-lactic acid composite scaffolds for osteoblast growth and differentiation

    Directory of Open Access Journals (Sweden)

    Chen BQ

    2017-03-01

    Full Text Available Biao-Qi Chen,1 Ranjith Kumar Kankala,1,2 Ai-Zheng Chen,1,2 Ding-Zhu Yang,1 Xiao-Xia Cheng,1 Ni-Na Jiang,1,2 Kai Zhu,3,4 Shi-Bin Wang1,2 1Institute of Biomaterials and Tissue Engineering, 2Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 3Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 4Shanghai Institute of Cardiovascular Disease, Shanghai, People’s Republic of China Abstract: Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF nanoparticles were incorporated into poly(L-lactic acid (PLLA to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2. The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1 and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8 significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP, osteocalcin (OC and collagen 1 (COL-1. These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering. Keywords: super critical fluids, surface topography, bone

  3. Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Khatik, Renuka, E-mail: renukadops@gmail.com; Mishra, Ramakant, E-mail: maddy200322@gmail.com; Verma, Ashwni, E-mail: ashwni.verma@gmail.com; Dwivedi, Pankaj, E-mail: dwivedipank@gmail.com; Kumar, Vivek, E-mail: pvivek.cdri@gmail.com; Gupta, Varsha, E-mail: gupvarsha@gmail.com [CSIR-Central Drug Research Institute, Pharmaceutics Division (India); Paliwal, Sarvesh Kumar, E-mail: paliwalsarvesh@yahoo.com [Banasthali VidyaPeeth (India); Mishra, Prabhat Ranjan, E-mail: mishrapr@hotmail.com; Dwivedi, Anil Kumar, E-mail: anilcdri@gmail.com [CSIR-Central Drug Research Institute, Pharmaceutics Division (India)

    2013-09-15

    The aim of present investigation was to prepare chitosan (CS) nanoparticles (NPs) and to study the targeting ability of Eudragit S 100 (ES)-coated chitosan nanoparticles (ES-CS-NPs) in comparison with CS-NPs; both loaded with curcumin (CU); to colon, when administered orally, by restricting the size of formulation up to few nanometers and exploiting the pH sensitivity of ES. The CU-loaded CS-NPs (CS-NPs-CU) have been prepared by ionic gelation method. The coating of ES on CS-NPs-CU (ES-CS-NPs-CU) was performed by oil-in-oil solvent evaporation method using coat:core ratio (2:1). The cross-linking of CS with tri poly phosphate during the preparation of CS-NPs has been confirmed by FTIR. CS-NPs-CU and ES-CS-NPs-CU were evaluated for particle size, their size distribution, percentage drug entrapment, and in vitro drug release study. CS-NPs-CU has an average size 173 {+-} 4.5 nm and poly dispersity index (PDI) 0.16, whereas ES-CS-NPs-CU shows average size 236 {+-} 3.2 nm and PDI 0.22. Surface morphology of prepared NPs was confirmed by scanning electron microscopy and transmission electron microscopy. The release profile reveals that the ES coating on the ES-CS-NPs-CU protects the release of CU in upper gastrointestinal tract while maximum release of CU occurred in simulated colonic fluids of pH 6.8. There was no major difference in cell viability between ES-CS-NPs-CU and CS-NPs-CU when they were exposed to Caco-2 cells at all equivalent concentrations. The in vivo uptake studies revealed preferential uptake of ES-CS-NPs-CU in the colon. The significantly higher (P < 0.01) AUC{sub 0-{infinity}} has been observed in case of ES-CS-NPs-CU as compared to CU and CS-NPs-CU representing that ES-CS-NPs-CU was more bioavailable. These results demonstrated that ES-CS-NPs-CU may be useful as potential delivery system for treatment of colon cancer.

  4. Collection Development "Budget Decorating": Decorating Cents

    Science.gov (United States)

    Kumaran, Maha

    2008-01-01

    Home decorating is a popular idea these days as seen in the rise of cable television channels like TLC and HGTV (Home & Garden Television) and TV shows like "Trading Spaces, Take This House and Sell It, Design on a Dime, Decorating Cents," and many others. Throughout history, humans have always expressed the desire to personalize and beautify…

  5. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  6. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles.

  7. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.

    Science.gov (United States)

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei

    2015-07-15

    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples.

  8. Synthesis of wheatear-like ZnO nanoarrays decorated with Ag nanoparticles and its improved SERS performance through hydrogenation.

    Science.gov (United States)

    Shan, Yufeng; Yang, Yong; Cao, Yanqin; Fu, Chaoli; Huang, Zhengren

    2016-04-08

    Semiconductor/noble metal composite SERS substrates have been extensively studied due to their unique bifunctionality. In this work, wheatear-like ZnO nanoarrarys have been fabricated via a modified low-temperature solution method. The hierarchical nanostructures that are constructed by stacked nanoflakes and long whiskers of ZnO possess a substantial number of characteristic nano corners and edges, which are proved to be beneficial to deposit more Ag nanoparticles (NPs). Furthermore, hydrogenated wheatear-like ZnO/AgNP composite substrates are achieved via a safe and facile solid hydrogen source (NaBH4). The hydrogenated ZnO/AgNPs (H-ZnO/Ag) substrates exhibit greatly improved SERS activity in detecting R6G molecules with an enhancement factor (EF) up to ∼0.49 × 10(8), over two orders of magnitude higher than that of the substrates before hydrogenation. The outstanding SERS performance of wheatear-like H-ZnO/Ag substrates benefits from the emerging porous structure of ZnO and abundant surface defects introduced by hydrogenation. In addition, the as-prepared substrates also show high detection sensitivity, good repeatability and recyclability, indicating great potential for practical applications.

  9. Plain to point network reduced graphene oxide - activated carbon composites decorated with platinum nanoparticles for urine glucose detection

    Science.gov (United States)

    Hossain, Mohammad Faruk; Park, Jae Y.

    2016-02-01

    In this study, a hydrothermal technique was applied to synthesize glucose-treated reduced graphene oxide-activated carbon (GRGO/AC) composites. Platinum nanoparticles (PtNP) were electrochemically deposited on the modified GRGO/AC surface, and chitosan-glucose oxidase (Chit-GOx) composites and nafion were integrated onto the modified surface of the working electrode to prepare a highly sensitive glucose sensor. The fabricated biosensor exhibited a good amperometric response to glucose in the detection range from 0.002 mM to 10 mM, with a sensitivity of 61.06 μA/mMcm2, a short response time (4 s) and a low detection limit of 2 μM (signal to noise ratio is 3). The glucose sensor exhibited a negligible response to interference and good stability. In addition, the glucose levels in human urine were tested in order to conduct a practical assessment of the proposed sensor, and the results indicate that the sensor had superior urine glucose recognition. These results thus demonstrate that the noble nano-structured electrode with a high surface area and electrocatalytic activity offers great promise for use in urine glucose sensing applications.

  10. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules.

    Science.gov (United States)

    Li, Yixin; Zhang, Kun; Zhao, Jingjing; Ji, Ji; Ji, Chang; Liu, Baohong

    2016-01-15

    The fabrication of SERS substrates, which can offer the advantages of strong Raman signal enhancement with good reproducibility and low cost, is still a challenge for practical applications. In this work, a simple three-dimensional (3D) paper-based SERS substrate, which contains plasmonic silver-nanoparticles (AgNPs), has been developed by the silver mirror reaction. This paper strip was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), etc. Pretreatment of the paper as well as the reaction time, temperature, and reagent concentrations for the silver mirror reaction were varied for further studies. With the optimized experimental parameters, the AgNPs synthesized and distributed in-situ on the paper strip could give more favorable SERS performance. The limit of detection (LOD) as low as 10(-11)M for Rhodamine 6G (R6G) and 10(-9)M for p-aminothiophenol (p-ATP) plus wide linear range for the log-log plot of Raman intensity versus analyte concentration were achieved. The detection of R6G in rain water was also carried out successfully. The merits of this protocol include low cost, easy operation, high sensitivity and acceptable stability, which make it ideal for the detection of environmental samples in trace amounts.

  11. Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhang, E-mail: liuzhang0126@126.com [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Weicheng [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fang Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Xiaoxin; Wu Shuxing; Zhu Ximiao; Chen Zehua [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer RGO/BiOI nanocomposites were synthesized by a reverse microemulsion method. Black-Right-Pointing-Pointer Quantum sized BiOI nanoparticles can be obtained by this approach. Black-Right-Pointing-Pointer Ascorbic acid was used as a reducing agent to reduce GO and seemed to be effective. Black-Right-Pointing-Pointer RGO/BiOI presented outstanding visible-light-induced photocatalytic performance. Black-Right-Pointing-Pointer Possible photocatalytic mechanism was proposed based on the experimental studies. - Abstract: Herein, a reverse microemulsion route was developed to synthesize bismuth oxyiodide (BiOI) nanocrystals and reduced graphene oxide (RGO) nanocomposites as a highly efficient photocatalyst, and both the formation of BiOI and the reduction of RGO were achieved in situ in microemulsions simultaneously at low temperature (60 Degree-Sign C). The uniform nanocrystal size and structure were indicated by XRD, TEM, and the reduction of GO by ascorbic acid was evidenced by FTIR, XPS, and Raman spectra techniques. The enhanced photoactivity of RGO/BiOI nanocomposites under visible light was attributed to improved light absorption and efficient charge separation and transportation.

  12. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots

    Directory of Open Access Journals (Sweden)

    Chung TW

    2014-03-01

    Full Text Available Tze-Wen Chung,1,3 Pei-Yi Lin,2 Shoei-Shen Wang,2 Yen-Fung Chen31Department of Biomedical Engineering, National Yang-Ming University, 2Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, Republic of China; 3Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, Republic of ChinaAbstract: Chitosan nanoparticles (NPs decorated with adenosine diphosphate (ADP (ANPs or fibrinogen (FNPs were used to fabricate hemostatic NPs that can shorten blood clotting time and prevent severe local hemorrhage. The structure and mechanical properties of the blood clot induced with ANP (clot/ANP or FNP (clot/FNP were also investigated. The NPs, ANPs, and FNPs, which had particle sizes of 245.1±14.0, 251.0±9.8, and 326.5±14.5 nm and zeta potentials of 24.1±0.5, 20.6±1.9, and 15.3±1.5 mV (n=4, respectively, were fabricated by ionic gelation and then decorated with ADP and fibrinogen. The zeta potentials and Fourier transform infrared (FTIR spectroscopy of the NPs confirmed that their surfaces were successfully coated with ADP and fibrinogen. The scanning electron microscope (SEM micrographs of the structure of the clot induced with "undecorated" chitosan NPs (clot/NP, clot/ANP, and clot/FNP (at 0.05 wt% were different, after citrated bloods had been recalcified by a calcium chloride solution containing NPs, ANPs, or FNPs. This indicated that many NPs adhered on the membrane surfaces of red blood cells, that ANPs induced many platelet aggregates, and that FNPs were incorporated into the fibrin network in the clots. Measurements of the blood clotting times (Tc of blood clot/NPs, clot/ANPs, and clot/FNPs, based on 90% of ultimate frequency shifts measured on a quartz crystal microbalance (QCM, were significantly (P<0.05 (n=4 shorter than that of a clot induced by a phosphate-buffered solution (PBS (clot/PBS (63.6%±3.1%, 48.3%±6.2%, and 63.2%±4.7%, respectively. The ∆F2

  13. Metal-Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Melke, Julia; Peter, Benedikt; Habereder, Anja; Ziegler, Juergen; Fasel, Claudia; Nefedov, Alexei; Sezen, Hikmet; Wöll, Christof; Ehrenberg, Helmut; Roth, Christina

    2016-01-13

    N-doped carbon materials are discussed as catalyst supports for the electrochemical oxygen reduction reaction (ORR) in fuel cells. This work deals with the preparation of Pt nanoparticles (NPs) supported on N-doped carbon nanofibers (N-CNF) from a polyaniline nanofiber (PANI NF) precursor, and investigates the ORR activity of the produced materials. Initially, Pt NPs are deposited on PANI NFs. The PANI NF precursors are characterized by near-edge X-ray absorption fine structure (NEXAFS) and transmission electron microscopy (TEM) measurements. It is shown, that in the PANI NF precursor materials electrons from the Pt are being transferred toward the π-conjugated systems of the aromatic ring. This strong interaction of Pt atoms with PANI explains the high dispersion of Pt NPs on the PANI NF. Subsequently, the PANI NF precursors are carbonized at different heat-treatment conditions resulting in structurally different N-CNFs which are characterized by NEXAFS, X-ray photoelectron spectroscopy (XPS) ,and TEM measurements. It is shown that an interaction between N-groups and Pt NPs exists in all investigated N-CNFs. However, the N-CNFs differ in the composition of the N-species and the dispersion of the Pt NPs. A small mean Pt NP size with a narrow size distribution is attributed to the presence of pyrdinic N-groups in the N-CNFs, whereas, for the N-CNFs with mainly graphitic and pyrrolic N-groups, an increase in the average Pt NP size with a broad size distribution is found. The ORR activity in alkaline media investigated by Koutecky-Levich analysis of rotating disk electrode measurements showed a largely enhanced ORR activity in comparison to a conventional Pt/C catalyst.

  14. Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Purna K. [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India); Sharma, Bhagyasmeeta [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Karbhal, Indrapal; Shelke, Manjusha V. [Academy of Scientific and Innovative Research (AcSIR) (India); Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-11008, Maharashtra (India); Das, Manash R., E-mail: mnshrdas@yahoo.com [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India)

    2017-03-05

    Highlights: • Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles. • Photocatalytic and photo-Fenton degradation of phenolic compounds. • An excellent reusability of the nanocomposite was observed up to ten cycles. - Abstract: Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe{sub 3}O{sub 4} nanoparticles (AG/Fe{sub 3}O{sub 4}) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe{sub 3}O{sub 4} nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe{sub 3}O{sub 4} nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70–120 min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50–80 min using AG/Fe{sub 3}O{sub 4} nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe{sub 3}O{sub 4} nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe{sub 3}O{sub 4} NPs. Furthermore, the remarkable reusability of the AG/Fe{sub 3}O{sub 4} nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds.

  15. Biotin/Folate-decorated Human Serum Albumin Nanoparticles of Docetaxel: Comparison of Chemically Conjugated Nanostructures and Physically Loaded Nanoparticles for Targeting of Breast Cancer.

    Science.gov (United States)

    Nateghian, Navid; Goodarzi, Navid; Amini, Mohsen; Atyabi, Fatemeh; Khorramizadeh, Mohammad Reza; Dinarvand, Rassoul

    2016-01-01

    Docetaxel (DTX) is a widely used chemotherapeutic agent with very low water solubility. Conjugation of DTX to human serum albumin (HSA) is an effective way to increase its water solubility. Attachment of folic acid (FA) or biotin as targeting moieties to DTX-HSA conjugates may lead to active targeting and specific uptake by cancer cells with overexpressed FA or biotin receptors. In this study, FA or biotin molecules were attached to DTX-HSA conjugates by two different methods. In one method, FA or biotin molecules were attached to remaining NH2 residues of HSA in DTX-HSA conjugate by covalent bonds. In the second method, HSA-FA or HSA-biotin conjugates were synthesized separately and then combined by DTX-HSA conjugate in proper ratio to prepare nanoparticles containing DTX-HSA plus HSA-FA or HSA-biotin. Cell viability of different nanoparticle was evaluated on MDA-MB-231 (folate receptor positive), A549 (folate receptor negative), and 4T1 (biotin receptor positive) and showed superior cytotoxicity compared with free docetaxel (Taxotere). In vivo studies of DTX-HSA-FA and DTX-HSA-biotin conjugates in BULB/c mice, tumorized by 4T1 cell line, showed the conjugates prepared in this study were more powerful in the reduction in tumor size and increasing the survival rate when compared to free docetaxel.

  16. Au nanoparticles decorated SiO{sub 2} nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles-nanowires sizes correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M. G. [Universita di Catania, Dipartimento di Fisica e Astronomia (Italy)

    2013-09-15

    We report a solid-state synthesis for SiO{sub 2} nanowires (NWs) (up to 20 microns in length and from about 40 to about 150 nm in diameter) coated by Au nanoparticles (NPs) (from about 20 to about 80 nm in diameter). This protocol is based on three steps: (1) large area production of very long SiO{sub 2} NWs on a Si surface exploiting a simple Au/Si solid-state reaction at high temperature; (2) coating of the SiO{sub 2} NWs by a Au film of desired thickness using sputtering depositions; and (3) a thermal process to induce a dewetting process of the Au-film coating the SiO{sub 2} NWs to obtain Au NPs on the curved surface of the NWs. The morphology evolution of the SiO{sub 2} NWs was followed, in each step, by scanning electron microscopy analyses. They allowed to correlate the evolution of the NPs size with the NWs sizes for different thicknesses of the starting Au-film coating the NWs and different annealing temperatures of the dewetting process. Some theoretical concepts, related to the dewetting process of a film on a curved surface were used to describe the experimental data. The main advantages of the proposed protocols include: (i) simplicity and low-cost (it is based only on sputtering depositions and thermal processes), and (ii) versatility based on the possibility of tuning Au-film thickness and annealing temperature to tune the NPs-NWs sizes ratio. These advantages can make this technique suitable for the mass production of Au NPs-coated SiO{sub 2} NWs toward applications in electronic devices, biosensors, and nanoscale optical devices.

  17. Silver decorated multiwalled carbon nanotubes and their characterization

    Science.gov (United States)

    Gahlot, Swati; Kulshrestha, Vaibhav; Shahi, V. K.

    2014-04-01

    Deposition of silver nanoparticles on functionalized multiwalled carbon nanotubes is done in the present study. To decorate silver nanoparticles on CNT walls silver nitrate (AgNO3) was used as precursor. Finally prepared nanotubes (Ag-CNT) were analyzed by TEM, XRD and FTIR for the structural and chemical characterization.

  18. Basic Cake Decorating Workbook.

    Science.gov (United States)

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  19. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenbo [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Ning, Rui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Qin, Xiaoyun; Zhang, Yingwei; Chang, Guohui; Liu, Sen; Luo, Yonglan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Sun, Xuping, E-mail: sunxp@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer TWEEN 20 is used as a stabilizing agent for GO as well as a reducing and immobilizing agent for Au nanoparticles. Black-Right-Pointing-Pointer The hydrazine sensor based on the nanocomposites has a fast amperometric response. Black-Right-Pointing-Pointer The detection limit of the hydrazine sensor is estimated to be 78 nM. Black-Right-Pointing-Pointer The nanocomposites also exhibit good catalytic activity toward 4-nitrophenol reduction. - Abstract: In this paper, we develop a cost-effective and simple route for the synthesis of Au nanoparticles (AuNPs) decorated graphene oxide (GO) nanosheets using polyoxyethylene sorbitol anhydride monolaurate (TWEEN 20) as a stabilizing agent for GO as well as a reducing and immobilizing agent for AuNPs. The AuNPs assemble on the surface of TWEEN-functionalized GO by the in situ reduction of HAuCl{sub 4} aqueous solution. The morphologies of these composites were characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the resultant AuNPs decorated GO nanosheets (AuNPs/TWEEN/GO) exhibit remarkable catalytic performance for hydrazine oxidation. This hydrazine sensor has a fast amperometric response time of less than 3 s. The linear range is estimated to be from 5 {mu}M to 3 mM (r = 0.999), and the detection limit is estimated to be 78 nM at a signal-to-noise ratio of 3. The AuNPs/TWEEN/GO composites also exhibit good catalytic activity toward 4-nitrophenol (4-NP) reduction and the GO supports also enhance the catalytic activity via a synergistic effect.

  20. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres.

    Science.gov (United States)

    Dong, Yu-Xiang; Cao, Jun-Tao; Liu, Yan-Ming; Ma, Shu-Hui

    2017-05-15

    Herein, a novel photoelectrochemical (PEC) immunosensing platform for highly sensitive detection of prostate specific antigen (PSA) was constructed based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated dopamine-melanin nanospheres (AuNPs-Dpa-melanin CNSs). In this proposal, CdSe sensitized TiO2 was used as photoelectrochemical matrix and the functional AuNPs-Dpa-melanin CNSs were used as signal quenching element. The dual quenching of the gold nanoparticles decorated Dpa-melanin CNSs to the CdSe sensitized TiO2 was achieved as follows: (i) the strong energy transfer between the CdSe quantum dots (QDs) and Au NPs diminishes the photocurrent signal of CdSe QDs; (ii) the steric hindrance of AuNPs-Dpa-melanin CNSs partly obstructs the diffusion of the electron donor, i.e. ascorbic acid, to the surface of photoelectrode, which make the depleting efficiency of the photogenerated holes decrease, leading to a declined photocurrent intensity. On the basis of the dual quenching effect of AuNPs-Dpa-melanin CNSs, a competitive immunosensing platform for PSA was designed upon the specific binding of anti-PSA to PSA and PSA functionalized AuNPs-Dpa-melanin CNSs conjugates. This proposed immunosensor possesses wide linear range from 1.0×10(-11)gmL(-1) to 1.0×10(-7)gmL(-1) with the detection limit of 2.7pgmL(-1). Moreover, the applicability of the present method was demonstrated in the determination of PSA in human serum. The strategy creates new paradigms for PSA and other tumor markers detection and demonstrates high sensitivity, good specificity, and satisfied applicability in complex biological samples.

  1. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose

    Science.gov (United States)

    Cai, Shuangfei; Han, Qiusen; Qi, Cui; Lian, Zheng; Jia, Xinghang; Yang, Rong; Wang, Chen

    2016-02-01

    To extend the functionalities of two-dimensional graphene-like layered compounds as versatile materials, the modification of transition metal dichalcogenide nanosheets such as MoS2 with metal nanoparticles is of great and widespread interest. However, few studies are available on the preparation of bimetallic nanoparticles supported on MoS2. Herein, a facile and efficient method to synthesize MoS2-PtAg nanohybrids by decorating ultrathin MoS2 nanosheets with octahedral Pt74Ag26 alloy nanoparticles has been reported. The as-prepared MoS2-Pt74Ag26 nanohybrids were investigated as novel peroxidase mimics to catalyze the oxidation of classical peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue colored reaction and exhibiting typical Michaelis-Menten kinetics. MoS2-Pt74Ag26 has a higher affinity for H2O2 than horseradish peroxidase (HRP) and a higher vmax value with TMB as the substrate than MoS2. The improved catalytic activity of hybrids for colorimetric reactions could be attributed to the synergistic effects of octahedral Pt74Ag26 nanoparticles and ultrathin MoS2 nanosheets as supports. Meanwhile, the generation of active oxygen species (&z.rad;OH) by H2O2 decomposition with MoS2-Pt74Ag26 was responsible for the oxidation of TMB. On the basis of these findings, a colorimetric method based on MoS2-Pt74Ag26 nanohybrids that is highly sensitive and selective was developed for glucose detection. Lower values of the limit of detection (LOD) were obtained, which is more sensitive than MoS2 nanosheets.To extend the functionalities of two-dimensional graphene-like layered compounds as versatile materials, the modification of transition metal dichalcogenide nanosheets such as MoS2 with metal nanoparticles is of great and widespread interest. However, few studies are available on the preparation of bimetallic nanoparticles supported on MoS2. Herein, a facile and efficient method to synthesize MoS2-PtAg nanohybrids by decorating

  2. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose.

    Science.gov (United States)

    Cai, Shuangfei; Han, Qiusen; Qi, Cui; Lian, Zheng; Jia, Xinghang; Yang, Rong; Wang, Chen

    2016-02-14

    To extend the functionalities of two-dimensional graphene-like layered compounds as versatile materials, the modification of transition metal dichalcogenide nanosheets such as MoS2 with metal nanoparticles is of great and widespread interest. However, few studies are available on the preparation of bimetallic nanoparticles supported on MoS2. Herein, a facile and efficient method to synthesize MoS2-PtAg nanohybrids by decorating ultrathin MoS2 nanosheets with octahedral Pt74Ag26 alloy nanoparticles has been reported. The as-prepared MoS2-Pt74Ag26 nanohybrids were investigated as novel peroxidase mimics to catalyze the oxidation of classical peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue colored reaction and exhibiting typical Michaelis-Menten kinetics. MoS2-Pt74Ag26 has a higher affinity for H2O2 than horseradish peroxidase (HRP) and a higher vmax value with TMB as the substrate than MoS2. The improved catalytic activity of hybrids for colorimetric reactions could be attributed to the synergistic effects of octahedral Pt74Ag26 nanoparticles and ultrathin MoS2 nanosheets as supports. Meanwhile, the generation of active oxygen species (˙OH) by H2O2 decomposition with MoS2-Pt74Ag26 was responsible for the oxidation of TMB. On the basis of these findings, a colorimetric method based on MoS2-Pt74Ag26 nanohybrids that is highly sensitive and selective was developed for glucose detection. Lower values of the limit of detection (LOD) were obtained, which is more sensitive than MoS2 nanosheets.

  3. Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity

    Science.gov (United States)

    Guarnieri, D.; Muscetti, O.; Falanga, A.; Fusco, S.; Belli, V.; Perillo, E.; Battista, E.; Panzetta, V.; Galdiero, S.; Netti, P. A.

    2015-10-01

    The membranotropic peptide gH625 is able to transport different cargos (i.e., liposomes, quantum dots, polymeric nanoparticles) within and across cells in a very efficient manner. However, a clear understanding of the detailed uptake mechanism remains elusive. In this work, we investigate the journey of gH625-functionalized polystyrene nanoparticles in mouse-brain endothelial cells from their interaction with the cell membrane to their intracellular final destination. The aim is to elucidate how gH625 affects the behavior of the nanoparticles and their cytotoxic effect. The results indicate that the mechanism of translocation of gH625 dictates the fate of the nanoparticles, with a relevant impact on the nanotoxicological profile of positively charged nanoparticles.

  4. Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe2O4 nanoparticles using waste batteries extract

    Science.gov (United States)

    Gabal, M. A.; Al-Harthy, E. A.; Al Angari, Y. M.; Abdel Salam, M.; Asiri, A. M.

    2016-06-01

    Mn1-xZnxFe2O4 (x=0.2-0.8) nano-crystals, synthesized from recycling of Zn-C batteries, were successfully self-assembled alongside multi-walled carbon nanotubes (MWCNTs) via an environmentally friend sucrose auto-combustion method. The effect of Zn-content on structural and magnetic properties were investigated and discussed. XRD revealed the formation of single-phase ferrites. DTA-TG experiment showed that the auto-combustion reaction finished at about 350 °C. TEM exhibited that the MWCNTs are well decorated with ferrite particles. Hysteresis loop measurements revealed ferromagnetic behavior, with saturation magnetization decrease by the addition of MWCNTs or increasing Zn-Content. The kinetics of methylene blue dye (MB) removal using MWCNTs/Mn0.8Zn0.2Fe2O nano-composite was investigated and discussed.

  5. Self-assembly and photocatalytic activity of branched silicatein/silintaphin filaments decorated with silicatein-synthesized TiO2 nanoparticles.

    Science.gov (United States)

    Gardères, Johan; Elkhooly, Tarek A; Link, Thorben; Markl, Julia S; Müller, Werner E G; Renkel, Jochen; Korzhev, Michael; Wiens, Matthias

    2016-09-01

    The fundamental mechanisms of biomineralization and their translation into innovative synthetic approaches have yielded promising perspectives for the fabrication of biomimetic and bioinspired organic-inorganic hybrid materials. In siliceous sponges, the enzyme silicatein catalyzes the polycondensation of molecular precursors to nano-structured SiO2 that is deposited on self-assembled filaments consisting of the two silicatein isoforms (silicatein-α and -β) and the scaffold protein silintaphin-1. Due to its broad substrate specificity silicatein is also able to convert in vitro various other precursors to non-biogenic materials (e.g., hydrolysis of titanium bis(ammonium lactato)-dihydroxide [TiBALDH] and subsequent polycondensation to titania [TiO2]). In the present approach, silicatein was bioengineered to carry a protein tag (Arg-tag) that confers binding affinity to TiO2. Then, by combining Arg-tagged silicatein-α with silicatein-β and silintaphin-1, self-assembled branched hybrid protein microfilaments were fabricated. Upon subsequent incubation with TiBALDH the filaments were decorated with TiO2 and assayed for photocatalytic activity through photodegradation of the dye methylene blue. This is the first approach that considers concomitant application of two silicatein isoforms for the synthesis of bioinspired organic-inorganic hybrid materials. It is also the first time that the biocatalytic activity of the enzymes has been combined with both the structure-providing properties of silintaphin-1 and a TiO2 affinity protein tag to fabricate self-assembled branched protein filaments as template for a silicatein-synthesized TiO2 photocatalyst. The TiO2-decorated filaments might be explored as a practical alternative to approaches where biotemplates have to be laboriously isolated from their original biological source prior to TiO2 immobilization.

  6. Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis.

    Science.gov (United States)

    Li, Lei; Gong, Li; Wang, Yi-Xuan; Liu, Qi; Zhang, Jie; Mu, Yang; Yu, Han-Qing

    2016-07-01

    The removal performance and mechanisms of halogenated emerging contaminants from water by palladium decorated nitrogen-doped graphene (Pd/NG) were investigated in this study. For comparison, three catalysts of Pd/NG, palladium decorated graphene (Pd/G) and commercial Pd/C were initially explored to degrade tetrabromobisphenol A (TBBPA). After that, the influence of various environmental parameters on TBBPA removal by the Pd/NG catalyst was evaluated. Moreover, both Langmuir-Hinshelwood model and density functional theory (DFT) were adopted to theoretically elucidate the adsorption and the activation of TBBPA on the catalyst. The results show that the apparent rate constant of TBBPA dehalogenation was increased by 26.7% and 39.0% in the presence of the Pd/NG catalyst compared to the Pd/G and Pd/C ones. Higher temperature, catalyst dosage and alkaline conditions resulted in the enhancement of TBBPA dehalogenation by the Pd/NG catalyst, while humic acid in the solution had a negatively effect on the transformation of TBBPA. The corresponding rate constant value exhibited a 2.1- and 1.8-fold increase with the rise of temperature from 298 to 328 K and initial pH from 6.5 to 9.0, respectively. On the contrary, the rate constant was decreased by 78.9% in the presence of 15 mg L(-1) humic acid. Theoretical analysis revealed that both adsorption and activation processes of TBBPA on the Pd/NG catalyst were enhanced through the N doping into graphene framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids

    Science.gov (United States)

    Farbod, Mansoor; Ahangarpour, Ameneh

    2016-12-01

    The effect of Ag decoration of carbon nanotubes on thermal conductivity enhancement of Ag decorated MWCNTs water based nanofluids has been investigated. The pristine and functionalized MWCNTs were decorated with Ag nanoparticles by mass ratios of 1%, 2% and 4% and used to prepare water based nanofluids with 0.1 vol.%. An enhancement of 1-20.4 percent in thermal conductivity was observed. It was found that the decoration of functionalized MWCNTs can increase the thermal conductivity about 0.16-8.02 percent compared to the undecorated ones. The maximum enhancement of 20.4% was measured for the sample containing 4 wt.% Ag at 40 °C.

  8. Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell

    Science.gov (United States)

    Aquino Neto, S.; Almeida, T. S.; Belnap, D. M.; Minteer, S. D.; De Andrade, A. R.

    2015-01-01

    We report the preparation of Au nanoparticles synthetized by different protocols and supported on the surface of multi-walled carbon nanotubes containing different functional groups, focusing on their electrochemical performance towards NADH oxidation, ethanol bioelectrocatalysis, and ethanol/O2 biofuel cell. We describe four different synthesis protocols: microwave-assisted heating, water-in-oil, and dendrimer-encapsulated nanoparticles using acid or thiol species in the extraction step. The physical characterization of the metallic nanoparticles indicated that both the synthetic protocol as well as the type of functional groups on the carbon nanotubes affect the final particle size (varying from 13.4 to 2.4 nm) and their distribution onto the carbon surface. Moreover, the electrochemical data indicated that these two factors also influence their performance toward the electrooxidation of NADH. We observed that the samples containing Au nanoparticles with smaller size leads to higher catalytic currents and also shifts the oxidation potential of the targeted reaction, which varied from 0.13 to -0.06 V vs Ag/AgCl. Ethanol/O2 biofuel cell tests indicated that the hybrid bioelectrodes containing smaller and better distributed Au nanoparticles on the surface of carbon nanotubes generates higher power output, confirming that the electrochemical regeneration of NAD+ plays an important role in the overall biofuel cell performance.

  9. Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection.

    Science.gov (United States)

    Saraji, Mohammad; Khayamian, Taghi; Hashemian, Zahra

    2014-12-01

    In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3 O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic-modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X-ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2-150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3 O4 -polypyrrole and Fe3 O4 -multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine.

    Science.gov (United States)

    Bhakta, Arvind K; Mascarenhas, Ronald J; D'Souza, Ozma J; Satpati, Ashis K; Detriche, Simon; Mekhalif, Zineb; Dalhalle, Joseph

    2015-12-01

    Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode (Fe-MWCNTs/MCPE) was prepared by bulk-modification method. The electrochemical impedance spectroscopy (EIS) suggests least charge transfer resistance at the modified electrode. The electrochemical behavior of UA was studied in 0.1M phosphate buffer solution (PBS) of pH3.0 using cyclic voltammetry (CV) while differential pulse voltammetry (DPV) was used for quantification. The spectroelectrochemial study of oxidation of UA at Fe-MWCNTs/MCPE showed a decrease in the absorbance of two peaks with time, which are ascribed to π to π(⁎) and n to π(⁎) transitions. Under optimum condition, the DPV response offered two linear dynamic ranges for UA in the concentration range 7.0×10(-8)M-1.0×10(-6)M and 2.0×10(-6)M-1.0×10(-5)M with detection limit (4.80±0.35)×10(-8)M (S/N=3). The practical analytical application of this sensor was successfully evaluated by determination of spiked UA in clinical samples, such as human blood serum and urine with good percentage recovery. The proposed electrochemical sensor offers a simple, reliable, rapid, reproducible and cost effective analysis of a quaternary mixture of biomolecules containing AA, DA, UA and Tyr which was free from mutual interferences.

  11. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    Science.gov (United States)

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent.

    Science.gov (United States)

    Ghorbani, Marjan; Hamishehkar, Hamed

    2017-12-01

    The aim of this study was to design and develop a new pH-responsive nano-platform for controlled and targeted delivery of anticancer drugs. Engineering of pH-responsive nanocarriers was prepared via decoration of gold nanoparticles (NPs) by thiolated (methoxy-poly(ethylene glycol)-b-poly((2-dimethylamino) ethyl methacrylate-co-itaconic acid) (mPEG-b-p(DMAEMA-co-IA) copolymer and fully characterized by various techniques and subsequently used for loading and targeted delivery of anticancer agent, methotrexate (MTX). By conjugation of MTX with the amino groups of polymeric shell of gold NPs (with the high loading capacity of 31%), since MTX is also the target ligand of folate receptors, the targeted performance of NPs examined through the cell uptake study. The results indicated that MTX-loaded NPs showed 1.3 times more cell internalization than MTX free NPs. Cell cytotoxicity studies pointed out ~1.5 and 3 times higher cell cytotoxicity after 24h for MTX-loaded nanoparticles than MTX in MTT assay and cell cycle arrest experiments, respectively. Additionally, mPEG was used as the outer shell of NPs which caused the long-term dispersibility of the NPs even under high ionic strength. The in-vitro pH-triggered drug release of MTX showed that MTX released more than three times in simulated cancerous tissue (40°C, pH5.3) than physiologic condition (37°C, pH7.4) during 48h. The results of various experiments determined that the developed smart nanocarrier proposed as a promising nanocarrier for active and passive targeting of anionic anti-cancer agents such as MTX. Copyright © 2017. Published by Elsevier B.V.

  13. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.

    2013-01-01

    (methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...

  14. Antibody-based donor-acceptor spatial reconfiguration in decorated lanthanide-doped nanoparticle colloids for the quantification of okadaic acid biotoxin.

    Science.gov (United States)

    Stipić, Filip; Burić, Petra; Jakšić, Željko; Pletikapić, Galja; Dutour Sikirić, Maja; Zgrablić, Goran; Frkanec, Leo; Lyons, Daniel M

    2015-11-01

    With the increasing movement away from the mouse bioassay for the detection of toxins in commercially harvested shellfish, there is a growing demand for the development of new and potentially field-deployable tests in its place. In this direction we report the development of a simple and sensitive nanoparticle-based luminescence technique for the detection of the marine biotoxin okadaic acid. Photoluminescent lanthanide nanoparticles were conjugated with fluorophore-labelled anti-okadaic acid antibodies which, upon binding to okadaic acid, gave rise to luminescence resonance energy transfer from the nanoparticle to the organic fluorophore dye deriving from a reduction in distance between the two. The intensity ratio of the fluorophore: nanoparticle emission peaks was found to correlate with okadaic acid concentration, and the sensor showed a linear response in the 0.37-3.97 μM okadaic acid range with a limit of detection of 0.25 μM. This work may have important implications for the development of new, cheap, and versatile biosensors for a range of biomolecules and that are sufficiently simple to be applied in the field or at point-of-care.

  15. Facile synthesis of boronate-decorated polyethyleneimine-grafted hybrid magnetic nanoparticles for the highly selective enrichment of modified nucleosides and ribosylated metabolites.

    Science.gov (United States)

    Li, Hua; Shan, Yuanhong; Qiao, Lizhen; Dou, Abo; Shi, Xianzhe; Xu, Guowang

    2013-12-03

    Ribosylated metabolites, especially modified nucleosides, have been extensively evaluated as cancer-related biomarkers. Boronate adsorbents are considered to be promising materials for extracting them from complex matrices. However, the enrichment of ribosylated metabolites in low abundance is still a challenge due to the limited capacity and selectivity of the existing boronate adsorbents. In this study, a novel type of magnetic nanoparticles named Fe3O4@SiO2@PEI-FPBA was synthesized by grafting polyethyleneimine (PEI) onto the surface of Fe3O4@SiO2 before modification by boronate groups. The high density of the amino groups on the PEI chains supplied a large number of binding sites for boronate groups. Thus, the adsorption capacity (1.34 ± 0.024 mg/g) of the nanoparticles, which is 6- to 7-fold higher than that of analogous materials, was greatly improved. The unreacted secondary amines and tertiary amines of the PEI enhanced the aqueous solubility of the nanoparticles, which could efficiently reduce nonspecific adsorption. The nanoparticles were able to capture 1,2 cis-diol nucleosides from 1000-fold interferences. Moreover, the flexible chains of PEI were favorable for effective enrichment and quick equilibration (nanoparticles. Among them, 43 were identified to be nucleosides and other ribosylated metabolites. Nine low abundance modified nucleosides were detected for the first time. In conclusion, Fe3O4@SiO2@PEI-FPBA is an attractive candidate material for the highly selective enrichment of 1,2-cis-diol compounds.

  16. Chinese Decorative Coatings Market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Growth prospects The Chinese market for decorative coatings, excluding non-architectural products such as industrial varnishes,marine paint and other industrially applied coatings, has been growing byaround 10% annually and was estimated to be worth Eurol.3 billion a year, with an annual per capita consumption of just less than 1 liter ofpaint.

  17. Facile synthesis of Fe3O4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment

    Science.gov (United States)

    Li, Yong; Zhang, Ruofang; Tian, Xike; Yang, Chao; Zhou, Zhaoxin

    2016-04-01

    In order to develop efficient and environment benign sorbents for water purification, the macroscopic multifunctional magnetite-reduced graphene oxides aerogels (M-RGOs) with strong interconnected networks were prepared via a one pot solvothermal method of graphene oxide sheets adsorbing iron ions and in situ simultaneous deposition of Fe3O4 nanoparticles in ethylene glycol or triethylene glycol solvents. Such M-RGOs exhibited excellent sorption capacity to different contaminants, including oils, organic solvents, arsenite ions, as well as dyes. In addition, it was demonstrated that the M-RGOs could be used as column packing materials to manufacture column for water purification by filtration. The method proposed was proved to be versatile to induce synergistic assembly of RGO sheets with other functional metal oxides nanoparticles and as a kind of broad-spectrum sorbents for removing different types of contaminants in water purification, simultaneously.

  18. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection

    Science.gov (United States)

    Huy, Le Thanh; Tam, Le Thi; Van Son, Tran; Cuong, Nguyen Duy; Nam, Man Hoai; Vinh, Le Khanh; Huy, Tran Quang; Ngo, Duc-The; Phan, Vu Ngoc; Le, Anh-Tuan

    2017-06-01

    In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag-MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag-MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag-MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag-MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.

  19. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles.

    Science.gov (United States)

    Abdi, Fatwa F; Dabirian, Ali; Dam, Bernard; van de Krol, Roel

    2014-08-07

    Recent progress in the development of bismuth vanadate (BiVO4) photoanodes has firmly established it as a promising material for solar water splitting applications. Performance limitations due to intrinsically poor catalytic activity and slow electron transport have been successfully addressed through the application of water oxidation co-catalysts and novel doping strategies. The next bottleneck to tackle is the modest optical absorption in BiVO4, particularly close to its absorption edge of 2.4 eV. Here, we explore the modification of the BiVO4 surface with Ag@SiO2 core-shell plasmonic nanoparticles. A photocurrent enhancement by a factor of ~2.5 is found under 1 sun illumination (AM1.5). We show that this enhancement consists of two contributions: optical absorption and catalysis. The optical absorption enhancement is induced by the excitation of localized surface plasmon resonances in the Ag nanoparticles, and agrees well with our full-field electromagnetic simulations. Far-field effects (scattering) are found to be dominant, with a smaller contribution from near-field plasmonic enhancement. In addition, a significant catalytic enhancement is observed, which is tentatively attributed to the electrocatalytic activity of the Ag@SiO2 nanoparticles.

  20. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection

    Science.gov (United States)

    Huy, Le Thanh; Tam, Le Thi; Van Son, Tran; Cuong, Nguyen Duy; Nam, Man Hoai; Vinh, Le Khanh; Huy, Tran Quang; Ngo, Duc-The; Phan, Vu Ngoc; Le, Anh-Tuan

    2017-01-01

    In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag-MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag-MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag-MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag-MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.

  1. The structural conversion from α-AgVO3 to β-AgVO3: Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries.

    Science.gov (United States)

    McNulty, David; Ramasse, Quentin; O'Dwyer, Colm

    2016-09-15

    The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core-shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li(+) reaction mechanism for

  2. A model electrode of well-defined geometry prepared by direct laser-induced decoration of nanoporous templates with Au-Ag@C nanoparticles

    Science.gov (United States)

    Schlicht, Stefanie; Kireev, Alexey; Vasileva, Anna; Grachova, Elena V.; Tunik, Sergey P.; Manshina, Alina A.; Bachmann, Julien

    2017-02-01

    We present an original type of model electrode system consisting of bimetallic Au-Ag nanoparticles embedded in an amorphous carbon matrix with an extremely well-defined geometry of parallel, straight, cylindrical macropores. The samples are prepared in one step by direct laser deposition of the metal/carbon composite onto the inner walls of a porous ‘anodic’ alumina matrix serving as a template. The coating is homogeneous from top to bottom of the pores, and the amount of material deposited can be tuned by the duration of the deposition procedure. As a test system, we demonstrate that a bimetallic Ag-Au@C system is catalytically active for the electrochemical oxidation of glucose in alkaline solution, the anodic reaction of a direct glucose fuel cell. Furthermore, the electrocatalytic current density increases with the amount of Ag-Au@C NPs deposited, up to a point at which the pores are clogged with it. This type of model system allows for the systematic study of geometric effects in fuel cell electrodes. It can be generalized to a number of different nanoparticle compositions, and thereby, to various electrocatalytic reactions.

  3. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni(2+) for determination of histidine by photochemical vapor generation atomic spectrometry.

    Science.gov (United States)

    Hu, Yuan; Wang, Qi; Zheng, Chengbin; Wu, Li; Hou, Xiandeng; Lv, Yi

    2014-01-07

    It is critically important to accurately determine histidine since it is an indicator for many diseases when at an abnormal level. Here, an inexpensive and simple method using an amine-functionalized magnetic nanoparticle-based Ni(2+)-histidine affinity pair system was developed for highly sensitive and selective detection of histidine in human urine by photochemical vapor generation atomic spectrometry. Ni(2+) was first bound to the amine groups of the amine-functionalized magnetic nanoparticles and then liberated to solution via the highly specific interaction between the histidine and Ni(2+) in the presence of histidine. The liberated histidine-Ni(2+) complex was exposed to UV irradiation in the presence of formic acid to form gaseous nickel tetracarbonyl, which was separated from the sample matrix and determined by atomic absorption/fluorescence spectrometry. Compared to other methods, this approach promises high sensitivity, simplicity in design, and convenient operation. The need for organic solvents, enzymatic reactions, separation processes, chemical modification, expensive instrumentations, and sophisticated and complicated pretreatment is minimized with this strategy. A limit of detection of 1 nM was obtained and provided tens-to-hundreds of fold improvements over that achieved with conventional methods. The protocol was evaluated by analysis of several urine samples with good recoveries and showed great potential for practical application.

  4. Synthesis of silver nanoparticles-decorated FePO4 nanosphere at a gas-liquid interface for the electrochemical detection of Hydrogen peroxide

    Indian Academy of Sciences (India)

    DEJIANG RAO; JIAN ZHANG; JIANBIN ZHENG

    2016-05-01

    Silver nanoparticles were prepared by chemical reduction of acetaldehyde gas in the absence ofprotective gas, and Ag/Fe$PO­_{4}$ nanocomposites were synthesised by modified silver mirror reaction at a gasliquidinterface. A hydrogen peroxide $(H_{2}O_{2})$ electrochemical sensor was constructed through immobilizing Ag/Fe$PO­_{4}$ nanocomposites on gold (Au) electrode. The morphology and composition of the nanocompositeswere characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy(EDS). The electrochemical investigations of the sensor indicated that it exhibited excellent analytical performancewith a wide linear range from $3.0 \\times 10^{-5}$and $1.1 \\times 10^{-2}mol $L^{-1}$ a low detection limit of 4.7μmol.$L^{-1} at a signal-to-noise ratio of 3. Meanwhile, it also showed acceptable reproducibility and anti-interference ability.This study may provide a new method for the synthesis of highly dispersed metal nanoparticles which mightbe used in other related fields.

  5. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers.

    Science.gov (United States)

    Wang, Wenting; Fan, Xiaojian; Xu, Shenghao; Davis, Jason J; Luo, Xiliang

    2015-09-15

    A label-free and low fouling biosensor based on functional polyethylene glycols selective for breast cancer susceptibility gene (BRCA1) is reported. Sensory interfaces were prepared through the modification of a glassy carbon electrode with highly cross-linked polyethylene glycol (PEG) film containing amine groups, followed by the self-assembly of gold nanoparticles and the immobilization of BRCA1 complementary single-strand 19-mer oligonucleotides. In the presence of a specific BRCA1 sequence capture and hybridization results in interfacial change sensitively monitored using electrochemical impedance spectroscopy. The combined utilization of a PEG polymer film and gold nanoparticle mixed interface enables very high levels of sensitivity and a highly effective assaying in patient samples. Assay linear range was from 50.0 fM to 1.0 nM, with a limit of detection of 1.72 fM. Furthermore, this label-free DNA sensor has been used for assaying BRCA1 in serum samples, showing its feasible potential for diagnostic applications in clinical analysis of breast cancer gene BRCA1. Foreseeable, this sensor made on this basis undoubtedly provide the most effective and sensitive detection for BRCA1.

  6. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    Science.gov (United States)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  7. Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Science.gov (United States)

    Trzciński, Konrad; Szkoda, Mariusz; Sawczak, Mirosław; Karczewski, Jakub; Lisowska-Oleksiak, Anna

    2016-11-01

    Thin films containing BiVO4 and MnO2 deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27-115 nm) were characterized using Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO4 + MnO2 layer by drop-casting of small amount of colloidal gold (1.5 × 10-14 mol of GNP on 1 cm2) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm2 to 280 μA/cm2. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  8. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide.

    Science.gov (United States)

    Zan, Xiaoli; Fang, Zheng; Wu, Jin; Xiao, Fei; Huo, Fengwei; Duan, Hongwei

    2013-11-15

    We report the development of a new type of flexible electrochemical biosensors based on graphene paper loaded with closely-packed Au@Pt core-shell nanoparticles as a freestanding cell culture substrate for real-time monitoring cell secretion of nitric oxide. The hybrid electrode was fabricated through a modular approach in which 2D-assembly of nanoparticles formed at the oil-water interface was transferred onto graphene paper by dip-coating. We have shown that the independently optimized metal nanostructures and graphene paper were integrated into functional electrodes with high electrocatalytic activity. When used for the detection of nitric oxide, the flexible electrodes have demonstrated high sensitivity, a wide linear range, and a low detection limit, which, in combination with its biocompatibility, offer unique opportunities for the real-time monitoring of nitric oxide secretion by human endothelial vein cells grown on the electrode. These interesting findings collectively demonstrate the potential of our modular approach for designing high-performance flexible electrodes with tailored surface properties.

  9. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    Science.gov (United States)

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-02-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g-1 were 434 and 174 mA h g-1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g-1 for the 1000th cycle at a high current density of 1 A g-1.

  10. The study of structural properties of carbon nanotubes decorated with NiFe{sub 2}O{sub 4} nanoparticles and application of nano-composite thin film as H{sub 2}S gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hajihashemi, R., E-mail: Rezvan.hajihashemi@yahoo.com [Department of Physics, Payame Noor University, Mashhad (Iran, Islamic Republic of); Rashidi, Ali M.; Alaie, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry, P.O., Tehran (Iran, Islamic Republic of); Mohammadzadeh, R. [Department of Physics, Shahreza Branch, Islamic Azad University, Shahreza (Iran, Islamic Republic of); Izadi, N. [Nanotechnology Research Center, Research Institute of Petroleum Industry, P.O., Tehran (Iran, Islamic Republic of)

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe{sub 2}O{sub 4} nanoparticles (NiFe{sub 2}O{sub 4}–MWCNT), was synthesized using the sol–gel method. NiFe{sub 2}O{sub 4}–MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (M{sub S}), coercivity (H{sub C}) and retentivity (M{sub R}) of NiFe{sub 2}O{sub 4}–MWCNTs are obtained as 15 emu g{sup −1}, 21 Oe and 5 emu g{sup −1}, respectively. In this research, NiFe{sub 2}O{sub 4}–MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H{sub 2}S gas sensor. The results suggest the possibility of the utilization of NiFe{sub 2}O{sub 4}–MWCNT nano-composite, as the H{sub 2}S detector. The sensor shows appropriate response towards 100 ppm of H{sub 2}S at 300 °C. - Highlights: • Nano-composite the average size of the crystallites is 23.93 nm. • NiFe{sub 2}O{sub 4} thin films were prepared with spin-coating method. • These thin films were used as the H{sub 2}s gas sensor. • The sensor shows appropriate response towards 100 ppm of H{sub 2}S at 300 °C.

  11. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    Science.gov (United States)

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g−1 were 434 and 174 mA h g−1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g−1 for the 1000th cycle at a high current density of 1 A g−1. PMID:26928312

  12. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  13. Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells

    Science.gov (United States)

    Vieira, Alexandre CC; Chaves, Luíse L; Pinheiro, Marina; Ferreira, Domingos; Sarmento, Bruno; Reis, Salette

    2016-01-01

    The aim of the present work was to develop and optimize surface-functionalized solid lipid nanoparticles (SLNs) for improvement of the therapeutic index of dapsone (DAP), with the application of a design of experiments. The formulation was designed to target intestinal microfold (M-cells) as a strategy to increase internalization of the drug by the infected macrophages. DAP-loaded SLNs and mannosylated SLNs (M-SLNs) were successfully developed by hot ultrasonication method employing a three-level, three-factor Box–Behnken design, after the preformulation study was carried out with different lipids. All the formulations were systematically characterized regarding their diameter, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, and loading capacity. They were also subjected to morphological studies using transmission electron microscopy, in vitro release study, infrared analysis (Fourier transform infrared spectroscopy), calorimetry studies (differential scanning calorimetry), and stability studies. The diameter of SLNs, SLN-DAP, M-SLNs, and M-SLN-DAP was approximately 300 nm and the obtained PDI was nanoparticles. Fourier transform infrared spectroscopy was used to confirm the success of mannose coating process though Schiff’s base formation. The variation of the ZP between uncoated (approximately −30 mV) and mannosylated formulations (approximately +60 mV) also confirmed the successful coating process. A decrease in the enthalpy and broadening of the lipid melting peaks of the differential scanning calorimetry thermograms are consistent with the nanostructure of the SLNs. Moreover, the drug release was pH-sensitive, with a faster drug release at acidic pH than at neutral pH. Storage stability for the formulations for at least 8 weeks is expected, since they maintain the original characteristics of diameter, PDI, and ZP. These results pose a strong argument that the developed formulations can be explored as a promising carrier for

  14. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm(2)), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm(2)). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Manasi Das

    Full Text Available Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined and single or dual drug loaded nanoparticles (unconjugated/folate conjugated. The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype.

  16. Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells

    Directory of Open Access Journals (Sweden)

    Vieira ACC

    2016-06-01

    Full Text Available Alexandre CC Vieira,1,* Luíse L Chaves,1,* Marina Pinheiro,1 Domingos Ferreira,2 Bruno Sarmento,3–5 Salette Reis1 1UCIBIO, REQUIMTE, Chemistry Department, Faculty of Pharmacy, 2Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, 3I3S, Institute for Research and Innovation in Health, 4INEB – Institute of Biomedical Engineering, University of Porto, Porto, 5CESPU, Institute of Research and Advanced Formation in Health Sciences and Technology, University Institute of Health Sciences, Gandra, Portugal *These authors contributed equally to this work Abstract: The aim of the present work was to develop and optimize surface-functionalized solid lipid nanoparticles (SLNs for improvement of the therapeutic index of dapsone (DAP, with the application of a design of experiments. The formulation was designed to target intestinal microfold (M-cells as a strategy to increase internalization of the drug by the infected macrophages. DAP-loaded SLNs and mannosylated SLNs (M-SLNs were successfully developed by hot ultrasonication method employing a three-level, three-factor Box–Behnken design, after the preformulation study was carried out with different lipids. All the formulations were systematically characterized regarding their diameter, polydispersity index (PDI, zeta potential (ZP, entrapment efficiency, and loading capacity. They were also subjected to morphological studies using transmission electron microscopy, in vitro release study, infrared analysis (Fourier transform infrared spectroscopy, calorimetry studies (differential scanning calorimetry, and stability studies. The diameter of SLNs, SLN-DAP, M-SLNs, and M-SLN-DAP was approximately 300 nm and the obtained PDI was <0.2, confirming uniform populations. Entrapment efficiency and loading capacity were approximately 50% and 12%, respectively. Transmission electron microscopy showed spherical shape and nonaggregated nanoparticles. Fourier transform

  17. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  18. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Science.gov (United States)

    Ashkarran, Ali Akbar; Mohammadi, Bahareh

    2015-07-01

    We present an innovative approach for synthesis of zinc oxide-graphene (ZnO-G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO-G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-vis). The results revealed that the ZnO-G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO-G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO-G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO-G photocatalyst was proposed based on our observations.

  19. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI)

    Science.gov (United States)

    Zhao, Donglin; Gao, Xuan; Wu, Changnian; Xie, Rong; Feng, Shaojie; Chen, Changlun

    2016-10-01

    A novel ternary magnetic composite consisting of graphene oxide (GO), diethylenetriamine and Fe3O4 nanoparticles (AMGO) were synthesized by a facile one-step reaction route and characterized. The AMGO was applied as a magnetic adsorbent for the Cr(VI) removal from aqueous solutions and the magnetic separation process only took 40 s. The maximum adsorption capacity of the AMGO for Cr(VI) was 123.4 mg/g, displaying a high efficiency for the removal of Cr(VI), which was much higher than that of MGO. The removal process was pH dependence, endothermic and spontaneous. The pseudo-second-order model described well the adsorption kinetic data and the Langmuir isotherm model fitted the experimental data better than the Freundlich isotherm model. XPS analysis revealed that the Cr(VI) was reduced to the low-toxicity Cr(III) during the adsorption process. Both the Cr(VI) adsorption and subsequent reduction of adsorbed Cr(VI) to Cr(III) contributed to the Cr(VI) removal. In addition, the excellent reproducibility indicate that the AMGO may be a promising adsorption material for the separation and preconcentration of Cr(VI) ions from aqueous solutions in environmental pollution cleanup.

  20. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns.

    Science.gov (United States)

    Ataei-Germi, Taher; Nematollahzadeh, Ali

    2016-05-15

    Bimodal meso/macro-porous silica microspheres (MSM) were synthesized by a modified sol-emulsion-gel method and then the surface was coated with polydopamine (PDA) nano-particles of 39nm in size. Focusing on the encouraging properties of the synthesized adsorbent, such as high specific surface area (612.3m(2)g(-1), because of mesopores), fast mass transfer (0.9-2.67×10(-3)mLmin(-1)mg, because of macropores), and abundant "adhesive" functional groups of PDA, it was used for the removal of methylene blue (MB) from aqueous solution in a fixed-bed column. The effect of different parameters such as pH, initial concentration, and flow rate was studied. The results revealed that an appropriate sorption condition is an alkaline solution of MB (e.g., pH 10) at low flow rate (less than 5mLmin(-1)). Furthermore, the compatibility of the experimental data with mathematical models such as Thomas and Adams-Bohart was investigated. Both of the models showed a good agreement with the experimental data (R(2)=0.9954-0.9994), and could be applied for the prediction of the column properties and breakthrough curves. Regeneration of the column was performed by using HCl solution with a concentration of 0.1M as an eluent. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Palladium-phosphorus/sulfur nanoparticles (NPs) decorated on graphene oxide: synthesis using the same precursor for NPs and catalytic applications in Suzuki-Miyaura coupling

    Science.gov (United States)

    Joshi, Hemant; Sharma, Kamal Nayan; Sharma, Alpesh K.; Singh, Ajai Kumar

    2014-04-01

    PdP2 and Pd4S nanoparticles (NPs) (size: ~2-6 and 9-15 nm respectively) have been prepared for the first time from a single source precursor complex [Pd(L)Cl2] (1) by its one pot thermolysis at 200 °C in TOP and OA/ODE (1 : 1) respectively. These NPs were stirred with graphene oxide (GO) at room temperature to prepare NP composites, GO-PdP2 and GO-Pd4S. The GO-PdP2 NPs have been synthesized for the first time. The thioether ligand L prepared by reaction of 1,3-dibromo-2-propanol with the in situ generated PhSNa reacts with [PdCl2(CH3CN)2] in CH3CN at 70 °C resulting in 1. The L and 1 have been characterized by 1H and 13C{1H} NMR and HR-MS. The single crystal structure of 1 determined by X-ray diffraction reveals nearly square planar geometry around the Pd metal centre. The catalytic activities of two palladium nano-phases having phosphorus and sulphur respectively as a co-constituent for Suzuki-Miyaura coupling have been found to be exceptionally different, as PdP2 nanoparticles (NPs) grafted on graphene oxide (GO-PdP2) are significantly more efficient than Pd4S NPs grafted on GO. Without grafting PdP2 and Pd4S both have low efficiency. This is the first report comparing the influence of P and S on the catalytic activity of Pd NPs. TEM, SEM-EDX and powder-XRD have been used to authenticate all NPs. The GO-PdP2 NPs have been found to be efficient catalysts for Suzuki-Miyaura coupling reactions (yield up to 96% in 30 min) at room temperature to 80 °C. Their recyclability has been found up to 6 cycles. In contrast, GO-Pd4S NPs are little active in comparison with GO-PdP2 NPs. The size of NPs and their distribution on GO appear to be key factors affecting the catalytic efficiency of the composite NPs. Leaching of Pd from GO-PdP2 NPs contributes significantly to the catalysis as evidenced by the three phase test, hot-filtration and recycling experiments. The catalysis is almost homogeneous.PdP2 and Pd4S nanoparticles (NPs) (size: ~2-6 and 9-15 nm respectively) have

  2. Catalytic Intervention of MoO3 toward Ethanol Oxidation on PtPd Nanoparticles Decorated MoO3-Polypyrrole Composite Support.

    Science.gov (United States)

    De, Abhishek; Datta, Jayati; Haldar, Ipsita; Biswas, Mukul

    2016-10-14

    Ethanol oxidation reaction has been studied in acidic environment over PtPd nanoparticles (NPs) grown on the molybdenum oxide-polypyrrole composite (MOPC) support. The attempt was focused on using reduced Pt loading on non-carbon support for direct ethanol fuel cell (DEFC) operated with proton exchange membrane (PEM). As revealed in SEM study, a molybdenum oxide network exists in polypyrrole caging and the presence of metal NPs over the composite matrix is confirmed by TEM analysis. Further physicochemical characterizations such as XRD, EDAX, and XPS are followed in order to understand the surface morphology and composition of the hybrid structure. Electrochemical techniques such as voltammetry, choroamperometry, and impedance spectroscopy along with performance testing of an in-house-fabricated fuel cell are carried out to evaluate the catalytic activity of the materials for DEFC. The reaction products are estimated by ion chromatographic analysis. Considering the results obtained from the above characterization procedures, the best catalytic performance is exhibited by the Pt-Pd (1:1) on MOPC support. A clear intervention of the molybdenum oxide network is strongly advocated in the EOR sequence which increases the propensity of the reaction by making the metallites more energy efficient in terms of harnessing sufficient numbers of electrons than with the carbon support.

  3. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  4. A DNA biosensor based on gold nanoparticle decorated on carboxylated multi-walled carbon nanotubes for gender determination of Arowana fish.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Chiang, Chew Poh

    2017-12-01

    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Farbod, Mansoor, E-mail: farbod_m@scu.ac.ir; Ahangarpour, Ameneh

    2016-12-16

    The effect of Ag decoration of carbon nanotubes on thermal conductivity enhancement of Ag decorated MWCNTs water based nanofluids has been investigated. The pristine and functionalized MWCNTs were decorated with Ag nanoparticles by mass ratios of 1%, 2% and 4% and used to prepare water based nanofluids with 0.1 vol.%. An enhancement of 1–20.4 percent in thermal conductivity was observed. It was found that the decoration of functionalized MWCNTs can increase the thermal conductivity about 0.16–8.02 percent compared to the undecorated ones. The maximum enhancement of 20.4% was measured for the sample containing 4 wt.% Ag at 40 °C. - Highlights: • MWCNTs were decorated with Ag nanoparticles by the mass ratios of 1, 2 and 4%. • The decorated CNTs were used to prepare water based nanofluids with 0.1 Vol.%. • 1–20.4% increase was observed in thermal conductivity (TC) compared to pure water. • Ag decorated CNTs increased TC of nanofluid up to 8% compared to CNTs nanofluid.

  6. Synthesis and Evaluation on Performance of Hydrogen Storage of Multi-Walled Carbon Nanotubes Decorated with Platinum

    Institute of Scientific and Technical Information of China (English)

    MU Shi-chung; TANG Hao-lin; PAN Mu; YUAN Run-zhang

    2003-01-01

    By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi-walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as-prepared MWCNTs decorated with platinum was investigated.The results indicate that:(1) Hydrogen uptake is more quick and intense for decorated MWCNTs than that for not decorated ones at 10.931MPa and room temperature.The saturation of hydrogen uptake of the former only lasts about 30min,while the latter needs about 150 min;(2) The amount of hydrogen uptake of decorated MWCNTs is about 1.13wt%, which is larger than that of not decorated ones(about 0.54wt%);(3) However,more than 37% hydrogen absorbed by decorated MWCNTs is chemisorbed.

  7. Ozone Sensing Based on Palladium Decorated Carbon Nanotubes

    OpenAIRE

    2014-01-01

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO2 substrate. The sensor exhibited a resistance change to ozone (O3) with a response time of 60 s at different temperatures and the capability of detecting conc...

  8. Nanoparticle Decoration of Carbon Nanotubes by Sputtering

    Science.gov (United States)

    2013-02-01

    on metal morphology, as does diffusion activation energy. Comparison of the metal– graphene interfa- cial energy to the surface energy of the metal...Nanotechnology 2009;20:375501–11. [17] O. Yaglioglu, Thesis . Massachusetts Institute of Technology, Department of Mechanical Engineering; 2007. [18] Venables...25] Osswald S, Flahaut E, Ye H, Gogotsi Y. Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation . Chem Phys Lett

  9. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes.

    Science.gov (United States)

    Sridhar, Srividya; Tiwary, Chandrasekhar; Vinod, Soumya; Taha-Tijerina, Jose Jaime; Sridhar, Srividvatha; Kalaga, Kaushik; Sirota, Benjamin; Hart, Amelia H C; Ozden, Sehmus; Sinha, Ravindra Kumar; Harsh; Vajtai, Robert; Choi, Wongbong; Kordás, Krisztián; Ajayan, Pulickel M

    2014-08-26

    A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ∼ 0.1 V/μm) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.

  10. Electrochemical Decoration of Carbon Nanotubes with Au Nanostructure for the Electroanalysis of Biomolecules.

    Science.gov (United States)

    Das, Ashok Kumar; Raj, C Retna

    2015-01-01

    An electrochemical route for the decoration of multiwalled carbon nanotubes (MWCNTs) with anisotropic Au nanostructures and the electroanalytical application of decorated MWCNTs are described. MWCNTs were electrochemically decorated with flowers and buds-like Au nanostructures in aqueous solution in the presence of KI. The flowers and buds-like nanostructures had an average size of 80 nm with a predominant Au(111) plane. The analytical application of the decorated MWCNTs in the electroanalysis of biologically important analytes, such as uric acid (UA), epinephrine (EN) and ascorbic acid (AA), was studied. The nanoparticles of flower-like morphology efficiently catalyze the oxidation of the bioanalytes at a less-positive potential. Simultaneous electroanalysis of AA, UA and EN have been achieved. Well separated individual voltammetric peaks were obtained in their coexistence. The decorated MWCNT modified electrode is very stable and highly sensitive towards UA and EN. It could detect micromolar levels of bioanalytes without any interference. The catalytic property of the nanostructures is superior to that of the conventional spherical nanoparticle. The morphology of the nanoparticle controls the electrocatalytic activity.

  11. Why do People Decorate Their Bodies?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    People decorate their bodies for many reasons and in different ways. Some groups of people have decorated their bodies for thousands of years. People do so to look at- tractive or to show that they belong to a certain group.

  12. Exploration of silver decoration concentration to enhance photocatalytic efficiency of titanium dioxide photocatalysts

    Science.gov (United States)

    Chang, Lee-Hong; Cho, Chun-Pei

    2016-12-01

    Ag decoration on TiO2 is favorable to absorption of visible light and wider absorption range. Ag nanoparticles playing the role of electron receivers on TiO2 surface enhance photodegradation. However, excess Ag nanoparticles caused reduced specific surface area of photocatalysts and increased probability of charge recombination, resulting in lower photocatalytic efficiency. In this study, the influence of various Ag decoration concentrations on photocatalytic activity was investigated. Surface treatment by nitric acid after Ag decoration was performed to avoid excessive Ag deposition. The extent of Ag elimination and its impacts on photocatalytic activity were also explored. An optimum Ag content in the photocatalyst was achieved and photocatalytic efficiency was obviously improved. It was found that the number of calcination times affected the crystallinity and stability of photocatalysts. Better photocatalytic efficiency could be obtained after twice calcinations.

  13. Rationalizing the Permissibility of Mosque Decoration

    Directory of Open Access Journals (Sweden)

    Spahic Omer

    2016-06-01

    Full Text Available This paper discusses the subject of mosque decoration and some of the criteria which determine its permissibility or otherwise. Some aspects of the matter are somewhat sensitive and double-edged. Thus, the paper presents an objective, balanced and scientific account of the theme, steering clear of the sentimental aspects of the evidences often put forth by both the proponents and opponents of mosque decoration. The main thrusts of the paper are the issues pertaining to the legitimacy of decoration in general, the subject of the function of mosques vis-à-vis their decoration, as well as the broad guidelines that regulate mosque decoration emphasizing the decoration of the mihrab (praying niche area and the qiblah wall. The paper concludes that in principle mosque decoration is permissible so long as it conforms to the requirements of the Islamic spirituality and the quintessence of genuine Islamic art and architecture.

  14. Hydrogen storage studies of palladium decorated nitrogen doped graphene nanoplatelets.

    Science.gov (United States)

    Vinayan, B P; Sethupathi, K; Ramaprabhu, S

    2012-08-01

    Hydrogen storage in materials is of significant importance in the present scenario of depleting conventional energy sources. Porous solids such as activated carbon or nanostructured carbon materials have promising future as hydrogen storage media. The hydrogen storage capacity in nanostructured carbon materials can be further enhanced by atomic hydrogen spillover from a supported catalyst. In the present work, the hydrogen storage properties of nitrogen doped graphene nanoplatelets (N-GNP) and palladium decorated nitrogen doped graphene nanoplatelets (Pd/N-GNP) have been investigated. The results show that hydrogen uptake capacity of nitrogen doped graphene nanoplatelets and palladium decorated nitrogen doped graphene nanoplatelets at pressure 32 bar and temperature 25 degrees C is 0.42 wt% and 1.25 wt% respectively. The dispersion of palladium nanoparticles increases the hydrogen storage capacity of nitrogen doped graphene nanoplatelets by 0.83 wt%. This may be due to high dispersion of palladium nanoparticles and strong adhesion between metal and graphene nanoplatelets over the surface of N-GNP, which enhances the spillover mechanism. Thus, an increase in the hydrogen spillover effect and the binding energy between metal nanoparticles and supporting material achieved by nitrogen doping has been observed to result in a higher hydrogen storage capacity of pristine GNP.

  15. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  16. Ozone sensing based on palladium decorated carbon nanotubes.

    Science.gov (United States)

    Colindres, Selene Capula; Aguir, Khalifa; Cervantes Sodi, Felipe; Vargas, Luis Villa; Salazar, José Moncayo; Febles, Vicente Garibay

    2014-04-14

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO₂ substrate. The sensor exhibited a resistance change to ozone (O₃) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.

  17. Surface decorated platinum carbonyl clusters

    Science.gov (United States)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  18. Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis.

    Science.gov (United States)

    Thomas, Reny Thankam; Abdul Rasheed, P; Sandhyarani, N

    2014-08-15

    We report a simple method for decorating carboxyl functionalized few-layer graphene with titania (TiO2) nanoparticles by sonication and stirring under room temperature. The nanocomposites showed a remarkable improvement in visible light driven photocatalysis. From Raman and XRD analysis the number of layers of graphene was found to be 3. The TiO2 decorated few-layer graphene (FLG) sheets were characterized by electron microscopy, Raman spectroscopy, infrared spectroscopy, XRD and UV-vis spectroscopy. Titania nanoparticles were uniformly decorated on FLG matrix. The incorporation of titania on FLG enhanced the visible light photocatalytic activity of titania, lowered the electron hole recombination and improved the electron hole mobility. The enhanced life time of the charge carriers was confirmed from the photocurrent measurements. Compared to bare TiO2 nanoparticles the FLG-TiO2 nanocomposites exhibited rapid degradation of Rhodamine B (Rhd B) under solar radiation. It was found that adsorption of dye molecules and the rate of degradation have been greatly enhanced in the FLG decorated with TiO2. The rapid degradation of Rhd B using carboxyl functionalized FLG-TiO2 within 8 min under solar radiation and 20 min under 30 W UV tube with very low concentration (0.01 wt.%) of the photocatalyst is the highlight of the present report. The mechanism of degradation and charge separation ability of the nanocomposite are also explored.

  19. Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer.

    Science.gov (United States)

    Sugioka, Daisuke; Kameyama, Tatsuya; Kuwabata, Susumu; Yamamoto, Takahisa; Torimoto, Tsukasa

    2016-05-01

    A novel strategy to prepare a bimetallic Au-Pt particle film was developed through sequential sputter deposition of Au and Pt on a room temperature ionic liquid (RTIL). Au sputter deposition onto an RTIL containing hydroxyl-functionalized cations produced a monolayer of Au particles 4.2 nm in size on the liquid surface. Subsequent Pt sputtering onto the original Au particle monolayer floating on the RTIL enabled decoration of individual Au particles with Pt metals, resulting in the formation of a bimetallic Au-Pt particle monolayer with a Pt-enriched particle surface. The particle size slightly increased to 4.8 nm with Pt deposition for 120 min. The shell layer of a bimetallic particle was composed of Au-Pt alloy, the composition of which was tunable by controlling the Pt sputter deposition time. The electrochemical surface area (ECSA) was determined by cyclic voltammetry of bimetallic Au-Pt particle monolayers transferred onto HOPG electrodes by a horizontal liftoff method. The Pt surface coverage, determined by ECSAs of Au and Pt, increased from 0 to 56 mol % with elapse of the Pt sputter deposition time up to 120 min. Thus-obtained Au-Pt particle films exhibited electrocatalytic activity for methanol oxidation reaction (MOR) superior to the activities of pure Au or Pt particles. Volcano-type dependence was observed between the MOR activity and Pt surface coverage on the particles. Maximum activity was obtained for Au-Pt particles with a Pt coverage of 49 mol %, being ca. 120 times higher than that of pure Pt particles. This method enables direct decoration of metal particles with different noble metal atoms, providing a novel strategy to develop highly efficient multinary particle catalysts.

  20. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.

    Science.gov (United States)

    Yang, Songtao; Pelton, Robert

    2011-09-20

    The ability of polystyrene nanoparticles to facilitate the froth flotation of glass beads was correlated to the hydrophobicity of the nanoparticles. Contact angle measurements were used to probe the hydrophobicity of hydrophilic glass surfaces decorated with hydrophobic nanoparticles. Both sessile water drop advancing angles, θ(a), and attached air bubble receding angle measurements, θ(r), were performed. For glass surfaces saturated with adsorbed nanoparticles, flotation recovery, a measure of flotation efficiency, increased with increasing values of each type of contact angle. As expected, the advancing water contact angle on nanoparticle-decorated, dry glass surfaces increased with surface coverage, the area fraction of glass covered with nanoparticles. However, the nanoparticles were far more effective at raising the contact angle than the Cassie-Baxter prediction, suggesting that with higher nanoparticle coverages the water did not completely wet the glass surfaces between the nanoparticles. A series of polystyrene nanoparticles was prepared to cover a range of surface energies. Water contact angle measurements, θ(np), on smooth polymer films formed from organic solutions of dissolved nanoparticles were used to rank the nanoparticles in terms of hydrophobicity. Glass spheres were saturated with adsorbed nanoparticles and were isolated by flotation. The minimum nanoparticle water contact angle to give high flotation recovery was in the range of 51° < θ(np(min)) ≤ 85°.

  1. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    Science.gov (United States)

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

  2. nanoparticles

    Science.gov (United States)

    Zhao, Yu; Li, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-06-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures.

  3. Ancient bronze disks, decorations and calendars

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Recently, it was published that some ancient bronze disks could had been calendars, that is, that their decorations had this function. Here I am discussing an example, the disk of the Trundholm Sun Chariot, proposing a new interpretation of it, giving a calendar of 360 days. Some geometric diagrams concerning the decoration layout are also proposed.

  4. Metal-Assisted Hydrogen Storage on Pt-Decorated Single-Walled Carbon Nanohorns

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [National Institute of Standards and Technology (NIST); Brown, Craig [National Institute of Standards and Technology (NIST); Neumann, Dan [National Institute of Standards and Technology (NIST); Geohegan, David B [ORNL; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Hu, Hui [ORNL; Styers-Barnett, David J [ORNL; Krasnov, Pavel O. [Rice University; Yakobson, Boris I. [Rice University

    2012-01-01

    The catalytic dissociation of hydrogen molecules by metal nanoparticles and spillover of atomic hydrogen onto various supports is a well-established phenomenon in catalysis. However, the mechanisms by which metal catalyst nanoparticles can assist in enhanced hydrogen storage on high-surface area supports are still under debate. Experimental measurements of metal-assisted hydrogen storage have been hampered by inaccurate estimation of atomically stored hydrogen deduced from comparative measurements between metal-decorated and undecorated samples. Here we report a temperature cycling technique combined with inelastic neutron scattering (INS) measurements of quantum rotational transitions of molecular H2 to more accurately quantify adsorbed hydrogen aided by catalytic particles using single samples. Temperature cycling measurements on single-wall carbon nanohorns (SWCNHs) decorated with 2-3 nm Pt nanoparticles showed 0.17 % mass fraction of metal-assisted hydrogen storage (at 0.5 MPa) at room temperature. Temperature cycling of Pt-decorated SWCNHs using a Sievert s apparatus also indicated metal-assisted hydrogen adsorption of 0.08 % mass fraction at 5 MPa at room temperature. No additional metal-assisted hydrogen storage was observed in SWCNH samples without Pt nanoparticles cycled to room temperature, or in Pt-SWCNHs when the temperature was cycled to less than 150K. The possible formation of C-H bonds due to spilled-over atomic hydrogen was also investigated using both INS and density functional theory calculations.

  5. Synthesis of Ag-decorated porous TiO{sub 2} nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yun-Chang; Dai, Xin-Rong [Anhui & Huaihe river institute of hydraulic research, Hefei, Anhui 230088 (China); Hu, Xiao-Ye, E-mail: hxy821982@issp.ac.cn [Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang, Su-Zhen [Institute of plasma physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: ftbjin@hotmail.com [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-30

    Highlights: • The Ag-decorated porous TiO{sub 2} nanowires were succefully synthesized. • A sunlight induced ethanol reduction method for Ag decoration has been reported. • The Ag-decorated porous TiO{sub 2} nanowires exhibit excellent photocatalytic activity. • The photodegradation ratio of the as-prepared product is much higher than that of P25. - Abstract: In this work, Ag-decorated porous TiO{sub 2} nanowires were successfully synthesized via a facile and low-cost sunlight induced reduction method. The cooperation of sunlight irradiation and ethanol reduction results the formation and decoration of the Ag nanoparticles on the porous TiO{sub 2} nanowires. The structure of the Ag-decorated porous TiO{sub 2} nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) measurements. It can be seen that the Ag nanoparticles are well dispersed within the porous TiO{sub 2} nanowires. The as-prepared Ag-decorated porous TiO{sub 2} nanowires exhibits excellent photocatalytic properties. The photocatalytic tests show that 10 ppm methylene blue can be photodegraded within 60 min. And the photodegradation ratio of the Ag-decorated porous TiO{sub 2} nanowires much higher than that of P25 and porous TiO{sub 2} nanowires. Moreover, the Ag-decorated porous TiO{sub 2} nanowires also reveal good photocatalytic activity towards to other organic pollutions, such as phenol and R6G. Therefore, it is believed that the Ag-decorated porous TiO{sub 2} nanowires can be used as a potential high performance photocatalyst in wastewater treatment.

  6. Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity

    Science.gov (United States)

    Yao, Yun-Chang; Dai, Xin-Rong; Hu, Xiao-Ye; Huang, Su-Zhen; Jin, Zhen

    2016-11-01

    In this work, Ag-decorated porous TiO2 nanowires were successfully synthesized via a facile and low-cost sunlight induced reduction method. The cooperation of sunlight irradiation and ethanol reduction results the formation and decoration of the Ag nanoparticles on the porous TiO2 nanowires. The structure of the Ag-decorated porous TiO2 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) measurements. It can be seen that the Ag nanoparticles are well dispersed within the porous TiO2 nanowires. The as-prepared Ag-decorated porous TiO2 nanowires exhibits excellent photocatalytic properties. The photocatalytic tests show that 10 ppm methylene blue can be photodegraded within 60 min. And the photodegradation ratio of the Ag-decorated porous TiO2 nanowires much higher than that of P25 and porous TiO2 nanowires. Moreover, the Ag-decorated porous TiO2 nanowires also reveal good photocatalytic activity towards to other organic pollutions, such as phenol and R6G. Therefore, it is believed that the Ag-decorated porous TiO2 nanowires can be used as a potential high performance photocatalyst in wastewater treatment.

  7. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  8. Ag decorated 3D urchin-like TiO{sub 2} microstructures synthesized via a one-step solvothermal method and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Peng, Chaohao; Yang, Mu, E-mail: yangmu@ustb.edu.cn

    2015-11-05

    Novel 3D urchin-like TiO{sub 2} microstructures decorated with Ag nanoparticles were successfully fabricated by one-step solvothermal method with the mixed solution of ethylene glycol, AgNO{sub 3} and tetrabutyl titanate. The morphology, microstructure, crystalline and composition of the composite materials could be adjusted through changing the content of AgNO{sub 3}, solvothermal temperature and time. The obtained samples were characterized by TEM, XRD and XPS. The formation mechanism of these microstructures was proposed. The Ag nanoparticle-decorated 3D urchin-like TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B under UV–Vis irradiation, which was attributed to their special 3D superstructure, crystalline composition and Ag nanoparticle decorated as well. - Graphical abstract: One-step solvothermal method synthesis of Ag decorated 3D urchin-like TiO{sub 2} microstructures with excellent photocatalytic activity. - Highlights: • A simple approach for Ag decorated 3D urchin-like TiO{sub 2} microstructures. • Simultaneously form, array, and decorate of TiO{sub 2} nanofibers. • Special morphology and composition for excellent photocatalytic activity.

  9. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    OpenAIRE

    I. Abdul Rahman; Ayob, M. T. M.; Radiman, S.

    2014-01-01

    ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation ...

  10. Polyoxometalate (POM) Macroion Decorated Polymersomes

    Science.gov (United States)

    Jing, Benxin; Connor, Erin; Zhu, Y. Elaine

    2014-03-01

    Polymersomes as one of the common self-assembled forms of amphiphilic block copolymers have been widely developed for applications from drug delivery to mirco/nanoreactors. The tunability of their materials properties, such as mechanical strength and permeability often relies on the chemistry of the selected polymer in a liquid medium. We have recently employed the emergent polyoxometalate (POM) nanoclusters as macroions to control their interaction and assembly with different polymersomes. For both neutral and cationic polymersomes decorated with highly charged anionic POM nanoclusters, the dispersion stability and mechanic strength can be significantly enhanced. AFM and TEM characterization further confirms the encapsulation of POM macroions into polymersomes to form inorganic-organic hybrid complexes, which lead to new potential applications in anticancer and antibacterial medicines and catalysts.

  11. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

    Directory of Open Access Journals (Sweden)

    Hamdi Baccar

    2015-04-01

    Full Text Available Here we report on the gas sensing properties of multiwalled carbon nanotubes decorated with sputtered Pt or Pd nanoparticles. Sputtering allows for an oxygen plasma treatment that removes amorphous carbon from the surface of the carbon nanotubes and creates oxygenated surface defects in which metal nanoparticles nucleate within a few minutes. The decoration with the 2 nm Pt or the 3 nm Pd nanoparticles is very homogeneous. This procedure is performed at the device level (i.e., for carbon nanotubes deposited onto sensor substrates for many devices in one batch, which illustrates the scalability for the mass production of affordable nanosensors. The response to selected aromatic and non-aromatic volatile organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic compounds studied (measured at concentrations up to 50 ppm. Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient.

  12. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    Directory of Open Access Journals (Sweden)

    MA Vesaghi

    2012-12-01

    Full Text Available  Carbon nanofibers (CNFs decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal. chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 35˚C. These nanoparticles provide the nucleation sites for CNF growth, removing the need for a buffer layer. High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNFs growth, lead to the production of CNFs decorated with Cu2O particles. The surface morphology of the Ni catalyst films and grown CNFs over it was studied by scanning electron microscopy. Transmission electron microscopy and Raman spectroscopy revealed the formation of CNFs. The selected area electron diffraction pattern and electron diffraction studies show that these CNFs were decorated with Cu2O nanoparticles.

  13. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gohier, Aurelien; Kim, Ki-Hwan; Maurice, Jean-Luc; Cojocaru, Costel Sorin [Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, Ecole Polytechnique, route de Saclay, 91128 Palaiseau Cedex (France); Laik, Barbara; Pereira-Ramos, Jean-Pierre [Institut de Chimie et des Materiaux Paris-Est, ICMPE/GESMAT, UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Van, Pierre Tran [Renault SAS, DREAM/DETA/SEE, 1, avenue du Golf, 78288 Guyancourt (France)

    2012-05-15

    The concept of a hybrid nanostructured collector made of thin vertically aligned carbon nanotubes (CNTs) decorated with Si nanoparticles provides high power density anodes in lithium-ion batteries. An impressive rate capability is achieved due to the efficient electronic conduction of CNTs combined with well defined electroactive Si nanoparticles: capacities of 3000 mAh g{sup -1} at 1.3C and 800 mAh g{sup -1} at 15C are achieved. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites

    Science.gov (United States)

    Podila, Ramakrishna; Pradhan, Prabin; Molli, Muralikrishna; Kaniyoor, Adarsh; Muthukumar v, Sai; Sai, S. Siva Sankara; Ramaprabhu, S.; Rao, Apparao; Department of Physics, Sri Sathya Sai Institute of Higher Learning Team; Alternative Energy; Nanotechnology Laboratory (AENL), Indian Institute of Technology Madras Team; Department of Physics; Astronomy, Clemson Nanomaterials Center, Clemson University Team

    2015-03-01

    Although metal nanoparticle-decorated nanomaterials exhibit excellent optical limiting (OL) performance at a relatively higher fluence (>9 J/cm2) , there is a dearth of OL materials for protecting low damage threshold (metal d-orbitals and graphene p-orbitals often leads to undesirable changes in graphene's electronic structure, which adversely affects OL. Here, we demonstrate that d-orbitals of Au nanoparticles exhibit little or no rehybridization with graphene, and result in an enhanced OL behavior even at a low fluence of ~ 0.4 J/cm2 due to the excellent photo-absorption of Au combined with rapid carrier thermalization by graphene.

  15. Jomon pottery: cord-imitating decoration

    Directory of Open Access Journals (Sweden)

    Irina Zhushchikhovskaya

    2007-12-01

    Full Text Available The paper discusses the decoration of pottery of the Neolithic Jomon culture (Japanese Archipelago, 13600–900 BC. The comb-impressed pattern produced by various kinds of cord or rope stamps is considered as the ‘calling card’ of Jomon pottery from the earliest cultural periods to the latest. Another kind of decoration recognized recently uses the cord not as a patterning tool, but as an essential motif of decorative composition. High relief elements imitate cordage forms and structures – knots, loops, hanging cord, net, etc. This kind of decoration corresponds to the pottery of Mid-dle Jomon period (3500–2500 BC sites located in northern and north-eastern Honshu and southern Hokkaido. It is supposed that the introduction of images of real material object into the field of decorative art was reasoned by the meaning of cord and cordage as cultural signs during the Middle Jomon period. Interesting parallels to some cordage structures reconstructed on Middle Jomon pottery decoration are well known in traditional Japanese culture of VI–XX cc. Analytical interpretation of this resemblance may became the subject of special research.

  16. Theoretical studies of preparation of core-shell nanoparticles by electrochemical metal deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, O.A.; Mariscal, M.M. [INFIQC, Departamento de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (Argentina); Leiva, E.P.M., E-mail: eleiva@fcq.unc.edu.a [INFIQC, Departamento de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-30

    In the present work we discuss the statistical mechanical framework for predicting the decoration of metallic nanoparticles using electrochemical methods, in thermodynamic equilibrium. It is found that depending on the interactions between the two metals, controlled decoration may be achieved for core-shell nanoparticles in undersaturation and oversaturation conditions. The concept of underpotential deposition is discussed for the case of nanoparticles, with the finding that this phenomenon may be size dependent.

  17. Ozone Sensing Based on Palladium Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Selene Capula Colindres

    2014-04-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd deposited by drop coating on platinum interdigitated electrodes on a SiO2 substrate. The sensor exhibited a resistance change to ozone (O3 with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.

  18. Ozone Sensing Based on Palladium Decorated Carbon Nanotubes

    Science.gov (United States)

    Colindres, Selene Capula; Aguir, Khalifa; Sodi, Felipe Cervantes; Vargas, Luis Villa; Moncayo Salazar, José A.; Febles, Vicente Garibay

    2014-01-01

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO2 substrate. The sensor exhibited a resistance change to ozone (O3) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response. PMID:24736133

  19. Palladium Decorated Graphene-Nanoribbon Network for Enhanced Gas Sensing.

    Science.gov (United States)

    Kuru, Cihan; Choi, Duyoung; Choi, Chulmin; Kim, Young Jin; Jin, Sungho

    2015-03-01

    The fabrication of large-scale graphene nanoribbon (GNR) network and its application for gas sensing are reported. A large area, nanoscale GNR network was produced by a facile approach of silver nanowires (Ag NWs) templated graphene masking and subsequent 02 plasma etching. GNR network shows significantly enhanced sensitivity to ammonia gas compared to pristine graphene layer. The gas detection sensitivity of the nanoscale GNR network is even further improved by decorating GNR network with palladium (Pd) or platinum (Pt) nanoparticles, which show a relative resistance response of 65% and 45%, respectively to 50 ppm (parts per million) of ammonia (NH3) in nitrogen (N2) at room temperature as well as good reversibility in air.

  20. Historical origins of Petrykivsky decorative painting

    Directory of Open Access Journals (Sweden)

    T. A. Harkava

    2017-07-01

    Full Text Available Petrykivsky decorative painting is a part of Ukrainian folk art. Domestic science of folk art has originated and has been developing primarily as a study of archaeological antiquities and artistic monuments of the past. Scientific papers, which comprehended the process of folk art development, began to appear in the late nineteenth century, Archaeological Congresses became the impetus for their appearance. Being a representative of the decorative painting, Petrikivsky decorative painting is rooted by its murals to Tripoli. It was created as a peasant domestic drawing. Inexhaustible diversity of local variants of Petrikivsky decorative painting, its evolutionary change, the individual characteristics of paintings of hundreds of famous Ukrainian artists do not even allow comparing it to any other European counterparts, each of which is characterized only by some individual techniques. Petrikivsky decorative painting got the significant boost in its distribution and development when it «came down» from walls to paper. Paper pictures - malyovky - were stucked to walls following the traditional rules of domestic interior’s decoration. Petrikivsky decorative painting got the official status in 1913, when E. Evenbah, by the initiative of D.I. Yavornytsky, gathered the collection of Petrikivsky decorative painting’s malyovkas and organized the exhibition in St. Petersburg. Motives of painting are rooted into the local flora and fauna and into the historical tradition. However, Petrikivsky decorative painting is not a direct reflection of natural motifs. World, created in paintings, is the product of the imagination of folk artist, it is the stylization of local flowers, fruits and birds. First names of Masters of Petrikivsky decorative painting, which appeared in historical sources, were T. Pata, N. Bilokin, I. Pavlenko. Their official recognition happened in 1930 after their participation in the first republican exhibition, which was later shown

  1. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Elham [Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Imam Khomeini Hospital, Tehran (Iran, Islamic Republic of); Karimi, Ziba [Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-05-18

    Highlights: • Design of a novel impedimetric immunosensor for detection of HER2 in serum samples. • Use of a multiwall carbon nanotube-ionic liquid electrode modified with AuNPs as a base. • Immobilization of monoclonal HER2 antibody on AuNPs/MWCILE using 1,6-hexanedithiol as a cross linker. • Achieving linear dynamic range and limit of detection of 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. • Method development and validation and application to assay of HER2 in biological fluids. - Abstract: A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN){sub 6}]{sup 3−/4−} redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.

  2. Fe3O4纳米粒子-氧化石墨烯纳米复合物的制备、表征及体外毒性评价%Preparation, Characterization and in vitro Cytotoxicity Evaluation of Fe3O4 Nanoparticles Decorated Graphene Oxide

    Institute of Scientific and Technical Information of China (English)

    刘琼; 王娟; 陈秀华

    2013-01-01

    The Fe3O4 magnetic nanoparticles decorated graphene oxide (GO) composites were in situ synthesized by co-precipitation method with the GO sheets prepared by improved Hummers method. The properties of the composites were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the mean particle size of the Fe3O4 nanoparticles in the composites was 30 run, and some aggregates were 50 - 100 ran. Some functional groups of GO in the composites could be used as the sites binding with the drugs. The composites could also load drugs by Π-Π conjugation. In the presence of external magnetic field, the prepared composites rapidly gathered near the permanent magnet. The results of in vitro cytotoxicity test showed that in the concentration range of 0.5 - 5 000 ng/ml, the composites had no obvious cytotoxicity on lung cancer cells A549 and breast cancer cells ZR-75-30.%采用改进的Hummers方法制备氧化石墨烯(GO),再用共沉淀法原位合成Fe3O4磁性纳米粒子修饰的GO复合材料.通过透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和X-射线衍射(XRD)对Fe3O4纳米粒子-GO复合物的形态进行表征.结果表明,所制复合物中Fe3O4磁性纳米粒子的粒径为30 nm,少量粒子团聚后的粒径为50~100nm.该复合物中GO含有多种官能团,可作为药物连接的位点,还可通过π-π共轭作用与药物连接.在外加磁场作用下,可明显观察到该复合物迅速聚集在永磁体附近.体外细胞毒性试验表明,该复合物在0.5~5 000 μg/ml范围内对肺癌A549细胞和乳腺癌ZR-75-30细胞无细胞毒性.

  3. Silver nanowire decorated heatable textiles.

    Science.gov (United States)

    Doganay, Doga; Coskun, Sahin; Genlik, Sevim Polat; Unalan, Husnu Emrah

    2016-10-28

    The modification of insulating fabrics with electrically conductive nanomaterials has opened up a novel application field. With the help of Joule heating mechanism, conductive fabrics can be used as mobile heaters. In this work, heatable textiles are fabricated using silver nanowires (Ag NWs). Cotton fabrics are decorated with polyol synthesized Ag NWs via a simple dip-and-dry method. The time-dependent thermal response of the fabrics under different applied voltages is investigated. It is found that the fabrics can be heated to 50 °C under an applied power density of as low as 0.05 W cm(-2). Uniform deposition of Ag NWs resulted in the homogeneous generation of heat. In addition, the stability of the fabrics with time and under different bending and washing conditions is examined. Moreover, a simple control circuit is fabricated and integrated in order to demonstrate the high potential of the fabrics for mobile applications. This work provides a roadmap for researchers who would like to work on heatable textiles with metallic NWs.

  4. Silver nanowire decorated heatable textiles

    Science.gov (United States)

    Doganay, Doga; Coskun, Sahin; Polat Genlik, Sevim; Emrah Unalan, Husnu

    2016-10-01

    The modification of insulating fabrics with electrically conductive nanomaterials has opened up a novel application field. With the help of Joule heating mechanism, conductive fabrics can be used as mobile heaters. In this work, heatable textiles are fabricated using silver nanowires (Ag NWs). Cotton fabrics are decorated with polyol synthesized Ag NWs via a simple dip-and-dry method. The time-dependent thermal response of the fabrics under different applied voltages is investigated. It is found that the fabrics can be heated to 50 °C under an applied power density of as low as 0.05 W cm-2. Uniform deposition of Ag NWs resulted in the homogeneous generation of heat. In addition, the stability of the fabrics with time and under different bending and washing conditions is examined. Moreover, a simple control circuit is fabricated and integrated in order to demonstrate the high potential of the fabrics for mobile applications. This work provides a roadmap for researchers who would like to work on heatable textiles with metallic NWs.

  5. Palladium-nanoparticle-coated carbon nanotube gas sensor

    Science.gov (United States)

    Han, Maeum; Jung, Daewoong; Lee, Gil S.

    2014-08-01

    Flexible hydrogen gas sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) decorated with Pd nanoparticles for the detection of H2 gas at room temperature. A comparative gas-sensing study was carried out on both the Pd-nanoparticles-decorated and undecorated MWCNT sheets in order to examine the effect of Pd nanoparticles on the gas-sensing performances at room temperature. Experimental results showed that the MWCNTs/Pd sensor exhibited fast response and recovery as well as high sensitivity compared with the pure MWCNT sensor. The improved sensing properties of this sensor were attributed to the spillover effect of Pd nanoparticles and the highly conductive MWCNT sheet.

  6. Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion.

    Science.gov (United States)

    Jiang, Chi; Huang, Gaoshan; Ding, Shi-Jin; Dong, Hongliang; Men, Chuanling; Mei, Yongfeng

    2016-12-01

    Nanoparticle-decorated tubular microengines were synthesized by a combination of rolled-up nanotechnology and atomic layer deposition. The presence of Pt nanoparticles with different sizes and distributions on the walls of microengines fabricated from bilayer nanomembranes with different materials results in promoted catalytic reaction efficiency, which leads to an ultrafast speed (the highest speed 3200 μm/s). The motion speed of the decorated microengines fits the theoretical model very well, suggesting that the larger surface area is mainly responsible for the acceleration of the motion speed. The high-speed nanoparticle-decorated microengines hold considerable promise for a variety of applications.

  7. One-Pot Green Synthesis of Ag-Decorated SnO2 Microsphere: an Efficient and Reusable Catalyst for Reduction of 4-Nitrophenol

    Science.gov (United States)

    Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing

    2017-06-01

    In this paper, hierarchical Ag-decorated SnO2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH4) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO2 nanoparticles will self-assemble into SnO2 nanosheets and Ag nanoparticles decorated SnO2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant ( κ nor) of 6.20 min-1g-1L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO2 microsphere and discussed the possible origin of the excellent catalytic activity.

  8. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  9. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: an elegant approach to developing a novel biotin biosensor.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Paimard, Giti; Skov, Thomas

    2015-01-01

    In this study, a novel biosensing system for the determination of biotin (BTN) based on electrodeposition of palladium-iron-nickel (PdFeNi) trimetallic alloy nanoparticles (NPs) onto a glassy carbon electrode (GCE) modified with a room-temperature ionic liquid (RTIL)-chitin (Ch) composite film (PdFeNi/ChRTIL/GCE) is established. NPs have a wide range of applications in science and technology and their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we used a pattern recognition method (digital image processing, DIP) for measuring particle size distributions (PSDs) from scanning electron microscopic (SEM) images in the presence of an uneven background. Different depositions were performed by varying the number of cyclic potential scans (N) during electroreduction step. It was observed that the physicochemical properties of the deposits were correlated to the performance of the PdFeNi/ChRTIL/GCE with respect to BTN assay. The best results were obtained for eight electrodeposition cyclic scans, where small-sized particles (19.54 ± 6.27 nm) with high density (682 particles µm(-2)) were obtained. Under optimized conditions, a linear range from 2.0 to 44.0 × 10(-9) mol L(-1) and a limit of detection (LOD) of 0.6 × 10(-9) mol L(-1) were obtained. The PdFeNi/ChRTIL nanocomposite showed excellent compatibility, enhanced electron transfer kinetics, large electroactive surface area, and was highly sensitive, selective, and stable toward BTN determination. Finally, the PdFeNi/ChRTIL/GCE was satisfactorily applied to the determination of BTN in infant milk powder, liver, and egg yolk samples.

  10. A highly efficient visible-light-driven novel p-n junction Fe2O3/BiOI photocatalyst: Surface decoration of BiOI nanosheets with Fe2O3 nanoparticles

    Science.gov (United States)

    Mehraj, Owais; Pirzada, Bilal M.; Mir, Niyaz A.; Khan, Mohammad Zain; Sabir, Suhail

    2016-11-01

    Novel xFe2O3/yBiOI composites (x/y = 0.25, 0.35, 0.45 molar ratios) with a p-n heterojunction were prepared for the first time through an in situ hydrolysis method under solvothermal conditions. The phase structure, morphology and optical properties of the composites were studied using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR), N2 adsorption-desorption isotherms (BET) and UV-vis diffuse reflectance spectroscopy (UV-DRS). The characterization results suggest square shaped nanosheets of BiOI with Fe2O3 nanoparticles well distributed on the surface of BiOI nanosheets. The photodegradation performances of the xFe/yBi samples were investigated using aqueous solution of Rhodamine B (RhB) dye. The xFe/yBi composites displayed much higher photocatalytic efficiencies for RhB degradation than the single BiOI under visible light (λ > 400 nm). Specifically, the degradation rate of xFe/yBi samples at molar ratio of 0.35 is 4.24 times higher than single BiOI. The novel Fe2O3/BiOI heterojunction was found to be highly stable in cyclic experiments. Based on the results of BET, PL and DRS analysis, the enhanced photocatalytic efficiency can be mainly ascribed to the formation of stable p-n heterojunction between Fe2O3 and BiOI, which facilitates the transfer and separation of photogenerated electron-hole pairs.

  11. Room temperature preparation of Pt-decorated MWCNTs by using proton beam irradiation

    Science.gov (United States)

    Kim, Yeong-Joon; Lee, Yoon Ji; Song, Jae Hee

    2016-09-01

    We present a facile one-pot preparation route for the production of multiwalled carbon nanotube (MWCNT)-Pt nanoparticle composites in an aqueous solution at room temperature by using proton beam irradiation process without the addition of any reducing reagents. We utilized hexade-cyltrimethylammonium bromide (CTAB)-stabilized pristine and thiol-functionalized MWCNTs for the synthesis of MWCNT-Pt nanoparticle composites and compared the deposition trends of the platinum nanoparticles onto the surfaces of pristine MWCNTs and surface-modified MWCNTs, respectively. Thiolated MWCNTs were densely and uniformly decorated with Pt nanoparticles while pristine MWCNTs were not. The Pt nanostructures on the surfaces of MWCNTs were spherical, and the average diameter was in the range of ~2 nm. Also, two different metal precursors, H2PtCl6 and Na2PtCl6, were used to find any distinguishable decoration patterns on the surface-modified MWCNTs; however, the deposition patterns were observed to be not very different.

  12. Bandgap engineering of graphene decorated with randomly distributed ZnO nano-seed

    Science.gov (United States)

    Al-Amin, Chowdhury; Vabbina, Phani Kiran; Karabiyik, Mustafa; Sinha, Raju; Pala, Nezih

    2016-05-01

    In this paper, we have experimentally demonstrated the engineering of semi-metal single layer CVD Graphene's bandgap by decorating with randomly distributed ZnO nano-seed grown by sonication of Zinc acetate dehydrate. The proximity of nanoparticles and Graphene breaks Graphene's sublattice symmetry and opens-up a bandgap. The 2-D/G ratio of Raman spectroscopy of decorated Graphene along with a peak at 432.39 cm-1 confirmed presence of ZnO on single layer Graphene. The introduced bandgap was measured from the slope of Arrhenius plot. Graphene with significant bandgap introduced by the proposed methods could be used for devices intended for digital and logic applications.

  13. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  14. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    Science.gov (United States)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  15. Decorative Materials in the Application of Interior Design

    Institute of Scientific and Technical Information of China (English)

    高超

    2013-01-01

      Abstact:With the accelerating of urbanization process, people is becoming more and more about life and living and work space environment and facility requirements more and more high, people on indoor and outdoor when deco-rating, pays more attention to adopt economic, environmental protection and practical decoration materials used in modern indoor and outdoor decoration, thus promoting the rapid development of decoration industry. Decoration materials has become the carrier of the interior design, any design and ideas need through the choice of materials and build on.

  16. 22 CFR 3.7 - Decorations.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Decorations. 3.7 Section 3.7 Foreign Relations... Office of Congressional and Public Liaison (for domestic employees), and by the Director of Area Offices... designated depository office of the employing agency a request for review of the case. This request should...

  17. Quantum decoration transformation for spin models

    Science.gov (United States)

    Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre

    2016-09-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  18. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride)

    OpenAIRE

    Gao, Tingting; Chen, Laicheng; Li, Zhiwei; Yu, Laigui; Wu, Zhishen; Zhang, Zhijun

    2016-01-01

    A novel flame retardant, zinc hydroxystannate-decorated graphene oxide (ZHS/GO) nanohybrid, was successfully prepared and well characterized. Herein, the ZHS nanoparticles could not only enhance the flame retardancy of GO with the synergistic flame-retardant effect of ZHS but also prevent the restack of GO to improve the mechanical properties of poly (vinyl chloride) (PVC) matrix. The structure characterization showed ZHS nanoparticles were bonded onto the surface of GO nanosheets and the ZHS...

  19. Fabrication of Ni-decorated helical ribbon composite microstructure from self-assembled lipid tubule by electroless metallization

    Institute of Scientific and Technical Information of China (English)

    FU Yubin; ZHANG Lide; ZHENG Jiyong

    2006-01-01

    Lipid molecules can self-assemble into a tubular structure, which is formed by tightly wound helical ribbons. Lipid tubules are utilized as a precursor to fabricate a novel Ni-decorated helical ribbon composite microstructure in a high yield by electroless deposition. The microstructure carries Ni nanoparticles on the flat face and wires at the edge of helical ribbon, in which the average size of nanoparticles is about 40-60 nm, and the wires are of a layered structure strongly correlated with a multi-bilayer structure in the lipid membrane. Compared with the tubular precursor, the Ni-decorated composite microstructure becomes short and irregular shapes due to the breakage in the deposition, and its formation is largely bound up with the tubular helical structure and the different catalytic process. Finally, the helical composite microstructure would have a potential application in the development of electric active materials.

  20. Graphene Functionalization by 1,6-Diaminohexane and Silver Nanoparticles for Water Disinfection

    National Research Council Canada - National Science Library

    Abdelhalim, Abdelsattar O. E; Galal, Ahmed; Hussein, Mohamed Z; El Sayed, Ibrahim E.-T

    2016-01-01

      Reduced graphene (G) was prepared by chemically reducing graphene oxide (GO). For the first time, the resulting G was functionalized by 1,6-diaminohexane and decorated with silver nanoparticles (AgNPs...

  1. Imine-linked receptors decorated ZnO-based dye-sensitized solar cells

    Indian Academy of Sciences (India)

    SATBIR SINGH; AMARPAL SINGH; NAVNEET KAUR

    2016-10-01

    This study reports the synthesis, characterization and photophysical properties of imine-linked receptors decorated ZnO nanoparticles using wet precipitation method. Initially, polymer dye 3 was synthesized usingcondensation reaction between 2-furancarboxaldehyde 1 and polyethylenimine 2. The decoration of imine-linked receptors on ZnO nanoparticles (sample A) was characterized and investigated by X-ray diffraction, scanning electronmicroscope and dynamic light scattering spectroscopic studies. Further, polymer dye 3 was added to ruthenium chloride (RuCl$_3$) to form a polymer–ruthenium-based composite dye-capped ZnO nanoparticles (sample B).The optical properties of sample A were evaluated by fluorescence and UV–Vis spectroscopy. The samples A and B were further processed to dye-sensitized solar cells using wet precipitation method. The results of observationsrevealed that the addition of ruthenium–polymer dye molecules increased the light harvesting capacity of ZnO-based DSSCs. A maximum solar power to electricity conversion efficiency ($\\eta$) of 3.83% was recorded for sample B-based DSSCs with ruthenium–metal complex dye as a good photosensitizer. The recorded photovoltaic efficiency of sample B-based DSSCs was enhanced by 1.36% compared to sample A-based DSSCs.

  2. Nickel Decorated on Phosphorous-Doped Carbon Nitride as an Efficient Photocatalyst for Reduction of Nitrobenzenes

    Science.gov (United States)

    Kumar, Anurag; Kumar, Pawan; Joshi, Chetan; Manchanda, Manvi; Boukherroub, Rabah; Jain, Suman L.

    2016-01-01

    Nickel nanoparticle-decorated phosphorous-doped graphitic carbon nitride (Ni@g-PC3N4) was synthesized and used as an efficient photoactive catalyst for the reduction of various nitrobenzenes under visible light irradiation. Hydrazine monohydrate was used as the source of protons and electrons for the intended reaction. The developed photocatalyst was found to be highly active and afforded excellent product yields under mild experimental conditions. In addition, the photocatalyst could easily be recovered and reused for several runs without any detectable leaching during the reaction.

  3. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    I. Abdul Rahman

    2014-01-01

    Full Text Available ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.

  4. Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Eduardo Gracia-Espino

    2016-01-01

    Full Text Available Vapor sensors are easily fabricated onto alumina substrates using foils of silver-decorated nitrogen-doped multiwalled carbon nanotubes (CNX-MWNTs-Ag as active sensing material. The vapor sensors are tested using carbon disulfide, acetone, ethanol, and chloroform vapors. The CNX-MWNTs are produced by chemical vapor deposition process and then decorated with 14 nm Ag nanoparticles (Ag-NPs. The samples are characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Our results demonstrate that Ag-decorated CNX-MWNTs exhibit a better response and sensitivity when compared with pristine CNX-MWNTs based sensors, making them promising candidates for air-pollutants environmental monitoring. The temperature effect on the sensor performance is also studied; we found that the detection mechanism could be tuned from physisorption, at room temperature, to chemisorption at higher working temperature. Finally, first-principles density functional calculations are carried out to understand the interactions between the systems involved in the sensors, finding good agreement between experimental results and the theoretical approach.

  5. Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Kouchaki, Alireza [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Gülseren, Oğuz [Department of Physics, Faculty of Science, Bilkent University, Ankara (Turkey); Hadipour, Nasser [Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzaei, Mahmoud, E-mail: mdmirzaei@pharm.mui.ac.ir [Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-06-03

    Decorations of silicon carbide (SiC) fullerene-like nanoparticles by fluorouracil (FU) and its tautomers are investigated through density functional theory (DFT) calculations. Two models of fullerene-like particles including Si{sub 12}C{sub 8} and Si{sub 8}C{sub 12} are constructed to be counterparts of decorated hybrid structures, FU@Si{sub 12}C{sub 8} and FU@Si{sub 8}C{sub 12}, respectively. The initial models including original FU and tautomeric structures and SiC nanoparticles are individually optimized and then combined for further optimizations in the hybrid forms. Covalent bonds are observed for FU@Si{sub 12}C{sub 8} hybrids, whereas non-covalent interactions are seen for FU@Si{sub 8}C{sub 12} ones. The obtained properties indicated that Si{sub 12}C{sub 8} model could be considered as a better counterpart for interactions with FU structures than Si{sub 8}C{sub 12} model. The results also showed significant effects of interactions on the properties of atoms close to the interacting regions in nanoparticles. Finally, the tautomeric structures show different behaviors in interactions with SiC nanoparticles, in which the SiC nanoparticles could be employed to detect the situations of tautomeric processes for FU structures. - Highlights: • Possibilities of interaction between fluorouracil and silicon carbides have been recognized. • Possibilities for covalent and non-covalent interactions have been indicated. • Detections of tautomeric structures have been investigated.

  6. Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    The nano-decoration of electrode with nanoparticles is one effective way to enhance power output of microbial fuel cells (MFCs). However, the amount of nanoparticles used for decoration has not been optimized yet, and how it affects the microbial community is still unknown. In this study, different....... Different densities of Au nanoparticles also resulted in different microbial communities on the anode. More diverse bacterial communities were found with higher Au nanoparticle densities. These results provide new dimensions in understanding electrode modification with nanoparticles in MFC systems....

  7. Various methods of gold nanoparticles (GNPs conjugation to antibodies

    Directory of Open Access Journals (Sweden)

    Mir Hadi Jazayeri

    2016-07-01

    These applications require an increasingly complex level of surface decoration in order to achieve efficacy, and limit off-target toxicity. This review will discuss the chemical and physical approaches commonly utilized in relation to surface decoration and the powerful system used to indicate success of the conjugation. Finally, we review the range of recent studies about covalent and noncovalent modes for conjugation of antibodies to the particle surface that aim to advance gold nanoparticle treatments and diagnostics toward the clinic.

  8. Effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Long; Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2014-08-25

    Highlights: • Various ZnO morphologies coated TiO{sub 2} photoanodes are formed and applied to DSSCs. • The effect of photoanode morphology on performance of DSSCs was studied. • ZnO NRs@TiO{sub 2} electrode provides more dye absorption and fast transfer pathway. • The η of DSSC with ZnO NRs@TiO{sub 2} is increased over fourfold than other DSSCs. - Abstract: ZnO nanoparticles and one-dimensional vertically aligned ZnO nanorods were grown on the TiO{sub 2} layers in the photoanodes via the hydrothermal method at 60 and 90 °C, respectively. The effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells (DSSCs) was investigated. The morphologies, crystalline structures and optical properties of the synthesized ZnO nanoparticles and ZnO nanorods were characterized by field-emission scanning electron microscope, X-ray diffractometer and photoluminescence spectroscopy, respectively. The photocurrent–voltage curves of the fabricated DSSCs showed that the ZnO nanorods decorated DSSCs exhibited better photovoltaic performance than the ZnO nanoparticles decorated DSSCs. The improved performance of the ZnO nanorods decorated DSSCs can be ascribed to the fact that the vertically aligned ZnO nanorods provide high specific surface area for dye adsorption and the efficient pathway for electron transportation.

  9. Decorative Line and Edge Extraction in Cartoon Images

    Directory of Open Access Journals (Sweden)

    Tiejun Zhang

    2013-04-01

    Full Text Available Decorative Lines and edges in a cartoon image are the most important elements to convey its semantic information. In this study, we propose a method to extract both decorative lines and edges of the cartoon image at the same time. Firstly, we use the Hessian matrix to compute the direction perpendicular to the decorative lines in the image. Then, non-maximum suppression is applied to the image’s second derivative of Gaussian to locate the possible decorative line’s center. Secondly, we use directional zero-crossing (the zero-crossing of the first Gaussian derivative on the precomputed direction to verify the existence of the decorative lines. Finally, decorative lines and the edges detected by non-maximum suppression on the first Gaussian derivative are fused together. The experimental results show that our method is more effective than other existed methods in literature for complicated cartoon images.

  10. Holiday Decorating Contest - A Way to Meet Fellow Employees | Poster

    Science.gov (United States)

    The trolls from “Frozen,” a North Pole tunnel, and a Christmas tree­–shaped periodic table of elements were just a few of the decorations on display during the second annual Holiday Decorating Contest in December. The contest, sponsored by the R&W Club Frederick, awarded prizes to three groups and two individuals whose decorations were judged based on visual impact, creativity, and craftsmanship.

  11. Performance of hydrogen storage of carbon nanotubes decorated with palladium

    Institute of Scientific and Technical Information of China (English)

    木士春; 唐浩林; 钱胜浩; 潘牧; 袁润章

    2004-01-01

    Carbon nanotubes(CNTs) decorated with palladium were synthesized and applied to hydrogen storage of gas phase. The results show that the amount of hydrogen storage of the decorated CNTs is up to 3.9 % (mass fraction), of which, almost 85% H2 can be desorbed at ambient temperature and pressure, while the non-decorated CNTs has a poor performance of hydrogen storage(only about 0.5% H2, mass fraction). These indicate that it is feasible to enhance the performance of hydrogen storage of CNTs by further decoration with hydrogen-storing metals or alloys.

  12. Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe{sub 2}O{sub 3} nanofibrous composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae-Rim [Department of Bioscience and Textile Technology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567 (Japan); Kim, Byoung-Suhk, E-mail: kbsuhk@yahoo.com [Department of Organic Materials and Fiber Engineering, College of Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Kim, Ick-Soo, E-mail: kim@shinshu-u.ac.jp [Department of Bioscience and Textile Technology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567 (Japan); Nano Fusion Technology Research Group, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2012-08-15

    The Ag-decorated poly(vinyl alcohol) (PVA) composite nanofibrous webs incorporating Fe{sub 2}O{sub 3} nanoparticles were fabricated by electrospinning and metal-deposition methods for electromagnetic interference (EMI) shielding applications. The Ag-decorated PVA/Fe{sub 2}O{sub 3} composite nanofiber webs with various Ag thicknesses and different amounts of Fe{sub 2}O{sub 3} nanoparticles were prepared and used for EMI shielding measurement. For the EMI SE measurement, a near-field antenna measurement system was used. The measurement of EMI SE was carried out at the frequency range from 0.5 to 18 GHz, and the electromagnetic parameters were measured. The morphologies and microstructures of the resultant PVA/Fe{sub 2}O{sub 3} composite nanofiber webs were characterized using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), respectively. The effects of surface morphologies and Fe{sub 2}O{sub 3} nanoparticles on the EMI shielding effectiveness of Ag-decorated PVA/Fe{sub 2}O{sub 3} composite nanofiber webs were investigated. -- Highlights: Black-Right-Pointing-Pointer We prepare Ag-decorated poly(vinyl alcohol) nanowebs incorporating Fe{sub 2}O{sub 3} nanoparticles